windows-nt/Source/XPSP1/NT/admin/activec/designer/vb98ctls/framewrk/macros.cpp

968 lines
29 KiB
C++
Raw Normal View History

2020-09-26 03:20:57 -05:00
//=--------------------------------------------------------------------------=
// Macros.Cpp
//=--------------------------------------------------------------------------=
// Copyright 1997 Microsoft Corporation. All Rights Reserved.
//
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
// PARTICULAR PURPOSE.
//=--------------------------------------------------------------------------=
// Handy macros like the ones we use in the VB code base.
//=--------------------------------------------------------------------------=
#include "pch.h"
#ifdef DEBUG
#include <winuser.h>
// for ASSERT and FAIL
//
SZTHISFILE
//=--------------------------------------------------------------------------=
// Debug control switches
//=--------------------------------------------------------------------------=
DEFINE_SWITCH(fTraceCtlAllocs); // Trace all Heap allocations and frees
// fOutputFile should also be on with this switch
DEFINE_SWITCH(fOutputFile); // Logs all debug info in file:
// %CurrentDir%\ctldebug.log
DEFINE_SWITCH(fNoLeakAsserts); // No Heap memory leak asserts are displayed
// when turned on.
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// !DEBUGGING HEAP MEMORY LEAKS!
// To debug a leak you need to figure out where and when the allocation was made.
// The top of the assert dialog will give you the OCX/DLL causing the leak.
// Goto Project/Build...Settings.
// On the Debug tab, select "additional DLLs"
// Locate and select the OCX/DLL causing the leak.
// Put a breakpoint on the noted line below.
// Goto Edit...Breakpoints.
// Select the new breakpoint.
// Press 'Condition'
// In the 'Enter number of times to skip before breaking' put the value of nAlloc-1.
// (if the leak was nAlloc=267 then you want to skip the breapoint 266 times, enter 266)
//
// WARNING: Each control (OCX/DLL) will have its own instance of the framewrk, and thus
// its own instance of the memory leak implementaion. Adding a breakpoint
// anywhere in the framewrk will actually add multiple breakpoints - one for
// each control.
// Go back to Edit...Breakpoints.
// Deselect or remove the breakpoints for the OCX's/DLL's not causing leaks
//
// Run your scenario.
// When you hit this breakpoint verify that pvAddress and nByteCount are correct and then
// look down the callstack to see where the allocation was made.
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
void PutBreakPointHere(void * pvAddress, ULONG nByteCount, ULONG nAlloc, char * szFile, ULONG uLine)
{
pvAddress=pvAddress; nAlloc=nAlloc; nByteCount=nByteCount;
szFile=szFile;
uLine=uLine;
HINSTANCE hInstance = g_hInstance; // hInstance of the OCX/DLL calling this breakpoint
int PutBreakPointOnThisLine = 1; // <--- breakpoint here.
} // PutBreakPointHere
//=--------------------------------------------------------------------------=
//
// Debug Heap Memory Leak implementations
//
class CAddressNode
{
public:
void * m_pv; // Address of memory block allocated
ULONG m_cb; // Size of allocation in BYTES
ULONG m_cAlloc; // Allocation pass count.
LPSZ m_szFile; // Source file where the allocation was made
ULONG m_uLine; // Source line number where the allocation was made
CAddressNode * m_pnNext; // Nodes are stored in a linked list
void * operator new(size_t cb);
void operator delete(void * pv);
// We maintain a freelist to speed up allocation of AddressNodes.
static CAddressNode * m_pnFreeList;
};
CAddressNode * m_rInstTable[NUM_INST_TABLE_ENTRIES]; // Hashing table of all instances of
// mem alloc
CAddressNode * m_pnEnumNode; // Next node for enumerator to return
UINT m_uEnumIndex; // Current index into m_rInstTable for enumerator
static ULONG m_cGlobalPassCount; // Pass count of allocation. Common to all heaps
ULONG m_cCurNumAllocs; // Current number of allocations
ULONG m_cNumAllocs; // Total number of allocations ever done.
