windows-nt/Source/XPSP1/NT/drivers/wdm/dvd/class/codguts.c

7439 lines
194 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
/* ++
*
* Copyright (c) 1996 Microsoft Corporation
*
* Module Name:
*
* codguts.c
*
* Abstract:
*
* This is the WDM streaming class driver. This module contains code related
* to internal processing.
*
* Author:
*
* billpa
*
* Environment:
*
* Kernel mode only
*
*
* Revision History:
*
* -- */
#include "codcls.h"
#include <stdlib.h>
#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGE, SCBuildRequestPacket)
#pragma alloc_text(PAGE, SCProcessDmaDataBuffers)
#pragma alloc_text(PAGE, SCProcessPioDataBuffers)
#pragma alloc_text(PAGE, SCOpenMinidriverInstance)
#pragma alloc_text(PAGE, SCMinidriverDevicePropertyHandler)
#pragma alloc_text(PAGE, SCMinidriverStreamPropertyHandler)
#pragma alloc_text(PAGE, SCUpdateMinidriverProperties)
#pragma alloc_text(PAGE, SCProcessCompletedPropertyRequest)
#pragma alloc_text(PAGE, SCLogError)
#pragma alloc_text(PAGE, SCLogErrorWithString)
#pragma alloc_text(PAGE, SCReferenceDriver)
#pragma alloc_text(PAGE, SCDereferenceDriver)
#pragma alloc_text(PAGE, SCReadRegistryValues)
#pragma alloc_text(PAGE, SCGetRegistryValue)
#pragma alloc_text(PAGE, SCSubmitRequest)
#pragma alloc_text(PAGE, SCProcessDataTransfer)
#pragma alloc_text(PAGE, SCShowIoPending)
#pragma alloc_text(PAGE, SCCheckPoweredUp)
#pragma alloc_text(PAGE, SCCheckPowerDown)
#pragma alloc_text(PAGE, SCCallNextDriver)
#pragma alloc_text(PAGE, SCSendUnknownCommand)
#pragma alloc_text(PAGE, SCMapMemoryAddress)
#pragma alloc_text(PAGE, SCUpdatePersistedProperties)
#pragma alloc_text(PAGE, SCProcessCompletedPropertyRequest)
#pragma alloc_text(PAGE, SCUpdateMinidriverEvents)
#pragma alloc_text(PAGE, SCQueryCapabilities)
#pragma alloc_text(PAGE, SCRescanStreams)
#pragma alloc_text(PAGE, SCCopyMinidriverProperties)
#pragma alloc_text(PAGE, SCCopyMinidriverEvents)
#endif
#ifdef ENABLE_KS_METHODS
#pragma alloc_text(PAGE, SCCopyMinidriverMethods)
#endif
#ifdef ALLOC_DATA_PRAGMA
#pragma const_seg("PAGECONST")
#endif
extern KSDISPATCH_TABLE FilterDispatchTable;
//
// registry string indicating that the minidriver should be paged out when
// unopened
//
static const WCHAR PageOutWhenUnopenedString[] = L"PageOutWhenUnopened";
//
// registry string indicating that the minidriver should be paged out when
// idle
//
static const WCHAR PageOutWhenIdleString[] = L"PageOutWhenIdle";
//
// registry string indicating that the device should be powered down when
// unopened
//
static const WCHAR PowerDownWhenUnopenedString[] = L"PowerDownWhenUnopened";
//
// registry string indicating that the device should not be suspended when
// pins are in run state
//
static const WCHAR DontSuspendIfStreamsAreRunning[] = L"DontSuspendIfStreamsAreRunning";
//
// This driver uses SWEnum to load, which means it is a kernel mode
// streaming driver that has no hardware associated with it. We need to
// AddRef/DeRef this driver special.
//
static const WCHAR DriverUsesSWEnumToLoad[] = L"DriverUsesSWEnumToLoad";
//
//
//
static const WCHAR OkToHibernate[] = L"OkToHibernate";
//
// array of registry settings to be read when the device is initialized
//
static const STREAM_REGISTRY_ENTRY RegistrySettings[] = {
{
(PWCHAR) PageOutWhenUnopenedString,
sizeof(PageOutWhenUnopenedString),
DEVICE_REG_FL_PAGE_CLOSED
},
{
(PWCHAR) PageOutWhenIdleString,
sizeof(PageOutWhenIdleString),
DEVICE_REG_FL_PAGE_IDLE
},
{
(PWCHAR) PowerDownWhenUnopenedString,
sizeof(PowerDownWhenUnopenedString),
DEVICE_REG_FL_POWER_DOWN_CLOSED
},
{
(PWCHAR) DontSuspendIfStreamsAreRunning,
sizeof(DontSuspendIfStreamsAreRunning),
DEVICE_REG_FL_NO_SUSPEND_IF_RUNNING
},
{
(PWCHAR) DriverUsesSWEnumToLoad,
sizeof(DriverUsesSWEnumToLoad),
DRIVER_USES_SWENUM_TO_LOAD
},
{
(PWCHAR) OkToHibernate,
sizeof(OkToHibernate),
DEVICE_REG_FL_OK_TO_HIBERNATE
}
};
//
// this structure indicates the handlers for CreateFile on Streams
//
static const WCHAR PinTypeName[] = KSSTRING_Pin;
static const KSOBJECT_CREATE_ITEM CreateHandlers[] = {
DEFINE_KSCREATE_ITEM(StreamDispatchCreate,
PinTypeName,
0)
};
#ifdef ALLOC_DATA_PRAGMA
#pragma const_seg()
#endif
//
// Routines start
//
NTSTATUS
SCDequeueAndStartStreamDataRequest(
IN PSTREAM_OBJECT StreamObject
)
/*++
Routine Description:
Start the queued data IRP for the stream.
THE SPINLOCK MUST BE TAKEN ON THIS CALL AND A DATA IRP MUST BE ON THE
QUEUE!
Arguments:
StreamObject - address of stream info structure.
Return Value:
NTSTATUS returned
--*/
{
PIRP Irp;
PSTREAM_REQUEST_BLOCK Request;
PLIST_ENTRY Entry;
BOOLEAN Status;
PDEVICE_EXTENSION DeviceExtension = StreamObject->DeviceExtension;
ASSERT(KeGetCurrentIrql() == DISPATCH_LEVEL);
Entry = RemoveTailList(&StreamObject->DataPendingQueue);
Irp = CONTAINING_RECORD(Entry,
IRP,
Tail.Overlay.ListEntry);
ASSERT(Irp);
// ASSERT((IoGetCurrentIrpStackLocation(Irp)->MajorFunction ==
// IOCTL_KS_READ_STREAM) ||
// (IoGetCurrentIrpStackLocation(Irp)->MajorFunction ==
// IOCTL_KS_WRITE_STREAM));
ASSERT((ULONG_PTR) Irp->Tail.Overlay.DriverContext[0] > 0x40000000);
DebugPrint((DebugLevelVerbose, "'SCStartStreamDataReq: Irp = %x, S# = %x\n",
Irp, StreamObject->HwStreamObject.StreamNumber));
//
// clear the ready flag as we are going to send one down.
//
ASSERT(StreamObject->ReadyForNextDataReq);
StreamObject->ReadyForNextDataReq = FALSE;
//
// set the cancel routine to outstanding
//
IoSetCancelRoutine(Irp, StreamClassCancelOutstandingIrp);
//
// release the spinlock.
//
KeReleaseSpinLockFromDpcLevel(&DeviceExtension->SpinLock);
//
// get the request packet from the IRP
//
Request = Irp->Tail.Overlay.DriverContext[0];
//
// build scatter/gather list if necessary
//
if (StreamObject->HwStreamObject.Dma) {
//
// allocate the adapter channel. call cannot fail as the only
// time it would is when there aren't enough map registers, and
// we've already checked for that condition.
//
Status = SCSetUpForDMA(DeviceExtension->DeviceObject,
Request);
ASSERT(Status);
//
// DMA adapter allocation requires a
// callback, so just exit
//
return (STATUS_PENDING);
} // if DMA
//
// start the request for the PIO case.
//
SCStartMinidriverRequest(StreamObject,
Request,
(PVOID)
StreamObject->HwStreamObject.ReceiveDataPacket);
ASSERT(KeGetCurrentIrql() == DISPATCH_LEVEL);
return (STATUS_PENDING);
}
NTSTATUS
SCDequeueAndStartStreamControlRequest(
IN PSTREAM_OBJECT StreamObject
)
/*++
Routine Description:
Start the queued control IRP for the stream.
THE SPINLOCK MUST BE TAKEN ON THIS CALL AND A DATA IRP MUST BE ON THE
QUEUE!
Arguments:
StreamObject - address of stream info structure.
Return Value:
NTSTATUS returned
--*/
{
PIRP Irp;
PSTREAM_REQUEST_BLOCK Request;
PLIST_ENTRY Entry;
ASSERT(KeGetCurrentIrql() == DISPATCH_LEVEL);
Entry = RemoveTailList(&StreamObject->ControlPendingQueue);
Irp = CONTAINING_RECORD(Entry,
IRP,
Tail.Overlay.ListEntry);
ASSERT(Irp);
DebugPrint((DebugLevelTrace, "'SCStartStreamControlReq: Irp = %x, S# = %x\n",
Irp, StreamObject->HwStreamObject.StreamNumber));
//
// clear the ready flag as we are going
// to send one down.
//
ASSERT(StreamObject->ReadyForNextControlReq);
StreamObject->ReadyForNextControlReq = FALSE;
//
// release the spinlock.
//
KeReleaseSpinLockFromDpcLevel(&StreamObject->DeviceExtension->SpinLock);
//
// get the request packet from the IRP
//
Request = Irp->Tail.Overlay.DriverContext[0];
//
// start the request.
//
SCStartMinidriverRequest(StreamObject,
Request,
(PVOID)
StreamObject->HwStreamObject.ReceiveControlPacket);
ASSERT(KeGetCurrentIrql() == DISPATCH_LEVEL);
return (STATUS_PENDING);
}
NTSTATUS
SCDequeueAndStartDeviceRequest(
IN PDEVICE_EXTENSION DeviceExtension
)
/*++
Routine Description:
Start the queued device IRP.
THE DEV SPINLOCK MUST BE TAKEN ON THIS CALL AND AN IRP MUST BE ON THE QUEUE!
Arguments:
DeviceExtension - address of device extension.
Return Value:
NTSTATUS
--*/
{
PIRP Irp;
PLIST_ENTRY Entry;
PSTREAM_REQUEST_BLOCK Request;
Entry = RemoveTailList(&DeviceExtension->PendingQueue);
Irp = CONTAINING_RECORD(Entry,
IRP,
Tail.Overlay.ListEntry);
ASSERT(KeGetCurrentIrql() == DISPATCH_LEVEL);
ASSERT(Irp);
//
// clear the ready flag as we are going
// to send one down.
//
ASSERT(DeviceExtension->ReadyForNextReq);
DeviceExtension->ReadyForNextReq = FALSE;
//
// get the request packet from the IRP
//
Request = Irp->Tail.Overlay.DriverContext[0];
ASSERT(Request);
//
// show that the request is active.
//
Request->Flags |= SRB_FLAGS_IS_ACTIVE;
//
// place the request on the outstanding
// queue
//
InsertHeadList(
&DeviceExtension->OutstandingQueue,
&Request->SRBListEntry);
//
// set the cancel routine to outstanding
//
IoSetCancelRoutine(Irp, StreamClassCancelOutstandingIrp);
//
// send down the request to the
// minidriver.
//
DebugPrint((DebugLevelTrace, "'SCDequeueStartDevice: starting Irp %x, SRB = %x, Command = %x\n",
Request->HwSRB.Irp, Request, Request->HwSRB.Command));
DeviceExtension->SynchronizeExecution(
DeviceExtension->InterruptObject,
(PVOID) DeviceExtension->MinidriverData->HwInitData.HwReceivePacket,
&Request->HwSRB);
//
// release the spinlock.
//
KeReleaseSpinLockFromDpcLevel(&DeviceExtension->SpinLock);
return (STATUS_PENDING);
}
PSTREAM_REQUEST_BLOCK
SCBuildRequestPacket(
IN PDEVICE_EXTENSION DeviceExtension,
IN PIRP Irp,
IN ULONG AdditionalSize1, // scatter gather size
IN ULONG AdditionalSize2 // saved ptr array size
)
/*++
Routine Description:
Routine builds an SRB and fills in generic fields
Arguments:
DeviceExtension - address of device extension.
Irp - Address of I/O request packet.
AdditionalSize1 - additional size needed for scatter/gather, etc.
AdditionalSize2 - additional size needed for the Saved pointer array.
Return Value:
Address of the streaming request packet.
--*/
{
ULONG BlockSize;
PSTREAM_REQUEST_BLOCK Request;
PAGED_CODE();
//
// compute the size of the block needed.
//
BlockSize = sizeof(STREAM_REQUEST_BLOCK) +
DeviceExtension->
MinidriverData->HwInitData.PerRequestExtensionSize +
AdditionalSize1+
AdditionalSize2;
Request = ExAllocatePool(NonPagedPool, BlockSize);
if (Request == NULL) {
DebugPrint((DebugLevelError,
"SCBuildRequestPacket: No pool for packet"));
ASSERT(0);
return (NULL);
}
//
// alloc MDL for the request.
//
// GUBGUB This a marginal performace enhancment chance.
// - should find a way to avoid allocating both an MDL and
// SRB per request. Maybe have a list of MDL's around and allocate only
// if we run out. Forrest won't like this.
//
//
Request->Mdl = IoAllocateMdl(Request,
BlockSize,
FALSE,
FALSE,
NULL
);
if (Request->Mdl == NULL) {
ExFreePool(Request);
DebugPrint((DebugLevelError,
"SCBuildRequestPacket: can't get MDL"));
return (NULL);
}
MmBuildMdlForNonPagedPool(Request->Mdl);
//
// fill in the various SRB fields
// generically
//
Request->Length = BlockSize;
Request->HwSRB.SizeOfThisPacket = sizeof(HW_STREAM_REQUEST_BLOCK);
Request->HwSRB.Status = STATUS_PENDING;
Request->HwSRB.StreamObject = NULL;
Request->HwSRB.HwInstanceExtension = NULL;
Request->HwSRB.NextSRB = (PHW_STREAM_REQUEST_BLOCK) NULL;
Request->HwSRB.SRBExtension = Request + 1;
Request->HwSRB.Irp = Irp;
Request->Flags = 0;
Request->MapRegisterBase = 0;
Request->HwSRB.Flags = 0;
Request->HwSRB.TimeoutCounter = 15;
Request->HwSRB.TimeoutOriginal = 15;
Request->HwSRB.ScatterGatherBuffer =
(PKSSCATTER_GATHER) ((ULONG_PTR) Request->HwSRB.SRBExtension +
(ULONG_PTR) DeviceExtension->
MinidriverData->HwInitData.PerRequestExtensionSize);
Request->pMemPtrArray = (PVOID) (((ULONG_PTR) Request->HwSRB.SRBExtension +
(ULONG_PTR) DeviceExtension->
MinidriverData->HwInitData.PerRequestExtensionSize) +
AdditionalSize1);
//
// point the IRP workspace to the request
// packet
//
Irp->Tail.Overlay.DriverContext[0] = Request;
return (Request);
} // end SCBuildRequestPacket()
VOID
SCProcessDmaDataBuffers(
IN PKSSTREAM_HEADER FirstHeader,
IN ULONG NumberOfHeaders,
IN PSTREAM_OBJECT StreamObject,
IN PMDL FirstMdl,
OUT PULONG NumberOfPages,
IN ULONG StreamHeaderSize,
IN BOOLEAN Write
)
/*++
Routine Description:
Processes each data buffer for PIO &| DMA case
Arguments:
FirstHeader - Address of the 1st s/g packet
StreamObject- pointer to stream object
NumberOfPages - number of pages in the request
Return Value:
--*/
{
PKSSTREAM_HEADER CurrentHeader;
PMDL CurrentMdl;
ULONG i;
ULONG DataBytes;
PAGED_CODE();
//
// loop through each scatter/gather elements
//
CurrentHeader = FirstHeader;
CurrentMdl = FirstMdl;
for (i = 0; i < NumberOfHeaders; i++) {
//
// pick up the correct data buffer, based on the xfer direction
//
if (Write) {
DataBytes = CurrentHeader->DataUsed;
} else { // if write
DataBytes = CurrentHeader->FrameExtent;
} // if write
//
// if this header has data, process it.
//
if (DataBytes) {
#if DBG
if (CurrentHeader->OptionsFlags & KSSTREAM_HEADER_OPTIONSF_TIMEVALID) {
DebugPrint((DebugLevelVerbose, "'SCProcessData: time = %x\n",
CurrentHeader->PresentationTime.Time));
}
#endif
//
// add # pages to total if DMA
//
*NumberOfPages += ADDRESS_AND_SIZE_TO_SPAN_PAGES(
MmGetMdlVirtualAddress(CurrentMdl),
DataBytes);
CurrentMdl = CurrentMdl->Next;
}
//
// offset to the next buffer
//
CurrentHeader = ((PKSSTREAM_HEADER) ((PBYTE) CurrentHeader +
StreamHeaderSize));
} // for # elements
} // end SCProcessDmaDataBuffers()
//
// mmGetSystemAddressForMdl() is defined as a macro in wdm.h which
// calls mmMapLockedPages() which is treated as an evil by verifier.
// mmMapLockedPages is reimplemented by mm via
// mmMapLockedPagesSpecifyCache(MDL,Mode,mmCaches,NULL,TRUE,HighPriority)
// where TRUE is to indicate a bug check, should the call fails.
// I don't need the bug check, therefore, I specify FALSE below.
