windows-nt/Source/XPSP1/NT/enduser/msasn1/perdecod.c

2633 lines
75 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
/* Copyright (C) Boris Nikolaus, Germany, 1996-1997. All rights reserved. */
/* Copyright (C) Microsoft Corporation, 1997-1998. All rights reserved. */
// lonchanc: things to optimize
// (1) merge ASN1PERDecCharString() and ASN1PERDecZeroCharString().
// (2) merge ASN1PERDecChar16String() and ASN1PERDecZeroChar16String().
// (3) merge ASN1PERDecChar32String() and ASN1PERDecZeroChar32String().
// (4) merge ASN1PERDecTableCharString() and ASN1PERDecZeroTableCharString().
// (5) merge ASN1PERDecTableChar16String() and ASN1PERDecZeroTableChar16String().
// (6) merge ASN1PERDecTableChar32String() and ASN1PERDecZeroTableChar32String().
// (7) merge ASN1PERDecFragmentedCharString() and ASN1PERDecFragmentedZeroCharString().
// (8) merge ASN1PERDecFragmentedChar16String() and ASN1PERDecFragmentedZeroChar16String().
// (9) merge ASN1PERDecFragmentedChar32String() and ASN1PERDecFragmentedZeroChar32String().
// (10) merge ASN1PERDecFragmentedTableCharString() and ASN1PERDecFragmentedZeroTableCharString().
// (11) merge ASN1PERDecFragmentedTableChar16String() and ASN1PERDecFragmentedZeroTableChar16String().
// (12) merge ASN1PERDecFragmentedTableChar32String() and ASN1PERDecFragmentedZeroTableChar32String().
#include "precomp.h"
#include <math.h>
#include "cintern.h"
void PerDecAdvance(ASN1decoding_t dec, ASN1uint32_t nbits)
{
dec->pos += ((dec->bit + nbits) >> 3);
dec->bit = (dec->bit + nbits) & 7;
}
static const ASN1uint8_t c_aBitMask3[] =
{
0x00, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80
};
/* check if sufficient data is in decoding buffer */
int ASN1PERDecCheck(ASN1decoding_t dec, ASN1uint32_t nbits)
{
if ((dec->pos - dec->buf) * 8 + dec->bit + nbits <= dec->size * 8)
{
return 1;
}
ASN1DecSetError(dec, ASN1_ERR_EOD);
return 0;
}
/* compare function for binary search in stringtable */
static int __cdecl ASN1CmpStringTableEntriesByIndex(const void *a1, const void *a2)
{
ASN1stringtableentry_t *c1 = (ASN1stringtableentry_t *)a1;
ASN1stringtableentry_t *c2 = (ASN1stringtableentry_t *)a2;
if (c1->value > c2->value + (c2->upper - c2->lower))
return 1;
if (c2->value > c1->value + (c1->upper - c1->lower))
return -1;
return 0;
}
/* skip nbits bits */
int ASN1PERDecSkipBits(ASN1decoding_t dec, ASN1uint32_t nbits)
{
ASN1uint32_t n;
/* check if enough bits present */
if (ASN1PERDecCheck(dec, nbits))
{
/* skip bits */
n = dec->bit + nbits;
dec->pos += n / 8;
dec->bit = n & 7;
return 1;
}
return 0;
}
/* skip a fragmented value */
int ASN1PERDecSkipFragmented(ASN1decoding_t dec, ASN1uint32_t itemsize)
{
ASN1uint32_t n, m;
/* skip a fragments one by one */
do {
if (ASN1PERDecFragmentedLength(dec, &n))
{
if (!n)
break;
m = n * itemsize;
if (ASN1PERDecCheck(dec, m))
{
dec->pos += m / 8;
dec->bit = m & 7;
}
else
{
return 0;
}
}
else
{
return 0;
}
} while (n >= 0x4000);
return 1;
}
/* decode one bit */
int ASN1PERDecBit(ASN1decoding_t dec, ASN1uint32_t *val)
{
if (ASN1PERDecCheck(dec, 1))
{
*val = (*dec->pos >> (7 - dec->bit)) & 1;
if (dec->bit < 7)
{
dec->bit++;
}
else
{
dec->bit = 0;
dec->pos++;
}
return 1;
}
return 0;
}
/* decode unsigned 32 bit integer value */
int ASN1PERDecU32Val(ASN1decoding_t dec, ASN1uint32_t nbits, ASN1uint32_t *val)
{
if (ASN1PERDecCheck(dec, nbits))
{
if (nbits <= 32)
{
*val = ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
return 1;
}
ASN1DecSetError(dec, ASN1_ERR_LARGE);
}
return 0;
}
/* decode unsigned 16 bit integer value */
int ASN1PERDecU16Val(ASN1decoding_t dec, ASN1uint32_t nbits, ASN1uint16_t *val)
{
if (ASN1PERDecCheck(dec, nbits))
{
if (nbits <= 16)
{
*val = (ASN1uint16_t) ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
return 1;
}
ASN1DecSetError(dec, ASN1_ERR_LARGE);
}
return 0;
}
/* decode unsigned 8 bit integer value */
int ASN1PERDecU8Val(ASN1decoding_t dec, ASN1uint32_t nbits, ASN1uint8_t *val)
{
if (ASN1PERDecCheck(dec, nbits))
{
if (nbits <= 8)
{
*val = (ASN1uint8_t) ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
return 1;
}
ASN1DecSetError(dec, ASN1_ERR_LARGE);
}
return 0;
}
/* decode unsigned intx_t integer value */
int ASN1PERDecUXVal(ASN1decoding_t dec, ASN1uint32_t nbits, ASN1intx_t *val)
{
if (ASN1PERDecCheck(dec, nbits))
{
val->length = (*dec->pos & (0x80 >> dec->bit)) ? (nbits + 7) / 8 : (nbits + 7 + 1) / 8;
if (NULL != (val->value = (ASN1octet_t *)DecMemAlloc(dec, val->length)))
{
val->value[0] = 0;
ASN1bitcpy(val->value, val->length * 8 - nbits, dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
return 1;
}
}
return 0;
}
/* decode signed 32 bit integer value */
int ASN1PERDecS32Val(ASN1decoding_t dec, ASN1uint32_t nbits, ASN1int32_t *val)
{
if (ASN1PERDecCheck(dec, nbits))
{
if (nbits <= 32)
{
*val = ASN1bitget(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
return 1;
}
ASN1DecSetError(dec, ASN1_ERR_LARGE);
}
return 0;
}
/* decode signed 16 bit value */
#ifdef ENABLE_ALL
int ASN1PERDecS16Val(ASN1decoding_t dec, ASN1uint32_t nbits, ASN1int16_t *val)
{
if (ASN1PERDecCheck(dec, nbits))
{
if (nbits <= 16)
{
*val = (ASN1int16_t) ASN1bitget(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
return 1;
}
ASN1DecSetError(dec, ASN1_ERR_LARGE);
}
return 0;
}
#endif // ENABLE_ALL
/* decode signed 8 bit value */
#ifdef ENABLE_ALL
int ASN1PERDecS8Val(ASN1decoding_t dec, ASN1uint32_t nbits, ASN1int8_t *val)
{
if (ASN1PERDecCheck(dec, nbits))
{
if (nbits <= 8)
{
*val = (ASN1int8_t) ASN1bitget(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
return 1;
}
ASN1DecSetError(dec, ASN1_ERR_LARGE);
}
return 0;
}
#endif // ENABLE_ALL
/* decode signed intx_t value */
#ifdef ENABLE_ALL
int ASN1PERDecSXVal(ASN1decoding_t dec, ASN1uint32_t nbits, ASN1intx_t *val)
{
if (ASN1PERDecCheck(dec, nbits))
{
val->length = (nbits + 7) / 8;
if (NULL != (val->value = (ASN1octet_t *)DecMemAlloc(dec, val->length)))
{
val->value[0] = (*dec->pos & (0x80 >> dec->bit)) ? c_aBitMask3[nbits & 7] : 0;
