windows-nt/Source/XPSP1/NT/shell/osshell/accesory/ratpak/transh.c

209 lines
4.5 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
//-----------------------------------------------------------------------------
// Package Title ratpak
// File transh.c
// Author Timothy David Corrie Jr. (timc@microsoft.com)
// Copyright (C) 1995-96 Microsoft
// Date 01-16-95
//
//
// Description
//
// Contains hyperbolic sin, cos, and tan for rationals.
//
//
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#if defined( DOS )
#include <dosstub.h>
#else
#include <windows.h>
#endif
#include <ratpak.h>
//-----------------------------------------------------------------------------
//
// FUNCTION: sinhrat, _sinhrat
//
// ARGUMENTS: x PRAT representation of number to take the sine hyperbolic
// of
// RETURN: sinh of x in PRAT form.
//
// EXPLANATION: This uses Taylor series
//
// n
// ___ 2j+1
// \ ] X
// \ ---------
// / (2j+1)!
// /__]
// j=0
// or,
// n
// ___ 2
// \ ] X
// \ thisterm ; where thisterm = thisterm * ---------
// / j j+1 j (2j)*(2j+1)
// /__]
// j=0
//
// thisterm = X ; and stop when thisterm < precision used.
// 0 n
//
// if x is bigger than 1.0 (e^x-e^-x)/2 is used.
//
//-----------------------------------------------------------------------------
void _sinhrat( PRAT *px )
{
CREATETAYLOR();
DUPRAT(pret,*px);
DUPRAT(thisterm,pret);
DUPNUM(n2,num_one);
do {
NEXTTERM(xx,INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2));
} while ( !SMALL_ENOUGH_RAT( thisterm ) );
DESTROYTAYLOR();
}
void sinhrat( PRAT *px )
{
PRAT pret=NULL;
PRAT tmpx=NULL;
if ( rat_ge( *px, rat_one ) )
{
DUPRAT(tmpx,*px);
exprat(px);
tmpx->pp->sign *= -1;
exprat(&tmpx);
subrat( px, tmpx );
divrat( px, rat_two );
destroyrat( tmpx );
}
else
{
_sinhrat( px );
}
}
//-----------------------------------------------------------------------------
//
// FUNCTION: coshrat
//
// ARGUMENTS: x PRAT representation of number to take the cosine
// hyperbolic of
//
// RETURN: cosh of x in PRAT form.
//
// EXPLANATION: This uses Taylor series
//
// n
// ___ 2j
// \ ] X
// \ ---------
// / (2j)!
// /__]
// j=0
// or,
// n
// ___ 2
// \ ] X
// \ thisterm ; where thisterm = thisterm * ---------
// / j j+1 j (2j)*(2j+1)
// /__]
// j=0
//
// thisterm = 1 ; and stop when thisterm < precision used.
// 0 n
//
// if x is bigger than 1.0 (e^x+e^-x)/2 is used.
//
//-----------------------------------------------------------------------------
void _coshrat( PRAT *px )
{
CREATETAYLOR();
pret->pp=longtonum( 1L, nRadix );
pret->pq=longtonum( 1L, nRadix );
DUPRAT(thisterm,pret)
n2=longtonum(0L, nRadix);
do {
NEXTTERM(xx,INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2));
} while ( !SMALL_ENOUGH_RAT( thisterm ) );
DESTROYTAYLOR();
}
void coshrat( PRAT *px )
{
PRAT tmpx=NULL;
(*px)->pp->sign = 1;
(*px)->pq->sign = 1;
if ( rat_ge( *px, rat_one ) )
{
DUPRAT(tmpx,*px);
exprat(px);
tmpx->pp->sign *= -1;
exprat(&tmpx);
addrat( px, tmpx );
divrat( px, rat_two );
destroyrat( tmpx );
}
else
{
_coshrat( px );
}
// Since *px might be epsilon below 1 due to TRIMIT
// we need this trick here.
if ( rat_lt(*px,rat_one) )
{
DUPRAT(*px,rat_one);
}
}
//-----------------------------------------------------------------------------
//
// FUNCTION: tanhrat
//
// ARGUMENTS: x PRAT representation of number to take the tangent
// hyperbolic of
//
// RETURN: tanh of x in PRAT form.
//
// EXPLANATION: This uses sinhrat and coshrat
//
//-----------------------------------------------------------------------------
void tanhrat( PRAT *px )
{
PRAT ptmp=NULL;
DUPRAT(ptmp,*px);
sinhrat(px);
coshrat(&ptmp);
mulnumx(&((*px)->pp),ptmp->pq);
mulnumx(&((*px)->pq),ptmp->pp);
destroyrat(ptmp);
}