//
#ifdef WIN9X_STREAM
#define SCGetSystemAddressForMdl(MDL) MmGetSystemAddressForMdl(MDL)
#else
#define SCGetSystemAddressForMdl(MDL) \
(((MDL)->MdlFlags & (MDL_MAPPED_TO_SYSTEM_VA | \
MDL_SOURCE_IS_NONPAGED_POOL)) ? \
((MDL)->MappedSystemVa) : \
(MmMapLockedPagesSpecifyCache((MDL), \
KernelMode, \
MmCached, \
NULL, \
FALSE, \
HighPagePriority)))
#endif
BOOLEAN
SCProcessPioDataBuffers(
IN PKSSTREAM_HEADER FirstHeader,
IN ULONG NumberOfHeaders,
IN PSTREAM_OBJECT StreamObject,
IN PMDL FirstMdl,
IN ULONG StreamHeaderSize,
IN PVOID *pDataPtrArray,
IN BOOLEAN Write
)
/*++
Routine Description:
Processes each data buffer for PIO &| DMA case
Arguments:
FirstHeader - Address of the 1st s/g packet
StreamObject- pointer to stream object
NumberOfPages - number of pages in the request
Return Value:
--*/
{
PKSSTREAM_HEADER CurrentHeader;
PMDL CurrentMdl;
ULONG i;
ULONG DataBytes;
BOOLEAN ret = FALSE;
PAGED_CODE();
//
// loop through each scatter/gather elements
//
CurrentHeader = FirstHeader;
CurrentMdl = FirstMdl;
for (i = 0; i < NumberOfHeaders; i++) {
//
// pick up the correct data buffer, based on the xfer direction
//
if (Write) {
DataBytes = CurrentHeader->DataUsed;
} else { // if write
DataBytes = CurrentHeader->FrameExtent;
} // if write
//
// if this header has data, process it.
//
if (DataBytes) {
//
// fill in the system virtual pointer
// to the buffer if mapping is
// needed
//
#if (DBG)
if ( 0 != ( CurrentMdl->MdlFlags & (MDL_MAPPED_TO_SYSTEM_VA |
MDL_SOURCE_IS_NONPAGED_POOL))) {
ASSERT(CurrentHeader->Data == (PVOID) ((ULONG_PTR) CurrentMdl->StartVa +
CurrentMdl->ByteOffset));
}
#endif
DebugPrint((DebugLevelVerbose, "Saving: Index:%x, Ptr:%x\n",
i, CurrentHeader->Data));
ret = TRUE;
pDataPtrArray[i] = CurrentHeader->Data;
CurrentHeader->Data = SCGetSystemAddressForMdl(CurrentMdl);
DebugPrint((DebugLevelVerbose, "'SCPio: buff = %x, length = %x\n",
CurrentHeader->Data, DataBytes));
CurrentMdl = CurrentMdl->Next;
}
//
// offset to the next buffer
//
CurrentHeader = ((PKSSTREAM_HEADER) ((PBYTE) CurrentHeader +
StreamHeaderSize));
} // for # elements
return(ret);
} // end SCProcessPioDataBuffers()
BOOLEAN
SCSetUpForDMA(
IN PDEVICE_OBJECT DeviceObject,
IN PSTREAM_REQUEST_BLOCK Request
)
/*++
Routine Description:
process read/write DMA request. allocate adapter channel.
Arguments:
DeviceObject - device object for the device
Request - address of Codec Request Block
Return Value:
returns TRUE if channel is allocated
--*/
{
NTSTATUS status;
//
// Allocate the adapter channel with sufficient map registers
// for the transfer.
//
status = IoAllocateAdapterChannel(
((PDEVICE_EXTENSION) (DeviceObject->DeviceExtension))->DmaAdapterObject,
DeviceObject,
Request->HwSRB.NumberOfPhysicalPages + 1, // one more for the SRB
// extension
StreamClassDmaCallback,
Request);
if (!NT_SUCCESS(status)) {
return FALSE;
}
return TRUE;
}
IO_ALLOCATION_ACTION
StreamClassDmaCallback(
IN PDEVICE_OBJECT DeviceObject,
IN PIRP InputIrp,
IN PVOID MapRegisterBase,
IN PVOID Context
)
/*++
Routine Description:
continues to process read/write request after DMA adapter is allocated
builds scatter/gather list from logical buffer list.
Arguments:
DeviceObject - dev object for adapter
InputIrp - bogus
MapRegisterBase - base address of map registers
Context - address of Codec Request Block
Return Value:
returns the appropriate I/O allocation action.
--*/
{
PSTREAM_REQUEST_BLOCK Request = Context;
PKSSCATTER_GATHER scatterList;
BOOLEAN writeToDevice;
PVOID dataVirtualAddress;
ULONG totalLength,
NumberOfBuffers;
PIRP Irp = Request->HwSRB.Irp;
PSTREAM_OBJECT StreamObject = CONTAINING_RECORD(
Request->HwSRB.StreamObject,
STREAM_OBJECT,
HwStreamObject
);
PMDL CurrentMdl;
ULONG NumberOfElements = 0;
//
// Save the MapRegisterBase for later use
// to deallocate the map
// registers.
//
Request->MapRegisterBase = MapRegisterBase;
//
// determine whether this is a write request
//
writeToDevice = Request->HwSRB.Command == SRB_WRITE_DATA ? TRUE : FALSE;
scatterList = Request->HwSRB.ScatterGatherBuffer;
NumberOfBuffers = Request->HwSRB.NumberOfBuffers;
ASSERT(Irp);
CurrentMdl = Irp->MdlAddress;
while (CurrentMdl) {
//
// Determine the virtual address of the buffer
//
dataVirtualAddress = (PSCHAR) MmGetMdlVirtualAddress(CurrentMdl);
//
// flush the buffers since we are doing DMA.
//
KeFlushIoBuffers(CurrentMdl,
(BOOLEAN) (Request->HwSRB.Command == SRB_WRITE_DATA ? TRUE : FALSE),
TRUE);
//
// Build the scatter/gather list by looping through the buffers
// calling I/O map transfer.
//
totalLength = 0;
while (totalLength < CurrentMdl->ByteCount) {
NumberOfElements++;
//
// Request that the rest of the transfer be mapped.
//
scatterList->Length = CurrentMdl->ByteCount - totalLength;
//
// Since we are a master call I/O map transfer with a NULL
// adapter.
//
scatterList->PhysicalAddress = IoMapTransfer(((PDEVICE_EXTENSION) (DeviceObject->DeviceExtension))
->DmaAdapterObject,
CurrentMdl,
MapRegisterBase,
(PSCHAR) dataVirtualAddress
+ totalLength,
&scatterList->Length,
writeToDevice);
DebugPrint((DebugLevelVerbose, "'SCDma: seg = %x'%x, length = %x\n",
scatterList->PhysicalAddress.HighPart,
scatterList->PhysicalAddress.LowPart,
scatterList->Length));
totalLength += scatterList->Length;
scatterList++;
}
CurrentMdl = CurrentMdl->Next;
} // while CurrentMdl
Request->HwSRB.NumberOfScatterGatherElements = NumberOfElements;
//
// now map the transfer for the SRB in case the minidriver needs the
// physical address of the extension.
//
// NOTE: This function changes the length field in the SRB, which
// makes it invalid. It is not used elsewhere, however.
//
// We must flush the buffers appropriately as the SRB extension
// may be DMA'ed both from and to. According to JHavens, we want to
// tell IOMapXfer and KeFlushIoBuffers that this is a write, and upon
// completion tell IoFlushAdapterBuffers that this is a read.
//
// Need to investigate if doing these extra calls add more overhead than
// maintaining a queue of SRB's & extensions. However, on x86
// platforms the KeFlush call gets compiled out and
// on PCI systems the IoFlush call doesn't get made, so there is no
// overhead on these system except the map xfer call.
//
//
// flush the SRB buffer since we are doing DMA.
//
KeFlushIoBuffers(Request->Mdl,
FALSE,
TRUE);
//
// get the physical address of the SRB
//
Request->PhysicalAddress = IoMapTransfer(((PDEVICE_EXTENSION) (DeviceObject->DeviceExtension))
->DmaAdapterObject,
Request->Mdl,
MapRegisterBase,
(PSCHAR) MmGetMdlVirtualAddress(
Request->Mdl),
&Request->Length,
TRUE);
//
// if we are async, signal the event which will cause the request to be
// called down on the original thread; otherwise, send the request down
// now at dispatch level.
//
if (((PDEVICE_EXTENSION) DeviceObject->DeviceExtension)->NoSync) {
KeSetEvent(&Request->DmaEvent, IO_NO_INCREMENT, FALSE);
} else {
//
// send the request to the minidriver
//
SCStartMinidriverRequest(StreamObject,
Request,
(PVOID)
StreamObject->HwStreamObject.ReceiveDataPacket);
} // if nosync
//
// keep the map registers but release the I/O adapter channel
//
return (DeallocateObjectKeepRegisters);
}
VOID
SCStartMinidriverRequest(
IN PSTREAM_OBJECT StreamObject,
IN PSTREAM_REQUEST_BLOCK Request,
IN PVOID EntryPoint
)
/*++
Routine Description:
adds request to outstanding queue and starts the minidriver.
Arguments:
StreamObject - Address stream info struct
Request - Address of streaming data packet
EntryPoint - Minidriver routine to be called
Return Value:
--*/
{
PIRP Irp = Request->HwSRB.Irp;
PDEVICE_EXTENSION DeviceExtension =
StreamObject->DeviceExtension;
//
// show that the request is active.
//
Request->Flags |= SRB_FLAGS_IS_ACTIVE;
//
// place the request on the outstanding queue
//
KeAcquireSpinLockAtDpcLevel(&DeviceExtension->SpinLock);
InsertHeadList(
&DeviceExtension->OutstandingQueue,
&Request->SRBListEntry);
//
// set the cancel routine to outstanding
//
IoSetCancelRoutine(Irp, StreamClassCancelOutstandingIrp);
//
// send down the request to the minidriver. Protect the call with the
// device spinlock to synchronize timers, etc.
//
#if DBG
if (DeviceExtension->NeedyStream) {
ASSERT(DeviceExtension->NeedyStream->OnNeedyQueue);
}
#endif
DebugPrint((DebugLevelTrace, "'SCStartMinidriverRequeest: starting Irp %x, S# = %x, SRB = %x, Command = %x\n",
Request->HwSRB.Irp, StreamObject->HwStreamObject.StreamNumber, Request, Request->HwSRB.Command));
DeviceExtension->SynchronizeExecution(
DeviceExtension->InterruptObject,
EntryPoint,
&Request->HwSRB);
#if DBG
if (DeviceExtension->NeedyStream) {
ASSERT(DeviceExtension->NeedyStream->OnNeedyQueue);
}
#endif
KeReleaseSpinLockFromDpcLevel(&DeviceExtension->SpinLock);
return;
} // SCStartMinidriverRequest
VOID
StreamClassDpc(
IN PKDPC Dpc,
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN PVOID Context
)
/*++
Routine Description:
this routine processes requests and notifications from the minidriver
Arguments:
Dpc - pointer to Dpc structure
DeviceObject - device object for the adapter
Irp - not used
Context - StreamObject structure
Return Value:
None.
--*/
{
PSTREAM_OBJECT StreamObject = Context,
NeedyStream;
PDEVICE_EXTENSION DeviceExtension = DeviceObject->DeviceExtension;
INTERRUPT_CONTEXT interruptContext;
INTERRUPT_DATA SavedStreamInterruptData;
INTERRUPT_DATA SavedDeviceInterruptData;
PSTREAM_REQUEST_BLOCK SRB;
PERROR_LOG_ENTRY LogEntry;
HW_TIME_CONTEXT TimeContext;
UNREFERENCED_PARAMETER(Irp);
UNREFERENCED_PARAMETER(Dpc);
interruptContext.SavedStreamInterruptData = &SavedStreamInterruptData;
interruptContext.SavedDeviceInterruptData = &SavedDeviceInterruptData;
interruptContext.DeviceExtension = DeviceExtension;
DebugPrint((DebugLevelVerbose, "'StreamClassDpc: enter\n"));
//
// if a stream object is passed in, first
// check if work is pending
//
if (StreamObject) {
SCStartRequestOnStream(StreamObject, DeviceExtension);
} // if streamobject
RestartDpc:
//
// Check for a ready for next packet on
// the device.
//
KeAcquireSpinLockAtDpcLevel(&DeviceExtension->SpinLock);
if ((DeviceExtension->ReadyForNextReq) &&
(!IsListEmpty(&DeviceExtension->PendingQueue))) {
//
// start the device request, which
// clears the ready flag and
// releases the spinlock. Then
// reacquire the spinloc.
//
SCDequeueAndStartDeviceRequest(DeviceExtension);
KeAcquireSpinLockAtDpcLevel(&DeviceExtension->SpinLock);
}
//
// Get the interrupt state snapshot. This copies the interrupt state to
// saved state where it can be processed. It also clears the interrupt
// flags. We acquired the device spinlock to protect the structure as
// the minidriver could have requested a DPC call from this routine,
// which could be preempted in the middle of minidriver's changing the
// below structure, and we'd then take a snapshot of the structure while
// it was changing.
//
interruptContext.NeedyStream = NULL;
SavedDeviceInterruptData.CompletedSRB = NULL;
SavedStreamInterruptData.CompletedSRB = NULL;
SavedDeviceInterruptData.Flags = 0;
SavedStreamInterruptData.Flags = 0;
if (!DeviceExtension->SynchronizeExecution(DeviceExtension->InterruptObject,
SCGetInterruptState,
&interruptContext)) {
KeReleaseSpinLockFromDpcLevel(&DeviceExtension->SpinLock);
return;
}
KeReleaseSpinLockFromDpcLevel(&DeviceExtension->SpinLock);
NeedyStream = interruptContext.NeedyStream;
if (NeedyStream) {
//
// try to start a request on this
// stream
//
SCStartRequestOnStream(NeedyStream, DeviceExtension);
//
// Process any completed stream requests.
//
while (SavedStreamInterruptData.CompletedSRB != NULL) {
//
// Remove the request from the
// linked-list.
//
SRB = CONTAINING_RECORD(SavedStreamInterruptData.CompletedSRB,
STREAM_REQUEST_BLOCK,
HwSRB);
SavedStreamInterruptData.CompletedSRB = SRB->HwSRB.NextSRB;
DebugPrint((DebugLevelTrace, "'SCDpc: Completing stream Irp %x, S# = %x, SRB = %x, Func = %x, Callback = %x, SRB->IRP = %x\n",
SRB->HwSRB.Irp, NeedyStream->HwStreamObject.StreamNumber,
SRB, SRB->HwSRB.Command, SRB->Callback, SRB->HwSRB.Irp));
SCCallBackSrb(SRB, DeviceExtension);
}
//
// Check for timer requests.
//
if (SavedStreamInterruptData.Flags & INTERRUPT_FLAGS_TIMER_CALL_REQUEST) {
SCProcessTimerRequest(&NeedyStream->ComObj,
&SavedStreamInterruptData);
}
//
// check to see if a change priority call has been requested.
//
if (SavedStreamInterruptData.Flags &
INTERRUPT_FLAGS_PRIORITY_CHANGE_REQUEST) {
SCProcessPriorityChangeRequest(&NeedyStream->ComObj,
&SavedStreamInterruptData,
DeviceExtension);
}
//
// Check for master clock queries.
//
if (SavedStreamInterruptData.Flags & INTERRUPT_FLAGS_CLOCK_QUERY_REQUEST) {
LARGE_INTEGER ticks;
ULONGLONG rate;
KIRQL SavedIrql;
//
// call the master clock's entry point then call the minidriver's
// callback procedure to report the time.
//
TimeContext.HwDeviceExtension = DeviceExtension->HwDeviceExtension;
TimeContext.HwStreamObject = &NeedyStream->HwStreamObject;
TimeContext.Function = SavedStreamInterruptData.HwQueryClockFunction;
//
// take the lock so MasterCliockinfo won't disapear under us
//
KeAcquireSpinLock( &NeedyStream->LockUseMasterClock, &SavedIrql );
if ( NULL == NeedyStream->MasterClockInfo ) {
ASSERT( 0 && "Mini driver queries clock while we have no master clock");
//
// give a hint that something is wrong via Time, since we return void.
//
TimeContext.Time = (ULONGLONG)-1;
goto callminidriver;
}
switch (SavedStreamInterruptData.HwQueryClockFunction) {
case TIME_GET_STREAM_TIME:
TimeContext.Time = NeedyStream->MasterClockInfo->
FunctionTable.GetCorrelatedTime(
NeedyStream->MasterClockInfo->ClockFileObject,
&TimeContext.SystemTime);
goto callminidriver;
case TIME_READ_ONBOARD_CLOCK:
TimeContext.Time = NeedyStream->MasterClockInfo->
FunctionTable.GetTime(
NeedyStream->MasterClockInfo->ClockFileObject);
//
// timestamp the value as close as possible
//
ticks = KeQueryPerformanceCounter((PLARGE_INTEGER) & rate);
TimeContext.SystemTime = KSCONVERT_PERFORMANCE_TIME( rate, ticks );
callminidriver:
//
// finish using MasterClockInfo.
//
KeReleaseSpinLock( &NeedyStream->LockUseMasterClock, SavedIrql );
//
// call the minidriver's callback procedure
//
if (!DeviceExtension->NoSync) {
//
// Acquire the device spinlock.
//
KeAcquireSpinLockAtDpcLevel(&DeviceExtension->SpinLock);
}
DebugPrint((DebugLevelTrace, "'SCDPC: calling time func, S# = %x, Command = %x\n",
NeedyStream->HwStreamObject.StreamNumber, TimeContext.Function));
DeviceExtension->SynchronizeExecution(
DeviceExtension->InterruptObject,
(PKSYNCHRONIZE_ROUTINE) SavedStreamInterruptData.HwQueryClockRoutine,
&TimeContext
);
if (!DeviceExtension->NoSync) {
//
// Release the spinlock.
//
KeReleaseSpinLockFromDpcLevel(&DeviceExtension->SpinLock);
}
break;
default:
KeReleaseSpinLock( &NeedyStream->LockUseMasterClock, SavedIrql );
ASSERT(0);
} // switch clock func
} // if queryclock
} // if needystream
//
// Check for an error log request.
//
if (SavedDeviceInterruptData.Flags & INTERRUPT_FLAGS_LOG_ERROR) {
//
// Process the error log request.
//
LogEntry = &SavedDeviceInterruptData.LogEntry;
SCLogError(DeviceObject,
LogEntry->SequenceNumber,
LogEntry->ErrorCode,
LogEntry->UniqueId
);
} // if log error
//
// Process any completed device requests.
//
while (SavedDeviceInterruptData.CompletedSRB != NULL) {
//
// Remove the request from the linked-list.
//
SRB = CONTAINING_RECORD(SavedDeviceInterruptData.CompletedSRB,
STREAM_REQUEST_BLOCK,
HwSRB);
SavedDeviceInterruptData.CompletedSRB = SRB->HwSRB.NextSRB;
DebugPrint((DebugLevelTrace, "'SCDpc: Completing device Irp %x\n", SRB->HwSRB.Irp));
SCCallBackSrb(SRB, DeviceExtension);
}
//
// Check for device timer requests.