ULONG m_cCurNumBytesAllocated; // Current number of bytes allocated.
ULONG m_cNumBytesAllocated; // Total bytes allocated.
ULONG m_HWAllocs; // High water allocations.
ULONG m_HWBytes; // High water bytes.
static ULONG m_OverallCurAlloc; // These are overall statistics to since we
static ULONG m_OverallCurBytes; // wouldn't mind the overall high water.
static ULONG m_OverallHWAlloc;
static ULONG m_OverallHWBytes;
// Forward declarations
VOID AddInst(VOID * pv, DWORD dwBytes, LPSZ szFile, UINT uLine);
VOID DebugInst(ULONG cb);
VOID AnalyzeInst(LPVOID pv);
VOID DumpInst(CAddressNode * pn, LPTSTR lpTypeofAlloc);
LPSTR DumpInstTable(LPSTR lpLeak);
VOID DeleteInst(LPVOID pv);
VOID VerifyHeaderTrailer(CAddressNode * pn);
VOID CheckForLeaks(VOID);
VOID HeapCheck(VOID);
VOID OutputToFile(LPSTR szOutput);
CAddressNode * FindInst(LPVOID pv);
CAddressNode * EnumReset();
CAddressNode * EnumNext();
// Initialize a header and trailer for all memory to be allocated.
// Use 8 bytes so it is also compatible with RISC machines.
char * g_szHeader = "HEADHEAD";
char * g_szTrailer = "END!END!";
#define HEADERSIZE 8 // # of bytes of block header
// 0 ==> no block header signature
#define TRAILERSIZE 8 // # of bytes of block trailer
// 0 ==> no block trailer signature
//=--------------------------------------------------------------------------=
// CtlHeapAllocImpl:
// Debug wrapper for HeapAlloc to track memory leaks:
//=--------------------------------------------------------------------------=
LPVOID CtlHeapAllocImpl(
HANDLE g_hHeap,
DWORD dwFlags,
DWORD dwBytesRequested,
LPSTR lpszFile,
UINT line
)
{
LPVOID lpvRet;
DWORD dwBytes;
LPTSTR lpTypeofAlloc = "HeapAlloc ";
// If someone tries to allocate memory before PROCCESS_ATTATCH (such as in a
// global constructor), do not track it because neither our heap nor our
// hInstance have been initialized yet.
//
if (!g_fInitCrit)
{
g_flagConstructorAlloc = TRUE;
return HeapAlloc(g_hHeap, dwFlags, dwBytesRequested);
}
// Increase size to make space for header and trailer signatures
dwBytes = dwBytesRequested + HEADERSIZE + TRAILERSIZE;
// Allocate memory
lpvRet = HeapAlloc(g_hHeap, dwFlags, dwBytes);
if (lpvRet)
{
// Initialize memory (non-zero)
if (!(dwFlags & HEAP_ZERO_MEMORY))
memset(lpvRet, 0xAF, dwBytes);
// Add instance to hash table
AddInst(lpvRet, dwBytesRequested, lpszFile, line);
// Trace allocations if switch is on
if (FSWITCH(fTraceCtlAllocs))
{
CAddressNode *pn = FindInst(lpvRet);
DumpInst(pn, lpTypeofAlloc);
}
// Advance pointer past header signature.
