windows-nt/Source/XPSP1/NT/base/fs/mup/dfsinit.c

767 lines
22 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
//+----------------------------------------------------------------------------
//
// Copyright (C) 1992, Microsoft Corporation.
//
// File: dfsinit.c
//
// Contents: This module implements the DRIVER_INITIALIZATION routine
// for the Dfs file system driver.
//
// Functions: DfsDriverEntry - Main entry point for driver initialization
// DfsIoTimerRoutine - Main entry point for scavenger thread
// DfsDeleteDevices - Routine to scavenge deleted net uses
//
//-----------------------------------------------------------------------------
#include "align.h"
#include "dfsprocs.h"
#include "fastio.h"
#include "fcbsup.h"
//
// The following are includes for init modules, which will get discarded when
// the driver has finished loading.
//
#include "provider.h"
//
// The debug trace level
//
#define Dbg (DEBUG_TRACE_INIT)
VOID
MupGetDebugFlags(VOID);
VOID
DfsGetEventLogValue(VOID);
VOID
DfsIoTimerRoutine(
IN PDEVICE_OBJECT DeviceObject,
IN PVOID Context
);
VOID
DfsDeleteDevices(
PDFS_TIMER_CONTEXT DfsTimerContext);
NTSTATUS
DfsShutdown (
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp
);
BOOL
DfsCheckLUIDDeviceMapsEnabled(
VOID
);
//
// Globals
//
HANDLE DfsDirHandle = NULL;
BOOL DfsLUIDDeviceMapsEnabled = FALSE;
#ifdef ALLOC_PRAGMA
#pragma alloc_text(INIT, DfsDriverEntry)
#pragma alloc_text(PAGE, DfsDeleteDevices)
#pragma alloc_text(PAGE, DfsUnload)
#pragma alloc_text(PAGE, DfsShutdown)
//
// The following routine should not be pageable, because it gets called by
// the NT timer routine frequently. We don't want to thrash.
//
// DfsIoTimerRoutine
//
#endif // ALLOC_PRAGMA
//
// This macro takes a pointer (or ulong) and returns its rounded up quadword
// value
//
#define QuadAlign(Ptr) ( \
((((ULONG)(Ptr)) + 7) & 0xfffffff8) \
)
//+-------------------------------------------------------------------
//
// Function: DfsDriverEntry, main entry point
//
// Synopsis: This is the initialization routine for the Dfs file system
// device driver. This routine creates the device object for
// the FileSystem device and performs all other driver
// initialization.
//
// Arguments: [DriverObject] -- Pointer to driver object created by the
// system.
// [RegistryPath] -- Path to section in registry describing
// this driver's configuration.
//
// Returns: [NTSTATUS] - The function value is the final status from
// the initialization operation.
//
//--------------------------------------------------------------------
NTSTATUS
DfsDriverEntry(
IN PDRIVER_OBJECT DriverObject,
IN PUNICODE_STRING RegistryPath
) {
NTSTATUS Status;
UNICODE_STRING UnicodeString;
PDEVICE_OBJECT DeviceObject;
OBJECT_ATTRIBUTES ObjectAttributes;
PWSTR p;
int i;
IO_STATUS_BLOCK iosb;
LUID LogonID = SYSTEM_LUID;
#if DBG
//
// If debug, get debug flags
//
MupGetDebugFlags();
#endif
//
// Get the event logging level
//
DfsGetEventLogValue();
//
// See if someone else has already created a File System Device object
// with the name we intend to use. If so, we bail.
//
RtlInitUnicodeString( &UnicodeString, DFS_DRIVER_NAME );
//
// Create the filesystem device object.
//
Status = IoCreateDevice( DriverObject,
0,
&UnicodeString,
FILE_DEVICE_DFS_FILE_SYSTEM,
FILE_REMOTE_DEVICE | FILE_DEVICE_SECURE_OPEN,
FALSE,
&DeviceObject );
if ( !NT_SUCCESS( Status ) ) {
return Status;
}
//
// Create a permanent object directory in which the logical root
// device objects will reside. Make the directory temporary, so
// we can just close the handle to make it go away.