//
if (SavedDeviceInterruptData.Flags & INTERRUPT_FLAGS_TIMER_CALL_REQUEST) {
SCProcessTimerRequest(&DeviceExtension->ComObj,
&SavedDeviceInterruptData);
}
//
// check if we have any dead events that need discarding. if so, we'll
// schedule a work item to get rid of them.
//
if ((!IsListEmpty(&DeviceExtension->DeadEventList)) &&
(!(DeviceExtension->DeadEventItemQueued))) {
DeviceExtension->DeadEventItemQueued = TRUE;
ExQueueWorkItem(&DeviceExtension->EventWorkItem,
DelayedWorkQueue);
}
//
// check to see if a change priority call
// has been requested for the device.
//
if (SavedDeviceInterruptData.Flags &
INTERRUPT_FLAGS_PRIORITY_CHANGE_REQUEST) {
SCProcessPriorityChangeRequest(&DeviceExtension->ComObj,
&SavedDeviceInterruptData,
DeviceExtension);
} // if change priority
//
// Check for stream rescan request.
//
if (SavedDeviceInterruptData.Flags & INTERRUPT_FLAGS_NEED_STREAM_RESCAN) {
TRAP;
ExQueueWorkItem(&DeviceExtension->RescanWorkItem,
DelayedWorkQueue);
}
//
// Check for minidriver work requests. Note this is an unsynchronized
// test on bits that can be set by the interrupt routine; however,
// the worst that can happen is that the completion DPC checks for work
// twice.
//
if ((DeviceExtension->NeedyStream)
|| (DeviceExtension->ComObj.InterruptData.Flags &
INTERRUPT_FLAGS_NOTIFICATION_REQUIRED)) {
//
// Start over from the top.
//
DebugPrint((DebugLevelVerbose, "'StreamClassDpc: restarting\n"));
goto RestartDpc;
}
return;
} // end StreamClassDpc()
VOID
SCStartRequestOnStream(
IN PSTREAM_OBJECT StreamObject,
IN PDEVICE_EXTENSION DeviceExtension
)
/*++
Routine Description:
Routine tries to start either a control or data request on the specified
stream.
Arguments:
StreamObject - pointer to stream object
DeviceExtension - pointer to device extension.
Return Value:
None
Notes:
--*/
{
//
// Check for a ready for next packet. Acquire spinlock to protect
// READY bits. Note that we don't snapshot the ready flags as we do with
// the remaining notification flags, as we don't want to clear the flags
// unconditionally in the snapshot in case there is not currently a
// request pending. Also, starting a request before the snapshot will
// give a slight perf improvement. Note that the flags can be set via
// the minidriver while we are checking them, but since the minidriver
// cannot clear them and the minidriver cannot call for a next request
// more than once before it receives one, this is not a problem.
//
KeAcquireSpinLockAtDpcLevel(&DeviceExtension->SpinLock);
if ((StreamObject->ReadyForNextDataReq) &&
(!IsListEmpty(&StreamObject->DataPendingQueue))) {
//
// start the request, which clears the ready flag and releases
// the spinlock, then reobtain the spinlock.
//
SCDequeueAndStartStreamDataRequest(StreamObject);
KeAcquireSpinLockAtDpcLevel(&DeviceExtension->SpinLock);
} // if ready for data
if ((StreamObject->ReadyForNextControlReq) &&
(!IsListEmpty(&StreamObject->ControlPendingQueue))) {
//
// start the request, which clears the ready flag and releases
// the spinlock.
//
SCDequeueAndStartStreamControlRequest(StreamObject);
} else {
KeReleaseSpinLockFromDpcLevel(&DeviceExtension->SpinLock);
} // if ready for control
return;
}
BOOLEAN
SCGetInterruptState(
IN PVOID ServiceContext
)
/*++
Routine Description:
This routine saves the InterruptFlags, error log info, and
CompletedRequests fields and clears the InterruptFlags.
Arguments:
ServiceContext - Supplies a pointer to the interrupt context which contains
pointers to the interrupt data and where to save it.
Return Value:
Returns TRUE if there is new work and FALSE otherwise.
Notes:
Called via KeSynchronizeExecution with the port device extension spinlock
held.
--*/
{
PINTERRUPT_CONTEXT interruptContext = ServiceContext;
PDEVICE_EXTENSION DeviceExtension;
PSTREAM_OBJECT NeedyStream;
BOOLEAN Work = FALSE;
DeviceExtension = interruptContext->DeviceExtension;
//
// get the needy streams and zero the
// link.
//
interruptContext->NeedyStream = NeedyStream = DeviceExtension->NeedyStream;
//
// capture the state of needy stream
//
if (NeedyStream) {
//
// Move the interrupt state to save
// area.
//
ASSERT(NeedyStream->NextNeedyStream != NeedyStream);
ASSERT(NeedyStream->ComObj.InterruptData.Flags & INTERRUPT_FLAGS_NOTIFICATION_REQUIRED);
ASSERT(NeedyStream->OnNeedyQueue);
DebugPrint((DebugLevelVerbose, "'SCGetInterruptState: Snapshot for stream %p, S# = %x, NextNeedy = %p\n",
NeedyStream, NeedyStream->HwStreamObject.StreamNumber, NeedyStream->NextNeedyStream));
NeedyStream->OnNeedyQueue = FALSE;
*interruptContext->SavedStreamInterruptData =
NeedyStream->ComObj.InterruptData;
//
// Clear the interrupt state.
//
NeedyStream->ComObj.InterruptData.Flags &= STREAM_FLAGS_INTERRUPT_FLAG_MASK;
NeedyStream->ComObj.InterruptData.CompletedSRB = NULL;
Work = TRUE;
DeviceExtension->NeedyStream = (PSTREAM_OBJECT) NeedyStream->NextNeedyStream;
NeedyStream->NextNeedyStream = NULL;
#if DBG
if (DeviceExtension->NeedyStream) {
ASSERT(DeviceExtension->NeedyStream->OnNeedyQueue);
}
#endif
} // if NeedyStream
//
// now copy over the device interrupt
// data if necessary
//
if (DeviceExtension->ComObj.InterruptData.Flags &
INTERRUPT_FLAGS_NOTIFICATION_REQUIRED) {
*interruptContext->SavedDeviceInterruptData =
DeviceExtension->ComObj.InterruptData;
//
// Clear the device interrupt state.
//
DeviceExtension->ComObj.InterruptData.Flags &=
DEVICE_FLAGS_INTERRUPT_FLAG_MASK;
DeviceExtension->ComObj.InterruptData.CompletedSRB = NULL;
Work = TRUE;
}
return (Work);
}
NTSTATUS
SCProcessCompletedRequest(
IN PSTREAM_REQUEST_BLOCK SRB
)
/*++
Routine Description:
This routine processes a request which has completed.
Arguments:
SRB- address of completed STREAM request block
Return Value:
None.
--*/
{
PIRP Irp = SRB->HwSRB.Irp;
//
// complete the IRP
//
return (SCCompleteIrp(Irp,
SCDequeueAndDeleteSrb(SRB),
(PDEVICE_EXTENSION) SRB->HwSRB.HwDeviceExtension - 1));
}
NTSTATUS
SCDequeueAndDeleteSrb(
IN PSTREAM_REQUEST_BLOCK SRB
)
/*++
Routine Description:
This routine dequeues and deletes a completed SRB
Arguments:
SRB- address of completed STREAM request block
Return Value:
None.
--*/
{
PDEVICE_EXTENSION DeviceExtension =
(PDEVICE_EXTENSION) SRB->HwSRB.HwDeviceExtension - 1;
NTSTATUS Status = SRB->HwSRB.Status;
KIRQL irql;
//
// remove the SRB from our outstanding
// queue. protect list with
// spinlock.
//
KeAcquireSpinLock(&DeviceExtension->SpinLock, &irql);
RemoveEntryList(&SRB->SRBListEntry);
if (SRB->HwSRB.Irp) {
IoSetCancelRoutine(SRB->HwSRB.Irp, NULL);
}
KeReleaseSpinLock(&DeviceExtension->SpinLock, irql);
//
// free the SRB and MDL
//
if ( !NT_SUCCESS( Status )) {
DebugPrint((DebugLevelWarning,
"SCDequeueAndDeleteSrb Command:%x Status=%x\n",
SRB->HwSRB.Command,
Status ));
}
IoFreeMdl(SRB->Mdl);
ExFreePool(SRB);
return (Status);
}
VOID
SCProcessCompletedDataRequest(
IN PSTREAM_REQUEST_BLOCK SRB
)
/*++
Routine Description:
This routine processes a data request which has completed. It completes any
pending transfers, releases the adapter objects and map registers.
Arguments:
SRB- address of completed STREAM request block
Return Value:
None.
--*/
{
PDEVICE_EXTENSION DeviceExtension =
(PDEVICE_EXTENSION) SRB->HwSRB.HwDeviceExtension - 1;
PIRP Irp = SRB->HwSRB.Irp;
PMDL CurrentMdl;
ULONG i = 0;
if (Irp) {
PIO_STACK_LOCATION IrpStack;
PKSSTREAM_HEADER CurrentHeader;
CurrentHeader = SRB->HwSRB.CommandData.DataBufferArray;
ASSERT(CurrentHeader);
IrpStack = IoGetCurrentIrpStackLocation(Irp);
ASSERT(IrpStack);
#if DBG
//
// assert the MDL list.
//
CurrentMdl = Irp->MdlAddress;
while (CurrentMdl) {
CurrentMdl = CurrentMdl->Next;
} // while
#endif
CurrentMdl = Irp->MdlAddress;
while (CurrentMdl) {
//
// flush the buffers if we did PIO data in
//
if (SRB->HwSRB.StreamObject->Pio) {
//
// find the first header with data...
//
while (!(CurrentHeader->DataUsed) && (!CurrentHeader->FrameExtent)) {
CurrentHeader = ((PKSSTREAM_HEADER) ((PBYTE) CurrentHeader +
SRB->StreamHeaderSize));
}
//
// restore the pointer we changed
//
// CurrentHeader->Data = (PVOID) ((ULONG_PTR) CurrentMdl->StartVa +
// CurrentMdl->ByteOffset);
//
if (SRB->bMemPtrValid) { // safety first!
DebugPrint((DebugLevelVerbose, "Restoring: Index:%x, Ptr:%x\n",
i, SRB->pMemPtrArray[i]));
CurrentHeader->Data = SRB->pMemPtrArray[i];
}
DebugPrint((DebugLevelVerbose, "'SCPioComplete: Irp = %x, header = %x, Data = %x\n",
Irp, CurrentHeader, CurrentHeader->Data));
//
// update to the next header
//
i++;
CurrentHeader = ((PKSSTREAM_HEADER) ((PBYTE) CurrentHeader +
SRB->StreamHeaderSize));
if (SRB->HwSRB.Command == SRB_READ_DATA) {
KeFlushIoBuffers(CurrentMdl,
TRUE,
FALSE);
} // if data in
} // if PIO
//
// Flush the adapter buffers if we had map registers => DMA.
//
if (SRB->MapRegisterBase) {
//
// Since we are a master call I/O flush adapter buffers
// with a NULL adapter.
//
IoFlushAdapterBuffers(DeviceExtension->DmaAdapterObject,
CurrentMdl,
SRB->MapRegisterBase,
MmGetMdlVirtualAddress(CurrentMdl),
CurrentMdl->ByteCount,
(BOOLEAN) (SRB->HwSRB.Command ==
SRB_READ_DATA ? FALSE : TRUE)
);
} // if DMA
CurrentMdl = CurrentMdl->Next;
} // while CurrentMdl
//
// flush the buffer for the SRB extension in case the adapter DMA'ed
// to it. JHavens says we must treat this as a READ.
//
//
// Flush the adapter buffer for the SRB if we had map registers =>
// DMA.
//
if (SRB->MapRegisterBase) {
IoFlushAdapterBuffers(DeviceExtension->DmaAdapterObject,
SRB->Mdl,
SRB->MapRegisterBase,
MmGetMdlVirtualAddress(
SRB->Mdl),
SRB->Length,
FALSE);
//
// Free the map registers if DMA.
//
IoFreeMapRegisters(DeviceExtension->DmaAdapterObject,
SRB->MapRegisterBase,
SRB->HwSRB.NumberOfPhysicalPages);
} // if MapRegisterBase
//
// free the extra data, if any.
//
if (IrpStack->Parameters.Others.Argument4 != NULL) {
TRAP;
ExFreePool(IrpStack->Parameters.Others.Argument4);
} // if extradata
} // if Irp
//
// call the generic completion handler
//
SCProcessCompletedRequest(SRB);
} // SCProcessCompletedDataRequest
VOID
SCMinidriverStreamTimerDpc(
IN struct _KDPC * Dpc,
IN PVOID Context,
IN PVOID SystemArgument1,
IN PVOID SystemArgument2
)
/*++
Routine Description:
This routine calls the minidriver when its requested timer fires.
It interlocks either with the port spinlock and the interrupt object.
Arguments:
Dpc - Unsed.
Context - Supplies a pointer to the stream object for this adapter.
SystemArgument1 - Unused.
SystemArgument2 - Unused.
Return Value:
None.
--*/
{
PSTREAM_OBJECT StreamObject = ((PSTREAM_OBJECT) Context);
PDEVICE_EXTENSION DeviceExtension = StreamObject->DeviceExtension;
//
// Acquire the device spinlock if synchronized.
//
if (!(DeviceExtension->NoSync)) {
KeAcquireSpinLockAtDpcLevel(&DeviceExtension->SpinLock);
}
//
// Make sure the timer routine is still
// desired.
//
if (StreamObject->ComObj.HwTimerRoutine != NULL) {
DebugPrint((DebugLevelTrace, "'SCTimerDpc: Calling MD timer callback, S# = %x, Routine = %p\n",
StreamObject->HwStreamObject.StreamNumber, StreamObject->ComObj.HwTimerRoutine));
DeviceExtension->SynchronizeExecution(
DeviceExtension->InterruptObject,
(PKSYNCHRONIZE_ROUTINE) StreamObject->ComObj.HwTimerRoutine,
StreamObject->ComObj.HwTimerContext
);
}
//
// Release the spinlock if we're synchronized.
//
if (!(DeviceExtension->NoSync)) {
KeReleaseSpinLockFromDpcLevel(&DeviceExtension->SpinLock);
}
//
// Call the DPC directly to check for work.
//
StreamClassDpc(NULL,
DeviceExtension->DeviceObject,
NULL,
StreamObject);
}
VOID
SCMinidriverDeviceTimerDpc(
IN struct _KDPC * Dpc,
IN PVOID Context,
IN PVOID SystemArgument1,
IN PVOID SystemArgument2
)
/*++
Routine Description:
This routine calls the minidriver when its requested timer fires.
It interlocks either with the port spinlock and the interrupt object.
Arguments:
Dpc - Unsed.
Context - Supplies a pointer to the stream object for this adapter.
SystemArgument1 - Unused.
SystemArgument2 - Unused.
Return Value:
None.
--*/
{
PDEVICE_EXTENSION DeviceExtension = Context;
//
// Acquire the device spinlock.
//
KeAcquireSpinLockAtDpcLevel(&DeviceExtension->SpinLock);
//
// Make sure the timer routine is still
// desired.
//
if (DeviceExtension->ComObj.HwTimerRoutine != NULL) {
DeviceExtension->SynchronizeExecution(
DeviceExtension->InterruptObject,
(PKSYNCHRONIZE_ROUTINE) DeviceExtension->ComObj.HwTimerRoutine,
DeviceExtension->ComObj.HwTimerContext
);
}
//
// Release the spinlock.
//
KeReleaseSpinLockFromDpcLevel(&DeviceExtension->SpinLock);
//
// Call the DPC directly to check for
// work.
//
StreamClassDpc(NULL,
DeviceExtension->DeviceObject,
NULL,
NULL);
}
VOID
SCLogError(
IN PDEVICE_OBJECT DeviceObject,
IN ULONG SequenceNumber,
IN NTSTATUS ErrorCode,
IN ULONG UniqueId
)
/*++
Routine Description:
This function logs an error.
Arguments:
DeviceObject - device or driver object
SequenceNumber - supplies the sequence # of the error.
ErrorCode - Supplies the error code for this error.
UniqueId - Supplies the UniqueId for this error.
Return Value:
None.
--*/
{
PIO_ERROR_LOG_PACKET packet;
PAGED_CODE();
packet = (PIO_ERROR_LOG_PACKET) IoAllocateErrorLogEntry(DeviceObject,
sizeof(IO_ERROR_LOG_PACKET));
if (packet) {
packet->ErrorCode = ErrorCode;
packet->SequenceNumber = SequenceNumber;
packet->MajorFunctionCode = 0;
packet->RetryCount = (UCHAR) 0;
packet->UniqueErrorValue = UniqueId;
packet->FinalStatus = STATUS_SUCCESS;
packet->DumpDataSize = 0;
IoWriteErrorLogEntry(packet);
}
}
VOID
SCLogErrorWithString(
IN PDEVICE_OBJECT DeviceObject,
IN OPTIONAL PDEVICE_EXTENSION DeviceExtension,
IN NTSTATUS ErrorCode,
IN ULONG UniqueId,
IN PUNICODE_STRING String1
)
/*++
Routine Description
This function logs an error and includes the string provided.
Arguments:
DeviceObject - device or driver object
DeviceExtension - Supplies a pointer to the port device extension.
ErrorCode - Supplies the error code for this error.
UniqueId - Supplies the UniqueId for this error.
String1 - The string to be inserted.
Return Value:
None.
--*/
{
ULONG length;
PCHAR dumpData;
PIO_ERROR_LOG_PACKET packet;
PAGED_CODE();
length = String1->Length + sizeof(IO_ERROR_LOG_PACKET) + 2;
if (length > ERROR_LOG_MAXIMUM_SIZE) {
length = ERROR_LOG_MAXIMUM_SIZE;
}
packet = (PIO_ERROR_LOG_PACKET) IoAllocateErrorLogEntry(DeviceObject,
(UCHAR) length);
if (packet) {
packet->ErrorCode = ErrorCode;
packet->SequenceNumber = (DeviceExtension != NULL) ?