lpvRet = (LPVOID) ((char *)lpvRet + HEADERSIZE);
}
return lpvRet;
} // CtlHeapAllocImpl
//=--------------------------------------------------------------------------=
// CtlHeapReAllocImpl:
//
//=--------------------------------------------------------------------------=
LPVOID CtlHeapReAllocImpl(
HANDLE g_hHeap,
DWORD dwFlags,
LPVOID lpvMem,
DWORD dwBytesRequested,
LPSTR lpszFile,
UINT line
)
{
LPVOID lpvRet;
CAddressNode * pn;
int byte;
DWORD cbOffset, dwBytes;
LPTSTR lpTypeofAlloc = "HeapReAlloc ";
// Move pointer to beginning of header
lpvMem = (LPVOID)((char *)lpvMem - HEADERSIZE);
// Find instance in hash table
pn = FindInst(lpvMem);
if (!pn)
{
FAIL("CtlHeapReAllocImpl - could not find lpvMem in the instance table. See debug \
output for more info.");
AnalyzeInst(lpvMem);
return 0;
}
// Increase size to make space for header and trailer signatures
dwBytes = dwBytesRequested + HEADERSIZE + TRAILERSIZE;
lpvRet = HeapReAlloc(g_hHeap, dwFlags, lpvMem, dwBytes);
if (lpvRet)
{
// If the reallocation grew, we must intialize new memory
if (dwBytesRequested > pn->m_cb)
{
if (dwFlags & HEAP_ZERO_MEMORY)
byte = 0x0;
else
byte = 0xAF;
// Get the byte offset of trailer in the old allocation
cbOffset = pn->m_cb + HEADERSIZE;
memset((char *)lpvRet + cbOffset, byte, dwBytes - cbOffset);
}
// Update hash table
EnterCriticalSection(&g_csHeap);
DeleteInst(lpvMem);
AddInst(lpvRet, dwBytesRequested, lpszFile, line);
LeaveCriticalSection(&g_csHeap);
// Trace Allocations if switch is on
if (FSWITCH(fTraceCtlAllocs))
{
CAddressNode *pn = FindInst(lpvRet);
DumpInst(pn, lpTypeofAlloc);
}
// Advance pointer past header signature.
lpvRet = (LPVOID)((char *)lpvRet + HEADERSIZE);
}
return lpvRet;
} // CtlHeapReAllocImpl
//=--------------------------------------------------------------------------=
// CtlHeapFreeImpl:
// Debug wrapper for HeapFree
//=--------------------------------------------------------------------------=
BOOL CtlHeapFreeImpl(
HANDLE g_hHeap,
DWORD dwFlags,
LPVOID lpvMem
)
{
BOOL fRet = FALSE;
CAddressNode * pn;
LPTSTR lpTypeofAlloc = "HeapFree ";
// If someone tries to de-allocate memory after PROCCESS_DETATCH (such as in a
// global destructor), Re-initialize critical section and free memory.
//
if (!g_fInitCrit)
InitializeCriticalSection(&g_csHeap);
// Move pointer to beginning of header
lpvMem = (LPVOID) ((char *)lpvMem - HEADERSIZE);
// Find the instance in the hash table
pn = FindInst(lpvMem);
if (pn)
{
// Verify the memory has not been overwritten
VerifyHeaderTrailer(pn);
// Trace allocations if switch is on
if (FSWITCH(fTraceCtlAllocs))
{
CAddressNode *pn = FindInst(lpvMem);
DumpInst(pn, lpTypeofAlloc);
}
// Free memory -- NOTE: WinNT will set free memory to 0xEEFEEEFE which is "<22><><EFBFBD><EFBFBD>"
fRet = HeapFree(g_hHeap, 0, lpvMem);
if (!fRet)
FAIL("CtlHeapFreeImpl - lpvMem was found to be allocated in the heap passed in \
but HeapFree() failed. Maybe the pointer was already freed.");
}
// Remove instance from hash table
if (fRet)
DeleteInst(lpvMem);
// Make sure this memory wasn't allocated in a global constructor
else if (!g_flagConstructorAlloc)
{
FAIL("CtlHeapFreeImpl - could not find lpvMem in the instance table. See debug \
output for more info.");
AnalyzeInst(lpvMem);
}
else
fRet = TRUE;
// If called after PROCESS_DETATCH delete critical section and Check for leaks again
// NOTE: Only the LAST Assert will have the exact leak information. All previous
// Asserts will not take into account a HeapFree which occurs after PROCESS_DETACH.