ASN1bitcpy(val->value, val->length * 8 - nbits, dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
return 1;
}
}
return 0;
}
#endif // ENABLE_ALL
/* decode length of a fragment */
int ASN1PERDecFragmentedLength(ASN1decoding_t dec, ASN1uint32_t *nitems)
{
ASN1PERDecAlignment(dec);
if (ASN1PERDecCheck(dec, 8))
{
ASN1uint32_t n = *dec->pos++;
if (n < 0x80)
{
*nitems = n;
}
else
if (n < 0xc0)
{
if (ASN1PERDecCheck(dec, 8))
{
*nitems = ((n & 0x3f) << 8) | *dec->pos++;
}
else
{
return 0;
}
}
else
{
*nitems = 0x4000 * (n & 0x3f);
}
return 1;
}
return 0;
}
/* decode a fragment */
int ASN1PERDecFragmented(ASN1decoding_t dec, ASN1uint32_t *nitems, ASN1octet_t **val, ASN1uint32_t itemsize)
{
ASN1uint32_t n, m, l;
*nitems = 0;
*val = 0;
m = 0;
do {
if (ASN1PERDecFragmentedLength(dec, &n))
{
if (!n)
break;
l = n * itemsize;
if (ASN1PERDecCheck(dec, l))
{
*nitems += n;
if (NULL != (*val = (ASN1octet_t *)DecMemReAlloc(dec, *val, (m + l + 7) / 8)))
{
ASN1bitcpy(*val, m, dec->pos, dec->bit, l);
PerDecAdvance(dec, l);
m += l;
}
else
{
return 0;
}
}
else
{
return 0;
}
}
else
{
return 0;
}
} while (n >= 0x4000);
return 1;
}
/* end of decoding */
int ASN1PERDecFlush(ASN1decoding_t dec)
{
/* complete broken byte */
ASN1PERDecAlignment(dec);
/* get zero-octet if encoding is empty bitstring */
if (dec->buf == dec->pos)
{
if (ASN1PERDecCheck(dec, 8))
{
if (*dec->pos == 0)
{
dec->pos++;
}
else
{
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
}
else
{
return 0;
}
}
/* calculate length */
dec->len = (ASN1uint32_t) (dec->pos - dec->buf);
/* set WRN_NOEOD if data left */
if (dec->len >= dec->size)
{
return 1;
}
ASN1DecSetError(dec, ASN1_WRN_NOEOD);
return 1;
}
/* skip up to octet boundary */
void ASN1PERDecAlignment(ASN1decoding_t dec)
{
if (dec->bit)
{
dec->bit = 0;
dec->pos++;
}
}
/* decode normally small 32 bit integer */
#ifdef ENABLE_ALL
int ASN1PERDecN32Val(ASN1decoding_t dec, ASN1uint32_t *val)
{
ASN1uint32_t n;
/* is normally small really small? */
if (ASN1PERDecBit(dec, &n))
{
if (!n)
{
return ASN1PERDecU32Val(dec, 6, val);
}
/* large */
if (ASN1PERDecFragmentedLength(dec, &n))
{
if (n <= 4)
{
if (n)
{
if (ASN1PERDecCheck(dec, n * 8))
{
*val = ASN1octetget(dec->pos, n);
dec->pos += n;
return 1;
}
return 0;
}
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
}
else
{
ASN1DecSetError(dec, ASN1_ERR_LARGE);
}
}
}
return 0;
}
#endif // ENABLE_ALL
/* decode normally small 16 bit integer */
int ASN1PERDecN16Val(ASN1decoding_t dec, ASN1uint16_t *val)
{
ASN1uint32_t n;
/* is normally small really small? */
if (ASN1PERDecBit(dec, &n))
{
if (!n)
{
return ASN1PERDecU16Val(dec, 6, val);
}
/* large */
if (ASN1PERDecFragmentedLength(dec, &n))
{
if (n <= 2)
{
if (n)
{
if (ASN1PERDecCheck(dec, n * 8))
{
*val = (ASN1uint16_t) ASN1octetget(dec->pos, n);
dec->pos += n;
return 1;
}
return 0;
}
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
}
else
{
ASN1DecSetError(dec, ASN1_ERR_LARGE);
}
}
}
return 0;
}
/* decode normally small 8 bit integer */
#ifdef ENABLE_ALL
int ASN1PERDecN8Val(ASN1decoding_t dec, ASN1uint8_t *val)
{
ASN1uint32_t n;
/* is normally small really small? */
if (ASN1PERDecBit(dec, &n))
{
if (!n)
{
return ASN1PERDecU8Val(dec, 6, val);
}
/* large */
if (ASN1PERDecFragmentedLength(dec, &n))
{
if (n)
{
if (n <= 1)
{
if (ASN1PERDecCheck(dec, n * 8))
{
*val = (ASN1uint8_t) ASN1octetget(dec->pos, n);
dec->pos += n;
return 1;
}
return 0;
}
ASN1DecSetError(dec, ASN1_ERR_LARGE);
}
else
{
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
}
}
}
return 0;
}
#endif // ENABLE_ALL
/* skip normally small integer */
int ASN1PERDecSkipNormallySmall(ASN1decoding_t dec)
{
ASN1uint32_t n;
/* is normally small really small? */
if (ASN1PERDecBit(dec, &n))
{
if (!n)
{
return ASN1PERDecSkipBits(dec, 6);
}
/* large */
return ASN1PERDecSkipFragmented(dec, 8);
}
return 0;
}
/* decode extension bits with normally small length */
int ASN1PERDecNormallySmallExtension(ASN1decoding_t dec, ASN1uint32_t *nextensions, ASN1uint32_t nbits, ASN1octet_t *val)
{
ASN1uint32_t n, m;
*nextensions = 0;
memset(val, 0, (nbits + 7) / 8);
/* is normally small length really small? */
if (ASN1PERDecBit(dec, &n))
{
if (n)
{
/* no, get extension bits as fragments */
m = 0;
do {
if (ASN1PERDecFragmentedLength(dec, &n))
{
if (!n)
break;
if (ASN1PERDecCheck(dec, n))
{
if (n <= nbits)
{
ASN1bitcpy(val, m, dec->pos, 0, n);
m += n;
nbits -= n;
}
else
if (nbits)
{
ASN1bitcpy(val, m, dec->pos, 0, nbits);
*nextensions += ASN1bitcount(dec->pos, nbits, n - nbits);
nbits = 0;
}
else
{
*nextensions += ASN1bitcount(dec->pos, 0, n);
}
PerDecAdvance(dec, n);
}
else
{
return 0;
}
}
else
{
return 0;
}
} while (n >= 0x4000);
return 1;
}
/* yes, get length of extension bit string */
if (ASN1PERDecU32Val(dec, 6, &n))
{
n++;
/* copy extension bits */
if (ASN1PERDecCheck(dec, n))
{
if (n <= nbits)
{
ASN1bitcpy(val, 0, dec->pos, dec->bit, n);
}
else
{
ASN1bitcpy(val, 0, dec->pos, dec->bit, nbits);
*nextensions = ASN1bitcount(dec->pos, dec->bit + nbits, n - nbits);
}
PerDecAdvance(dec, n);
return 1;
}
}
}
return 0;
}
/* skip extension bits with normally small length */
int ASN1PERDecSkipNormallySmallExtension(ASN1decoding_t dec, ASN1uint32_t *nextensions)
{
ASN1uint32_t n;
*nextensions = 0;
/* is normally small length really small? */
if (ASN1PERDecBit(dec, &n))
{
if (n)
{
/* no, get extension bits as fragments */
do {
if (ASN1PERDecFragmentedLength(dec, &n))
{
if (!n)
break;
if (ASN1PERDecCheck(dec, n))
{
*nextensions += ASN1bitcount(dec->pos, 0, n);
PerDecAdvance(dec, n);
}
else
{
return 0;
}
}
else
{
return 0;
}
} while (n >= 0x4000);
return 1;
}
/* yes, get length of extension bit string */
if (ASN1PERDecU32Val(dec, 6, &n))
{
n++;
if (ASN1PERDecCheck(dec, n))
{
*nextensions = ASN1bitcount(dec->pos, dec->bit, n);
PerDecAdvance(dec, n);
return 1;
}
}
}
return 0;
}
/* decode bit string of optionals of sequence/set */
// lonchanc: decode octet string with length constraint.