DeviceExtension->SequenceNumber++ : 0;
packet->MajorFunctionCode = 0;
packet->RetryCount = (UCHAR) 0;
packet->UniqueErrorValue = UniqueId;
packet->FinalStatus = STATUS_SUCCESS;
packet->NumberOfStrings = 1;
packet->StringOffset = (USHORT) ((PUCHAR) & packet->DumpData[0] - (PUCHAR) packet);
packet->DumpDataSize = (USHORT) (length - sizeof(IO_ERROR_LOG_PACKET));
packet->DumpDataSize /= sizeof(ULONG);
dumpData = (PUCHAR) & packet->DumpData[0];
RtlCopyMemory(dumpData, String1->Buffer, String1->Length);
dumpData += String1->Length;
*dumpData++ = '\0';
*dumpData++ = '\0';
IoWriteErrorLogEntry(packet);
}
return;
}
BOOLEAN
StreamClassSynchronizeExecution(
IN PKINTERRUPT Interrupt,
IN PKSYNCHRONIZE_ROUTINE SynchronizeRoutine,
IN PVOID SynchronizeContext
)
/*++
Routine Description:
This routine calls the minidriver entry point which was passed in as
a parameter. It acquires a spin lock so that all accesses to the
minidriver's routines are synchronized. This routine is used as a
subsitute for KeSynchronizedExecution for minidrivers which do not use
hardware interrupts.
Arguments:
Interrrupt - Supplies a pointer to the port device extension.
SynchronizeRoutine - Supplies a pointer to the routine to be called.
SynchronizeContext - Supplies the context to pass to the
SynchronizeRoutine.
Return Value:
Returns the returned by the SynchronizeRoutine.
--*/
{
PDEVICE_EXTENSION deviceExtension = (PDEVICE_EXTENSION) Interrupt;
BOOLEAN returnValue;
#if DBG
ULONGLONG ticks;
ULONGLONG rate;
ULONGLONG StartTime,
EndTime;
ticks = (ULONGLONG) KeQueryPerformanceCounter((PLARGE_INTEGER) & rate).QuadPart;
StartTime = ticks * 10000 / rate;
#endif
returnValue = SynchronizeRoutine(SynchronizeContext);
#if DBG
ticks = (ULONGLONG) KeQueryPerformanceCounter((PLARGE_INTEGER) & rate).QuadPart;
EndTime = ticks * 10000 / rate;
DebugPrint((DebugLevelVerbose, "'SCDebugSync: minidriver took %d microseconds at dispatch level.\n",
(EndTime - StartTime) * 10));
if ((EndTime - StartTime) > 100) {
DebugPrint((DebugLevelFatal, "Stream Class: minidriver took %I64d millisecond(s) at "
"dispatch level. See dev owner. Type LN %p for the name of the minidriver\n",
(EndTime - StartTime) / 100, SynchronizeRoutine));
}
#endif
return (returnValue);
}
#if DBG
BOOLEAN
SCDebugKeSynchronizeExecution(
IN PKINTERRUPT Interrupt,
IN PKSYNCHRONIZE_ROUTINE SynchronizeRoutine,
IN PVOID SynchronizeContext
)
/*++
Routine Description:
Arguments:
Interrrupt - Supplies a pointer to the port device extension.
SynchronizeRoutine - Supplies a pointer to the routine to be called.
SynchronizeContext - Supplies the context to pass to the
SynchronizeRoutine.
Return Value:
Returns the returned by the SynchronizeRoutine.
--*/
{
ULONGLONG ticks;
ULONGLONG rate;
ULONGLONG StartTime,
EndTime;
BOOLEAN returnValue;
ticks = (ULONGLONG) KeQueryPerformanceCounter((PLARGE_INTEGER) & rate).QuadPart;
StartTime = ticks * 10000 / rate;
returnValue = KeSynchronizeExecution(Interrupt,
SynchronizeRoutine,
SynchronizeContext);
ticks = (ULONGLONG) KeQueryPerformanceCounter((PLARGE_INTEGER) & rate).QuadPart;
EndTime = ticks * 10000 / rate;
DebugPrint((DebugLevelVerbose, "'SCDebugSync: minidriver took %d microseconds at raised IRQL.\n",
(EndTime - StartTime) * 10));
if ((EndTime - StartTime) > 50) {
DebugPrint((DebugLevelFatal, "Stream Class: minidriver took %d%d millisecond(s) at raised IRQL. See dev owner. Type LN %x for the name of the minidriver\n",
(EndTime - StartTime) / 100, SynchronizeRoutine));
}
return (returnValue);
}
#endif
NTSTATUS
SCCompleteIrp(
IN PIRP Irp,
IN NTSTATUS Status,
IN PDEVICE_EXTENSION DeviceExtension
)
/*++
Routine Description:
Routine generically calls back a completed IRP, and shows one less I/O
pending.
Arguments:
Irp - IRP to complete
Status - Status to complete it with
DeviceExtension - pointer to device extension
Return Value:
Returns the Status parameter
--*/
{
#if DBG
PMDL CurrentMdl;
#endif
if (Irp) {
Irp->IoStatus.Status = Status;
#if DBG
//
// random asserts follow...
// make sure we have not freed the system buffer.
//
if (Irp->AssociatedIrp.SystemBuffer) {
DebugPrint((DebugLevelVerbose, "'SCComplete: Irp = %p, sys buffer = %p\n",
Irp, Irp->AssociatedIrp.SystemBuffer));
}
//
// assert the MDL list.
//
CurrentMdl = Irp->MdlAddress;
while (CurrentMdl) {
CurrentMdl = CurrentMdl->Next;
} // while
#endif
if ( Irp->CurrentLocation < Irp->StackCount+1 ) {
IoCompleteRequest(Irp, IO_NO_INCREMENT);
} else {
//
// we got a dummy Irp we created. IoVerifier code will pews if
// we call IoCompleteRequest because the Current Stack location
// is at the end of last stack location. We can't use
// IoBuildIoControlRequest to create the Irp becuase it will
// be added to a thread and the only way to get it off is to
// call IoCompleteRequest.
//
IoFreeIrp( Irp );
}
}
if (!(InterlockedDecrement(&DeviceExtension->OneBasedIoCount))) {
//
// the device is being removed and all I/O is complete. Signal the
// removal thread to wake up.
//
KeSetEvent(&DeviceExtension->RemoveEvent, IO_NO_INCREMENT, FALSE);
}
ASSERT(DeviceExtension->OneBasedIoCount >= 0);
return (Status);
}
BOOLEAN
SCDummyMinidriverRoutine(
IN PVOID Context
)
/*++
Routine Description:
Routine used when the minidriver fills in a null for an optional routine
Arguments:
Context - unreferenced
Return Value:
TRUE
--*/
{
return (TRUE);
}
#if ENABLE_MULTIPLE_FILTER_TYPES
NTSTATUS
SCOpenMinidriverInstance(
IN PDEVICE_EXTENSION DeviceExtension,
OUT PFILTER_INSTANCE * ReturnedFilterInstance,
IN PSTREAM_CALLBACK_PROCEDURE SCGlobalInstanceCallback,
IN PIRP Irp)
/*++
Routine Description:
Worker routine to process opening of a filter instance.
Once open, we issue srb_get_stream_info.
Arguments:
DeviceExtension - pointer to device extension
ReturnedFilterInstance - pointer to the filter instance structure
SCGlobalInstanceCallback - callback procedure to be called if we call the minidriver
Irp - pointer to the irp
Return Value:
Returns NTSTATUS and a filter instance structure if successfull
--*/
{
ULONG FilterExtensionSize;
PFILTER_INSTANCE FilterInstance;
PHW_STREAM_INFORMATION CurrentInfo;
PADDITIONAL_PIN_INFO CurrentAdditionalInfo;
ULONG i;
BOOLEAN RequestIssued;
PKSOBJECT_CREATE_ITEM CreateItem;
ULONG FilterTypeIndex;
ULONG NumberOfPins;
NTSTATUS Status = STATUS_SUCCESS;
PAGED_CODE();
//
// The CreateItem is in Irp->Tail.Overlay.DriverContext[0] from KS
//
CreateItem = (PKSOBJECT_CREATE_ITEM)Irp->Tail.Overlay.DriverContext[0];
ASSERT( CreateItem != NULL );
FilterTypeIndex = (ULONG)(ULONG_PTR)CreateItem->Context;
ASSERT( FilterTypeIndex == 0 ||
FilterTypeIndex <
DeviceExtension->MinidriverData->HwInitData.NumNameExtensions);
FilterExtensionSize = DeviceExtension->FilterExtensionSize;
ASSERT( DeviceExtension->FilterExtensionSize ==
DeviceExtension->MinidriverData->
HwInitData.FilterInstanceExtensionSize);
FilterInstance = NULL;
NumberOfPins = DeviceExtension->FilterTypeInfos[FilterTypeIndex].
StreamDescriptor->StreamHeader.NumberOfStreams;
//
// don't call the minidriver to open the filter instance if 1x1 for backward
// compat. We do this so that minidrivers that don't support
// instancing (the vast majority) don't have to respond to this call.
//
if ( DeviceExtension->NumberOfOpenInstances > 0 &&
0 == FilterExtensionSize ) {
//
// Legacy 1x1 and non-1st open. assign the same
// FilterInstance and succeed it.
//
PLIST_ENTRY node;
ASSERT( !IsListEmpty( &DeviceExtension->FilterInstanceList));
node = DeviceExtension->FilterInstanceList.Flink;
FilterInstance = CONTAINING_RECORD(node,
FILTER_INSTANCE,
NextFilterInstance);
ASSERT_FILTER_INSTANCE( FilterInstance );
*ReturnedFilterInstance = FilterInstance;
Status = STATUS_SUCCESS;
return Status; // can't goto Exit, it will insert FI again.
}
FilterInstance =
ExAllocatePool(NonPagedPool, sizeof(FILTER_INSTANCE) +
FilterExtensionSize +
sizeof(ADDITIONAL_PIN_INFO) *
NumberOfPins);
if (!FilterInstance) {
Status = STATUS_INSUFFICIENT_RESOURCES;
goto Exit;
}
RtlZeroMemory(FilterInstance, sizeof(FILTER_INSTANCE) +
FilterExtensionSize +
sizeof(ADDITIONAL_PIN_INFO) *
NumberOfPins);
FilterInstance->Signature = SIGN_FILTER_INSTANCE;
FilterInstance->DeviceExtension = DeviceExtension; // keep this handy
//
// To get FilterInstance from HwInstanceExtension we need
// to arrange the memory layout
// [FilterInstnace][HwInstanceExtension][AddionalPinInfo...]
// as opposed to
// [FilterInstance][AdditionalPinInfo...][HwInstanceExtension]
//
FilterInstance->HwInstanceExtension = FilterInstance + 1;
FilterInstance->PinInstanceInfo =
(PADDITIONAL_PIN_INFO) ((PBYTE)(FilterInstance+1) + FilterExtensionSize);
FilterInstance->FilterTypeIndex = FilterTypeIndex;
//
// initialize the filter instance list
//
InitializeListHead(&FilterInstance->FirstStream);
InitializeListHead(&FilterInstance->NextFilterInstance);
InitializeListHead(&FilterInstance->NotifyList);
#ifdef ENABLE_STREAM_CLASS_AS_ALLOCATOR
Status = KsRegisterWorker( CriticalWorkQueue, &FilterInstance->WorkerRead );
if (!NT_SUCCESS( Status )) {
ExFreePool(FilterInstance);
FilterInstance = NULL;
Status = STATUS_INSUFFICIENT_RESOURCES;
ASSERT( 0 );
goto Exit;
}
Status = KsRegisterWorker( CriticalWorkQueue, &FilterInstance->WorkerWrite );
if (!NT_SUCCESS( Status )) {
KsUnregisterWorker( FilterInstance->WorkerRead );
ExFreePool(FilterInstance);
FilterInstance = NULL;
Status = STATUS_INSUFFICIENT_RESOURCES;
ASSERT( 0 );
goto Exit;
}
DebugPrint((DebugLevelVerbose,
"RegisterReadWorker %x WriteWorker %x\n",
FilterInstance->WorkerRead,
FilterInstance->WorkerWrite));
#endif
//
// initialize the current and max instances
//
CurrentAdditionalInfo = FilterInstance->PinInstanceInfo;
CurrentInfo = &DeviceExtension->StreamDescriptor->StreamInfo;
for (i = 0; i < NumberOfPins; i++) {
CurrentAdditionalInfo[i].CurrentInstances = 0;
CurrentAdditionalInfo[i].MaxInstances =
CurrentInfo->NumberOfPossibleInstances;
//
// index to next streaminfo and additional info structures.
//
CurrentInfo++;
}
//
// fill in the filter dispatch table pointer
//
KsAllocateObjectHeader(&FilterInstance->DeviceHeader,
SIZEOF_ARRAY(CreateHandlers),
(PKSOBJECT_CREATE_ITEM) CreateHandlers,
Irp,
(PKSDISPATCH_TABLE) & FilterDispatchTable);
if (FilterExtensionSize) {
//
// call the minidriver to open the instance if the call is supported.
// final status will be processed in the callback procedure.
//
//
// C4312 fix: This union corresponds to the _CommandData union within
// HW_STREAM_REQUEST_BLOCK. This is done to correctly align
// FilterTypeIndex for assignment on 64-bit such that it doesn't
// break on big endian machines. I don't want to waste stack
// space with an entire HW_STREAM_REQUEST_BLOCK for a 64-bit safe
// cast.
//
union {
PVOID Buffer;
LONG FilterTypeIndex;
} u;
u.Buffer = NULL;
u.FilterTypeIndex = (LONG)FilterTypeIndex;
Status = SCSubmitRequest(
SRB_OPEN_DEVICE_INSTANCE,
u.Buffer,
0,
SCDequeueAndDeleteSrb, //SCGlobalInstanceCallback,
DeviceExtension,
FilterInstance->HwInstanceExtension,
NULL,
Irp,
&RequestIssued,
&DeviceExtension->PendingQueue,
(PVOID) DeviceExtension->MinidriverData->HwInitData.HwReceivePacket
);
if (!RequestIssued) {
//
// if request not issued, fail the request as we could not send
// it down.
//
ASSERT(Status != STATUS_SUCCESS);
KsFreeObjectHeader(FilterInstance->DeviceHeader);
#ifdef ENABLE_STREAM_CLASS_AS_ALLOCATOR
KsUnregisterWorker( FilterInstance->WorkerRead );
KsUnregisterWorker( FilterInstance->WorkerWrite );
#endif
//ExFreePool(FilterInstance);
}
} // if minidriver supports multiple filter
Exit: {
if ( NT_SUCCESS( Status ) ) {
DebugPrint((DebugLevelInfo,
"Inserting FilterInstance %x\n",
FilterInstance));
SCInsertFiltersInDevice( FilterInstance, DeviceExtension );
}
else if ( NULL != FilterInstance) {
ExFreePool( FilterInstance );
FilterInstance = NULL;
}
*ReturnedFilterInstance = FilterInstance;
return (Status);
}
}
#else // ENABLE_MULTIPLE_FILTER_TYPES
#endif // ENABLE_MULTIPLE_FILTER_TYPES
NTSTATUS
SCSubmitRequest(
IN SRB_COMMAND Command,
IN PVOID Buffer,
IN ULONG DataSize,
IN PSTREAM_CALLBACK_PROCEDURE Callback,
IN PDEVICE_EXTENSION DeviceExtension,
IN PVOID InstanceExtension,
IN OPTIONAL PHW_STREAM_OBJECT HwStreamObject,
IN PIRP Irp,
OUT PBOOLEAN RequestIssued,
IN PLIST_ENTRY Queue,
IN PVOID MinidriverRoutine
)
/*++
Routine Description:
This routine generically submits a non-data SRB to the minidriver. The
callback procedure is called back at PASSIVE level.
Arguments:
Command - command to issue
Buffer - data buffer, if any
DataSize - length of transfer
Callback - procedure to call back at passive level
DeviceExtension - pointer to device extension
InstanceExtension - pointer to instance extension, if any
HwStreamObject - optional pointer to minidriver's stream object
Irp - pointer to IRP
RequestIssued - pointer to boolean which is set if request issued
Queue - queue upon which to enqueue the request
MinidriverRoutine - request routine to call with the request
Return Value:
Status
--*/
{
PSTREAM_OBJECT StreamObject = 0;
PSTREAM_REQUEST_BLOCK Request = SCBuildRequestPacket(DeviceExtension,
Irp,
0,
0);
NTSTATUS Status;
PAGED_CODE();
//
// assume request will be successfully issued.
//
*RequestIssued = TRUE;
//
// if the alloc failed, call the callback procedure with a null SRB
//
if (!Request) {
*RequestIssued = FALSE;
return (STATUS_INSUFFICIENT_RESOURCES);
}
if (HwStreamObject) {
StreamObject = CONTAINING_RECORD(
HwStreamObject,
STREAM_OBJECT,
HwStreamObject
);
//
// hack. we need to set the stream request flag if this is a stream
// request. the only case that we would NOT set this when a stream
// object is passed in is on an OPEN or CLOSE, where the stream
// object is
// passed in on a device request. special case this. if later
// this assumption changes, an assert will be hit in lowerapi.
//
if ((Command != SRB_OPEN_STREAM) && (Command != SRB_CLOSE_STREAM)) {
Request->HwSRB.Flags |= SRB_HW_FLAGS_STREAM_REQUEST;
}
}
//
// initialize event for blocking for completion
//
KeInitializeEvent(&Request->Event, SynchronizationEvent, FALSE);
Request->HwSRB.Command = Command;
Request->Callback = SCSignalSRBEvent;
Request->HwSRB.HwInstanceExtension = InstanceExtension;
Request->HwSRB.StreamObject = HwStreamObject;
Request->HwSRB.CommandData.StreamBuffer = Buffer;
Request->HwSRB.HwDeviceExtension = DeviceExtension->HwDeviceExtension;
Request->HwSRB.NumberOfBytesToTransfer = DataSize;
Request->DoNotCallBack = FALSE;
//
// call routine to actually submit request to the device
//
Status = SCIssueRequestToDevice(DeviceExtension,
StreamObject,
Request,
MinidriverRoutine,
Queue,
Irp);
//
// block waiting for completion if pending
//
if (Status == STATUS_PENDING) {
KeWaitForSingleObject(&Request->Event, Executive, KernelMode, FALSE, NULL);
}
return (Callback(Request));
}
VOID
SCSignalSRBEvent(
IN PSTREAM_REQUEST_BLOCK Srb
)
/*++
Routine Description:
Sets the event for a completed SRB
Arguments:
Srb - pointer to the request
Return Value:
none
--*/
{
KeSetEvent(&Srb->Event, IO_NO_INCREMENT, FALSE);
return;
}
NTSTATUS
SCProcessDataTransfer(
IN PDEVICE_EXTENSION DeviceExtension,
IN PIRP Irp,
IN SRB_COMMAND Command
)
/*++
Routine Description:
Process a data transfer request to a stream
Arguments:
DeviceExtension - address of device extension.