//
UnicodeString.Buffer = p = LogicalRootDevPath;
UnicodeString.Length = 0;
UnicodeString.MaximumLength = MAX_LOGICAL_ROOT_LEN;
while (*p++ != UNICODE_NULL)
UnicodeString.Length += sizeof (WCHAR);
InitializeObjectAttributes(
&ObjectAttributes,
&UnicodeString,
0,
NULL,
NULL );
Status = ZwCreateDirectoryObject(
&DfsDirHandle,
DIRECTORY_ALL_ACCESS,
&ObjectAttributes);
if ( !NT_SUCCESS( Status ) ) {
IoDeleteDevice (DeviceObject);
return Status;
}
p[-1] = UNICODE_PATH_SEP;
UnicodeString.Length += sizeof (WCHAR);
//
// Initialize the driver object with this driver's entry points.
// Most are simply passed through to some other device driver.
//
for (i = 0; i <= IRP_MJ_MAXIMUM_FUNCTION; i++) {
DriverObject->MajorFunction[i] = DfsVolumePassThrough;
}
DriverObject->MajorFunction[IRP_MJ_CREATE] = (PDRIVER_DISPATCH)DfsFsdCreate;
DriverObject->MajorFunction[IRP_MJ_CLOSE] = (PDRIVER_DISPATCH)DfsFsdClose;
DriverObject->MajorFunction[IRP_MJ_CLEANUP] = (PDRIVER_DISPATCH)DfsFsdCleanup;
DriverObject->MajorFunction[IRP_MJ_QUERY_INFORMATION] = (PDRIVER_DISPATCH)DfsFsdQueryInformation;
DriverObject->MajorFunction[IRP_MJ_SET_INFORMATION] = (PDRIVER_DISPATCH)DfsFsdSetInformation;
DriverObject->MajorFunction[IRP_MJ_FILE_SYSTEM_CONTROL] = (PDRIVER_DISPATCH)DfsFsdFileSystemControl;
DriverObject->MajorFunction[IRP_MJ_QUERY_VOLUME_INFORMATION]= (PDRIVER_DISPATCH)DfsFsdQueryVolumeInformation;
DriverObject->MajorFunction[IRP_MJ_SET_VOLUME_INFORMATION]= (PDRIVER_DISPATCH)DfsFsdSetVolumeInformation;
DriverObject->MajorFunction[IRP_MJ_SHUTDOWN] = DfsShutdown;
DriverObject->FastIoDispatch = &FastIoDispatch;
Status = FsRtlRegisterFileSystemFilterCallbacks( DriverObject, &FsFilterCallbacks );
if (!NT_SUCCESS( Status )) {
ZwClose (DfsDirHandle);
IoDeleteDevice (DeviceObject);
goto ErrorOut;
}
//
// Initialize the global data structures
//
RtlZeroMemory(&DfsData, sizeof (DFS_DATA));
DfsData.NodeTypeCode = DSFS_NTC_DATA_HEADER;
DfsData.NodeByteSize = sizeof( DFS_DATA );
InitializeListHead( &DfsData.VcbQueue );
InitializeListHead( &DfsData.DeletedVcbQueue );
// Initialize the devless root queue: this holds all the device less
// net uses.
InitializeListHead( &DfsData.DrtQueue );
InitializeListHead( &DfsData.Credentials );
InitializeListHead( &DfsData.DeletedCredentials );
InitializeListHead( &DfsData.OfflineRoots );
DfsData.DriverObject = DriverObject;
DfsData.FileSysDeviceObject = DeviceObject;
DfsData.LogRootDevName = UnicodeString;
ExInitializeResourceLite( &DfsData.Resource );
KeInitializeEvent( &DfsData.PktWritePending, NotificationEvent, TRUE );
KeInitializeSemaphore( &DfsData.PktReferralRequests, 1, 1 );
DfsData.MachineState = DFS_CLIENT;
//
// Allocate Provider structures.