// This only occurs in controls using global static destructors.
if (!g_fInitCrit)
{
CheckForLeaks();
DeleteCriticalSection(&g_csHeap);
}
return fRet;
} // CtlHeapFreeImpl
//=--------------------------------------------------------------------------=
// CheckForLeaks:
// We are calling PROCESS_DETATCH so check if hash table is empty. If not
// dump info on memory that has been leaked.
//=--------------------------------------------------------------------------=
VOID CheckForLeaks(VOID)
{
CAddressNode * pn = EnumReset();
BOOL IsEmpty = (pn == NULL); // FALSE if there are leaks
// First check for memory trashing of any leaked memory
HeapCheck();
if (!IsEmpty)
{
// First find out which OCX/DLL is leaking
TCHAR lpCtlName[128];
DWORD nSize = 128;
DWORD fValidPath;
fValidPath = GetModuleFileName(g_hInstance, (LPTSTR)lpCtlName, nSize);
LPSTR lpLeaks;
// Allocate some memory to hold the data but use GlobalAlloc since we
// don't want to use the vb memory stuff since it will muck things up.
lpLeaks = (LPSTR)GlobalLock(GlobalAlloc(GMEM_MOVEABLE,128));
lstrcpy(lpLeaks, lpCtlName);
lstrcat(lpLeaks, " has leaked memory.\nUse PutBreakPointHere() in macros.cpp to debug.\r\n");
// Collect all leak info
lpLeaks = DumpInstTable(lpLeaks);
// Dump output to file if "fOutputFile" switch is on
if (FSWITCH(fOutputFile))
OutputToFile(lpLeaks);
// Dump output to an assert as long as "fNoLeakAsserts" is off
else if (!FSWITCH(fNoLeakAsserts))
{
// Truncate output so it fits into DisplayAssert (512 Max)
if (lstrlen(lpLeaks) > 500)
{
lstrcpyn(lpLeaks, lpLeaks, 500);
lstrcat(lpLeaks, "\nMore...");
}
DisplayAssert(lpLeaks, "FAIL", NULL, 0);
}
// Release memory used to store leak info
GlobalUnlock((HGLOBAL)GlobalHandle(lpLeaks)),
(BOOL)GlobalFree((HGLOBAL)GlobalHandle(lpLeaks));
}
return;
} // CheckForLeaks
//=--------------------------------------------------------------------------=
// AddInst:
// A heap allocation occured so here we add the allocation information to
// the instance table. To debug memory leaks where you need to use pass
// counts, set a passcount breakpoint in this function using the passcount
// value given in the debug output.
//=--------------------------------------------------------------------------=
VOID AddInst(
VOID * pv,
DWORD dwBytes,
LPSZ szFile,
UINT uLine
)
{
UINT uHash;
CAddressNode * pn = new CAddressNode();
ASSERT(pn,"");
EnterCriticalSection(&g_csHeap);
m_cGlobalPassCount++;
pn->m_pv = pv; // Memory address of allocation
pn->m_cb = dwBytes; // Bytes requested to be allocated
pn->m_cAlloc = m_cGlobalPassCount; // This is the pass count value in debug output.
pn->m_szFile = szFile; // Source file the allocation call was made
pn->m_uLine = uLine; // Line number in source file.
PutBreakPointHere(pv, dwBytes, m_cGlobalPassCount, szFile, uLine);
// Add instance to proper position in table
uHash = HashInst(pv);
pn->m_pnNext = m_rInstTable[uHash];
m_rInstTable[uHash] = pn;
// Copy header and trailer signatures.
