windows-nt/Source/XPSP1/NT/drivers/video/matrox/mga/disp/brush.c

602 lines
18 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
/******************************Module*Header*******************************\
* Module Name: Brush.c
*
* Handles all brush/pattern initialization and realization.
*
* Copyright (c) 1992-1996 Microsoft Corporation
\**************************************************************************/
#include "precomp.h"
/******************************Public*Routine******************************\
* VOID vRealizeDitherPattern
*
* Generates an 8x8 dither pattern, in our internal realization format, for
* the colour ulRGBToDither. Note that the high byte of ulRGBToDither does
* not need to be set to zero, because vComputeSubspaces ignores it.
\**************************************************************************/
VOID vRealizeDitherPattern(
PDEV* ppdev,
RBRUSH* prb,
ULONG ulRGBToDither)
{
ULONG ulNumVertices;
VERTEX_DATA vVertexData[4];
VERTEX_DATA* pvVertexData;
LONG i;
// Calculate what colour subspaces are involved in the dither:
pvVertexData = vComputeSubspaces(ulRGBToDither, vVertexData);
// Now that we have found the bounding vertices and the number of
// pixels to dither for each vertex, we can create the dither pattern
ulNumVertices = (ULONG)(pvVertexData - vVertexData);
// # of vertices with more than zero pixels in the dither
// Do the actual dithering:
vDitherColor(&prb->aulPattern[0], vVertexData, pvVertexData, ulNumVertices);
// Initialize the fields we need:
prb->fl = 0;
prb->pfnFillPat = ppdev->pfnFillPatNative;
for (i = 0; i < MAX_BOARDS; i++)
{
prb->apbe[i] = &ppdev->beUnrealizedBrush;
}
}
/******************************Public*Routine******************************\
* BOOL DrvRealizeBrush
*
* This function allows us to convert GDI brushes into an internal form
* we can use. It may be called directly by GDI at SelectObject time, or
* it may be called by GDI as a result of us calling BRUSHOBJ_pvGetRbrush
* to create a realized brush in a function like DrvBitBlt.
*
* Note that we have no way of determining what the current Rop or brush
* alignment are at this point.
*
\**************************************************************************/
BOOL DrvRealizeBrush(
BRUSHOBJ* pbo,
SURFOBJ* psoDst,
SURFOBJ* psoPattern,
SURFOBJ* psoMask,
XLATEOBJ* pxlo,
ULONG iHatch)
{
PDEV* ppdev;
ULONG iPatternFormat;
BYTE jSrc;
BYTE* pjSrc;
BYTE* pjDst;
LONG lSrcDelta;
LONG cj;
LONG i;
LONG j;
RBRUSH* prb;
ULONG* pulXlate;
SURFOBJ* psoPunt;
RECTL rclDst;
ppdev = (PDEV*) psoDst->dhpdev;
// We have a fast path for dithers when we set GCAPS_DITHERONREALIZE:
if (iHatch & RB_DITHERCOLOR)
{
if (!(ppdev->flStatus & STAT_BRUSH_CACHE))
goto ReturnFalse;
// Implementing DITHERONREALIZE increased our score on a certain
// unmentionable benchmark by 0.4 million 'megapixels'. Too bad
// this didn't work in the first version of NT.
prb = BRUSHOBJ_pvAllocRbrush(pbo,
sizeof(RBRUSH) + ppdev->ulBrushSize);
if (prb == NULL)
goto ReturnFalse;
DISPDBG((5, "Realizing dithered brush"));
vRealizeDitherPattern(ppdev, prb, iHatch);
goto DoneWith8x8;
}
// We only handle colour brushes if we have an off-screen brush cache
// available. If there isn't one, we can simply fail the realization,
// and eventually GDI will do the drawing for us (although a lot
// slower than we could have done it).