int ASN1PERDecExtension(ASN1decoding_t dec, ASN1uint32_t nbits, ASN1octet_t *val)
{
if (ASN1PERDecCheck(dec, nbits))
{
ASN1bitcpy(val, 0, dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
return 1;
}
return 0;
}
/* decode bit string */
int ASN1PERDecBits(ASN1decoding_t dec, ASN1uint32_t nbits, ASN1octet_t **val)
{
if (NULL != (*val = (ASN1octet_t *)DecMemAlloc(dec, (nbits + 7) / 8)))
{
if (ASN1PERDecCheck(dec, nbits))
{
ASN1bitcpy(*val, 0, dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
return 1;
}
}
return 0;
}
/* decode real value */
int ASN1PERDecDouble(ASN1decoding_t dec, double *val)
{
ASN1uint32_t head;
ASN1int32_t exponent;
ASN1uint32_t baselog2;
ASN1uint32_t len;
ASN1uint32_t i;
ASN1octet_t *p, *q;
double v;
char buf[256], *b;
if (ASN1PERDecFragmentedLength(dec, &len))
{
if (len < 0x4000)
{
if (len)
{
p = q = dec->pos;
dec->pos += len;
head = *p++;
/* binary encoding? */
if (head & 0x80)
{
/* get base */
switch (head & 0x30)
{
case 0:
/* base 2 */
baselog2 = 1;
break;
case 0x10:
/* base 8 */
baselog2 = 3;
break;
case 0x20:
/* base 16 */
baselog2 = 4;
break;
default:
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
/* get exponent */
switch (head & 0x03)
{
case 0:
/* 8 bit exponent */
exponent = (ASN1int8_t)*p++;
break;
case 1:
/* 16 bit exponent */
exponent = (ASN1int16_t)((*p << 8) | p[1]);
p += 2;
break;
case 2:
/* 24 bit exponent */
exponent = ((*p << 16) | (p[1] << 8) | p[2]);
if (exponent & 0x800000)
exponent -= 0x1000000;
break;
default:
/* variable length exponent */
exponent = (p[1] & 0x80) ? -1 : 0;
for (i = 1; i <= *p; i++)
exponent = (exponent << 8) | p[i];
p += *p + 1;
break;
}
/* calculate remaining length */
len -= (ASN1uint32_t) (p - q);
/* get mantissa */
v = 0.0;
for (i = 0; i < len; i++)
v = v * 256.0 + *p++;
/* scale mantissa */
switch (head & 0x0c)
{
case 0x04:
/* scaling factor 1 */
v *= 2.0;
break;
case 0x08:
/* scaling factor 2 */
v *= 4.0;
break;
case 0x0c:
/* scaling factor 3 */
v *= 8.0;
break;
}
/* check sign */
if (head & 0x40)
v = -v;
/* calculate value */
*val = ldexp(v, exponent * baselog2);
/* special real values? */
}
else
if (head & 0x40)
{
switch (head)
{
case 0x40:
/* PLUS-INFINITY */
*val = ASN1double_pinf();
break;
case 0x41:
/* MINUS-INFINITY */
*val = ASN1double_minf();
break;
default:
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
/* decimal encoding */
}
else
{
CopyMemory(buf, p, len - 1);
buf[len - 1] = 0;
b = strchr(buf, ',');
if (b)
*b = '.';
*val = strtod((char *)buf, &b);
if (*b)
{
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
}
}
else
{
*val = 0.0;
}
return 1;
}
else
{
ASN1DecSetError(dec, ASN1_ERR_LARGE);
}
}
return 0;
}
/* decode external value */
#ifdef ENABLE_EXTERNAL
int ASN1PERDecExternal(ASN1decoding_t dec, ASN1external_t *val)
{
ASN1uint32_t l, u;
/* get optional bits */
if (ASN1PERDecU32Val(dec, 3, &u))
{
/* get identification */
switch (u & 6)
{
case 4:
val->identification.o = ASN1external_identification_syntax_o;
if (!ASN1PERDecObjectIdentifier(dec, &val->identification.u.syntax))
return 0;
break;
case 2:
val->identification.o =
ASN1external_identification_presentation_context_id_o;
if (!ASN1PERDecFragmentedLength(dec, &l))
return 0;
if (!ASN1PERDecU32Val(dec, l * 8,
&val->identification.u.presentation_context_id))
return 0;
break;
case 6:
val->identification.o =
ASN1external_identification_context_negotiation_o;
if (!ASN1PERDecObjectIdentifier(dec,
&val->identification.u.context_negotiation.transfer_syntax))
return 0;
if (!ASN1PERDecFragmentedLength(dec, &l))
return 0;
if (!ASN1PERDecU32Val(dec, l * 8,
&val->identification.u.context_negotiation.presentation_context_id))
return 0;
break;
default:
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
/* get value descriptor */
val->o[0] = (ASN1octet_t) ((u & 1) << 7);
if (u & 1)
{
if (!ASN1PERDecFragmentedZeroCharString(dec, &val->data_value_descriptor, 8))
return 0;
}
else
{
val->data_value_descriptor = NULL;
}
/* get value */
if (ASN1PERDecU32Val(dec, 2, &u))
{
switch (u)
{
case 0:
val->data_value.o = ASN1external_data_value_notation_o;
return ASN1PERDecFragmented(dec,
&val->data_value.u.notation.length,
(ASN1octet_t **) &val->data_value.u.notation.encoded, 8);
break;
case 1:
val->data_value.o = ASN1external_data_value_encoded_o;
if (ASN1PERDecFragmented(dec,
&val->data_value.u.encoded.length,
&val->data_value.u.encoded.value, 8))
{
val->data_value.u.encoded.length *= 8;
return 1;
}
break;
case 2:
val->data_value.o = ASN1external_data_value_encoded_o;
return ASN1PERDecFragmented(dec,
&val->data_value.u.encoded.length,
&val->data_value.u.encoded.value, 1);
break;
default:
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
}
}
}
return 0;
}
#endif // ENABLE_EXTERNAL
/* decode an embedded pdv value */
#ifdef ENABLE_EMBEDDED_PDV
int ASN1PERDecEmbeddedPdv(ASN1decoding_t dec, ASN1embeddedpdv_t *val)
{
ASN1uint32_t flag;
ASN1uint32_t index;
ASN1uint32_t l;
ASN1embeddedpdv_identification_t *identification;
/* get EP-A/EP-B encoding bit */
if (!ASN1PERDecBit(dec, &flag))
return 0;
/* get index value */
if (!ASN1PERDecN32Val(dec, &index))
return 0;
if (flag)
{
/* EP-A encoding */
/* get identification */
if (!ASN1PERDecU8Val(dec, 3, &val->identification.o))
return 0;
switch (val->identification.o)
{
case ASN1embeddedpdv_identification_syntaxes_o:
if (!ASN1PERDecObjectIdentifier(dec,
&val->identification.u.syntaxes.abstract))
return 0;
if (!ASN1PERDecObjectIdentifier(dec,
&val->identification.u.syntaxes.transfer))
return 0;
break;
case ASN1embeddedpdv_identification_syntax_o:
if (!ASN1PERDecObjectIdentifier(dec,
&val->identification.u.syntax))
return 0;
break;
case ASN1embeddedpdv_identification_presentation_context_id_o:
if (!ASN1PERDecFragmentedLength(dec, &l))
return 0;
if (!ASN1PERDecU32Val(dec, l * 8,
&val->identification.u.presentation_context_id))
return 0;
break;
case ASN1embeddedpdv_identification_context_negotiation_o:
if (!ASN1PERDecFragmentedLength(dec, &l))
return 0;
if (!ASN1PERDecU32Val(dec, l * 8, &val->
identification.u.context_negotiation.presentation_context_id))
return 0;
if (!ASN1PERDecObjectIdentifier(dec,
&val->identification.u.context_negotiation.transfer_syntax))
return 0;
break;
case ASN1embeddedpdv_identification_transfer_syntax_o:
if (!ASN1PERDecObjectIdentifier(dec,
&val->identification.u.transfer_syntax))
return 0;
break;
case ASN1embeddedpdv_identification_fixed_o:
break;
default:
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
/* save identification */
if (!ASN1DecAddEmbeddedPdvIdentification(((ASN1INTERNdecoding_t) dec)->parent,
&val->identification))
return 0;
}
else
{
/* EP-B encoding */
/* get identification */
identification = ASN1DecGetEmbeddedPdvIdentification(((ASN1INTERNdecoding_t) dec)->parent, index);
if (!identification)
return 0;
val->identification.o = identification->o;
switch (identification->o)
{
case ASN1embeddedpdv_identification_syntaxes_o:
if (!ASN1DecDupObjectIdentifier(dec,
&val->identification.u.syntaxes.abstract,
&identification->u.syntaxes.abstract))
return 0;
if (!ASN1DecDupObjectIdentifier(dec,
&val->identification.u.syntaxes.transfer,
&identification->u.syntaxes.transfer))
return 0;
break;
case ASN1embeddedpdv_identification_syntax_o:
if (!ASN1DecDupObjectIdentifier(dec,
&val->identification.u.syntax,
&identification->u.syntax))
return 0;
break;
case ASN1embeddedpdv_identification_presentation_context_id_o:
val->identification.u.presentation_context_id =
identification->u.presentation_context_id;
break;
case ASN1embeddedpdv_identification_context_negotiation_o:
val->identification.u.context_negotiation.presentation_context_id =
identification->u.context_negotiation.presentation_context_id;
if (!ASN1DecDupObjectIdentifier(dec,
&val->identification.u.context_negotiation.transfer_syntax,
&identification->u.context_negotiation.transfer_syntax))
return 0;
break;
case ASN1embeddedpdv_identification_transfer_syntax_o:
if (!ASN1DecDupObjectIdentifier(dec,
&val->identification.u.transfer_syntax,
&identification->u.transfer_syntax))
return 0;
break;
case ASN1embeddedpdv_identification_fixed_o:
break;
}
}
/* get value */
ASN1PERDecAlignment(dec);
val->data_value.o = ASN1embeddedpdv_data_value_encoded_o;
return ASN1PERDecFragmented(dec,
&val->data_value.u.encoded.length,
&val->data_value.u.encoded.value, 1);
}
#endif // ENABLE_EMBEDDED_PDV
/* decode an optimized embedded pdv value */
#ifdef ENABLE_EMBEDDED_PDV
int ASN1PERDecEmbeddedPdvOpt(ASN1decoding_t dec, ASN1embeddedpdv_t *val, ASN1objectidentifier_t *abstract, ASN1objectidentifier_t *transfer)
{
/* set identification */
if (abstract && transfer)
{
val->identification.o = ASN1embeddedpdv_identification_syntaxes_o;
if (!ASN1DecDupObjectIdentifier(dec,
&val->identification.u.syntaxes.abstract, abstract))
return 0;
if (!ASN1DecDupObjectIdentifier(dec,
&val->identification.u.syntaxes.transfer, transfer))
return 0;
}
else
{
val->identification.o = ASN1embeddedpdv_identification_fixed_o;
}
/* get value */
val->data_value.o = ASN1embeddedpdv_data_value_encoded_o;
return ASN1PERDecFragmented(dec,
&val->data_value.u.encoded.length,
&val->data_value.u.encoded.value, 1);
}
#endif // ENABLE_EMBEDDED_PDV
/* decode character string */
#ifdef ENABLE_GENERALIZED_CHAR_STR
int ASN1PERDecCharacterString(ASN1decoding_t dec, ASN1characterstring_t *val)
{
ASN1uint32_t flag;
ASN1uint32_t index;
ASN1uint32_t l;
ASN1characterstring_identification_t *identification;
/* get CS-A/CS-B encoding bit */
if (!ASN1PERDecBit(dec, &flag))
return 0;
/* get index value */
if (!ASN1PERDecN32Val(dec, &index))
return 0;
if (flag)
{
/* CS-A encoding */
/* get identification */
if (!ASN1PERDecU8Val(dec, 3, &val->identification.o))
return 0;
switch (val->identification.o)
{
case ASN1characterstring_identification_syntaxes_o:
if (!ASN1PERDecObjectIdentifier(dec,
&val->identification.u.syntaxes.abstract))
return 0;
if (!ASN1PERDecObjectIdentifier(dec,
&val->identification.u.syntaxes.transfer))
return 0;
break;
case ASN1characterstring_identification_syntax_o:
if (!ASN1PERDecObjectIdentifier(dec,
&val->identification.u.syntax))
return 0;
break;
case ASN1characterstring_identification_presentation_context_id_o:
if (!ASN1PERDecFragmentedLength(dec, &l))
return 0;
if (!ASN1PERDecU32Val(dec, l * 8,
&val->identification.u.presentation_context_id))
return 0;
break;
case ASN1characterstring_identification_context_negotiation_o:
if (!ASN1PERDecFragmentedLength(dec, &l))
return 0;
if (!ASN1PERDecU32Val(dec, l * 8, &val->
identification.u.context_negotiation.presentation_context_id))
return 0;
if (!ASN1PERDecObjectIdentifier(dec,
&val->identification.u.context_negotiation.transfer_syntax))
return 0;
break;
case ASN1characterstring_identification_transfer_syntax_o:
if (!ASN1PERDecObjectIdentifier(dec,
&val->identification.u.transfer_syntax))
return 0;
break;
case ASN1characterstring_identification_fixed_o:
break;
default:
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
/* save identification */
if (!ASN1DecAddCharacterStringIdentification((ASN1INTERNdecoding_t) dec, &val->identification))
return 0;
}
else
{
/* CS-B encoding */
/* get identification */
identification = ASN1DecGetCharacterStringIdentification((ASN1INTERNdecoding_t) dec, index);
if (!identification)
return 0;
val->identification.o = identification->o;
switch (identification->o)
{
case ASN1characterstring_identification_syntaxes_o:
if (!ASN1DecDupObjectIdentifier(dec,
&val->identification.u.syntaxes.abstract,
&identification->u.syntaxes.abstract))
return 0;
if (!ASN1DecDupObjectIdentifier(dec,
&val->identification.u.syntaxes.transfer,
&identification->u.syntaxes.transfer))
return 0;
break;
case ASN1characterstring_identification_syntax_o:
if (!ASN1DecDupObjectIdentifier(dec,
&val->identification.u.syntax,
&identification->u.syntax))
return 0;
break;
case ASN1characterstring_identification_presentation_context_id_o:
val->identification.u.presentation_context_id =
identification->u.presentation_context_id;
break;
case ASN1characterstring_identification_context_negotiation_o:
val->identification.u.context_negotiation.presentation_context_id =
identification->u.context_negotiation.presentation_context_id;
if (!ASN1DecDupObjectIdentifier(dec,
&val->identification.u.context_negotiation.transfer_syntax,
&identification->u.context_negotiation.transfer_syntax))
return 0;
break;
case ASN1characterstring_identification_transfer_syntax_o:
if (!ASN1DecDupObjectIdentifier(dec,
&val->identification.u.transfer_syntax,
&identification->u.transfer_syntax))
return 0;
break;
case ASN1characterstring_identification_fixed_o:
break;
}
}
/* get value */
ASN1PERDecAlignment(dec);
val->data_value.o = ASN1characterstring_data_value_encoded_o;
return ASN1PERDecFragmented(dec,
&val->data_value.u.encoded.length,
&val->data_value.u.encoded.value, 8);
}
#endif // ENABLE_GENERALIZED_CHAR_STR
/* decode an optimized character string value */
