411 lines
12 KiB
C
411 lines
12 KiB
C
|
//-----------------------------------------------------------------------------
|
||
|
// Package Title ratpak
|
||
|
// File basex.c
|
||
|
// Author Timothy David Corrie Jr. (timc@microsoft.com)
|
||
|
// Copyright (C) 1995-97 Microsoft
|
||
|
// Date 03-14-97
|
||
|
//
|
||
|
//
|
||
|
// Description
|
||
|
//
|
||
|
// Contains number routines for internal base computations, these assume
|
||
|
// internal base is a power of 2.
|
||
|
//
|
||
|
//-----------------------------------------------------------------------------
|
||
|
|
||
|
#if defined( DOS )
|
||
|
#include <dosstub.h>
|
||
|
#else
|
||
|
#include <windows.h>
|
||
|
#endif
|
||
|
#include <stdio.h>
|
||
|
#include <string.h>
|
||
|
#include <malloc.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <ratpak.h>
|
||
|
|
||
|
|
||
|
// WARNING: This assumes return of a 64 bit entity is in edx:eax
|
||
|
// This assumption SHOULD always be true on X86
|
||
|
#pragma warning( disable : 4035 )
|
||
|
DWORDLONG __inline Mul32x32( IN DWORD a, IN DWORD b )
|
||
|
|
||
|
{
|
||
|
#ifdef _X86_
|
||
|
__asm {
|
||
|
mov eax, b
|
||
|
mul a
|
||
|
}
|
||
|
#else
|
||
|
return (DWORDLONG)a * b;
|
||
|
#endif
|
||
|
}
|
||
|
#pragma warning( default : 4035 )
|
||
|
|
||
|
// Yeah well when the F__KING COMPILER gets a clue I'll change this back to
|
||
|
// an inline (as opposed to the compiler looking at fastcall putting the args
|
||
|
// in registers, oh and then a) not making this inline, and b) pushing the
|
||
|
// values anyway!
|
||
|
|
||
|
#ifdef _X86_
|
||
|
#define Shr32xbase(x) \
|
||
|
__asm { mov eax,DWORD PTR [x] } \
|
||
|
__asm { mov edx,DWORD PTR [x+4] } \
|
||
|
__asm { shrd eax,edx,BASEXPWR } \
|
||
|
__asm { shr edx,BASEXPWR } \
|
||
|
__asm { mov DWORD PTR [x],eax } \
|
||
|
__asm { mov DWORD PTR [x+4],edx }
|
||
|
#else
|
||
|
#define Shr32xbase(x) (x >>= BASEXPWR);
|
||
|
#endif
|
||
|
|
||
|
|
||
|
|
||
|
void _mulnumx( PNUMBER *pa, PNUMBER b );
|
||
|
|
||
|
//----------------------------------------------------------------------------
|
||
|
//
|
||
|
// FUNCTION: mulnumx
|
||
|
//
|
||
|
// ARGUMENTS: pointer to a number and a second number, the
|
||
|
// base is always BASEX.
|
||
|
//
|
||
|
// RETURN: None, changes first pointer.
|
||
|
//
|
||
|
// DESCRIPTION: Does the number equivalent of *pa *= b.
|
||
|
// This is a stub which prevents multiplication by 1, this is a big speed
|
||
|
// improvement.
|
||
|
//
|
||
|
//----------------------------------------------------------------------------
|
||
|
|
||
|
void __inline mulnumx( PNUMBER *pa, PNUMBER b )
|
||
|
|
||
|
{
|
||
|
if ( b->cdigit > 1 || b->mant[0] != 1 || b->exp != 0 )
|
||
|
{
|
||
|
// If b is not one we multiply
|
||
|
if ( (*pa)->cdigit > 1 || (*pa)->mant[0] != 1 || (*pa)->exp != 0 )
|
||
|
{
|
||
|
// pa and b are both nonone.
|
||
|
_mulnumx( pa, b );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// if pa is one and b isn't just copy b. and adjust the sign.
|
||
|
long sign = (*pa)->sign;
|
||
|
DUPNUM(*pa,b);
|
||
|
(*pa)->sign *= sign;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// B is +/- 1, But we do have to set the sign.