//
// We also only accelerate 8x8 patterns. Since Win3.1 and Chicago don't
// support patterns of any other size, it's a safe bet that 99.9%
// of the patterns we'll ever get will be 8x8:
if ((psoPattern->sizlBitmap.cx != 8) ||
(psoPattern->sizlBitmap.cy != 8) ||
((psoPattern->iBitmapFormat != BMF_1BPP) &&
!(ppdev->flStatus & STAT_BRUSH_CACHE)))
{
goto ReturnFalse;
}
prb = BRUSHOBJ_pvAllocRbrush(pbo,
sizeof(RBRUSH) + ppdev->ulBrushSize);
if (prb == NULL)
{
goto ReturnFalse;
}
// Initialize the fields we need:
prb->fl = 0;
prb->pfnFillPat = ppdev->pfnFillPatNative;
for (i = 0; i < MAX_BOARDS; i++)
{
prb->apbe[i] = &ppdev->beUnrealizedBrush;
}
lSrcDelta = psoPattern->lDelta;
pjSrc = (BYTE*) psoPattern->pvScan0;
pjDst = (BYTE*) &prb->aulPattern[0];
iPatternFormat = psoPattern->iBitmapFormat;
if ((ppdev->iBitmapFormat == iPatternFormat) &&
((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL)))
{
DISPDBG((5, "Realizing un-translated brush"));
// The pattern is the same colour depth as the screen, and
// there's no translation to be done:
cj = (8 * ppdev->cjPelSize); // Every pattern is 8 pels wide
for (i = 8; i != 0; i--)
{
RtlCopyMemory(pjDst, pjSrc, cj);
pjSrc += lSrcDelta;
pjDst += cj;
}
}
else if (iPatternFormat == BMF_1BPP)
{
if (ppdev->cjHwPel == 3)
{
// [!!!] - add true 24 bpp support
goto ReturnFalse;
}
DISPDBG((5, "Realizing 1bpp brush"));
// Since we allocated at least 64 bytes when we did our
// BRUSHOBJ_pvAllocBrush call, we've got plenty of space
// to store our monochrome brush.
//
// Since the Windows convention for monochrome bitmaps is that
// the MSB of a given byte represents the leftmost pixel, which
// is opposite that of the MGA, we must reverse the order of
// each byte before using it in SRC0 through SRC3. Moreover,
// each byte must be replicated so as to yield a 16x8 pattern.
for (i = 8; i != 0; i--)
{
jSrc = gajFlip[*pjSrc];
*(pjDst) = jSrc;
*(pjDst + 1) = jSrc;
pjDst += 2;
pjSrc += lSrcDelta;
}
pulXlate = pxlo->pulXlate;
prb->fl |= RBRUSH_2COLOR;
prb->ulColor[1] = pulXlate[1];
prb->ulColor[0] = pulXlate[0];
prb->pfnFillPat = vFillPat1bpp;
}
else if ((iPatternFormat == BMF_4BPP) && (ppdev->iBitmapFormat == BMF_8BPP))
{
DISPDBG((5, "Realizing 4bpp brush"));
// The screen is 8bpp and the pattern is 4bpp:
ASSERTDD((ppdev->iBitmapFormat == BMF_8BPP) &&
(iPatternFormat == BMF_4BPP),
"Messed up brush logic");
pulXlate = pxlo->pulXlate;
for (i = 8; i != 0; i--)
{
// Inner loop is repeated only 4 times because each loop
// handles 2 pixels:
for (j = 4; j != 0; j--)
{
*pjDst++ = (BYTE) pulXlate[*pjSrc >> 4];
*pjDst++ = (BYTE) pulXlate[*pjSrc & 15];
pjSrc++;
}
pjSrc += lSrcDelta - 4;
}
}
else
{
// We've got a brush whose format we haven't special cased. No
// problem, we can have GDI convert it to our device's format.
// We simply use a temporary surface object that was created with
// the same format as the display, and point it to our brush
// realization:
DISPDBG((5, "Realizing funky brush"));
psoPunt = ppdev->psoPunt;
psoPunt->pvScan0 = pjDst;
psoPunt->lDelta = 8 * ppdev->cjPelSize;
rclDst.left = 0;
rclDst.top = 0;
rclDst.right = 8;
rclDst.bottom = 8;
if (!EngCopyBits(psoPunt, psoPattern, NULL, pxlo,
&rclDst, (POINTL*) &rclDst))
{
goto ReturnFalse;
}
}
DoneWith8x8:
if ((ppdev->ulBoardId == MGA_STORM) &&
(ppdev->cjHwPel == 3) &&
(iPatternFormat != BMF_1BPP))
{
// The display is at 24bpp, we need to build a special 16x8 brush.
// We already have an 8x8 pattern.
cj = 8 * 3;
pjSrc = (BYTE*) &prb->aulPattern + (7 * cj);
pjDst = (BYTE*) &prb->aulPattern + (7 * 2 * cj);
for (i = 8; i != 0; i--)
{
RtlCopyMemory(pjDst, pjSrc, cj);
pjDst += cj;
RtlCopyMemory(pjDst, pjSrc, cj);
pjSrc -= cj;
pjDst -= (3 * cj);
}
}
return(TRUE);
ReturnFalse:
if (psoPattern != NULL)
{
DISPDBG((5, "Failed realization -- Type: %li Format: %li cx: %li cy: %li flags: %x",
psoPattern->iType, psoPattern->iBitmapFormat,
psoPattern->sizlBitmap.cx, psoPattern->sizlBitmap.cy, ppdev->flStatus));
}
return(FALSE);
}
/******************************Public*Routine******************************\
* BOOL bMilEnableBrushCache
*
* Allocates off-screen memory for storing the brush cache.