#ifdef ENABLE_GENERALIZED_CHAR_STR
int ASN1PERDecCharacterStringOpt(ASN1decoding_t dec, ASN1characterstring_t *val, ASN1objectidentifier_t *abstract, ASN1objectidentifier_t *transfer)
{
/* set identification */
if (abstract && transfer)
{
val->identification.o = ASN1characterstring_identification_syntaxes_o;
if (!ASN1DecDupObjectIdentifier(dec,
&val->identification.u.syntaxes.abstract, abstract))
return 0;
if (!ASN1DecDupObjectIdentifier(dec,
&val->identification.u.syntaxes.transfer, transfer))
return 0;
}
else
{
val->identification.o = ASN1characterstring_identification_fixed_o;
}
/* get value */
val->data_value.o = ASN1characterstring_data_value_encoded_o;
return ASN1PERDecFragmented(dec,
&val->data_value.u.encoded.length,
&val->data_value.u.encoded.value, 8);
}
#endif // ENABLE_GENERALIZED_CHAR_STR
/* decode a multibyte string */
#ifdef ENABLE_ALL
int ASN1PERDecMultibyteString(ASN1decoding_t dec, ASN1char_t **val)
{
return ASN1PERDecFragmentedZeroCharString(dec, val, 8);
}
#endif // ENABLE_ALL
/* decode a string */
int ASN1PERDecCharStringNoAlloc(ASN1decoding_t dec, ASN1uint32_t nchars, ASN1char_t *val, ASN1uint32_t nbits)
{
ASN1char_t *p = val;
if (ASN1PERDecCheck(dec, nchars * nbits))
{
if (nbits == 8)
{
ASN1bitcpy((ASN1octet_t *)p, 0, dec->pos, dec->bit, nchars * 8);
PerDecAdvance(dec, nchars * 8);
return 1;
}
while (nchars--)
{
*p++ = (ASN1char_t) ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
}
return 1;
}
return 0;
}
#ifdef ENABLE_ALL
int ASN1PERDecCharString(ASN1decoding_t dec, ASN1uint32_t nchars, ASN1char_t **val, ASN1uint32_t nbits)
{
if (ASN1PERDecCheck(dec, nchars * nbits))
{
*val = (ASN1char_t *)DecMemAlloc(dec, nchars);
return ((*val) ? ASN1PERDecCharStringNoAlloc(dec, nchars, *val, nbits) : 0);
}
return 0;
}
#endif // ENABLE_ALL
/* decode a 16 bit string */
int ASN1PERDecChar16String(ASN1decoding_t dec, ASN1uint32_t nchars, ASN1char16_t **val, ASN1uint32_t nbits)
{
ASN1char16_t *p;
if (ASN1PERDecCheck(dec, nchars * nbits))
{
p = *val = (ASN1char16_t *)DecMemAlloc(dec, nchars * sizeof(ASN1char16_t));
if (p)
{
if (!dec->bit && nbits == 16)
{
while (nchars--)
{
*p++ = (dec->pos[0] << 8) | dec->pos[1];
dec->pos += 2;
}
return 1;
}
while (nchars--)
{
*p++ = (ASN1char16_t) ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
}
return 1;
}
}
return 0;
}
/* decode a 32 bit string */
#ifdef ENABLE_ALL
int ASN1PERDecChar32String(ASN1decoding_t dec, ASN1uint32_t nchars, ASN1char32_t **val, ASN1uint32_t nbits)
{
ASN1char32_t *p;
if (ASN1PERDecCheck(dec, nchars * nbits))
{
p = *val = (ASN1char32_t *)DecMemAlloc(dec, nchars * sizeof(ASN1char32_t));
if (p)
{
if (!dec->bit && nbits == 32)
{
while (nchars--)
{
*p++ = (dec->pos[0] << 24) | (dec->pos[1] << 16) |
(dec->pos[2] << 8) | dec->pos[3];
dec->pos += 4;
}
return 1;
}
while (nchars--)
{
*p++ = ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
}
return 1;
}
}
return 0;
}
#endif // ENABLE_ALL
/* decode a zero-terminated string */
int ASN1PERDecZeroCharStringNoAlloc(ASN1decoding_t dec, ASN1uint32_t nchars, ASN1char_t *val, ASN1uint32_t nbits)
{
ASN1char_t *p = val;
if (ASN1PERDecCheck(dec, nchars * nbits))
{
if (nbits == 8)
{
ASN1bitcpy((ASN1octet_t *)p, 0, dec->pos, dec->bit, nchars * 8);
PerDecAdvance(dec, nchars * 8);
p[nchars] = 0;
return 1;
}
while (nchars--)
{
*p++ = (ASN1char_t) ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
}
*p = 0;
return 1;
}
return 0;
}
#ifdef ENABLE_ALL
int ASN1PERDecZeroCharString(ASN1decoding_t dec, ASN1uint32_t nchars, ASN1char_t **val, ASN1uint32_t nbits)
{
if (ASN1PERDecCheck(dec, nchars * nbits))
{
*val = (ASN1char_t *)DecMemAlloc(dec, nchars + 1);
return ((*val) ? ASN1PERDecZeroCharStringNoAlloc(dec, nchars, *val, nbits) : 0);
}
return 0;
}
#endif // ENABLE_ALL
/* decode a zero-terminated 16 bit string */
#ifdef ENABLE_ALL
int ASN1PERDecZeroChar16String(ASN1decoding_t dec, ASN1uint32_t nchars, ASN1char16_t **val, ASN1uint32_t nbits)
{
ASN1char16_t *p;
if (ASN1PERDecCheck(dec, nchars * nbits))
{
p = *val = (ASN1char16_t *)DecMemAlloc(dec, (nchars + 1) * sizeof(ASN1char16_t));
if (p)
{
if (!dec->bit && nbits == 16)
{
while (nchars--)
{
*p++ = (dec->pos[0] << 8) | dec->pos[1];
dec->pos += 2;
}
*p = 0;
return 1;
}
while (nchars--)
{
*p++ = (ASN1char16_t) ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
}
*p = 0;
return 1;
}
}
return 0;
}
#endif // ENABLE_ALL
/* decode a zero-terminated 32 bit string */
#ifdef ENABLE_ALL
int ASN1PERDecZeroChar32String(ASN1decoding_t dec, ASN1uint32_t nchars, ASN1char32_t **val, ASN1uint32_t nbits)
{
ASN1char32_t *p;
if (ASN1PERDecCheck(dec, nchars * nbits))
{
p = *val = (ASN1char32_t *)DecMemAlloc(dec, (nchars + 1) * sizeof(ASN1char32_t));
if (p)
{
if (!dec->bit && nbits == 32)
{
while (nchars--)
{
*p++ = (dec->pos[0] << 24) | (dec->pos[1] << 16) |
(dec->pos[2] << 8) | dec->pos[3];
dec->pos += 4;
}
*p = 0;
return 1;
}
while (nchars--)
{
*p++ = ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
}
*p = 0;
return 1;
}
}
return 0;
}
#endif // ENABLE_ALL
/* decode a table string */
#ifdef ENABLE_ALL
int ASN1PERDecTableCharStringNoAlloc(ASN1decoding_t dec, ASN1uint32_t nchars, ASN1char_t *val, ASN1uint32_t nbits, ASN1stringtable_t *table)
{
ASN1char_t *p = val;
ASN1stringtableentry_t chr, *entry;
if (ASN1PERDecCheck(dec, nchars * nbits))
{
chr.lower = chr.upper = 0;
while (nchars--)
{
chr.value = ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
entry = (ASN1stringtableentry_t *)ms_bSearch(&chr, table->values,
table->length, sizeof(ASN1stringtableentry_t),
ASN1CmpStringTableEntriesByIndex);
if (entry)
{
*p++ = (ASN1char_t) (entry->lower + (chr.value - entry->value));
}
else
{
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
}
return 1;
}
return 0;
}
#endif // ENABLE_ALL
#ifdef ENABLE_ALL
int ASN1PERDecTableCharString(ASN1decoding_t dec, ASN1uint32_t nchars, ASN1char_t **val, ASN1uint32_t nbits, ASN1stringtable_t *table)
{
ASN1stringtableentry_t chr, *entry;
if (ASN1PERDecCheck(dec, nchars * nbits))
{
*val = (ASN1char_t *)DecMemAlloc(dec, nchars);
return ((*val) ? ASN1PERDecTableCharStringNoAlloc(dec, nchars, *val, nbits, table) : 0);
}
return 0;
}
#endif // ENABLE_ALL
/* decode a 16 bit table string */
int ASN1PERDecTableChar16String(ASN1decoding_t dec, ASN1uint32_t nchars, ASN1char16_t **val, ASN1uint32_t nbits, ASN1stringtable_t *table)
{
ASN1char16_t *p;
ASN1stringtableentry_t chr, *entry;