//
DfsData.pProvider = ExAllocatePoolWithTag(
PagedPool,
sizeof ( PROVIDER_DEF ) * MAX_PROVIDERS,
' puM');
if (DfsData.pProvider == NULL) {
ZwClose (DfsDirHandle);
IoDeleteDevice (DeviceObject);
Status = STATUS_INSUFFICIENT_RESOURCES;
goto ErrorOut;
}
for (i = 0; i < MAX_PROVIDERS; i++) {
DfsData.pProvider[i].NodeTypeCode = DSFS_NTC_PROVIDER;
DfsData.pProvider[i].NodeByteSize = sizeof ( PROVIDER_DEF );
}
DfsData.cProvider = 0;
DfsData.maxProvider = MAX_PROVIDERS;
//
// Initialize the system wide PKT
//
PktInitialize(&DfsData.Pkt);
{
ULONG SystemSizeMultiplier;
switch (MmQuerySystemSize()) {
default:
case MmSmallSystem:
SystemSizeMultiplier = 4;
break;
case MmMediumSystem:
SystemSizeMultiplier = 8;
break;
case MmLargeSystem:
SystemSizeMultiplier = 16;
break;
}
//
// Allocate the DFS_FCB hash table structure. The number of
// hash buckets will depend upon the memory size of the system.
//
Status = DfsInitFcbs(SystemSizeMultiplier * 2);
if (!NT_SUCCESS (Status)) {
PktUninitialize(&DfsData.Pkt);
ExFreePool (DfsData.pProvider);
ZwClose (DfsDirHandle);
IoDeleteDevice (DeviceObject);
goto ErrorOut;
}
//
// Create a lookaside for the IRP contexts
//
ExInitializeNPagedLookasideList (&DfsData.IrpContextLookaside,
NULL,
NULL,
0,
sizeof(IRP_CONTEXT),
'IpuM',
10 // unused
);
}
//
// Set up global pointer to the system process.
//
DfsData.OurProcess = PsGetCurrentProcess();
//
// Set up the global pointers for the EA buffers to be used to differentiate
// CSC agent opens from non CSC agent opens. This is a read only buffer used
// to distinguish the CSC agent requests
//
//
{
UCHAR EaNameCSCAgentSize = (UCHAR) (ROUND_UP_COUNT(
strlen(EA_NAME_CSCAGENT) + sizeof(CHAR),
ALIGN_DWORD
) - sizeof(CHAR));
DfsData.CSCEaBufferLength = ROUND_UP_COUNT(
FIELD_OFFSET(FILE_FULL_EA_INFORMATION, EaName[0]) +
EaNameCSCAgentSize + sizeof(CHAR),
ALIGN_DWORD
);
DfsData.CSCEaBuffer = ExAllocatePoolWithTag(
PagedPool,
DfsData.CSCEaBufferLength,
' puM');
if (DfsData.CSCEaBuffer != NULL) {
// clear the buffer, otherwise so we don't get any spurious
// failure due to IO manager checks
memset(DfsData.CSCEaBuffer, 0, DfsData.CSCEaBufferLength);
RtlCopyMemory(
(LPSTR)DfsData.CSCEaBuffer->EaName,
EA_NAME_CSCAGENT,
EaNameCSCAgentSize);
DfsData.CSCEaBuffer->EaNameLength = EaNameCSCAgentSize;
DfsData.CSCEaBuffer->EaValueLength = 0;
DfsData.CSCEaBuffer->NextEntryOffset = 0;
} else {
ExDeleteNPagedLookasideList (&DfsData.IrpContextLookaside);
DfsUninitFcbs ();
PktUninitialize(&DfsData.Pkt);
ExFreePool (DfsData.pProvider);
ZwClose (DfsDirHandle);
IoDeleteDevice (DeviceObject);
Status = STATUS_INSUFFICIENT_RESOURCES;
DfsDbgTrace(-1, DEBUG_TRACE_ERROR, "Failed to allocate CSC ea buffer %08lx\n", ULongToPtr(Status) );
return Status;
}
}
//
// Register the file system with the I/O system. We don't need to invert this as its never registered.