memcpy((char *)pv, g_szHeader, HEADERSIZE);
memcpy((char *)pv + HEADERSIZE + dwBytes, g_szTrailer, TRAILERSIZE);
LeaveCriticalSection(&g_csHeap);
// Track extra memory debug info
DebugInst( dwBytes );
} // AddInst
//=--------------------------------------------------------------------------=
// DebugInst:
// Updates the memory debug information
//=--------------------------------------------------------------------------=
VOID DebugInst(
ULONG cb
)
{
EnterCriticalSection(&g_csHeap);
++m_cCurNumAllocs;
++m_cNumAllocs;
++m_OverallCurAlloc;
m_cCurNumBytesAllocated+=cb;
m_cNumBytesAllocated+=cb;
m_OverallCurBytes+=cb;
m_HWAllocs = (m_HWAllocs < m_cCurNumAllocs) ? m_cCurNumAllocs : m_HWAllocs;
m_HWBytes = (m_HWBytes < m_cCurNumBytesAllocated) ? m_cCurNumBytesAllocated : m_HWBytes;
m_OverallHWAlloc = (m_OverallHWAlloc < m_OverallCurAlloc)
? m_OverallCurAlloc : m_OverallHWAlloc;
m_OverallHWBytes = (m_OverallHWBytes < m_OverallCurBytes)
? m_OverallCurBytes : m_OverallHWBytes;
LeaveCriticalSection(&g_csHeap);
} // DebugInst
//=--------------------------------------------------------------------------=
// FindInst:
// Give a pointer to an allocation, return a pointer to the debug
// allocation information.
//=--------------------------------------------------------------------------=
CAddressNode * FindInst(
LPVOID pv
)
{
CAddressNode * pn;
EnterCriticalSection(&g_csHeap);
pn = m_rInstTable[HashInst(pv)];
while (pn && pn->m_pv != pv)
pn = pn->m_pnNext;
LeaveCriticalSection(&g_csHeap);
return pn;
} // FindInst
//=--------------------------------------------------------------------------=
// AnalyzeInst:
// Given a pointer try determine if it is a valid Read and Write pointer
// and if it was allocated.
//=--------------------------------------------------------------------------=
VOID AnalyzeInst(
LPVOID pv
)
{
LPTSTR lpTypeofAlloc = "Bad lpvMem ";
CAddressNode * pn = NULL;
// Either we have a bad pointer or the pointer does not point to any
// known heap allocations. Here we check if it points to readable or
// writable memory.
BOOL fBadPointer = (IsBadReadPtr(pv, 4) || IsBadWritePtr(pv, 4));
// Report what we know about the memory address
if (fBadPointer)
DebugPrintf("AnalyzeInst found that pointer pv=0x%lX is not writable\n\r" \
"or readable. The allocation is either outside the addressable range\n\r" \
"for this operating system or the allocation was already freed.\n\r",pv);
else
DebugPrintf("AnalyzeInst found that pointer pv=0x%lX is readable and writable,\n\r" \
"so the allocation was made without being added to instance table\n\r" \
"(prior to PROCESS_ATTATCH), or the memory was already freed.\n\r",pv);
} // AnanlyzeInst
//=--------------------------------------------------------------------------=
// DumpInst:
// Dump instance information out to an assert window.
//=--------------------------------------------------------------------------=
VOID DumpInst(
CAddressNode * pn,
LPTSTR lpTypeofAlloc
)
{
char szOutput[255];
// Format output
wsprintf(szOutput, "%s: %s(%u) Address=0x%lx nAlloc=%ld Bytes=%ld\r\n", lpTypeofAlloc,
pn->m_szFile, pn->m_uLine, (ULONG)pn->m_pv, (ULONG)pn->m_cAlloc, (ULONG)pn->m_cb);
// Dump output to file if switch is turned on
if (FSWITCH(fOutputFile))
OutputToFile(szOutput);
else if (FSWITCH(fNoLeakAsserts))
DebugPrintf(szOutput);
// Else display output in assert
else
DisplayAssert(szOutput, "FAIL", _szThisFile, __LINE__);;
} // DumpInst
//=--------------------------------------------------------------------------=
// DumpInstTable:
// Memory leak has been detected so dump the entire instance table.