if (ASN1PERDecCheck(dec, nchars * nbits))
{
*val = p = (ASN1char16_t *)DecMemAlloc(dec, nchars * sizeof(ASN1char16_t));
if (p)
{
chr.lower = chr.upper = 0;
while (nchars--)
{
chr.value = ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
entry = (ASN1stringtableentry_t *)ms_bSearch(&chr, table->values,
table->length, sizeof(ASN1stringtableentry_t),
ASN1CmpStringTableEntriesByIndex);
if (entry)
{
*p++ = (ASN1char16_t) (entry->lower + (chr.value - entry->value));
}
else
{
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
}
return 1;
}
}
return 0;
}
/* decode a 32 bit table string */
#ifdef ENABLE_ALL
int ASN1PERDecTableChar32String(ASN1decoding_t dec, ASN1uint32_t nchars, ASN1char32_t **val, ASN1uint32_t nbits, ASN1stringtable_t *table)
{
ASN1char32_t *p;
ASN1stringtableentry_t chr, *entry;
if (ASN1PERDecCheck(dec, nchars * nbits))
{
*val = p = (ASN1char32_t *)DecMemAlloc(dec, nchars * sizeof(ASN1char32_t));
if (p)
{
chr.lower = chr.upper = 0;
while (nchars--)
{
chr.value = ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
entry = (ASN1stringtableentry_t *)ms_bSearch(&chr, table->values,
table->length, sizeof(ASN1stringtableentry_t),
ASN1CmpStringTableEntriesByIndex);
if (entry)
{
*p++ = entry->lower + (chr.value - entry->value);
}
else
{
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
}
return 1;
}
}
return 0;
}
#endif // ENABLE_ALL
/* decode a zero-terminated table string */
int ASN1PERDecZeroTableCharStringNoAlloc(ASN1decoding_t dec, ASN1uint32_t nchars, ASN1char_t *val, ASN1uint32_t nbits, ASN1stringtable_t *table)
{
ASN1char_t *p = val;
ASN1stringtableentry_t chr, *entry;
chr.lower = chr.upper = 0;
while (nchars--)
{
if (ASN1PERDecU32Val(dec, nbits, &chr.value))
{
entry = (ASN1stringtableentry_t *)ms_bSearch(&chr, table->values,
table->length, sizeof(ASN1stringtableentry_t),
ASN1CmpStringTableEntriesByIndex);
if (entry)
{
*p++ = (ASN1char_t) (entry->lower + (chr.value - entry->value));
}
else
{
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
}
else
{
return 0;
}
}
*p = 0;
return 1;
}
/* decode a zero-terminated table string */
#ifdef ENABLE_ALL
int ASN1PERDecZeroTableCharString(ASN1decoding_t dec, ASN1uint32_t nchars, ASN1char_t **val, ASN1uint32_t nbits, ASN1stringtable_t *table)
{
ASN1char_t *p;
ASN1stringtableentry_t chr, *entry;
*val = (ASN1char_t *)DecMemAlloc(dec, nchars + 1);
return ((*val) ? ASN1PERDecZeroTableCharStringNoAlloc(dec, nchars, *val, nbits, table) : 0);
}
#endif // ENABLE_ALL
/* decode a zero-terminated 16 bit table string */
#ifdef ENABLE_ALL
int ASN1PERDecZeroTableChar16String(ASN1decoding_t dec, ASN1uint32_t nchars, ASN1char16_t **val, ASN1uint32_t nbits, ASN1stringtable_t *table)
{
ASN1char16_t *p;
ASN1stringtableentry_t chr, *entry;
*val = p = (ASN1char16_t *)DecMemAlloc(dec, (nchars + 1) * sizeof(ASN1char16_t));
if (p)
{
chr.lower = chr.upper = 0;
while (nchars--)
{
if (ASN1PERDecU32Val(dec, nbits, &chr.value))
{
entry = (ASN1stringtableentry_t *)ms_bSearch(&chr, table->values,
table->length, sizeof(ASN1stringtableentry_t),
ASN1CmpStringTableEntriesByIndex);
if (entry)
{
*p++ = (ASN1char16_t) (entry->lower + (chr.value - entry->value));
}
else
{
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
}
else
{
return 0;
}
}
*p = 0;
return 1;
}
return 0;
}
#endif // ENABLE_ALL
/* decode a zero-terminated 32 bit table string */
#ifdef ENABLE_ALL
int ASN1PERDecZeroTableChar32String(ASN1decoding_t dec, ASN1uint32_t nchars, ASN1char32_t **val, ASN1uint32_t nbits, ASN1stringtable_t *table)
{
ASN1char32_t *p;
ASN1stringtableentry_t chr, *entry;
*val = p = (ASN1char32_t *)DecMemAlloc(dec, (nchars + 1) * sizeof(ASN1char32_t));
if (p)
{
chr.lower = chr.upper = 0;
while (nchars--)
{
if (ASN1PERDecU32Val(dec, nbits, &chr.value))
{
entry = (ASN1stringtableentry_t *)ms_bSearch(&chr, table->values,
table->length, sizeof(ASN1stringtableentry_t),
ASN1CmpStringTableEntriesByIndex);
if (entry)
{
*p++ = entry->lower + (chr.value - entry->value);
}
else
{
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
}
else
{
return 0;
}
}
*p = 0;
return 1;
}
return 0;
}
#endif // ENABLE_ALL
/* decode an object identifier */
int ASN1PERDecObjectIdentifier(ASN1decoding_t dec, ASN1objectidentifier_t *val)
{
ASN1uint32_t len, i, v;
ASN1octet_t *data, *p;
ASN1uint32_t nelem;
ASN1objectidentifier_t q;
if (ASN1PERDecFragmented(dec, &len, &data, 8))
{
int rc = 0;
nelem = 1;
for (i = 0, p = data; i < len; i++, p++)
{
if (!(*p & 0x80))
nelem++;
}
*val = q = DecAllocObjectIdentifier(dec, nelem);
if (q)
{
v = 0;
for (i = 0, p = data; i < len; i++, p++)
{
v = (v << 7) | (*p & 0x7f);
if (!(*p & 0x80))
{
if (q == *val)
{ // first id
q->value = v / 40;
if (q->value > 2)
q->value = 2;
q->next->value = v - 40 * q->value;
q = q->next->next;
}
else
{
q->value = v;
q = q->next;
}
v = 0;
}
}
rc = 1;
}
DecMemFree(dec, data);
return rc;
}
return 0;
}
/* decode an object identifier */
int ASN1PERDecObjectIdentifier2(ASN1decoding_t dec, ASN1objectidentifier2_t *val)
{
ASN1uint32_t len, i, v;
ASN1octet_t *data, *p;
ASN1uint32_t nelem;
ASN1objectidentifier_t q;
int rc = 0;
if (ASN1PERDecFragmented(dec, &len, &data, 8))
{
if (len <= 16) // lonchanc: hard-coded value 16 to be consistent with ASN1objectidentifier2_t
{
val->count = 0;
v = 0;
for (i = 0, p = data; i < len; i++, p++)
{
v = (v << 7) | (*p & 0x7f);
if (!(*p & 0x80))
{
if (! val->count)
{ // first id
val->value[0] = v / 40;
if (val->value[0] > 2)
val->value[0] = 2;
val->value[1] = v - 40 * val->value[0];
val->count = 2;
}
else
{
val->value[val->count++] = v;
}
v = 0;
}
}
// success
rc = 1;
}
else
{
ASN1DecSetError(dec, ASN1_ERR_LARGE);
}
DecMemFree(dec, data);
}
return rc;
}
/* decode a fragmented signed intx value */
#ifdef ENABLE_ALL
int ASN1PERDecFragmentedIntx(ASN1decoding_t dec, ASN1intx_t *val)
{
return ASN1PERDecFragmented(dec, &val->length, &val->value, 8);
}
#endif // ENABLE_ALL
/* decode a fragmented unsigned intx value */
#ifdef ENABLE_ALL
int ASN1PERDecFragmentedUIntx(ASN1decoding_t dec, ASN1intx_t *val)
{
if (ASN1PERDecFragmented(dec, &val->length, &val->value, 8))
{
if (val->length && val->value[0] > 0x7f)
{
ASN1octet_t *p;
if (NULL != (p = (ASN1octet_t *)DecMemAlloc(dec, val->length + 1)))
{
*p = 0;
CopyMemory(p + 1, val->value, val->length);
DecMemFree(dec, val->value);
val->value = p;
val->length++;
return 1;
}
return 0;
}
return 1;
}
return 0;
}
#endif // ENABLE_ALL
/* decode fragmented extension bits */
#ifdef ENABLE_ALL