Irp - pointer to the IRP
Command - read or write command
Return Value:
NTSTATUS returned as appropriate
--*/
{
PIO_STACK_LOCATION IrpStack = IoGetCurrentIrpStackLocation(Irp);
PSTREAM_REQUEST_BLOCK Request;
PSTREAM_OBJECT StreamObject = IrpStack->FileObject->FsContext;
NTSTATUS Status;
PKSSTREAM_HEADER OutputBuffer = NULL;
ULONG NumberOfPages = 0,
NumberOfBuffers = 0;
ULONG Flags =
KSPROBE_STREAMWRITE |
KSPROBE_ALLOCATEMDL |
KSPROBE_PROBEANDLOCK |
KSPROBE_ALLOWFORMATCHANGE;
ULONG HeaderSize=0; // prefixbug 17392
ULONG ExtraSize=0; // prefixbug 17391
#if DBG
PMDL CurrentMdl;
#endif
PVOID pMemPtrArray = NULL;
PAGED_CODE();
//
// if we are flushing, we must error any I/O during this period.
//
if (StreamObject->InFlush) {
DebugPrint((DebugLevelError,
"'StreamDispatchIOControl: Aborting IRP during flush!"));
TRAP;
return (STATUS_DEVICE_NOT_READY);
} // if flushing
Irp->IoStatus.Information = 0;
#if DBG
DeviceExtension->NumberOfRequests++;
#endif
if (IrpStack->Parameters.DeviceIoControl.OutputBufferLength) {
//
// get the size of the header and the expansion from the minidriver.
//
HeaderSize = StreamObject->HwStreamObject.StreamHeaderMediaSpecific +
sizeof(KSSTREAM_HEADER);
ExtraSize = StreamObject->HwStreamObject.StreamHeaderWorkspace;
//
// we assumed this was a write. do additional processing if a read.
//
if (Command == SRB_READ_DATA) {
Flags =
KSPROBE_STREAMREAD | KSPROBE_ALLOCATEMDL | KSPROBE_PROBEANDLOCK;
//
// this is a read, so set the information field in the irp to
// copy back the headers when the I/O is complete.
//
Irp->IoStatus.Information =
IrpStack->Parameters.DeviceIoControl.OutputBufferLength;
}
//
// lock and probe the buffer
//
DebugPrint((DebugLevelVerbose, "Stream: HeaderSize:%x\n",HeaderSize));
DebugPrint((DebugLevelVerbose, "Stream: sizeof(KSSSTREAM_HEADER):%x\n",sizeof(KSSTREAM_HEADER)));
DebugPrint((DebugLevelVerbose, "Stream: MediaSpecific:%x\n",StreamObject->HwStreamObject.StreamHeaderMediaSpecific));
DebugPrint((DebugLevelVerbose, "Stream: StreamHeader->Size:%x\n",((PKSSTREAM_HEADER)(Irp->UserBuffer))->Size));
if (!NT_SUCCESS(Status =
KsProbeStreamIrp(Irp,
Flags,
HeaderSize))) {
DebugPrint((DebugLevelError, "Stream: ProbeStreamIrp failed!"));
return (Status);
}
if (!ExtraSize) {
OutputBuffer = (PKSSTREAM_HEADER)
Irp->AssociatedIrp.SystemBuffer;
IrpStack->Parameters.Others.Argument4 = NULL;
} else {
TRAP;
if (!NT_SUCCESS(Status = KsAllocateExtraData(Irp,
ExtraSize,
&OutputBuffer))) {
DebugPrint((DebugLevelError, "Stream: AllocExtraData failed!"));
return (Status);
} // if not success
IrpStack->Parameters.Others.Argument4 = OutputBuffer;
}
#if DBG
//
// assert the MDL list.
//
CurrentMdl = Irp->MdlAddress;
while (CurrentMdl) {
CurrentMdl = CurrentMdl->Next;
} // while
#endif
//
// calculate the # of buffers.
//
NumberOfBuffers = IrpStack->Parameters.
DeviceIoControl.OutputBufferLength / HeaderSize;
//
// do addtional processing on the data buffers.
//
if (StreamObject->HwStreamObject.Dma) { // an optimization
SCProcessDmaDataBuffers(OutputBuffer,
NumberOfBuffers,
StreamObject,
Irp->MdlAddress,
&NumberOfPages,
HeaderSize + ExtraSize,
(BOOLEAN) (Command == SRB_WRITE_DATA));
}
//
// if number of pages is > than the max supported, return error.
// Allow
// for one extra map register for the SRB extension.
//
// GUBGUB - This is really a workitem to make it correct.
// need to break up requests that have too many elements.
//
if (NumberOfPages > (DeviceExtension->NumberOfMapRegisters - 1)) {
return (STATUS_INSUFFICIENT_RESOURCES);
}
} // if BufferSize
//
// build an SRB and alloc workspace for the request. Allocate
// scatter/gather space also if needed.
//
Request = SCBuildRequestPacket(DeviceExtension,
Irp,
NumberOfPages * sizeof(KSSCATTER_GATHER),
NumberOfBuffers * sizeof(PVOID));
if (Request == NULL) {
return (STATUS_INSUFFICIENT_RESOURCES);
}
//
// do more addtional processing on the data buffers.
//
if (StreamObject->HwStreamObject.Pio) { // a small optimization
Request->bMemPtrValid = SCProcessPioDataBuffers(OutputBuffer,
NumberOfBuffers,
StreamObject,
Irp->MdlAddress,
HeaderSize + ExtraSize,
Request->pMemPtrArray,
(BOOLEAN) (Command == SRB_WRITE_DATA));
}
//
// set # of physical pages
//
Request->HwSRB.NumberOfPhysicalPages = NumberOfPages;
//
// set # of data buffers
//
Request->HwSRB.NumberOfBuffers = NumberOfBuffers;
//
// set the command code in the packet.
//
Request->HwSRB.Command = Command;
//
// set the input and output buffers
//
Request->HwSRB.CommandData.DataBufferArray = OutputBuffer;
Request->HwSRB.HwDeviceExtension = DeviceExtension->HwDeviceExtension;
Request->Callback = SCProcessCompletedDataRequest;
Request->HwSRB.StreamObject = &StreamObject->HwStreamObject;
Request->StreamHeaderSize = HeaderSize + ExtraSize;
Request->DoNotCallBack = FALSE;
Request->HwSRB.Flags |= (SRB_HW_FLAGS_DATA_TRANSFER
| SRB_HW_FLAGS_STREAM_REQUEST);
ASSERT_FILTER_INSTANCE( StreamObject->FilterInstance );
Request->HwSRB.HwInstanceExtension =
StreamObject->FilterInstance->HwInstanceExtension;
//
// point the IRP workspace to the request
// packet
//
Irp->Tail.Overlay.DriverContext[0] = Request;
IoMarkIrpPending(Irp);
// ASSERT((IoGetCurrentIrpStackLocation(Irp)->MajorFunction ==
// IOCTL_KS_READ_STREAM) ||
// (IoGetCurrentIrpStackLocation(Irp)->MajorFunction ==
// IOCTL_KS_WRITE_STREAM));
ASSERT((ULONG_PTR) Irp->Tail.Overlay.DriverContext[0] > 0x40000000);
return (SCIssueRequestToDevice(DeviceExtension,
StreamObject,
Request,
StreamObject->HwStreamObject.ReceiveDataPacket,
&StreamObject->DataPendingQueue,
Irp));
}
VOID
SCErrorDataSRB(
IN PHW_STREAM_REQUEST_BLOCK SRB
)
/*++
Routine Description:
Dummy routine invoked when a data request is received for non-data
receiving stream.
Arguments:
SRB- address of STREAM request block
Return Value:
None.
--*/
{
//
// just call the SRB back with error
//
SRB->Status = STATUS_NOT_SUPPORTED;
StreamClassStreamNotification(StreamRequestComplete,
SRB->StreamObject);
StreamClassStreamNotification(ReadyForNextStreamDataRequest,
SRB->StreamObject);
} // SCErrorDataSRB
NTSTATUS
SCIssueRequestToDevice(
IN PDEVICE_EXTENSION DeviceExtension,
IN OPTIONAL PSTREAM_OBJECT StreamObject,
PSTREAM_REQUEST_BLOCK Request,
IN PVOID MinidriverRoutine,
IN PLIST_ENTRY Queue,
IN PIRP Irp
)
/*++
Routine Description:
This routine calls the minidriver's request vector with a request.
Both data and non-data requests are handled by this routine. The routine
either synchronizes the call or not, based on the NoSync boolean.
Arguments:
DeviceExtension - pointer to device extension
StreamObject - optional pointer to stream object
MinidriverRoutine - request routine to call with the request
Queue - queue upon which to enqueue the request
Irp - pointer to IRP
Return Value:
Status
--*/
{
KIRQL irql;
KeAcquireSpinLock(&DeviceExtension->SpinLock, &irql);
if (DeviceExtension->NoSync) {
//
// place the request on the
// outstanding queue and call it down
// immediately
//
ASSERT((DeviceExtension->BeginMinidriverCallin == SCBeginSynchronizedMinidriverCallin) ||
(DeviceExtension->BeginMinidriverCallin == SCBeginUnsynchronizedMinidriverCallin));
Request->Flags |= SRB_FLAGS_IS_ACTIVE;
InsertHeadList(
&DeviceExtension->OutstandingQueue,
&Request->SRBListEntry);
IoSetCancelRoutine(Irp, StreamClassCancelOutstandingIrp);
KeReleaseSpinLock(&DeviceExtension->SpinLock, irql);
if ((StreamObject) && (StreamObject->HwStreamObject.Dma) &&
(Request->HwSRB.Flags & SRB_HW_FLAGS_DATA_TRANSFER)) {
//
// allocate the adapter channel. call cannot fail as the only
// time it would is when there aren't enough map registers, and
// we've already checked for that condition. Block waiting til
// it's allocated.
//
KIRQL oldIrql;
KeInitializeEvent(&Request->DmaEvent, SynchronizationEvent, FALSE);
ASSERT( PASSIVE_LEVEL == KeGetCurrentIrql());
KeRaiseIrql( DISPATCH_LEVEL, &oldIrql );
SCSetUpForDMA(DeviceExtension->DeviceObject,
Request);
KeLowerIrql( oldIrql );
KeWaitForSingleObject(&Request->DmaEvent, Executive, KernelMode, FALSE, NULL);
}
// this could open a race window. It should be protected in spinlock.
//Request->Flags |= SRB_FLAGS_IS_ACTIVE;
((PHW_RECEIVE_STREAM_CONTROL_SRB) (MinidriverRoutine))
(&Request->HwSRB);
} else {
//
// insert the item on the queue
//
InsertHeadList(
Queue,
&Irp->Tail.Overlay.ListEntry);
//
// set the cancel routine to pending
//
IoSetCancelRoutine(Irp, StreamClassCancelPendingIrp);
//
// check to see if the IRP is already cancelled.
//
if (Irp->Cancel) {
//
// the IRP is cancelled. Make sure that the cancel routine
// will be called.
//
if (IoSetCancelRoutine(Irp, NULL)) {
//
// wow, the cancel routine will not be invoked.
// dequeue the request ourselves and complete
// with cancelled status.
RemoveEntryList(&Request->SRBListEntry);
KeReleaseSpinLock(&DeviceExtension->SpinLock, irql);
//
// free the SRB and MDL
//
IoFreeMdl(Request->Mdl);
ExFreePool(Request);
return (STATUS_CANCELLED);
} else { // if we must cancel
KeReleaseSpinLock(&DeviceExtension->SpinLock, irql);
} // if we must cancel
return (STATUS_PENDING);
} // if cancelled
KeReleaseSpinLockFromDpcLevel(&DeviceExtension->SpinLock);
//
// call the DPC routine directly. GUBGUB questionable performance improvement chance
// BGP - is this really
// faster than scheduling it?
//
StreamClassDpc(NULL, DeviceExtension->DeviceObject, Irp, StreamObject);
KeLowerIrql(irql);
}
return (STATUS_PENDING);
}
BOOLEAN
SCCheckFilterInstanceStreamsForIrp(
IN PFILTER_INSTANCE FilterInstance,
IN PIRP Irp
)
/*++
Routine Description:
This routine checks all filter instance streams for the specified IRP.
Arguments:
FilterInstance - pointer to the filter instance
Irp - pointer to the IRP.
Return Value:
TRUE if the IRP is found.
--*/
{
PSTREAM_OBJECT StreamObject;
PLIST_ENTRY StreamListEntry,
StreamObjectEntry;
StreamListEntry = StreamObjectEntry = &FilterInstance->FirstStream;
while (StreamObjectEntry->Flink != StreamListEntry) {
StreamObjectEntry = StreamObjectEntry->Flink;
//
// follow the link to the stream
// object
//
StreamObject = CONTAINING_RECORD(StreamObjectEntry,
STREAM_OBJECT,
NextStream);
if (SCCheckRequestsForIrp(
&StreamObject->DataPendingQueue, Irp, TRUE, StreamObject->DeviceExtension)) {
return (TRUE);
}
if (SCCheckRequestsForIrp(
&StreamObject->ControlPendingQueue, Irp, TRUE, StreamObject->DeviceExtension)) {
return (TRUE);
}
}
return (FALSE);
} // SCCheckFilterInstanceStreamsForIrp
BOOLEAN
SCCheckRequestsForIrp(
IN PLIST_ENTRY ListEntry,
IN PIRP Irp,
IN BOOLEAN IsIrpQueue,
IN PDEVICE_EXTENSION DeviceExtension
)
/*++
Routine Description:
This routine checks all requests on a queue for the specified IRP.
If the IRP parameter is NULL, the first IRP on the queue is cancelled.
Arguments:
ListEntry - list to check for the IRP
Irp - pointer to the IRP or NULL to cancel the first IRP.
IsIrpQueue - TRUE indicates an IRP queue, FALSE indicates an SRB queue
DeviceExtension - pointer to the device extension
Return Value:
TRUE if the IRP is found or if we cancel it.
--*/
{
PLIST_ENTRY IrpEntry = ListEntry;
PIRP CurrentIrp;
while (IrpEntry->Flink != ListEntry) {
IrpEntry = IrpEntry->Flink;
ASSERT(IrpEntry);
ASSERT(IrpEntry->Flink);
ASSERT(IrpEntry->Blink);
//
// follow the link to the IRP
//
if (IsIrpQueue) {
CurrentIrp = CONTAINING_RECORD(IrpEntry,
IRP,
Tail.Overlay.ListEntry);
} else {
CurrentIrp = ((PSTREAM_REQUEST_BLOCK) (CONTAINING_RECORD(IrpEntry,
STREAM_REQUEST_BLOCK,
SRBListEntry)))->HwSRB.Irp;
}
//
// this routine is used to cancel irp's if IRP is null.
//
if ((!Irp) && (!CurrentIrp->Cancel)) {
//
// The IRP has not been previously cancelled, so cancel it after
// releasing the spinlock to avoid deadlock with the cancel
// routine.
//
KeReleaseSpinLockFromDpcLevel(&DeviceExtension->SpinLock);
//
// This code is suspicious that the CurrentIrp is not protected, i.e.
// it could be processed and freed from other thread. However, we
// are not never called with (!Irp). Therefore, we should never
// come in executing this piece of code. here is the analysis.
// 1. We are called from
// a. SCCheckFilterInstanceStreamIrp()
// b. SCCancelOutstandingIrp()
// c. StreamClassCancelPendingIrp()
// 2. Further inspection shows that a. SCCheckFilterInstanceStreamForIrp() is
// only called by StreamClassCancelPendingIrp() which always has non-null Irp.
// 3. SCCancelOutstandingIrp() is called by
// a. StreamClassCancelPendingIrp() which always has non-NULL irp.
// b. StreamClassCancelOutstandingIrp() which always has non-NULL irp.
// The concusion is that we are never called with null irp. Therefore, this
// piece code is never executed. But this driver has been thru win2k extenteded
// test cycle. I rather be conservative. Add an Assertion instead of removing
// the code for now.
//
ASSERT( 0 );
IoCancelIrp(CurrentIrp);
KeAcquireSpinLockAtDpcLevel(&DeviceExtension->SpinLock);
return (TRUE);
}
if (Irp == CurrentIrp) {
return (TRUE);
}
} // while list entry
return (FALSE);
} // SCCheckRequestsForIrp
VOID
SCNotifyMinidriverCancel(
IN PSTREAM_REQUEST_BLOCK SRB
)
/*++
Routine Description:
Synchronized routine to notify minidriver that an IRP has been canceled
Arguments:
SRB - pointer to SRB that has been canceled.
Return Value:
none
--*/
{
PDEVICE_EXTENSION DeviceExtension =
(PDEVICE_EXTENSION) SRB->HwSRB.HwDeviceExtension - 1;
//
// if the active flag is still set in the SRB, the minidriver still
// has it so call him to abort it.
//
if (SRB->Flags & SRB_FLAGS_IS_ACTIVE) {
//
// call the minidriver with the SRB.
//
(DeviceExtension->MinidriverData->HwInitData.HwCancelPacket)
(&SRB->HwSRB);
}
return;
}
VOID
SCCancelOutstandingIrp(
IN PDEVICE_EXTENSION DeviceExtension,
IN PIRP Irp
)
/*++
Routine Description:
Routine to notify minidriver that an IRP has been canceled. Device
spinlock NUST be taken before this routine is called.
Arguments:
DeviceExtension - pointer to device extension
Irp - pointer to the IRP.
Return Value:
none
--*/
{
PSTREAM_REQUEST_BLOCK Srb;
//
// just return if the request is not on
// our queue.