//
IoRegisterFileSystem( DeviceObject );
Status = IoRegisterShutdownNotification (DeviceObject); // This is automaticaly removed when IoDeleteDevice is called
if (!NT_SUCCESS (Status)) {
ExFreePool (DfsData.CSCEaBuffer);
ExDeleteNPagedLookasideList (&DfsData.IrpContextLookaside);
DfsUninitFcbs ();
PktUninitialize(&DfsData.Pkt);
ExFreePool (DfsData.pProvider);
ZwClose (DfsDirHandle);
IoDeleteDevice (DeviceObject);
return Status;
}
//
// Initialize the provider definitions from the registry.
//
if (!NT_SUCCESS( ProviderInit() )) {
DfsDbgTrace(0,DEBUG_TRACE_ERROR,
"Could not initialize some or all providers!\n", 0);
}
//
// Check if LUID device maps are enabled
//
DfsLUIDDeviceMapsEnabled = DfsCheckLUIDDeviceMapsEnabled();
//
// Initialize the logical roots device objects. These are what form the
// link between the outside world and the Dfs driver.
//
#ifdef TERMSRV
Status = DfsInitializeLogicalRoot( DD_DFS_DEVICE_NAME, NULL, NULL, 0, INVALID_SESSIONID, &LogonID);
#else // TERMSRV
Status = DfsInitializeLogicalRoot( DD_DFS_DEVICE_NAME, NULL, NULL, 0, &LogonID);
#endif // TERMSRV
if (!NT_SUCCESS(Status)) {
DfsDbgTrace(-1, DEBUG_TRACE_ERROR, "Failed creation of root logical root %08lx\n", ULongToPtr(Status) );
ExDeleteNPagedLookasideList (&DfsData.IrpContextLookaside);
DfsUninitFcbs ();
PktUninitialize(&DfsData.Pkt);
ExFreePool (DfsData.pProvider);
ZwClose (DfsDirHandle);
IoDeleteDevice (DeviceObject);
return(Status);
}
//
// Let us start off the Timer Routine.
//
RtlZeroMemory(&DfsTimerContext, sizeof(DFS_TIMER_CONTEXT));
DfsTimerContext.InUse = FALSE;
DfsTimerContext.TickCount = 0;
//
// 375929, io initialize timer, check return status.
//
Status = IoInitializeTimer( DeviceObject,
DfsIoTimerRoutine,
&DfsTimerContext );
if (Status != STATUS_SUCCESS) {
#ifdef TERMSRV
DfsDeleteLogicalRoot (DD_DFS_DEVICE_NAME, FALSE, INVALID_SESSIONID, &LogonID);
#else
DfsDeleteLogicalRoot (DD_DFS_DEVICE_NAME, FALSE, &LogonID);
#endif
ExDeleteNPagedLookasideList (&DfsData.IrpContextLookaside);
DfsUninitFcbs ();
PktUninitialize(&DfsData.Pkt);
ExFreePool (DfsData.pProvider);
ZwClose (DfsDirHandle);
IoDeleteDevice (DeviceObject);
goto ErrorOut;
}
DfsDbgTrace(0, Dbg, "Initialized the Timer routine\n", 0);
//
// Let us start the timer now.