int ASN1PERDecFragmentedExtension(ASN1decoding_t dec, ASN1uint32_t nbits, ASN1octet_t *val)
{
ASN1uint32_t m, n;
m = 0;
do {
if (ASN1PERDecFragmentedLength(dec, &n))
{
if (m + n <= nbits)
{
if (ASN1PERDecCheck(dec, n))
{
ASN1bitcpy(val, m, dec->pos, dec->bit, n);
PerDecAdvance(dec, n);
m += n;
}
else
{
return 0;
}
}
else
{
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
}
else
{
return 0;
}
} while (n >= 0x4000);
return 1;
}
#endif // ENABLE_ALL
/* decode a fragmented string */
#ifdef ENABLE_ALL
int ASN1PERDecFragmentedCharString(ASN1decoding_t dec, ASN1uint32_t *nchars, ASN1char_t **val, ASN1uint32_t nbits)
{
ASN1uint32_t m, n, i;
ASN1char_t *p;
*val = 0;
m = 0;
do {
if (ASN1PERDecFragmentedLength(dec, &n))
{
if (!n)
break;
if (ASN1PERDecCheck(dec, n * nbits))
{
if (NULL != (*val = (ASN1char_t *)DecMemReAlloc(dec, *val, m + n)))
{
p = *val + m;
m += n;
if (nbits == 8)
{
ASN1bitcpy((ASN1octet_t *)p, 0, dec->pos, dec->bit, n * 8);
PerDecAdvance(dec, n * 8);
}
else
{
for (i = n; i; i--)
{
*p++ = (ASN1char_t) ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
}
}
}
else
{
return 0;
}
}
else
{
return 0;
}
}
else
{
return 0;
}
} while (n >= 0x4000);
*nchars = m;
return 1;
}
#endif // ENABLE_ALL
/* decode a fragmented 16 bit string */
#ifdef ENABLE_ALL
int ASN1PERDecFragmentedChar16String(ASN1decoding_t dec, ASN1uint32_t *nchars, ASN1char16_t **val, ASN1uint32_t nbits)
{
ASN1uint32_t m, n, i;
ASN1char16_t *p;
*val = 0;
m = 0;
do {
if (ASN1PERDecFragmentedLength(dec, &n))
{
if (!n)
break;
if (ASN1PERDecCheck(dec, n * nbits))
{
if (NULL != (*val = (ASN1char16_t *)DecMemReAlloc(dec, *val, (m + n) * sizeof(ASN1char16_t))))
{
p = *val + m;
m += n;
if (!dec->bit && nbits == 16)
{
for (i = n; i; i--)
{
*p++ = (dec->pos[0] << 8) | dec->pos[1];
dec->pos += 2;
}
}
else
{
for (i = n; i; i--)
{
*p++ = (ASN1char16_t) ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
}
}
}
else
{
return 0;
}
}
else
{
return 0;
}
}
else
{
return 0;
}
} while (n >= 0x4000);
*nchars = m;
return 1;
}
#endif // ENABLE_ALL
/* decode a fragmented 32 bit string */
#ifdef ENABLE_ALL
int ASN1PERDecFragmentedChar32String(ASN1decoding_t dec, ASN1uint32_t *nchars, ASN1char32_t **val, ASN1uint32_t nbits)
{
ASN1uint32_t m, n, i;
ASN1char32_t *p;
*val = 0;
m = 0;
do {
if (ASN1PERDecFragmentedLength(dec, &n))
{
if (!n)
break;
if (ASN1PERDecCheck(dec, n * nbits))
{
if (NULL != (*val = (ASN1char32_t *)DecMemReAlloc(dec, *val, (m + n) * sizeof(ASN1char32_t))))
{
p = *val + m;
m += n;
if (!dec->bit && nbits == 32)
{
for (i = n; i; i--)
{
*p++ = (dec->pos[0] << 24) | (dec->pos[1] << 16) |
(dec->pos[2] << 8) | dec->pos[3];
dec->pos += 4;
}
}
else
{
for (i = n; i; i--)
{
*p++ = ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
}
}
}
else
{
return 0;
}
}
else
{
return 0;
}
}
else
{
return 0;
}
} while (n >= 0x4000);
*nchars = m;
return 1;
}
#endif // ENABLE_ALL
/* decode a fragmented zero-terminated string */
int ASN1PERDecFragmentedZeroCharString(ASN1decoding_t dec, ASN1char_t **val, ASN1uint32_t nbits)
{
ASN1uint32_t m, n, i;
ASN1char_t *p;
*val = 0;
m = 0;
do {
if (ASN1PERDecFragmentedLength(dec, &n))
{
if (!n)
break;
if (ASN1PERDecCheck(dec, n * nbits))
{
if (NULL != (*val = (ASN1char_t *)DecMemReAlloc(dec, *val, m + n + 1)))
{
p = *val + m;
m += n;
if (nbits == 8)
{
ASN1bitcpy((ASN1octet_t *)p, 0, dec->pos, dec->bit, n * 8);
PerDecAdvance(dec, n * 8);
}
else
{
for (i = n; i; i--)
{
*p++ = (ASN1char_t) ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
}
}
}
else
{
return 0;
}
}
else
{
return 0;
}
}
else
{
return 0;
}
} while (n >= 0x4000);
if (!*val)
*val = (ASN1char_t *)DecMemAlloc(dec, 1);
if (*val)
(*val)[m] = 0;
return 1;
}
/* decode a fragmented zero-terminated 16 bit string */
#ifdef ENABLE_ALL
int ASN1PERDecFragmentedZeroChar16String(ASN1decoding_t dec, ASN1char16_t **val, ASN1uint32_t nbits)
{
ASN1uint32_t m, n, i;
ASN1char16_t *p;
*val = 0;
m = 0;
do {
if (ASN1PERDecFragmentedLength(dec, &n))
{
if (!n)
break;
if (ASN1PERDecCheck(dec, n * nbits))
{
if (NULL != (*val = (ASN1char16_t *)DecMemReAlloc(dec, *val, (m + n + 1) * sizeof(ASN1char16_t))))
{
p = *val + m;
m += n;
if (!dec->bit && nbits == 16)
{
for (i = n; i; i--)
{
*p++ = (dec->pos[0] << 8) | dec->pos[1];
dec->pos += 2;
}
}
else
{
for (i = n; i; i--)
{
*p++ = (ASN1char16_t) ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
}
}
}
else
{
return 0;
}
}
else
{
return 0;
}
}
else
{
return 0;
}
} while (n >= 0x4000);
if (!*val)
*val = (ASN1char16_t *)DecMemAlloc(dec, sizeof(ASN1char16_t));
if (*val)
(*val)[m] = 0;
return 1;
}
#endif // ENABLE_ALL
/* decode a fragmented zero-terminated 32 bit string */
#ifdef ENABLE_ALL
int ASN1PERDecFragmentedZeroChar32String(ASN1decoding_t dec, ASN1char32_t **val, ASN1uint32_t nbits)
{
ASN1uint32_t m, n, i;
ASN1char32_t *p;
*val = 0;
m = 0;
do {
if (ASN1PERDecFragmentedLength(dec, &n))
{
if (!n)
break;
if (ASN1PERDecCheck(dec, n * nbits))
{
if (NULL != (*val = (ASN1char32_t *)DecMemReAlloc(dec, *val, (m + n + 1) * sizeof(ASN1char32_t))))
{
p = *val + m;
m += n;
if (!dec->bit && nbits == 32)
{
for (i = n; i; i--)
{
*p++ = (dec->pos[0] << 24) | (dec->pos[1] << 16) |
(dec->pos[2] << 8) | dec->pos[3];
dec->pos += 4;
}
}
else
{
for (i = n; i; i--)
{
*p++ = ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
}
}
}
else
{
return 0;
}
}
else
{
return 0;
}
}
else
{
return 0;
}
} while (n >= 0x4000);
if (!*val)
*val = (ASN1char32_t *)DecMemAlloc(dec, sizeof(ASN1char32_t));
if (*val)
(*val)[m] = 0;
return 1;
}
#endif // ENABLE_ALL
/* decode a fragmented table string */
#ifdef ENABLE_ALL
int ASN1PERDecFragmentedTableCharString(ASN1decoding_t dec, ASN1uint32_t *nchars, ASN1char_t **val, ASN1uint32_t nbits, ASN1stringtable_t *table)
{
ASN1uint32_t m, n, i;
ASN1stringtableentry_t chr, *entry;
ASN1char_t *p;
*val = 0;
m = 0;
chr.lower = chr.upper = 0;
do {
if (ASN1PERDecFragmentedLength(dec, &n))
{
if (!n)
break;
if (ASN1PERDecCheck(dec, n * nbits))
{
if (NULL != (*val = (ASN1char_t *)DecMemReAlloc(dec, *val, m + n)))
{
p = *val + m;
m += n;
for (i = n; i; i--)
{
chr.value = ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
entry = (ASN1stringtableentry_t *)ms_bSearch(&chr, table->values,
table->length, sizeof(ASN1stringtableentry_t),
ASN1CmpStringTableEntriesByIndex);
if (entry)
{
*p++ = (ASN1char_t) (entry->lower + (chr.value - entry->value));
}
else
{
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
}
}
else
{
return 0;
}
}