//
if ((!IsListEmpty(&DeviceExtension->OutstandingQueue)) &&
(SCCheckRequestsForIrp(
&DeviceExtension->OutstandingQueue, Irp, FALSE, DeviceExtension))) {
//
// the request is sitting on our
// outstanding queue. call the
// minidriver
// via a synchronize routine to
// cancel it.
//
Srb = Irp->Tail.Overlay.DriverContext[0];
#if DBG
if (Srb->HwSRB.StreamObject) {
DebugPrint((DebugLevelWarning, "'SCCancelOutstanding: canceling, Irp = %x, Srb = %x, S# = %x\n",
Irp, Srb, Srb->HwSRB.StreamObject->StreamNumber));
} else {
DebugPrint((DebugLevelWarning, "'SCCancelOutstanding: canceling nonstream, Irp = %x\n",
Irp));
} // if SO
#endif
if (DeviceExtension->NoSync) {
//
// we need to ensure that the SRB memory is valid for the async
// minidriver, EVEN if it happens to call back the request just
// before we call it to cancel it! This is done for two
// reasons:
// it obviates the need for the minidriver to walk its request
// queues to find the request, and I failed to pass the dev ext
// pointer to the minidriver in the below call, which means that
// the SRB HAS to be valid, and it's too late to change the API.
//
// Oh, well. Spinlock is now taken (by caller).
//
if (!(Srb->Flags & SRB_FLAGS_IS_ACTIVE)) {
return;
}
Srb->DoNotCallBack = TRUE;
//
// release the spinlock temporarily since we need to call the
// minidriver. The caller won't be affected by this.
//
KeReleaseSpinLockFromDpcLevel(&DeviceExtension->SpinLock);
(DeviceExtension->MinidriverData->HwInitData.HwCancelPacket)
(&Srb->HwSRB);
//
// reacquire the spinlock since the caller will release it
//
KeAcquireSpinLockAtDpcLevel(&DeviceExtension->SpinLock);
Srb->DoNotCallBack = FALSE;
//
// if the ACTIVE flag is now clear, it indicates that the
// SRB was completed during the above call into the minidriver.
// since we blocked the internal completion of the request,
// we must call it back ourselves in this case.
//
if (!(Srb->Flags & SRB_FLAGS_IS_ACTIVE)) {
KeReleaseSpinLockFromDpcLevel(&DeviceExtension->SpinLock);
(Srb->Callback) (Srb);
KeAcquireSpinLockAtDpcLevel(&DeviceExtension->SpinLock);
} // if ! active
} else {
DeviceExtension->SynchronizeExecution(
DeviceExtension->InterruptObject,
(PVOID) SCNotifyMinidriverCancel,
Srb);
} // if nosync
} // if on our queue
return;
}
NTSTATUS
SCMinidriverDevicePropertyHandler(
IN SRB_COMMAND Command,
IN PIRP Irp,
IN PKSPROPERTY Property,
IN OUT PVOID PropertyInfo
)
/*++
Routine Description:
Process get/set property to the device.
Arguments:
Command - either GET or SET property
Irp - pointer to the IRP
Property - pointer to the property structure
PropertyInfo - buffer for property information
Return Value:
NTSTATUS returned as appropriate.
--*/
{
PIO_STACK_LOCATION IrpStack;
PDEVICE_EXTENSION DeviceExtension;
PFILTER_INSTANCE FilterInstance;
PSTREAM_PROPERTY_DESCRIPTOR PropDescriptor;
NTSTATUS Status;
BOOLEAN RequestIssued;
PAGED_CODE();
IrpStack = IoGetCurrentIrpStackLocation(Irp);
DeviceExtension = (PDEVICE_EXTENSION)
(IrpStack->DeviceObject)->DeviceExtension;
FilterInstance = IrpStack->FileObject->FsContext;
PropDescriptor = ExAllocatePool(NonPagedPool,
sizeof(STREAM_PROPERTY_DESCRIPTOR));
if (PropDescriptor == NULL) {
DebugPrint((DebugLevelError,
"SCDevicePropHandler: No pool for descriptor"));
return (STATUS_INSUFFICIENT_RESOURCES);
}
//
// compute the index of the property set.
//
// this value is calculated by subtracting the base property set
// pointer from the requested property set pointer.
//
// The requested property set is pointed to by Context[0] by
// KsPropertyHandler.
//
PropDescriptor->PropertySetID = (ULONG)
((ULONG_PTR) Irp->Tail.Overlay.DriverContext[0] -
IFN_MF( (ULONG_PTR) DeviceExtension->DevicePropertiesArray)
IF_MF( (ULONG_PTR) FilterInstance->DevicePropertiesArray)
)/ sizeof(KSPROPERTY_SET);
PropDescriptor->Property = Property;
PropDescriptor->PropertyInfo = PropertyInfo;
PropDescriptor->PropertyInputSize =
IrpStack->Parameters.DeviceIoControl.InputBufferLength;
PropDescriptor->PropertyOutputSize =
IrpStack->Parameters.DeviceIoControl.OutputBufferLength;
//
// send a get or set property SRB to the device.
//
Status = SCSubmitRequest(Command,
PropDescriptor,
0,
SCProcessCompletedPropertyRequest,
DeviceExtension,
FilterInstance->HwInstanceExtension,
NULL,
Irp,
&RequestIssued,
&DeviceExtension->PendingQueue,
(PVOID) DeviceExtension->
MinidriverData->HwInitData.
HwReceivePacket
);
if (!RequestIssued) {
ExFreePool(PropDescriptor);
}
return (Status);
}
NTSTATUS
SCMinidriverStreamPropertyHandler(
IN SRB_COMMAND Command,
IN PIRP Irp,
IN PKSPROPERTY Property,
IN OUT PVOID PropertyInfo
)
/*++
Routine Description:
Process get or set property to the device.
Arguments:
Command - either GET or SET property
Irp - pointer to the IRP
Property - pointer to the property structure
PropertyInfo - buffer for property information
Return Value:
None.
--*/
{
PIO_STACK_LOCATION IrpStack;
PDEVICE_EXTENSION DeviceExtension;
PSTREAM_OBJECT StreamObject;
PSTREAM_PROPERTY_DESCRIPTOR PropDescriptor;
NTSTATUS Status;
BOOLEAN RequestIssued;
PAGED_CODE();
IrpStack = IoGetCurrentIrpStackLocation(Irp);
DeviceExtension = (PDEVICE_EXTENSION)
(IrpStack->DeviceObject)->DeviceExtension;
StreamObject = IrpStack->FileObject->FsContext;
PropDescriptor = ExAllocatePool(NonPagedPool,
sizeof(STREAM_PROPERTY_DESCRIPTOR));
if (PropDescriptor == NULL) {
DebugPrint((DebugLevelError,
"SCDevicePropHandler: No pool for descriptor"));
return (STATUS_INSUFFICIENT_RESOURCES);
}
//
// compute the index of the property set.
//
// this value is calculated by subtracting the base property set
// pointer from the requested property set pointer.
//
// The requested property set is pointed to by Context[0] by
// KsPropertyHandler.
//
PropDescriptor->PropertySetID = (ULONG)
((ULONG_PTR) Irp->Tail.Overlay.DriverContext[0] -
(ULONG_PTR) StreamObject->PropertyInfo)
/ sizeof(KSPROPERTY_SET);
PropDescriptor->Property = Property;
PropDescriptor->PropertyInfo = PropertyInfo;
PropDescriptor->PropertyInputSize =
IrpStack->Parameters.DeviceIoControl.InputBufferLength;
PropDescriptor->PropertyOutputSize =
IrpStack->Parameters.DeviceIoControl.OutputBufferLength;
//
// send a get or set property SRB to the stream.
//
Status = SCSubmitRequest(Command,
PropDescriptor,
0,
SCProcessCompletedPropertyRequest,
DeviceExtension,
StreamObject->FilterInstance->HwInstanceExtension,
&StreamObject->HwStreamObject,
Irp,
&RequestIssued,
&StreamObject->ControlPendingQueue,
(PVOID) StreamObject->HwStreamObject.
ReceiveControlPacket
);
if (!RequestIssued) {
ExFreePool(PropDescriptor);
}
return (Status);
}
NTSTATUS
SCProcessCompletedPropertyRequest(
IN PSTREAM_REQUEST_BLOCK SRB
)
/*++
Routine Description:
This routine processes a property request which has completed.
Arguments:
SRB- address of completed STREAM request block
Return Value:
None.
--*/
{
PAGED_CODE();
//
// free the prop info structure and
// complete the request
//
ExFreePool(SRB->HwSRB.CommandData.PropertyInfo);
//
// set the information field from the SRB
// transferlength field
//
SRB->HwSRB.Irp->IoStatus.Information = SRB->HwSRB.ActualBytesTransferred;
return (SCDequeueAndDeleteSrb(SRB));
}
VOID
SCUpdateMinidriverProperties(
IN ULONG NumProps,
IN PKSPROPERTY_SET MinidriverProps,
IN BOOLEAN Stream
)
/*++
Routine Description:
Process get property to the device.
Arguments:
NumProps - number of properties to process
MinidriverProps - pointer to the array of properties to process
Stream - TRUE indicates we are processing a set for the stream
Return Value:
None.
--*/
{
PKSPROPERTY_ITEM CurrentPropId;
PKSPROPERTY_SET CurrentProp;
ULONG i,
j;
PAGED_CODE();
//
// walk the minidriver's property info to fill in the dispatch
// vectors as appropriate.
//
CurrentProp = MinidriverProps;
for (i = 0; i < NumProps; i++) {
CurrentPropId = (PKSPROPERTY_ITEM) CurrentProp->PropertyItem;
for (j = 0; j < CurrentProp->PropertiesCount; j++) {
//
// if support handler is supported, send it to the "get" handler
//
if (CurrentPropId->SupportHandler) {
if (Stream) {
CurrentPropId->SupportHandler = StreamClassMinidriverStreamGetProperty;
} else {
CurrentPropId->SupportHandler = StreamClassMinidriverDeviceGetProperty;
} // if stream
}
//
// if get prop routine is
// supported, add our vector.
//
if (CurrentPropId->GetPropertyHandler) {
if (Stream) {
CurrentPropId->GetPropertyHandler = StreamClassMinidriverStreamGetProperty;
} else {
CurrentPropId->GetPropertyHandler = StreamClassMinidriverDeviceGetProperty;
} // if stream
} // if get supported
//
// if get prop routine is
// supported, add our vector.
//
if (CurrentPropId->SetPropertyHandler) {
if (Stream) {
CurrentPropId->SetPropertyHandler = StreamClassMinidriverStreamSetProperty;
} else {
CurrentPropId->SetPropertyHandler = StreamClassMinidriverDeviceSetProperty;
} // if stream
}
//
// index to next property item in
// array
//
CurrentPropId++;
} // for number of property items
//
// index to next property set in
// array
//
CurrentProp++;
} // for number of property sets
}
VOID
SCUpdateMinidriverEvents(
IN ULONG NumEvents,
IN PKSEVENT_SET MinidriverEvents,
IN BOOLEAN Stream
)
/*++
Routine Description:
Process get property to the device.
Arguments:
NumEvents - number of event sets to process
MinidriverEvents - pointer to the array of properties to process
Stream - TRUE indicates we are processing a set for the stream
Return Value:
None.
--*/
{
PKSEVENT_ITEM CurrentEventId;
PKSEVENT_SET CurrentEvent;
ULONG i,
j;
PAGED_CODE();
//
// walk the minidriver's event info to fill in the dispatch
// vectors as appropriate.
//
CurrentEvent = MinidriverEvents;
for (i = 0; i < NumEvents; i++) {
CurrentEventId = (PKSEVENT_ITEM) CurrentEvent->EventItem;
for (j = 0; j < CurrentEvent->EventsCount; j++) {
if (Stream) {
//
// set up the add and remove handlers for the stream.
// GUBGUB - Still not see justifications.
// don't support IsSupported currently, until
// a good justification of it is made.
//
CurrentEventId->AddHandler = StreamClassEnableEventHandler;
CurrentEventId->RemoveHandler = StreamClassDisableEventHandler;
} else {
//
// set up the add and remove handlers for the device.
// GUBGUB - still not see justifications
// - don't support IsSupported currently, until
// a good justification of it is made.
//
CurrentEventId->AddHandler = StreamClassEnableDeviceEventHandler;
CurrentEventId->RemoveHandler = StreamClassDisableDeviceEventHandler;
} // if stream
//
// index to next property item in
// array
//
CurrentEventId++;
} // for number of event items
//
// index to next event set in array
//
CurrentEvent++;
} // for number of event sets
}
VOID
SCReadRegistryValues(IN PDEVICE_EXTENSION DeviceExtension,
IN PDEVICE_OBJECT PhysicalDeviceObject
)
/*++
Routine Description:
Reads all registry values for the device
Arguments:
DeviceExtension - pointer to the device extension
PhysicalDeviceObject - pointer to the PDO
Return Value:
None.
--*/
{
ULONG i;
NTSTATUS Status;
HANDLE handle;
ULONG DataBuffer;
PAGED_CODE();
Status = IoOpenDeviceRegistryKey(PhysicalDeviceObject,
PLUGPLAY_REGKEY_DRIVER,
STANDARD_RIGHTS_ALL,
&handle);
//
// loop through our table of strings,
// reading the registry for each.
//
if (NT_SUCCESS(Status)) {
for (i = 0; i < SIZEOF_ARRAY(RegistrySettings); i++) {
//
// read the registry value and set
// the flag if the setting is true.
//
//
// Need to init each time besides
// we only obtain one byte in the DataBuffer
//
DataBuffer = 0;
Status = SCGetRegistryValue(handle,
RegistrySettings[i].String,
RegistrySettings[i].StringLength,
&DataBuffer,
1);
DebugPrint((DebugLevelInfo,
"Reg Key %S value %x\n",
RegistrySettings[i].String,
(BYTE)DataBuffer));
if ((NT_SUCCESS(Status)) && DataBuffer) {
//
// setting is true, so or in the
// appropriate flag
//
DeviceExtension->RegistryFlags |= RegistrySettings[i].Flags;
} // if true
} // while strings
DebugPrint((DebugLevelInfo,"====DeviceObject %x DeviceExtenion %x has RegFlags %x\n",
DeviceExtension->DeviceObject,
DeviceExtension,
DeviceExtension->RegistryFlags ));
//
// close the registry handle.
//
ZwClose(handle);
} // status = success
}
NTSTATUS
SCGetRegistryValue(
IN HANDLE Handle,
IN PWCHAR KeyNameString,
IN ULONG KeyNameStringLength,
IN PVOID Data,
IN ULONG DataLength
)
/*++
Routine Description:
Reads the specified registry value
Arguments:
Handle - handle to the registry key
KeyNameString - value to read
KeyNameStringLength - length of string
Data - buffer to read data into
DataLength - length of data buffer
Return Value:
NTSTATUS returned as appropriate
--*/
{
NTSTATUS Status = STATUS_INSUFFICIENT_RESOURCES;
UNICODE_STRING KeyName;
ULONG Length;
PKEY_VALUE_FULL_INFORMATION FullInfo;
PAGED_CODE();
RtlInitUnicodeString(&KeyName, KeyNameString);
Length = sizeof(KEY_VALUE_FULL_INFORMATION) +
KeyNameStringLength + DataLength;
FullInfo = ExAllocatePool(PagedPool, Length);
if (FullInfo) {
Status = ZwQueryValueKey(Handle,
&KeyName,
KeyValueFullInformation,
FullInfo,
Length,
&Length);
if (NT_SUCCESS(Status)) {
if (DataLength >= FullInfo->DataLength) {
RtlCopyMemory(Data, ((PUCHAR) FullInfo) + FullInfo->DataOffset, FullInfo->DataLength);
} else {
Status = STATUS_BUFFER_TOO_SMALL;
} // buffer right length
} // if success
ExFreePool(FullInfo);
} // if fullinfo
return Status;
}
NTSTATUS
SCReferenceSwEnumDriver(
IN PDEVICE_EXTENSION DeviceExtension,
IN BOOLEAN Reference // AddRef or DeRef
)
/*++
Routine Description:
This routine shows one more reference to the minidriver, and pages
in the minidriver if the count was zero
Arguments:
DeviceExtension - pointer to device extension
Return Value:
none.
--*/
{
NTSTATUS Status;
KEVENT Event;
IO_STATUS_BLOCK IoStatusBlock;
PIRP Irp;
PIO_STACK_LOCATION IrpStackNext;
PBUS_INTERFACE_REFERENCE BusInterface;
PMINIDRIVER_INFORMATION MinidriverInfo = DeviceExtension->DriverInfo;
PAGED_CODE();
BusInterface = ExAllocatePool(NonPagedPool,
sizeof(BUS_INTERFACE_REFERENCE));
if (BusInterface == NULL)
{
return STATUS_INSUFFICIENT_RESOURCES;
}
//
// There is no file object associated with this Irp, so the event may be located
// on the stack as a non-object manager object.
//
KeInitializeEvent(&Event, SynchronizationEvent, FALSE);
Irp = IoBuildSynchronousFsdRequest(IRP_MJ_PNP,
DeviceExtension->AttachedPdo,
NULL,
0,
NULL,
&Event,
&IoStatusBlock);
if (Irp != NULL)
{
Irp->RequestorMode = KernelMode;
Irp->IoStatus.Status = STATUS_NOT_SUPPORTED;
IrpStackNext = IoGetNextIrpStackLocation(Irp);
//
// Create an interface query out of the Irp.
//
IrpStackNext->MinorFunction = IRP_MN_QUERY_INTERFACE;
IrpStackNext->Parameters.QueryInterface.InterfaceType = (GUID*)&REFERENCE_BUS_INTERFACE;
IrpStackNext->Parameters.QueryInterface.Size = sizeof(BUS_INTERFACE_REFERENCE);
IrpStackNext->Parameters.QueryInterface.Version = BUS_INTERFACE_REFERENCE_VERSION;
IrpStackNext->Parameters.QueryInterface.Interface = (PINTERFACE)BusInterface;
IrpStackNext->Parameters.QueryInterface.InterfaceSpecificData = NULL;
Status = IoCallDriver(DeviceExtension->AttachedPdo, Irp);
if (Status == STATUS_PENDING)
{
//
// This waits using KernelMode, so that the stack, and therefore the
// event on that stack, is not paged out.