//
IoStartTimer(DeviceObject);
DfsDbgTrace(-1, Dbg, "DfsDriverEntry exit STATUS_SUCCESS\n", 0);
return STATUS_SUCCESS;
ErrorOut:
DfsDbgTrace(-1, DEBUG_TRACE_ERROR, "DfsDriverEntry exit %08lx\n", ULongToPtr(Status) );
return Status;
}
NTSTATUS
DfsShutdown (
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp
)
{
//
// Unregister the file system object so we can unload
//
IoUnregisterFileSystem (DeviceObject);
DfsCompleteRequest( NULL, Irp, STATUS_SUCCESS );
return STATUS_SUCCESS;
}
//+----------------------------------------------------------------------------
//
// Function: DfsUnload
//
// Synopsis: Routine called at unload time to free resources
//
// Arguments: [DriverObject] -- Driver object of MUP
//
// Returns: Nothing
//
//-----------------------------------------------------------------------------
VOID
DfsUnload(
IN PDRIVER_OBJECT DriverObject
)
{
LUID LogonID = SYSTEM_LUID;
IoStopTimer(DfsData.FileSysDeviceObject);
#ifdef TERMSRV
DfsDeleteLogicalRoot (DD_DFS_DEVICE_NAME, FALSE, INVALID_SESSIONID, &LogonID);
#else
DfsDeleteLogicalRoot (DD_DFS_DEVICE_NAME, FALSE, &LogonID);
#endif
ExFreePool (DfsData.CSCEaBuffer);
ExDeleteNPagedLookasideList (&DfsData.IrpContextLookaside);
DfsUninitFcbs ();
PktUninitialize(&DfsData.Pkt);
ExFreePool (DfsData.pProvider);
ExDeleteResourceLite( &DfsData.Resource );
ZwClose (DfsDirHandle);
IoDeleteDevice (DfsData.FileSysDeviceObject);
}
//+----------------------------------------------------------------------------
//
// Function: DfsDeleteDevices
//
// Synopsis: Routine to scavenge deleted devices (net uses).
//
// Arguments: [pDfsTimerContext] -- Timer Context
//
// Returns: Nothing - this routine is meant to be queued to a worker
// thread.
//
//-----------------------------------------------------------------------------
VOID
DfsDeleteDevices(
PDFS_TIMER_CONTEXT DfsTimerContext)
{
PLIST_ENTRY plink;
PDFS_VCB Vcb;
PLOGICAL_ROOT_DEVICE_OBJECT DeletedObject;
if (DfsData.DeletedVcbQueue.Flink != &DfsData.DeletedVcbQueue) {
DfsDbgTrace(0, Dbg, "Examining Deleted Vcbs...\n", 0);
ExAcquireResourceExclusiveLite(&DfsData.Resource, TRUE);
for (plink = DfsData.DeletedVcbQueue.Flink;
plink != &DfsData.DeletedVcbQueue;
NOTHING) {
Vcb = CONTAINING_RECORD(
plink,
DFS_VCB,
VcbLinks);
plink = plink->Flink;
DeletedObject = CONTAINING_RECORD(
Vcb,
LOGICAL_ROOT_DEVICE_OBJECT,
Vcb);
if (Vcb->OpenFileCount == 0 &&
Vcb->DirectAccessOpenCount == 0 &&
DeletedObject->DeviceObject.ReferenceCount == 0) {
DfsDbgTrace(0, Dbg, "Deleting Vcb@%08lx\n", Vcb);
if (Vcb->LogRootPrefix.Buffer != NULL)
ExFreePool(Vcb->LogRootPrefix.Buffer);
if (Vcb->LogicalRoot.Buffer != NULL)
ExFreePool(Vcb->LogicalRoot.Buffer);
RemoveEntryList(&Vcb->VcbLinks);
ObDereferenceObject((PVOID) DeletedObject);
IoDeleteDevice( &DeletedObject->DeviceObject );
} else {
DfsDbgTrace(0, Dbg, "Not deleting Vcb@%08lx\n", Vcb);
DfsDbgTrace(0, Dbg,
"OpenFileCount = %d\n", ULongToPtr(Vcb->OpenFileCount) );
DfsDbgTrace(0, Dbg,
"DirectAccessOpens = %d\n", ULongToPtr(Vcb->DirectAccessOpenCount) );
DfsDbgTrace(0, Dbg,
"DeviceObject Reference count = %d\n",
ULongToPtr(DeletedObject->DeviceObject.ReferenceCount) );
}
}
ExReleaseResourceLite(&DfsData.Resource);
}
DfsTimerContext->InUse = FALSE;
}
//+-------------------------------------------------------------------------
//
// Function: DfsIoTimerRoutine
//
// Synopsis: This function gets called by IO Subsystem once every second.