//=--------------------------------------------------------------------------=
LPSTR DumpInstTable(
LPSTR lpLeak
)
{
CAddressNode * pn = EnumReset();
DWORD sizeoflpLeak;
LPSTR lpTemp;
EnterCriticalSection(&g_csHeap);
DebugPrintf(lpLeak);
while (pn)
{
// Format the leak info
char szOut[250] = {NULL};
wsprintf(szOut, "\t%s(%u) Address=0x%lx nAlloc=%ld Bytes=%ld\r\n", pn->m_szFile,
pn->m_uLine, (ULONG)pn->m_pv, (ULONG)pn->m_cAlloc, (ULONG)pn->m_cb);
DebugPrintf(szOut);
// Convert lpLeak to a handle and get its current allocation size
sizeoflpLeak = GlobalSize(GlobalHandle(lpLeak));
// Reallocate memory to make space for more leak info
lpTemp = (LPSTR) (GlobalUnlock((HGLOBAL)GlobalHandle(lpLeak)),
GlobalLock(GlobalReAlloc((HGLOBAL)GlobalHandle(lpLeak),
sizeoflpLeak + lstrlen(szOut) + 1, GMEM_MOVEABLE)));
// Add new leak info to lpLeak
if(lpTemp)
{
lpLeak = lpTemp;
lstrcat(lpLeak, szOut);
}
// Get the next leak
pn = EnumNext();
}
LeaveCriticalSection(&g_csHeap);
return lpLeak;
} // DumpInstTable
//=--------------------------------------------------------------------------=
// DeleteInst:
// A heap allocation got free or was reallocated so remove the
// information from the instance table and check for memory trashing.
//=--------------------------------------------------------------------------=
VOID DeleteInst(
LPVOID pv
)
{
CAddressNode ** ppn, * pnDead;
ppn = &m_rInstTable[HashInst(pv)];
EnterCriticalSection(&g_csHeap);
// Find allocation instance
while (*ppn != NULL)
{
if ((*ppn)->m_pv == pv)
{
pnDead = *ppn;
*ppn = (*ppn)->m_pnNext;
// Correct memory debug info
--m_cCurNumAllocs;
m_cCurNumBytesAllocated -= pnDead->m_cb;
--m_OverallCurAlloc;
m_OverallCurBytes -= pnDead->m_cb;
// Remove instance
delete pnDead;
LeaveCriticalSection(&g_csHeap);
return;
} // if
ppn = &((*ppn)->m_pnNext);
} // while
FAIL("DeleteInst - memory instance not found");
} // DeleteInst
//=--------------------------------------------------------------------------=
// VerifyHeaderTrailer:
// Inspect allocation for header and trailer signature overwrites
//=--------------------------------------------------------------------------=
VOID VerifyHeaderTrailer(
CAddressNode * pn
)
{
LPTSTR lpTypeofAlloc = "Memory trashed ";
//Verify the header
if (memcmp((char *)pn->m_pv, g_szHeader, HEADERSIZE) != 0)
{
FAIL("Heap block header has been trashed.");
DebugPrintf("Heap block header trashed.");
DebugPrintf("\r\n");
DumpInst(pn, lpTypeofAlloc);
}
//Verify the trailer
if (memcmp((char *)pn->m_pv + pn->m_cb + HEADERSIZE, g_szTrailer, TRAILERSIZE) != 0)
{
FAIL("Heap block trailer has been trashed.");
DebugPrintf("Heap block trailer trashed.");
DebugPrintf("\r\n");
DumpInst(pn, lpTypeofAlloc);
}
return;
} // VerifyHeaderTrailer
//=--------------------------------------------------------------------------=
// HeapCheck:
// Inspect all of the allocations for header and trailer signature
// overwrites.
//=--------------------------------------------------------------------------=
VOID HeapCheck(VOID)
{
ASSERT(HeapValidate(g_hHeap, 0, NULL) != 0, "OS Says heap is corrupt");
CAddressNode * pn = EnumReset();
while (pn)
{
VerifyHeaderTrailer(pn);
pn = EnumNext();
}
return;
} // HeapCheck
//=-------------------------------------------------------------------------=
// For use with CAddresssNode
//=-------------------------------------------------------------------------=
#define MEM_cAddressNodes 128 // Nodes are block allocated
#define UNUSED(var) ((var) = (var)) // Used to avoid warnings
// The free list is common
CAddressNode * CAddressNode::m_pnFreeList = NULL;
//=--------------------------------------------------------------------------=
// CAddressNode::operator new:
// Returns a pointer to an allocated address node. If there are none on
// the free list then we allocate a block of address nodes, chain them
// together and add them to the free list. These nodes are never
// actually freed so it is ok to allocate them in blocks.