* Millenium (storm) specific.
\**************************************************************************/
BOOL bMilEnableBrushCache(
PDEV* ppdev)
{
OH* poh; // Points to off-screen chunk of memory
BRUSHENTRY* pbe; // Pointer to the brush-cache entry
ULONG ulLinearStart;
ULONG ulLinearEnd;
LONG cBrushCache;
ULONG ulTmp;
LONG x;
LONG y;
LONG i;
pbe = ppdev->pbe; // Points to where we'll put the first brush
// cache entry
poh = pohAllocate(ppdev,
NULL,
ppdev->cxMemory,
BRUSH_CACHE_HEIGHT,
FLOH_MAKE_PERMANENT);
if (poh == NULL)
{
DISPDBG((2, "Brush cache NOT enabled"));
goto ReturnTrue; // See note about why we can return TRUE...
}
ulLinearStart = (poh->y * ppdev->cxMemory) + ppdev->ulYDstOrg;
ulLinearEnd = (poh->cy * ppdev->cxMemory) + ulLinearStart;
// The brushes must be stored with a 256-pel alignment.
ulLinearStart = (ulLinearStart + 0xff) & ~0xff;
// In general, we'll be caching 8x8 brushes, so the number of cached
// brushes can be four times the number of 256-pel slices that can be
// stored from ulLinearStart to ulLinearEnd. In 24bpp, however, we'll
// be caching 16x8 brushes, so we can cache only half this number.
// Moreover, there are wrapping problems when a brush is stored in
// the last slot of a 256-pel slice, so it's best not to use it.
cBrushCache = (ulLinearEnd - ulLinearStart) >> 8;
if (ppdev->cjPelSize == 3)
{
cBrushCache *= 2; // 24bpp, Don't forget they come in pairs...
}
else
{
cBrushCache *= 3; // ... or more, but beware of some slots!
}
pbe = EngAllocMem(FL_ZERO_MEMORY, cBrushCache * sizeof(BRUSHENTRY), ALLOC_TAG);
if (pbe == NULL)
goto ReturnTrue; // See note about why we can return TRUE...
ppdev->cBrushCache = cBrushCache;
ppdev->pbe = pbe;
for (i = 0; i < cBrushCache; i++)
{
// If we hadn't allocated 'pbe' with FL_ZERO_MEMORY, we would have
// to initialize pbe->prbVerify, too...
// Set up linear coordinate for reading the pattern from offscreen
// memory.
pbe->ulLinear = ulLinearStart;
// Set up coordinates for writing the pattern into offscreen
// memory, assuming a HW_PATTERN_PITCH stride.
ulTmp = ulLinearStart - ppdev->ulYDstOrg;
x = ulTmp % ppdev->cxMemory;
y = ulTmp / ppdev->cxMemory;
pbe->ulLeft = x & 31;
pbe->ulYDst = (y * ppdev->cxMemory + x) >> 5;
pbe->pvScan0 = ppdev->pjScreen +
((ulTmp + ppdev->ulYDstOrg) * ppdev->cjPelSize);
// Prepare for the next brush, accounting for the interleave.
if (ppdev->cjHwPel == 3)
{
// At 24bpp, every second cached brush starts on a 256+16
// boundary.
if ((i & 1) == 0)
{
ulLinearStart += 16;
}
else
{
ulLinearStart += (256 - 16);
}
}
else
{
// In general, we have three brushes in every 256-pel slice.
if ((i % 3) == 2)
{
ulLinearStart += (256 - 16);
}
else
{
ulLinearStart += 8;
}
}
pbe++;
}
// When we create a new brush, we always point it to our
// 'beUnrealizedBrush' entry, which will always have 'prbVerify'
// set to NULL. In this way, we can remove an 'if' from our
// check to see if we have to realize the brush in 'vFillPat' --
// we only have to compare to 'prbVerify'.
ppdev->beUnrealizedBrush.prbVerify = NULL;
// Note that we don't have to remember 'poh' for when we have
// to disable brushes -- the off-screen heap frees any
// off-screen heap allocations automatically.
// We successfully allocated the brush cache, so let's turn
// on the switch showing that we can use it.
ppdev->flStatus |= STAT_BRUSH_CACHE;
ReturnTrue:
// If we couldn't allocate a brush cache, it's not a catastrophic
// failure; patterns will still work, although they'll be a bit
// slower since they'll go through GDI. As a result we don't
// actually have to fail this call:
DISPDBG((5, "Passed bMilEnableBrushCache"));
return(TRUE);
}
/******************************Public*Routine******************************\
* BOOL bEnableBrushCache
*
* Allocates off-screen memory for storing the brush cache.