|
||
|
(*pa)->sign *= b->sign;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//----------------------------------------------------------------------------
|
||
|
//
|
||
|
// FUNCTION: _mulnumx
|
||
|
//
|
||
|
// ARGUMENTS: pointer to a number and a second number, the
|
||
|
// base is always BASEX.
|
||
|
//
|
||
|
// RETURN: None, changes first pointer.
|
||
|
//
|
||
|
// DESCRIPTION: Does the number equivalent of *pa *= b.
|
||
|
// Assumes the base is BASEX of both numbers. This algorithm is the
|
||
|
// same one you learned in gradeschool, except the base isn't 10 it's
|
||
|
// BASEX.
|
||
|
//
|
||
|
//----------------------------------------------------------------------------
|
||
|
|
||
|
void _mulnumx( PNUMBER *pa, PNUMBER b )
|
||
|
|
||
|
{
|
||
|
PNUMBER c=NULL; // c will contain the result.
|
||
|
PNUMBER a=NULL; // a is the dereferenced number pointer from *pa
|
||
|
MANTTYPE *ptra; // ptra is a pointer to the mantissa of a.
|
||
|
MANTTYPE *ptrb; // ptrb is a pointer to the mantissa of b.
|
||
|
MANTTYPE *ptrc; // ptrc is a pointer to the mantissa of c.
|
||
|
MANTTYPE *ptrcoffset; // ptrcoffset, is the anchor location of the next
|
||
|
// single digit multiply partial result.
|
||
|
long iadigit=0; // Index of digit being used in the first number.
|
||
|
long ibdigit=0; // Index of digit being used in the second number.
|
||
|
MANTTYPE da=0; // da is the digit from the fist number.
|
||
|
TWO_MANTTYPE cy=0; // cy is the carry resulting from the addition of
|
||
|
// a multiplied row into the result.
|
||
|
TWO_MANTTYPE mcy=0; // mcy is the resultant from a single
|
||
|
// multiply, AND the carry of that multiply.
|
||
|
long icdigit=0; // Index of digit being calculated in final result.
|
||
|
|
||
|
a=*pa;
|
||
|
|
||
|
ibdigit = a->cdigit + b->cdigit - 1;
|
||
|
createnum( c, ibdigit + 1 );
|
||
|
c->cdigit = ibdigit;
|
||
|
c->sign = a->sign * b->sign;
|
||
|
|
||
|
c->exp = a->exp + b->exp;
|
||
|
ptra = MANT(a);
|
||
|
ptrcoffset = MANT(c);
|
||
|
|
||
|
for ( iadigit = a->cdigit; iadigit > 0; iadigit-- )
|
||
|
{
|
||
|
da = *ptra++;
|
||
|
ptrb = MANT(b);
|
||
|
|
||
|
// Shift ptrc, and ptrcoffset, one for each digit
|
||
|
ptrc = ptrcoffset++;
|
||
|
|
||
|
for ( ibdigit = b->cdigit; ibdigit > 0; ibdigit-- )
|
||
|
{
|
||
|
cy = 0;
|
||
|
mcy = Mul32x32( da, *ptrb );
|
||
|
if ( mcy )
|
||
|
{
|
||
|
icdigit = 0;
|
||
|
if ( ibdigit == 1 && iadigit == 1 )
|
||
|
{
|
||
|
c->cdigit++;
|
||
|
}
|
||
|
}
|
||
|
// If result is nonzero, or while result of carry is nonzero...
|
||
|
while ( mcy || cy )
|
||
|
{
|
||
|
|
||
|
// update carry from addition(s) and multiply.
|
||
|
cy += (TWO_MANTTYPE)ptrc[icdigit]+((DWORD)mcy&((DWORD)~BASEX));
|
||
|
|
||
|
// update result digit from
|
||
|
ptrc[icdigit++]=(MANTTYPE)((DWORD)cy&((DWORD)~BASEX));
|
||
|
|
||
|
// update carries from
|
||
|
Shr32xbase( mcy );
|
||
|
Shr32xbase( cy );
|
||
|
}
|
||
|
*ptrb++;
|
||
|
*ptrc++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// prevent different kinds of zeros, by stripping leading duplicate zeroes.
|
||
|
// digits are in order of increasing significance.