//=--------------------------------------------------------------------------=
void * CAddressNode::operator new(
size_t cb
)
{
CAddressNode * pn;
UNUSED(cb);
EnterCriticalSection(&g_csHeap); // needed for static m_pnFreeList
if (m_pnFreeList == NULL)
{
UINT cbSize = sizeof(CAddressNode) * MEM_cAddressNodes; //allocate a block
pn = (CAddressNode *) HeapAlloc(g_hHeap, 0, cbSize);
//chain all except the first node together. the first node
//is the one returned
for (int i = 1; i < MEM_cAddressNodes - 1; ++i)
pn[i].m_pnNext = &pn[i+1];
pn[MEM_cAddressNodes - 1].m_pnNext = NULL;
m_pnFreeList = &pn[1];
}
else
{
pn = m_pnFreeList;
m_pnFreeList = pn->m_pnNext;
}
LeaveCriticalSection(&g_csHeap);
return pn;
} // CAddressNode::operator new
//=--------------------------------------------------------------------------=
// CAddressNode::operator delete
// Return the address node to the free list. We never actually free
// the node since nodes are allocated in blocks.
//=--------------------------------------------------------------------------=
void CAddressNode::operator delete(
void * pv
)
{
EnterCriticalSection(&g_csHeap); // needed for static m_pnFreeList
CAddressNode * pn = (CAddressNode *) pv;
pn->m_pnNext = m_pnFreeList;
m_pnFreeList = pn;
LeaveCriticalSection(&g_csHeap);
} // CAddressNode::operator delete
//=--------------------------------------------------------------------------=
// EnumReset:
// Reset the enumerator and return the first node. NULL if empty.
//=--------------------------------------------------------------------------=
CAddressNode * EnumReset()
{
m_pnEnumNode = NULL;
for (m_uEnumIndex = 0; m_uEnumIndex < NUM_INST_TABLE_ENTRIES; ++m_uEnumIndex)
{
m_pnEnumNode = m_rInstTable[m_uEnumIndex];
if (m_pnEnumNode != NULL)
return m_pnEnumNode;
}
return NULL; //Instance table is empty
} // EnumReset
//=--------------------------------------------------------------------------=
// EnumNext:
// Return the next node in the enumeration. m_pnEnumNode points to the last
// node returned. It is NULL if no more left.
//=--------------------------------------------------------------------------=
CAddressNode * EnumNext()
{
ASSERT(m_uEnumIndex <= NUM_INST_TABLE_ENTRIES, "");
if (m_pnEnumNode == NULL)
return NULL; //end of enumeration
m_pnEnumNode = m_pnEnumNode->m_pnNext;
if (m_pnEnumNode == NULL)
{
//at end of this linked list so search for next list
m_uEnumIndex++;
while (m_uEnumIndex < NUM_INST_TABLE_ENTRIES && m_rInstTable[m_uEnumIndex] == NULL)
m_uEnumIndex++;
if (m_uEnumIndex < NUM_INST_TABLE_ENTRIES)
m_pnEnumNode = m_rInstTable[m_uEnumIndex];
}
return m_pnEnumNode;
} // EnumNext
//=---------------------------------------------------------------------------=
// OutputToFile:
// Dumps output to file "ctldebug.log"
//=---------------------------------------------------------------------------=
VOID OutputToFile
(
LPSTR szOutput
)
{
DWORD nPathSize;
DWORD nDirPathSize = 128;
TCHAR lpFilePath[128];
LPCTSTR lpFileName = "\\CtlDebug.log";
HANDLE hFile;
BOOL fWritten, fClosed = FALSE;
DWORD nBytesWritten;
// Create path to output file
nPathSize = GetCurrentDirectory(nDirPathSize, (LPTSTR)lpFilePath);
if (nPathSize == 0)
FAIL("Unable to get current directory...");
lstrcat(lpFilePath, lpFileName);
// Open and write to file