\**************************************************************************/
BOOL bEnableBrushCache(
PDEV* ppdev)
{
OH* poh; // Points to off-screen chunk of memory
BRUSHENTRY* pbe; // Pointer to the brush-cache entry
ULONG ulLinearStart;
ULONG ulLinearEnd;
LONG cBrushCache;
ULONG ulTmp;
LONG x;
LONG y;
LONG i;
if (ppdev->ulBoardId == MGA_STORM)
{
return(bMilEnableBrushCache(ppdev));
}
pbe = ppdev->pbe; // Points to where we'll put the first brush
// cache entry
poh = pohAllocate(ppdev,
NULL,
ppdev->cxMemory,
BRUSH_CACHE_HEIGHT,
FLOH_MAKE_PERMANENT);
if (poh == NULL)
goto ReturnTrue; // See note about why we can return TRUE...
ulLinearStart = (poh->y * ppdev->cxMemory) + ppdev->ulYDstOrg;
ulLinearEnd = (BRUSH_CACHE_HEIGHT * ppdev->cxMemory) + ulLinearStart;
// An MGA brush is always cached with a 256-pel alignment. The brush
// can be 16x16, or two interleaved 16x8 brushes. We use the second
// option, so that every second brush starts on a 256+16 alignment.
//
// So the brushes are stored in pairs, with a 256-pel alignment:
ulLinearStart = (ulLinearStart + 0xff) & ~0xff;
cBrushCache = (ulLinearEnd - ulLinearStart) >> 8;
cBrushCache *= 2; // Don't forget they're pairs
pbe = EngAllocMem(FL_ZERO_MEMORY,
cBrushCache * sizeof(BRUSHENTRY), ALLOC_TAG);
if (pbe == NULL)
goto ReturnTrue; // See note about why we can return TRUE...
ppdev->cBrushCache = cBrushCache;
ppdev->pbe = pbe;
do {
// If we hadn't allocated 'pbe' with FL_ZERO_MEMORY, we would have
// to initialize pbe->prbVerify, too...
// Set up linear coordinate for reading the pattern from offscreen
// memory:
pbe->ulLinear = ulLinearStart;
// Set up coordinates for writing the pattern into offscreen
// memory, assuming a '32' stride:
ulTmp = ulLinearStart - ppdev->ulYDstOrg;
x = ulTmp % ppdev->cxMemory;
y = ulTmp / ppdev->cxMemory;
pbe->ulLeft = x & 31;
pbe->ulYDst = (y * ppdev->cxMemory + x) >> 5;
// Account for the interleave, where every second cached brush
// starts on a 256+16 boundary:
if ((cBrushCache & 1) == 0)
{
ulLinearStart += 16;
}
else
{
ulLinearStart += (256 - 16);
}
} while (pbe++, --cBrushCache != 0);
// When we create a new brush, we always point it to our
// 'beUnrealizedBrush' entry, which will always have 'prbVerify'
// set to NULL. In this way, we can remove an 'if' from our
// check to see if we have to realize the brush in 'vFillPat' --
// we only have to compare to 'prbVerify':
ppdev->beUnrealizedBrush.prbVerify = NULL;
// Note that we don't have to remember 'poh' for when we have
// to disable brushes -- the off-screen heap frees any
// off-screen heap allocations automatically.
// We successfully allocated the brush cache, so let's turn
// on the switch showing that we can use it:
ppdev->flStatus |= STAT_BRUSH_CACHE;
ReturnTrue:
// If we couldn't allocate a brush cache, it's not a catastrophic
// failure; patterns will still work, although they'll be a bit
// slower since they'll go through GDI. As a result we don't
// actually have to fail this call:
DISPDBG((5, "Passed bEnableBrushCache"));
return(TRUE);
}
/******************************Public*Routine******************************\
* VOID vDisableBrushCache
*
* Cleans up anything done in bEnableBrushCache.
\**************************************************************************/
VOID vDisableBrushCache(PDEV* ppdev)
{
EngFreeMem(ppdev->pbe);
}
/******************************Public*Routine******************************\
* VOID vAssertModeBrushCache
*
* Resets the brush cache when we exit out of full-screen.
\**************************************************************************/
VOID vAssertModeBrushCache(
PDEV* ppdev,
BOOL bEnable)
{
BRUSHENTRY* pbe;
LONG i;
if (bEnable)
{
// Invalidate the brush cache:
pbe = ppdev->pbe;
for (i = ppdev->cBrushCache; i != 0; i--)
{
pbe->prbVerify = NULL;
pbe++;
}
}
}