|
||
|
while ( c->cdigit > 1 && MANT(c)[c->cdigit-1] == 0 )
|
||
|
{
|
||
|
c->cdigit--;
|
||
|
}
|
||
|
|
||
|
destroynum( *pa );
|
||
|
*pa=c;
|
||
|
}
|
||
|
//-----------------------------------------------------------------------------
|
||
|
//
|
||
|
// FUNCTION: numpowlongx
|
||
|
//
|
||
|
// ARGUMENTS: root as number power as long
|
||
|
// number.
|
||
|
//
|
||
|
// RETURN: None root is changed.
|
||
|
//
|
||
|
// DESCRIPTION: changes numeric representation of root to
|
||
|
// root ** power. Assumes base BASEX
|
||
|
// decomposes the exponent into it's sums of powers of 2, so on average
|
||
|
// it will take n+n/2 multiplies where n is the highest on bit.
|
||
|
//
|
||
|
//-----------------------------------------------------------------------------
|
||
|
|
||
|
void numpowlongx( IN OUT PNUMBER *proot, IN long power )
|
||
|
|
||
|
{
|
||
|
PNUMBER lret=NULL;
|
||
|
|
||
|
lret = longtonum( 1, BASEX );
|
||
|
|
||
|
// Once the power remaining is zero we are done.
|
||
|
while ( power > 0 )
|
||
|
{
|
||
|
// If this bit in the power decomposition is on, multiply the result
|
||
|
// by the root number.
|
||
|
if ( power & 1 )
|
||
|
{
|
||
|
mulnumx( &lret, *proot );
|
||
|
}
|
||
|
|
||
|
// multiply the root number by itself to scale for the next bit (i.e.
|
||
|
// square it.
|
||
|
mulnumx( proot, *proot );
|
||
|
|
||
|
// move the next bit of the power into place.
|
||
|
power >>= 1;
|
||
|
}
|
||
|
destroynum( *proot );
|
||
|
*proot=lret;
|
||
|
|
||
|
}
|
||
|
|
||
|
void _divnumx( PNUMBER *pa, PNUMBER b );
|
||
|
|
||
|
//----------------------------------------------------------------------------
|
||
|
//
|
||
|
// FUNCTION: divnumx
|
||
|
//
|
||
|
// ARGUMENTS: pointer to a number a second number.
|
||
|
//
|
||
|
// RETURN: None, changes first pointer.
|
||
|
//
|
||
|
// DESCRIPTION: Does the number equivalent of *pa /= b.
|
||
|
// Assumes nRadix is the internal nRadix representation.
|
||
|
// This is a stub which prevents division by 1, this is a big speed
|
||
|
// improvement.
|
||
|
//
|
||
|
//----------------------------------------------------------------------------
|
||
|
|
||
|
void __inline divnumx( PNUMBER *pa, PNUMBER b )
|
||
|
|
||
|
{
|
||
|
if ( b->cdigit > 1 || b->mant[0] != 1 || b->exp != 0 )
|
||
|
{
|
||
|
// b is not one.
|
||
|
if ( (*pa)->cdigit > 1 || (*pa)->mant[0] != 1 || (*pa)->exp != 0 )
|
||
|
{
|
||
|
// pa and b are both not one.
|
||
|
_divnumx( pa, b );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// if pa is one and b is not one, just copy b, and adjust the sign.
|
||
|
long sign = (*pa)->sign;
|
||
|
DUPNUM(*pa,b);
|
||
|
(*pa)->sign *= sign;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// b is one so don't divide, but set the sign.
|
||
|
(*pa)->sign *= b->sign;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//----------------------------------------------------------------------------
|
||
|
//
|
||
|
// FUNCTION: _divnumx
|
||
|
//
|
||
|
// ARGUMENTS: pointer to a number a second number.
|
||
|
//
|
||
|
// RETURN: None, changes first pointer.
|
||
|
//
|
||
|
// DESCRIPTION: Does the number equivalent of *pa /= b.
|
||
|
// Assumes nRadix is the internal nRadix representation.
|
||
|
//
|
||
|
//----------------------------------------------------------------------------
|
||
|
|
||
|
void _divnumx( PNUMBER *pa, PNUMBER b )
|
||
|
|
||
|
{
|
||
|
PNUMBER a=NULL; // a is the dereferenced number pointer from *pa
|
||
|
PNUMBER c=NULL; // c will contain the result.