hFile = CreateFile((LPCTSTR)lpFilePath, GENERIC_WRITE, 0, NULL, OPEN_ALWAYS,
FILE_ATTRIBUTE_NORMAL, NULL);
DWORD SetPtr = SetFilePointer(hFile, NULL, NULL, FILE_END);
fWritten = WriteFile(hFile, (LPCVOID)szOutput, (DWORD)strlen(szOutput),
&nBytesWritten, NULL);
if (!fWritten)
FAIL("Unable to write output to file...");
// Close file handle
fClosed = CloseHandle(hFile);
if (!fClosed)
FAIL("Unable to close output file...");
} // OutputToFile
//
// End of Debug Memory Leak implemntation
//
//=--------------------------------------------------------------------------=
//=--------------------------------------------------------------------------=
// This routine outputs through DebugPrintf some information if the
// given hr fails to succeed. This is used by RRETURN to output where
// a function that returns a failing error code.
//=--------------------------------------------------------------------------=
HRESULT HrDebugTraceReturn
(
HRESULT hr,
char *pszFile,
int iLine
)
{
// We only output information if the hr fails.
if (FAILED(hr))
{
char szMessageError[128];
szMessageError[0] = '\0';
BOOL fMessage;
#if RBY_MAC
fMessage = FALSE; // FormatMessage not available on the mac
#else
// Get the message from the system
// CONSIDER, t-tshort 10/95: Getting some messages from us instead
// of the system?
fMessage = FormatMessage(FORMAT_MESSAGE_MAX_WIDTH_MASK
| FORMAT_MESSAGE_FROM_SYSTEM,
NULL, hr,
MAKELANGID(LANG_ENGLISH,SUBLANG_ENGLISH_US),
szMessageError, sizeof(szMessageError), NULL);
#endif
// Erps didn't get a message.
if(!fMessage)
lstrcpy(szMessageError,"Unknown Hresult");
// Output the information that we want.
DebugPrintf("FAILED RETURN: %s(%d) : 0x%08lx, %s\n",
pszFile, iLine, hr, szMessageError);
}
return hr;
}
//---------------------------------------------------------------------
// The following is a common output formatting buffer shared by several
// of the following debug routines.
//---------------------------------------------------------------------
char s_rgchOutput[2048]; // pretty big...
//=--------------------------------------------------------------------------=
// Emit debugging information
//=--------------------------------------------------------------------------=
void _DebugOutput(char* pszOutput)
{
OutputDebugString(pszOutput);
}
//=--------------------------------------------------------------------------=
// Emit a formatted debugging string to the location specified in
// the debug options dialog.
//=--------------------------------------------------------------------------=
void _DebugPrintf(char* pszFmt, ...)
{
va_list args;
va_start(args, pszFmt);
wvsprintf(s_rgchOutput, pszFmt, args);
va_end(args);
// sqwak if we overrun the formatting buffer!
ASSERT(strlen(s_rgchOutput) < sizeof(s_rgchOutput), "");
_DebugOutput(s_rgchOutput);
}
//=--------------------------------------------------------------------------=
// Conditional form of DebugPrintf
//=--------------------------------------------------------------------------=
void _DebugPrintIf(BOOL fPrint, char* pszFmt, ...)
{
va_list args;
if (!fPrint)
return;
va_start(args, pszFmt);
wvsprintf(s_rgchOutput, pszFmt, args);
va_end(args);
// sqwak if we overrun the formatting buffer!
ASSERT(strlen(s_rgchOutput) < sizeof(s_rgchOutput), "");
_DebugOutput(s_rgchOutput);
}
#endif // DEBUG