else
{
return 0;
}
}
else
{
return 0;
}
} while (n >= 0x4000);
*nchars = m;
return 1;
}
#endif // ENABLE_ALL
/* decode a fragmented 16 bit table string */
#ifdef ENABLE_ALL
int ASN1PERDecFragmentedTableChar16String(ASN1decoding_t dec, ASN1uint32_t *nchars, ASN1char16_t **val, ASN1uint32_t nbits, ASN1stringtable_t *table)
{
ASN1uint32_t m, n, i;
ASN1stringtableentry_t chr, *entry;
ASN1char16_t *p;
*val = 0;
m = 0;
chr.lower = chr.upper = 0;
do {
if (ASN1PERDecFragmentedLength(dec, &n))
{
if (!n)
break;
if (ASN1PERDecCheck(dec, n * nbits))
{
if (NULL != (*val = (ASN1char16_t *)DecMemReAlloc(dec, *val, (m + n) * sizeof(ASN1char16_t))))
{
p = *val + m;
m += n;
for (i = n; i; i--)
{
chr.value = ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
entry = (ASN1stringtableentry_t *)ms_bSearch(&chr, table->values,
table->length, sizeof(ASN1stringtableentry_t),
ASN1CmpStringTableEntriesByIndex);
if (entry)
{
*p++ = (ASN1char16_t) (entry->lower + (chr.value - entry->value));
}
else
{
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
}
}
else
{
return 0;
}
}
else
{
return 0;
}
}
else
{
return 0;
}
} while (n >= 0x4000);
*nchars = m;
return 1;
}
#endif // ENABLE_ALL
/* decode a fragmented 32 bit table string */
#ifdef ENABLE_ALL
int ASN1PERDecFragmentedTableChar32String(ASN1decoding_t dec, ASN1uint32_t *nchars, ASN1char32_t **val, ASN1uint32_t nbits, ASN1stringtable_t *table)
{
ASN1uint32_t m, n, i;
ASN1stringtableentry_t chr, *entry;
ASN1char32_t *p;
*val = 0;
m = 0;
chr.lower = chr.upper = 0;
do {
if (ASN1PERDecFragmentedLength(dec, &n))
{
if (!n)
break;
if (ASN1PERDecCheck(dec, n * nbits))
{
if (NULL != (*val = (ASN1char32_t *)DecMemReAlloc(dec, *val, (m + n) * sizeof(ASN1char32_t))))
{
p = *val + m;
m += n;
for (i = n; i; i--)
{
chr.value = ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
entry = (ASN1stringtableentry_t *)ms_bSearch(&chr, table->values,
table->length, sizeof(ASN1stringtableentry_t),
ASN1CmpStringTableEntriesByIndex);
if (entry)
{
*p++ = entry->lower + (chr.value - entry->value);
}
else
{
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
}
}
else
{
return 0;
}
}
else
{
return 0;
}
}
else
{
return 0;
}
} while (n >= 0x4000);
*nchars = m;
return 1;
}
#endif // ENABLE_ALL
/* decode a fragmented zero-terminated table string */
#ifdef ENABLE_ALL
int ASN1PERDecFragmentedZeroTableCharString(ASN1decoding_t dec, ASN1char_t **val, ASN1uint32_t nbits, ASN1stringtable_t *table)
{
ASN1uint32_t m, n, i;
ASN1stringtableentry_t chr, *entry;
ASN1char_t *p;
*val = 0;
m = 0;
chr.lower = chr.upper = 0;
do {
if (ASN1PERDecFragmentedLength(dec, &n))
{
if (!n)
break;
if (ASN1PERDecCheck(dec, n * nbits))
{
if (NULL != (*val = (ASN1char_t *)DecMemReAlloc(dec, *val, m + n + 1)))
{
p = *val + m;
m += n;
for (i = n; i; i--)
{
chr.value = ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
entry = (ASN1stringtableentry_t *)ms_bSearch(&chr, table->values,
table->length, sizeof(ASN1stringtableentry_t),
ASN1CmpStringTableEntriesByIndex);
if (entry)
{
*p++ = (ASN1char_t) (entry->lower + (chr.value - entry->value));
}
else
{
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
}
}
else
{
return 0;
}
}
else
{
return 0;
}
}
else
{
return 0;
}
} while (n >= 0x4000);
if (!*val)
*val = (ASN1char_t *)DecMemAlloc(dec, 1);
if (*val)
(*val)[m] = 0;
return 1;
}
#endif // ENABLE_ALL
/* decode a fragmented zero-terminated 16 bit table string */
#ifdef ENABLE_ALL
int ASN1PERDecFragmentedZeroTableChar16String(ASN1decoding_t dec, ASN1char16_t **val, ASN1uint32_t nbits, ASN1stringtable_t *table)
{
ASN1uint32_t m, n, i;
ASN1stringtableentry_t chr, *entry;
ASN1char16_t *p;
*val = 0;
m = 0;
chr.lower = chr.upper = 0;
do {
if (ASN1PERDecFragmentedLength(dec, &n))
{
if (!n)
break;
if (ASN1PERDecCheck(dec, n * nbits))
{
if (NULL != (*val = (ASN1char16_t *)DecMemReAlloc(dec, *val, (m + n + 1) * sizeof(ASN1char16_t))))
{
p = *val + m;
m += n;
for (i = n; i; i--)
{
chr.value = ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
entry = (ASN1stringtableentry_t *)ms_bSearch(&chr, table->values,
table->length, sizeof(ASN1stringtableentry_t),
ASN1CmpStringTableEntriesByIndex);
if (entry)
{
*p++ = (ASN1char16_t) (entry->lower + (chr.value - entry->value));
}
else
{
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
}
}
else
{
return 0;
}
}
else
{
return 0;
}
}
else
{
return 0;
}
} while (n >= 0x4000);
if (!*val)
*val = (ASN1char16_t *)DecMemAlloc(dec, sizeof(ASN1char16_t));
if (*val)
(*val)[m] = 0;
return 1;
}
#endif // ENABLE_ALL
/* decode a fragmented zero-terminated 32 bit table string */
#ifdef ENABLE_ALL
int ASN1PERDecFragmentedZeroTableChar32String(ASN1decoding_t dec, ASN1char32_t **val, ASN1uint32_t nbits, ASN1stringtable_t *table)
{
ASN1uint32_t m, n, i;
ASN1stringtableentry_t chr, *entry;
ASN1char32_t *p;
*val = 0;
m = 0;
chr.lower = chr.upper = 0;
do {
if (ASN1PERDecFragmentedLength(dec, &n))
{
if (!n)
break;
if (ASN1PERDecCheck(dec, n * nbits))
{
if (NULL != (*val = (ASN1char32_t *)DecMemReAlloc(dec, *val, (m + n + 1) * sizeof(ASN1char32_t))))
{
p = *val + m;
m += n;
for (i = n; i; i--)
{
chr.value = ASN1bitgetu(dec->pos, dec->bit, nbits);
PerDecAdvance(dec, nbits);
entry = (ASN1stringtableentry_t *)ms_bSearch(&chr, table->values,
table->length, sizeof(ASN1stringtableentry_t),
ASN1CmpStringTableEntriesByIndex);
if (entry)
{
*p++ = entry->lower + (chr.value - entry->value);
}
else
{
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
}
}
else
{
return 0;
}
}
else
{
return 0;
}
}
else
{
return 0;
}
} while (n >= 0x4000);
if (!*val)
*val = (ASN1char32_t *)DecMemAlloc(dec, sizeof(ASN1char32_t));
if (*val)
(*val)[m] = 0;
return 1;
}
#endif // ENABLE_ALL
/* decode a generalized time */
int ASN1PERDecGeneralizedTime(ASN1decoding_t dec, ASN1generalizedtime_t *val, ASN1uint32_t nbits)
{
ASN1ztcharstring_t time;
if (ASN1PERDecFragmentedZeroCharString(dec, &time, nbits))
{
int rc = ASN1string2generalizedtime(val, time);
DecMemFree(dec, time);
if (rc)
{
return 1;
}
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
}
return 0;
}
/* decode a utc time */
#ifdef ENABLE_ALL
int ASN1PERDecUTCTime(ASN1decoding_t dec, ASN1utctime_t *val, ASN1uint32_t nbits)
{
ASN1ztcharstring_t time;
if (ASN1PERDecFragmentedZeroCharString(dec, &time, nbits))
{
int rc = ASN1string2utctime(val, time);
DecMemFree(dec, time);
if (rc)
{
return 1;
}
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
}
return 0;
}
#endif // ENABLE_ALL