//
KeWaitForSingleObject(&Event, Executive, KernelMode, FALSE, NULL);
Status = IoStatusBlock.Status;
}
}
else
{
Status = STATUS_INSUFFICIENT_RESOURCES;
}
if (Status == STATUS_SUCCESS)
{
if (Reference)
BusInterface->ReferenceDeviceObject(BusInterface->Interface.Context);
else
BusInterface->DereferenceDeviceObject(BusInterface->Interface.Context);
}
ExFreePool(BusInterface);
return Status;
}
VOID
SCDereferenceDriver(
IN PDEVICE_EXTENSION DeviceExtension
)
/*++
Routine Description:
This routine shows one fewer reference to the minidriver, and pages
out the minidriver if the count goes to zero
Arguments:
DeviceExtension - pointer to device extension
Return Value:
none.
--*/
{
PMINIDRIVER_INFORMATION MinidriverInfo;
PDEVICE_EXTENSION CurrentDeviceExtension;
BOOLEAN RequestIssued,
DontPage = FALSE;
KEVENT Event;
IO_STATUS_BLOCK IoStatusBlock;
PIRP Irp;
PDEVICE_OBJECT DeviceObject;
NTSTATUS Status;
PAGED_CODE();
//
// if the driver said it was a SWENUM driver, dereference it.
//
if (DeviceExtension->RegistryFlags & DRIVER_USES_SWENUM_TO_LOAD)
{
SCReferenceSwEnumDriver(DeviceExtension,FALSE);
}
MinidriverInfo = IoGetDriverObjectExtension(DeviceExtension->DeviceObject->DriverObject,
(PVOID) StreamClassPnP);
DebugPrint(( DebugLevelVerbose,
"DerefernceDriver %x Count %x DriverFlags=%x\n",
DeviceExtension->DeviceObject->DriverObject,
MinidriverInfo->UseCount, MinidriverInfo->Flags));
if (!(MinidriverInfo->Flags & DRIVER_FLAGS_NO_PAGEOUT)) {
KeWaitForSingleObject(&MinidriverInfo->ControlEvent,
Executive,
KernelMode,
FALSE, // not alertable
NULL);
//
// dec the refcount and see if we can page out.
//
DebugPrint(( DebugLevelVerbose,
"DerefernceDriver CountDown\n"));
ASSERT((LONG) MinidriverInfo->UseCount > 0);
if (!(--MinidriverInfo->UseCount)) {
//
// page out the minidriver after alerting it that we are going to.
// PNP is supposed to be serialized, so there should be
// no need to protect this list. I'm worried about this, tho.
// need to research.
// My unstderstanding is that PnP is serialized.
//
// This is by-design, not a bug.
// This code assumes that the minidriver will bind only
// with the stream class. this needs to be doc'ed in the spec
// that only single binders will be able to use autopage.
//
//
// find the first device object chained to the driver object.
//
DeviceObject = DeviceExtension->DeviceObject->DriverObject->DeviceObject;
while (DeviceObject) {
CurrentDeviceExtension = DeviceObject->DeviceExtension;
DebugPrint((DebugLevelVerbose,
"DerefernceDriver Checking Device=%x\n",
DeviceObject));
//
// if the device is not started, don't call the minidriver
// also don't process a child device
//
if ((CurrentDeviceExtension->Flags & DEVICE_FLAGS_PNP_STARTED) &&
(!(CurrentDeviceExtension->Flags & DEVICE_FLAGS_CHILD))) {
KeInitializeEvent(&Event, NotificationEvent, FALSE);
//
// allocate IRP for issuing the pageout. Since this IRP
// should not really be referenced, use dummy IOCTL code.
// I chose this one since it will always fail in the KS
// property handler if someone is silly enough to try to
// process it. Also make the irp internal i/o control.
//
// IoVerifier.c test code does not check IrpStack bound like
// the formal production code. And the owner does not want to
// fix it. It's more productive just work around here.
//Irp = IoBuildDeviceIoControlRequest(
// IOCTL_KS_PROPERTY,
// DeviceObject,
// NULL,
// 0,
// NULL,
// 0,
// TRUE,
// &Event,
// &IoStatusBlock);
Irp = IoAllocateIrp(DeviceObject->StackSize, FALSE);
if (!Irp) {
//
// could not allocate IRP. don't page out.
//
DontPage = TRUE;
break;
}
else {
PIO_STACK_LOCATION NextStack;
//
// This is a dummy Irp, the MJ/MN are arbitrary
//
NextStack = IoGetNextIrpStackLocation(Irp);
ASSERT(NextStack != NULL);
NextStack->MajorFunction = IRP_MJ_PNP;
NextStack->MinorFunction = IRP_MN_CANCEL_STOP_DEVICE;
Irp->UserIosb = &IoStatusBlock;
Irp->UserEvent = &Event;
}
//
// show one more I/O pending on the device.
//
DebugPrint((DebugLevelVerbose,
"Sending SRB_PAGING_OUT_DRIVER to Device=%x\n",
DeviceObject));
InterlockedIncrement(&CurrentDeviceExtension->OneBasedIoCount);
Status = SCSubmitRequest(SRB_PAGING_OUT_DRIVER,
(PVOID) NULL,
0,
SCProcessCompletedRequest,
CurrentDeviceExtension,
NULL,
NULL,
Irp,
&RequestIssued,
&CurrentDeviceExtension->PendingQueue,
(PVOID) CurrentDeviceExtension->
MinidriverData->HwInitData.
HwReceivePacket
);
if (!RequestIssued) {
//
// could not issue SRB. complete IRP and don't page
// out.
//
DontPage = TRUE;
SCCompleteIrp(Irp, Status, CurrentDeviceExtension);
break;
} // if ! requestissued
//
// check status. note that we do not check for pending,
// since the above call is sync and won't return til the
// request is complete.
//
if (!NT_SUCCESS(Status)) {
//
// if the minidriver did not OK the pageout, don't
// page
// out.
//
DontPage = TRUE;
break;
} // if !success
} // if started
DeviceObject = DeviceObject->NextDevice;
} // while deviceobject
//
// if we were able to alert each device controlled by the driver
// that a pageout is emminent, page the driver out.
//
if (!DontPage) {
DebugPrint((DebugLevelVerbose,
"mmPageEntireDriver %x\n",
DeviceExtension->DeviceObject->DriverObject));
MinidriverInfo->Flags |= DRIVER_FLAGS_PAGED_OUT;
MmPageEntireDriver(MinidriverInfo->HwInitData.HwReceivePacket);
} // if ! dontpage
} // if !usecount
//
// release the control event.
//
KeSetEvent(&MinidriverInfo->ControlEvent, IO_NO_INCREMENT, FALSE);
} // if pageable
}
VOID
SCReferenceDriver(
IN PDEVICE_EXTENSION DeviceExtension
)
/*++
Routine Description:
This routine shows one more reference to the minidriver, and pages
in the minidriver if the count was zero
Arguments:
DeviceExtension - pointer to device extension
Return Value:
none.
--*/
{
PMINIDRIVER_INFORMATION MinidriverInfo = DeviceExtension->DriverInfo;
PAGED_CODE();
//
// if the driver said it was a SWENUM driver, reference it.
//
if (DeviceExtension->RegistryFlags & DRIVER_USES_SWENUM_TO_LOAD)
{
SCReferenceSwEnumDriver(DeviceExtension,TRUE);
}
DebugPrint(( DebugLevelVerbose,
"ReferenceDriver %x Count %x DriverFlags=%x\n",
DeviceExtension->DeviceObject->DriverObject,
MinidriverInfo->UseCount, MinidriverInfo->Flags));
if (!(MinidriverInfo->Flags & DRIVER_FLAGS_NO_PAGEOUT)) {
KeWaitForSingleObject(&MinidriverInfo->ControlEvent,
Executive,
KernelMode,
FALSE, // not alertable
NULL);
DebugPrint(( DebugLevelVerbose,
"RefernceDriver Countup\n"));
//
// inc the refcount and see if we
// need to page in.
//
ASSERT((LONG) MinidriverInfo->UseCount >= 0);
if (!(MinidriverInfo->UseCount++)) {
//
// page in the minidriver
//
MmResetDriverPaging(MinidriverInfo->HwInitData.HwReceivePacket);
MinidriverInfo->Flags &= ~(DRIVER_FLAGS_PAGED_OUT);
} // if !usecount
KeSetEvent(&MinidriverInfo->ControlEvent, IO_NO_INCREMENT, FALSE);
} // if pageable
}
VOID
SCInsertStreamInFilter(
IN PSTREAM_OBJECT StreamObject,
IN PDEVICE_EXTENSION DeviceExtension
)
/*++
Routine Description:
Inserts a new stream in the stream queue on the filter instance
Arguments:
StreamObject = pointer to stream object
Return Value:
none.
--*/
{
KIRQL Irql;
//
// insert the stream object in the filter
// instance list
//
KeAcquireSpinLock(&DeviceExtension->SpinLock, &Irql);
InsertHeadList(&((PFILTER_INSTANCE) (StreamObject->FilterInstance))->
FirstStream,
&StreamObject->NextStream);
KeReleaseSpinLock(&DeviceExtension->SpinLock, Irql);
return;
}
VOID
SCInsertFiltersInDevice(
IN PFILTER_INSTANCE FilterInstance,
IN PDEVICE_EXTENSION DeviceExtension
)
/*++
Routine Description:
Inserts a new filter in the device list at DPC level
Arguments:
Return Value:
none.
--*/
{
KIRQL Irql;
//
// insert the filter instance in the global list
//
KeAcquireSpinLock(&DeviceExtension->SpinLock, &Irql);
InsertHeadList(
&DeviceExtension->FilterInstanceList,
&FilterInstance->NextFilterInstance);
KeReleaseSpinLock(&DeviceExtension->SpinLock, Irql);
}
VOID
SCInterlockedRemoveEntryList(
PDEVICE_EXTENSION DeviceExtension,
PLIST_ENTRY List
)
/*++
Routine Description:
Removes the specified entry under spinlock
Arguments:
Return Value:
none.
--*/
{
KIRQL Irql;
KeAcquireSpinLock(&DeviceExtension->SpinLock, &Irql);
RemoveEntryList(List);
KeReleaseSpinLock(&DeviceExtension->SpinLock, Irql);
}
VOID
SCProcessTimerRequest(
IN PCOMMON_OBJECT CommonObject,
IN PINTERRUPT_DATA SavedInterruptData
)
/*++
Routine Description:
This routine handles a minidriver request to either set or clear a timer
Arguments:
CommonObject - pointer to common object
SavedInterruptData - captured interrupt data
Return Value:
none.
--*/
{
LARGE_INTEGER timeValue;
CommonObject->HwTimerRoutine =
SavedInterruptData->HwTimerRoutine;
CommonObject->HwTimerContext =
SavedInterruptData->HwTimerContext;
//
// The minidriver wants a timer request.
// If the requested timer value is zero,
// then cancel the timer.
//
if (SavedInterruptData->HwTimerValue == 0) {
KeCancelTimer(&CommonObject->MiniDriverTimer);
} else {
//
// Convert the timer value from
// microseconds to a negative
// 100
// nanoseconds.
//
// timeValue.QuadPart = Int32x32To64(
// SavedInterruptData->HwTimerValue,
// -10);
timeValue.LowPart = SavedInterruptData->HwTimerValue * -10;
timeValue.HighPart = -1;
//
// Set the timer.
//
KeSetTimer(&CommonObject->MiniDriverTimer,
timeValue,
&CommonObject->MiniDriverTimerDpc);
}
}
VOID
SCProcessPriorityChangeRequest(
IN PCOMMON_OBJECT CommonObject,
IN PINTERRUPT_DATA SavedInterruptData,
IN PDEVICE_EXTENSION DeviceExtension
)
/*++
Routine Description:
Routine handles priority change requests from the minidriver
Arguments:
CommonObject - pointer to common object
SavedInterruptData - captured interrupt data
DeviceExtension - pointer to device extension
Return Value:
none.
--*/
{
#if DBG
PDEBUG_WORK_ITEM DbgWorkItemStruct;
#endif
if (SavedInterruptData->HwPriorityLevel == Dispatch) {
DebugPrint((DebugLevelVerbose, "'SCDpc: Dispatch priority callout\n"));
//
// Acquire the device spinlock so
// nothing else starts.
//
KeAcquireSpinLockAtDpcLevel(&DeviceExtension->SpinLock);
//
// call the minidriver at dispatch
// level.
//
SavedInterruptData->HwPriorityRoutine(SavedInterruptData->HwPriorityContext);
if ((CommonObject->InterruptData.Flags &
INTERRUPT_FLAGS_PRIORITY_CHANGE_REQUEST)
&&
(CommonObject->InterruptData.HwPriorityLevel == High)) {
DebugPrint((DebugLevelVerbose, "'SCDpc: High priority callout\n"));
//
// if the minidriver now wants a high priority callback,
// do so now. This is safe since we have the device
// spinlock and the minidriver cannot make
// another priority request for this stream while one is
// requested.
//
CommonObject->InterruptData.Flags &=
~(INTERRUPT_FLAGS_PRIORITY_CHANGE_REQUEST);
DeviceExtension->SynchronizeExecution(
DeviceExtension->InterruptObject,
(PVOID) CommonObject->InterruptData.HwPriorityRoutine,
CommonObject->InterruptData.HwPriorityContext);
} // if high requested
KeReleaseSpinLockFromDpcLevel(&DeviceExtension->SpinLock);
} else if (SavedInterruptData->HwPriorityLevel == Low) {
#if DBG
//
// make sure that the minidriver is not misusing this function.
//
if (DeviceExtension->NumberOfRequests > 0xFFFFFFF0) {
DeviceExtension->Flags |= DEVICE_FLAGS_PRI_WARN_GIVEN;
}
if ((++DeviceExtension->NumberOfLowPriCalls > 100) &&
((DeviceExtension->NumberOfLowPriCalls) >
DeviceExtension->NumberOfRequests / 4) &&
(!(DeviceExtension->Flags & DEVICE_FLAGS_PRI_WARN_GIVEN))) {
DeviceExtension->Flags |= DEVICE_FLAGS_PRI_WARN_GIVEN;
DebugPrint((DebugLevelFatal, "Stream Class has determined that a minidriver is scheduling\n"));
DebugPrint((DebugLevelFatal, "a low priority callback for more than 25 percent of the requests\n"));
DebugPrint((DebugLevelFatal, "it has received. This driver should probably be setting the\n"));
DebugPrint((DebugLevelFatal, "TurnOffSynchronization boolean and doing its own synchronization.\n"));
DebugPrint((DebugLevelFatal, "Please open a bug against the dev owner of this minidriver.\n"));
DebugPrint((DebugLevelFatal, "Do an LN of %x to determine the name of the minidriver.\n", SavedInterruptData->HwPriorityRoutine));
TRAP;
} // if bad pri
if (CommonObject->InterruptData.Flags &
INTERRUPT_FLAGS_PRIORITY_CHANGE_REQUEST) {
DebugPrint((DebugLevelFatal, "Stream Minidriver scheduled priority twice!\n"));
ASSERT(1 == 0);
} // if scheduled twice
DbgWorkItemStruct = ExAllocatePool(NonPagedPool, sizeof(DEBUG_WORK_ITEM));
// DebugPrint((DebugLevelFatal, "A %x\n", DbgWorkItemStruct));
if (DbgWorkItemStruct) {
DbgWorkItemStruct->HwPriorityRoutine = SavedInterruptData->HwPriorityRoutine;
DbgWorkItemStruct->HwPriorityContext = SavedInterruptData->HwPriorityContext;
DbgWorkItemStruct->Object = CommonObject;
ExInitializeWorkItem(&CommonObject->WorkItem,
SCDebugPriorityWorkItem,
DbgWorkItemStruct);
} else {
ExInitializeWorkItem(&CommonObject->WorkItem,
SavedInterruptData->HwPriorityRoutine,
SavedInterruptData->HwPriorityContext);
}
#else
ExInitializeWorkItem(&CommonObject->WorkItem,
SavedInterruptData->HwPriorityRoutine,
SavedInterruptData->HwPriorityContext);
#endif
ExQueueWorkItem(&CommonObject->WorkItem,
DelayedWorkQueue);
} // if priority
}
VOID
SCBeginSynchronizedMinidriverCallin(
IN PDEVICE_EXTENSION DeviceExtension,
IN PKIRQL Irql)
/*++
Routine Description:
This routine handles begin processing of a synchronized minidriver callin
Arguments:
DeviceExtension - pointer to the device extension
Irql - POINTER to a KIRQL structure
Return Value:
none.
--*/
{
return;
}
VOID
SCBeginUnsynchronizedMinidriverCallin(
IN PDEVICE_EXTENSION DeviceExtension,
IN PKIRQL Irql)
/*++
Routine Description:
This routine handles begin processing of an unsynchronized minidriver callin
Arguments:
DeviceExtension - pointer to the device extension
Irql - POINTER to a KIRQL structure
Return Value:
none.
--*/
{
KeAcquireSpinLock(&DeviceExtension->SpinLock, Irql);
\
return;
}
VOID
SCEndSynchronizedMinidriverStreamCallin(
IN PSTREAM_OBJECT StreamObject,
IN PKIRQL Irql)
/*++
Routine Description:
This routine handles end processing of a synchronized minidriver
stream callin
Arguments:
DeviceExtension - pointer to the device extension
Irql - POINTER to a KIRQL structure
Return Value:
none.
--*/
{
SCRequestDpcForStream(StreamObject);
return;
}
VOID
SCEndSynchronizedMinidriverDeviceCallin(
IN PDEVICE_EXTENSION DeviceExtension,
IN PKIRQL Irql)
/*++
Routine Description:
This routine handles end processing of a synchronized minidriver
device callin
Arguments:
DeviceExtension - pointer to the device extension
Irql - POINTER to a KIRQL structure
Return Value:
none.
--*/
{
DeviceExtension->ComObj.InterruptData.Flags |= INTERRUPT_FLAGS_NOTIFICATION_REQUIRED;
return;
}
VOID
SCEndUnsynchronizedMinidriverDeviceCallin(
IN PDEVICE_EXTENSION DeviceExtension,
IN PKIRQL Irql)
/*++
Routine Description:
This routine handles end processing of an unsynchronized minidriver
device callin
Arguments:
DeviceExtension - pointer to the device extension
Irql - POINTER to a KIRQL structure
Return Value:
none.