// This can be used for various purposes in the driver. For now,
// it periodically posts a request to a system thread to age Pkt
// Entries.
//
// Arguments: [Context] -- This is the context information. It is actually
// a pointer to a DFS_TIMER_CONTEXT.
// [DeviceObject] -- Pointer to the Device object for DFS. We dont
// really use this here.
//
// Returns: Nothing
//
// Notes: The Context which we get here is assumed to have all the
// required fields setup properly.
//
// History: 04/24/93 SudK Created.
//
//--------------------------------------------------------------------------
VOID
DfsIoTimerRoutine(
IN PDEVICE_OBJECT DeviceObject,
IN PVOID Context
)
{
PDFS_TIMER_CONTEXT pDfsTimerContext = (PDFS_TIMER_CONTEXT) Context;
DfsDbgTrace(+1, Dbg, "DfsIoTimerRoutine: Entered\n", 0);
//
// If the DfsTimerContext is in USE then we just return blindly. Due to
// this action we might actually lose some ticks. But then we really are
// not very particular about this and hence dont care.
//
if (pDfsTimerContext->InUse == TRUE) {
DfsDbgTrace(-1, Dbg, "DfsIoTimerRoutine: TimerContext in use\n", 0);
return;
}
//
// First let us increment the count in the DFS_TIMER_CONTEXT. If it has
// reached a bound value then we have to go ahead and schedule the
// necessary work items.
//
pDfsTimerContext->TickCount++;
if (pDfsTimerContext->TickCount == DFS_MAX_TICKS) {
DfsDbgTrace(0, Dbg, "Queuing Pkt Entry Scavenger\n", 0);
pDfsTimerContext->InUse = TRUE;
ExInitializeWorkItem(
&pDfsTimerContext->WorkQueueItem,
DfsAgePktEntries,
pDfsTimerContext);
ExQueueWorkItem( &pDfsTimerContext->WorkQueueItem, DelayedWorkQueue);
} else if (DfsData.DeletedVcbQueue.Flink != &DfsData.DeletedVcbQueue) {
DfsDbgTrace(0, Dbg, "Queueing Deleted Vcb Scavenger\n", 0);
pDfsTimerContext->InUse = TRUE;
ExInitializeWorkItem(
&pDfsTimerContext->DeleteQueueItem,
DfsDeleteDevices,
pDfsTimerContext);
ExQueueWorkItem(&pDfsTimerContext->DeleteQueueItem, DelayedWorkQueue);
}
DfsDbgTrace(-1, Dbg, "DfsIoTimerRoutine: Exiting\n", 0);
}
//+-------------------------------------------------------------------------
//
// Function: DfsCheckLUIDDeviceMapsEnabled
//
// Synopsis: This function calls ZwQueryInformationProcess to determine if
// LUID device maps are enabled/disabled
//
// Arguments: NONE
//
// Returns:
// TRUE - LUID device maps are enabled
//
// FALSE - LUID device maps are disabled
//
//--------------------------------------------------------------------------
BOOL
DfsCheckLUIDDeviceMapsEnabled(
VOID
)
{
NTSTATUS Status;
ULONG LUIDDeviceMapsEnabled;
BOOL Result;
Status = ZwQueryInformationProcess( NtCurrentProcess(),
ProcessLUIDDeviceMapsEnabled,
&LUIDDeviceMapsEnabled,
sizeof(LUIDDeviceMapsEnabled),
NULL
);
if (!NT_SUCCESS(Status)) {
DfsDbgTrace(
-1,
DEBUG_TRACE_ERROR,
"DfsCheckLUIDDeviceMapsEnabled to failed to check if LUID device maps enabled, status = %08lx\n",
ULongToPtr(Status));
Result = FALSE;
}
else {
Result = (LUIDDeviceMapsEnabled != 0);
}
return( Result );
}