|
||
|
PNUMBER lasttmp = NULL; // lasttmp allows a backup when the algorithm
|
||
|
// guesses one bit too far.
|
||
|
PNUMBER tmp = NULL; // current guess being worked on for divide.
|
||
|
PNUMBER rem = NULL; // remainder after applying guess.
|
||
|
long cdigits; // count of digits for answer.
|
||
|
MANTTYPE *ptrc; // ptrc is a pointer to the mantissa of c.
|
||
|
|
||
|
long thismax = maxout+ratio; // set a maximum number of internal digits
|
||
|
// to shoot for in the divide.
|
||
|
|
||
|
a=*pa;
|
||
|
if ( thismax < a->cdigit )
|
||
|
{
|
||
|
// a has more digits than precision specified, bump up digits to shoot
|
||
|
// for.
|
||
|
thismax = a->cdigit;
|
||
|
}
|
||
|
|
||
|
if ( thismax < b->cdigit )
|
||
|
{
|
||
|
// b has more digits than precision specified, bump up digits to shoot
|
||
|
// for.
|
||
|
thismax = b->cdigit;
|
||
|
}
|
||
|
|
||
|
// Create c (the divide answer) and set up exponent and sign.
|
||
|
createnum( c, thismax + 1 );
|
||
|
c->exp = (a->cdigit+a->exp) - (b->cdigit+b->exp) + 1;
|
||
|
c->sign = a->sign * b->sign;
|
||
|
|
||
|
ptrc = MANT(c) + thismax;
|
||
|
cdigits = 0;
|
||
|
|
||
|
DUPNUM( rem, a );
|
||
|
rem->sign = b->sign;
|
||
|
rem->exp = b->cdigit + b->exp - rem->cdigit;
|
||
|
|
||
|
while ( cdigits++ < thismax && !zernum(rem) )
|
||
|
{
|
||
|
long digit = 0;
|
||
|
*ptrc = 0;
|
||
|
while ( !lessnum( rem, b ) )
|
||
|
{
|
||
|
digit = 1;
|
||
|
DUPNUM( tmp, b );
|
||
|
destroynum( lasttmp );
|
||
|
lasttmp=longtonum( 0, BASEX );
|
||
|
while ( lessnum( tmp, rem ) )
|
||
|
{
|
||
|
destroynum( lasttmp );
|
||
|
DUPNUM(lasttmp,tmp);
|
||
|
addnum( &tmp, tmp, BASEX );
|
||
|
digit *= 2;
|
||
|
}
|
||
|
if ( lessnum( rem, tmp ) )
|
||
|
{
|
||
|
// too far, back up...
|
||
|
destroynum( tmp );
|
||
|
digit /= 2;
|
||
|
tmp=lasttmp;
|
||
|
lasttmp=NULL;
|
||
|
}
|
||
|
|
||
|
tmp->sign *= -1;
|
||
|
addnum( &rem, tmp, BASEX );
|
||
|
destroynum( tmp );
|
||
|
destroynum( lasttmp );
|
||
|
*ptrc |= digit;
|
||
|
}
|
||
|
rem->exp++;
|
||
|
ptrc--;
|
||
|
}
|
||
|
cdigits--;
|
||
|
if ( MANT(c) != ++ptrc )
|
||
|
{
|
||
|
memcpy( MANT(c), ptrc, (int)(cdigits*sizeof(MANTTYPE)) );
|
||
|
}
|
||
|
|
||
|
if ( !cdigits )
|
||
|
{
|
||
|
// A zero, make sure no wierd exponents creep in
|
||
|
c->exp = 0;
|
||
|
c->cdigit = 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
c->cdigit = cdigits;
|
||
|
c->exp -= cdigits;
|
||
|
// prevent different kinds of zeros, by stripping leading duplicate
|
||
|
// zeroes. digits are in order of increasing significance.
|
||
|
while ( c->cdigit > 1 && MANT(c)[c->cdigit-1] == 0 )
|
||
|
{
|
||
|
c->cdigit--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
destroynum( rem );
|
||
|
|
||
|
destroynum( *pa );
|
||
|
*pa=c;
|
||
|
}
|
||
|
|
||
|
|