--*/
{
KeReleaseSpinLockFromDpcLevel(&DeviceExtension->SpinLock);
DeviceExtension->ComObj.InterruptData.Flags |= INTERRUPT_FLAGS_NOTIFICATION_REQUIRED;
StreamClassDpc(NULL,
DeviceExtension->DeviceObject,
NULL,
NULL);
KeLowerIrql(*Irql);
return;
}
VOID
SCEndUnsynchronizedMinidriverStreamCallin(
IN PSTREAM_OBJECT StreamObject,
IN PKIRQL Irql)
/*++
Routine Description:
This routine handles end processing of an unsynchronized minidriver
stream callin
Arguments:
DeviceExtension - pointer to the device extension
Irql - POINTER to a KIRQL structure
Return Value:
none.
--*/
{
KeReleaseSpinLockFromDpcLevel(&StreamObject->DeviceExtension->SpinLock);
SCRequestDpcForStream(StreamObject);
StreamClassDpc(NULL,
StreamObject->DeviceExtension->DeviceObject,
NULL,
StreamObject);
KeLowerIrql(*Irql);
return;
}
VOID
SCCheckPoweredUp(
IN PDEVICE_EXTENSION DeviceExtension
)
/*++
Routine Description:
This routine powers up the HW if necessary
Arguments:
DeviceExtension - pointer to the device extension
Return Value:
none.
--*/
{
NTSTATUS Status;
POWER_STATE PowerState;
POWER_CONTEXT PowerContext;
PAGED_CODE();
//
// check to see if we are powered down
//
if (DeviceExtension->RegistryFlags & DEVICE_REG_FL_POWER_DOWN_CLOSED) {
while (DeviceExtension->CurrentPowerState != PowerDeviceD0) {
//
// release the event to avoid deadlocks with the power up code.
//
KeSetEvent(&DeviceExtension->ControlEvent, IO_NO_INCREMENT, FALSE);
//
// tell the power manager to power up the device.
//
PowerState.DeviceState = PowerDeviceD0;
//
// now send down a set power based on this info.
//
KeInitializeEvent(&PowerContext.Event, NotificationEvent, FALSE);
Status = PoRequestPowerIrp(DeviceExtension->PhysicalDeviceObject,
IRP_MN_SET_POWER,
PowerState,
SCBustedSynchPowerCompletionRoutine,
&PowerContext,
NULL);
if (Status == STATUS_PENDING) {
//
// wait for the IRP to complete
//
KeWaitForSingleObject(
&PowerContext.Event,
Suspended,
KernelMode,
FALSE,
NULL);
}
//
// reacquire the event and loop if good status. The only reason
// we would get a good status here is if the HW powered up, but
// some
// policy maker instantly powered it down again. This should
// never
// happen more than once, but if it does this thread could be
// stuck.
//
KeWaitForSingleObject(&DeviceExtension->ControlEvent,
Executive,
KernelMode,
FALSE, // not alertable
NULL);
if (!NT_SUCCESS(PowerContext.Status)) {
//
// if we could not power up, go ahead and let the request go
// through. The worst that will happen is that the request
// will fail at the HW level.
//
break;
}
}
} // if power down when closed
return;
}
VOID
SCCheckPowerDown(
IN PDEVICE_EXTENSION DeviceExtension
)
/*++
Routine Description:
This routine powers down the hardware if possible
Arguments:
DeviceExtension - pointer to the device extension
Return Value:
none.
--*/
{
NTSTATUS Status;
POWER_STATE PowerState;
POWER_CONTEXT PowerContext;
PAGED_CODE();
//
// only power down if there are not open files
//
if (DeviceExtension->RegistryFlags & DEVICE_REG_FL_POWER_DOWN_CLOSED) {
if (!DeviceExtension->NumberOfOpenInstances) {
//
// release the event to avoid deadlocks with the power up code.
//
KeSetEvent(&DeviceExtension->ControlEvent, IO_NO_INCREMENT, FALSE);
//
// tell the power manager to power down the device.
//
PowerState.DeviceState = PowerDeviceD3;
//
// now send down a set power based on this info.
//
KeInitializeEvent(&PowerContext.Event, NotificationEvent, FALSE);
Status = PoRequestPowerIrp(DeviceExtension->PhysicalDeviceObject,
IRP_MN_SET_POWER,
PowerState,
SCBustedSynchPowerCompletionRoutine,
&PowerContext,
NULL);
if (Status == STATUS_PENDING) {
//
// wait for the IRP to complete
//
KeWaitForSingleObject(
&PowerContext.Event,
Suspended,
KernelMode,
FALSE,
NULL);
}
//
// reacquire the event.
//
KeWaitForSingleObject(&DeviceExtension->ControlEvent,
Executive,
KernelMode,
FALSE, // not alertable
NULL);
}
} // if power down closed
return;
}
VOID
SCWaitForOutstandingIo(
IN PDEVICE_EXTENSION DeviceExtension
)
/*++
Routine Description:
This routine decs the one based I/O counter and blocks until the counter
goes to zero.
Arguments:
DeviceExtension - pointer to the device extension
Return Value:
none.
--*/
{
KIRQL Irql;
KeAcquireSpinLock(&DeviceExtension->SpinLock, &Irql);
DeviceExtension->Flags |= DEVICE_FLAGS_DEVICE_INACCESSIBLE;
KeReleaseSpinLock(&DeviceExtension->SpinLock, Irql);
if (InterlockedDecrement(&DeviceExtension->OneBasedIoCount)) {
#ifdef wecandothis
PFILTER_INSTANCE FilterInstance;
KIRQL Irql;
PLIST_ENTRY FilterEntry,
FilterListEntry;
//
// there is I/O outstanding. Cancel all outstanding IRP's.
//
KeAcquireSpinLock(&DeviceExtension->SpinLock, &Irql);
checkfilters:
FilterInstance = DeviceExtension->GlobalFilterInstance;
if (FilterInstance) {
if (SCCheckFilterInstanceStreamsForIrp(FilterInstance, NULL)) {
DebugPrint((DebugLevelWarning, "'SCCancelPending: found Irp on global instance\n"));
//
// we found one. jump back to loop back through since the
// spinlock
// had to be released and reaquired to cancel the irp.
//
goto checkfilters;
}
}
FilterListEntry = FilterEntry = &DeviceExtension->FilterInstanceList;
while (FilterEntry->Flink != FilterListEntry->Blink) {
FilterEntry = FilterEntry->Flink;
//
// follow the link to the instance
//
FilterInstance = CONTAINING_RECORD(FilterListEntry,
FILTER_INSTANCE,
NextFilterInstance);
//
// process the streams on this list
//
if (SCCheckFilterInstanceStreamsForIrp(FilterInstance, NULL)) {
//
// we found one. jump back to loop back through since the
// spinlock
// had to be released and reaquired to cancel the irp.
//
goto checkfilters;
}
//
// get the list entry for this instance
//
FilterListEntry = &FilterInstance->NextFilterInstance;
}
//
// now process any requests on the device itself
//
while (SCCheckRequestsForIrp(
&DeviceExtension->OutstandingQueue, NULL, TRUE, DeviceExtension)) {
}
KeReleaseSpinLock(&DeviceExtension->SpinLock, Irql);
#endif
//
// Block on the removal event which is signaled as the last I/O
// completes.
//
KeWaitForSingleObject(&DeviceExtension->RemoveEvent,
Executive,
KernelMode,
FALSE, // not alertable
NULL);
}
//
// restore the counter to 1-based, since we've now assured that all
// I/O to the device has completed.
//
InterlockedIncrement(&DeviceExtension->OneBasedIoCount);
return;
}
NTSTATUS
SCShowIoPending(
IN PDEVICE_EXTENSION DeviceExtension,
IN PIRP Irp
)
/*++
Routine Description:
This routine shows that one more I/O is outstanding, or errors the I/O
if the device is inaccessible.
Arguments:
DeviceExtension - pointer to device extension
Irp - pointer to IRP
Return Value:
TRUE if I/O can be submitted.
--*/
{
PAGED_CODE();
//
// assume that the device is accessible and show one more request.
// if it's not accessible, we'll show one less. do it in this order
// to prevent a race where the inaccessible flag has been set, but the
// the i/o count has not been dec'd yet.
//
InterlockedIncrement(&DeviceExtension->OneBasedIoCount);
if (DeviceExtension->Flags & DEVICE_FLAGS_DEVICE_INACCESSIBLE) {
NTSTATUS Status = STATUS_INVALID_DEVICE_REQUEST;
InterlockedDecrement(&DeviceExtension->OneBasedIoCount);
Irp->IoStatus.Status = STATUS_INVALID_DEVICE_REQUEST;
IoCompleteRequest(Irp, IO_NO_INCREMENT);
return (Status);
}
return (STATUS_SUCCESS);
}
NTSTATUS
SCCallNextDriver(
IN PDEVICE_EXTENSION DeviceExtension,
IN PIRP Irp
)
/*++
Routine Description:
Arguments:
DeviceExtension - pointer to device extension
Irp - pointer to IRP
Return Value:
none.
--*/
{
KEVENT Event;
PIO_STACK_LOCATION IrpStack,
NextStack;
NTSTATUS Status;
PAGED_CODE();
if ( NULL == DeviceExtension->AttachedPdo ) {
//
// DO has been detached, return success directly.
//
return STATUS_SUCCESS;
}
IrpStack = IoGetCurrentIrpStackLocation(Irp);
NextStack = IoGetNextIrpStackLocation(Irp);
ASSERT(NextStack != NULL);
RtlCopyMemory(NextStack, IrpStack, sizeof(IO_STACK_LOCATION));
KeInitializeEvent(&Event, SynchronizationEvent, FALSE);
IoSetCompletionRoutine(Irp,
SCSynchCompletionRoutine,
&Event,
TRUE,
TRUE,
TRUE);
if ( IRP_MJ_POWER != IrpStack->MajorFunction ) {
Status = IoCallDriver(DeviceExtension->AttachedPdo, Irp);
} else {
//
// power Irp, use PoCallDriver()
//
Status = PoCallDriver( DeviceExtension->AttachedPdo, Irp );
}
if (Status == STATUS_PENDING) {
KeWaitForSingleObject(&Event, Executive, KernelMode, FALSE, NULL);
Status = Irp->IoStatus.Status;
}
return (Status);
}
VOID
SCMinidriverTimeFunction(
IN PHW_TIME_CONTEXT TimeContext
)
/*++
Routine Description:
Arguments:
Return Value:
Notes:
--*/
{
PDEVICE_EXTENSION DeviceExtension =
(PDEVICE_EXTENSION) TimeContext->HwDeviceExtension - 1;
KIRQL Irql;
PSTREAM_OBJECT StreamObject = CONTAINING_RECORD(
TimeContext->HwStreamObject,
STREAM_OBJECT,
HwStreamObject);
//
// call the minidriver to process the time function
//
KeAcquireSpinLock(&DeviceExtension->SpinLock, &Irql);
DeviceExtension->SynchronizeExecution(
DeviceExtension->InterruptObject,
(PVOID) StreamObject->
HwStreamObject.HwClockObject.HwClockFunction,
TimeContext);
KeReleaseSpinLock(&DeviceExtension->SpinLock, Irql);
}
ULONGLONG
SCGetStreamTime(
IN PFILE_OBJECT FileObject
)
/*++
Routine Description:
Arguments:
Return Value:
Notes:
--*/
{
HW_TIME_CONTEXT TimeContext;
PCLOCK_INSTANCE ClockInstance = (PCLOCK_INSTANCE) FileObject->FsContext;
TimeContext.HwStreamObject = &ClockInstance->StreamObject->HwStreamObject;
TimeContext.HwDeviceExtension = ClockInstance->StreamObject->
DeviceExtension->HwDeviceExtension;
TimeContext.Function = TIME_GET_STREAM_TIME;
SCMinidriverTimeFunction(&TimeContext);
return (TimeContext.Time);
}
ULONGLONG FASTCALL
SCGetPhysicalTime(
IN PFILE_OBJECT FileObject
)
/*++
Routine Description:
Arguments:
Return Value:
Notes:
--*/
{
HW_TIME_CONTEXT TimeContext;
PCLOCK_INSTANCE ClockInstance = (PCLOCK_INSTANCE) FileObject->FsContext;
TimeContext.HwStreamObject = &ClockInstance->StreamObject->HwStreamObject;
TimeContext.HwDeviceExtension = ClockInstance->StreamObject->
DeviceExtension->HwDeviceExtension;
TimeContext.Function = TIME_READ_ONBOARD_CLOCK;
SCMinidriverTimeFunction(&TimeContext);
return (TimeContext.Time);
}
ULONGLONG FASTCALL
SCGetSynchronizedTime(
IN PFILE_OBJECT FileObject,
IN PULONGLONG SystemTime
)
/*++
Routine Description:
Arguments:
Return Value:
Notes:
--*/
{
HW_TIME_CONTEXT TimeContext;
PCLOCK_INSTANCE ClockInstance = (PCLOCK_INSTANCE) FileObject->FsContext;
TimeContext.HwStreamObject = &ClockInstance->StreamObject->HwStreamObject;
TimeContext.HwDeviceExtension = ClockInstance->StreamObject->
DeviceExtension->HwDeviceExtension;
TimeContext.Function = TIME_GET_STREAM_TIME;
SCMinidriverTimeFunction(&TimeContext);
*SystemTime = TimeContext.SystemTime;
return (TimeContext.Time);
}
NTSTATUS
SCSendUnknownCommand(
IN PIRP Irp,
IN PDEVICE_EXTENSION DeviceExtension,
IN PVOID Callback,
OUT PBOOLEAN RequestIssued
)
/*++
Routine Description:
Arguments:
Irp - pointer to the IRP
Return Value:
NTSTATUS returned as appropriate.
--*/
{
PAGED_CODE();
//
// send an UNKNOWN_COMMAND SRB to the minidriver.
//
return (SCSubmitRequest(SRB_UNKNOWN_DEVICE_COMMAND,
NULL,
0,
Callback,
DeviceExtension,
NULL,
NULL,
Irp,
RequestIssued,
&DeviceExtension->PendingQueue,
(PVOID) DeviceExtension->
MinidriverData->HwInitData.
HwReceivePacket
));
}
BOOLEAN
SCMapMemoryAddress(PACCESS_RANGE AccessRanges,
PHYSICAL_ADDRESS TranslatedAddress,
PPORT_CONFIGURATION_INFORMATION ConfigInfo,
PDEVICE_EXTENSION DeviceExtension,
PCM_RESOURCE_LIST ResourceList,
PCM_PARTIAL_RESOURCE_DESCRIPTOR PartialResourceDescriptor)
/*++
Routine Description:
Arguments:
Return Value:
None.
--*/
{
PMAPPED_ADDRESS newMappedAddress;
PAGED_CODE();
//
// Now we need to map a linear address to the physical
// address that HalTranslateBusAddress provided us.
//
//
// set the access range in the structure.
//
AccessRanges->RangeLength = PartialResourceDescriptor->u.Memory.Length;
AccessRanges->RangeInMemory = TRUE;
AccessRanges->RangeStart.QuadPart = (ULONG_PTR) MmMapIoSpace(
TranslatedAddress,
AccessRanges->RangeLength,
FALSE // No caching
);
if (AccessRanges->RangeStart.QuadPart == 0) {
//
// Couldn't translate the resources, return an error
// status
//
DebugPrint((DebugLevelFatal, "StreamClassPnP: Couldn't translate Memory Slot Resources\n"));
return FALSE;
}
//
// Allocate memory to store mapped address for unmap.
//
newMappedAddress = ExAllocatePool(NonPagedPool,
sizeof(MAPPED_ADDRESS));
//
// save a link to the resources if the alloc succeeded.
// if it failed, don't worry about it.
//
if (newMappedAddress != NULL) {
//
// Store mapped address, bytes count, etc.
//
newMappedAddress->MappedAddress = (PVOID)
AccessRanges->RangeStart.QuadPart;
newMappedAddress->NumberOfBytes =
AccessRanges->RangeLength;
newMappedAddress->IoAddress =
PartialResourceDescriptor->u.Memory.Start;
newMappedAddress->BusNumber =
ConfigInfo->SystemIoBusNumber;
//
// Link current list to new entry.
//
newMappedAddress->NextMappedAddress =
DeviceExtension->MappedAddressList;
//
// Point anchor at new list.
//
DeviceExtension->MappedAddressList = newMappedAddress;
} // if newmappedaddress
return TRUE;
}
VOID
SCUpdatePersistedProperties(IN PSTREAM_OBJECT StreamObject,
IN PDEVICE_EXTENSION DeviceExtension,
IN PFILE_OBJECT FileObject
)
/*++
Routine Description:
Arguments:
Return Value:
None.
--*/
{
NTSTATUS Status;
HANDLE handle;
CHAR AsciiKeyName[32];
ANSI_STRING AnsiKeyName;
UNICODE_STRING UnicodeKeyName;
PAGED_CODE();
Status = IoOpenDeviceRegistryKey(DeviceExtension->PhysicalDeviceObject,
PLUGPLAY_REGKEY_DRIVER,
STANDARD_RIGHTS_ALL,
&handle);
//
// loop through our table of strings,
// reading the registry for each.
//
if (NT_SUCCESS(Status)) {
//
// create the subkey for the pin, in the form of "Pin0\Properties",
// etc.
//
sprintf(AsciiKeyName, "Pin%d\\Properties", StreamObject->HwStreamObject.StreamNumber);
RtlInitAnsiString(&AnsiKeyName, AsciiKeyName);
if (NT_SUCCESS(RtlAnsiStringToUnicodeString(&UnicodeKeyName,
&AnsiKeyName, TRUE))) {
//
// call KS to unserialize the properties.
//
KsUnserializeObjectPropertiesFromRegistry(FileObject,
handle,
&UnicodeKeyName);
//
// free the unicode string
//
RtlFreeUnicodeString(&UnicodeKeyName);
} // if rtl..
//
// close the registry handle.
//
ZwClose(handle);
} // status = success
}
NTSTATUS
SCQueryCapabilities(
IN PDEVICE_OBJECT PdoDeviceObject,
IN PDEVICE_CAPABILITIES DeviceCapabilities
)
/*++
Routine Description:
This routine reads the capabilities of our parent.
Arguments:
DeviceObject - "Real" physical device object
Return Value:
None.
--*/
{
PIO_STACK_LOCATION NextStack;
PIRP Irp;
NTSTATUS Status;
KEVENT Event;
PAGED_CODE();
//
// allocate an IRP for the call.
//
Irp = IoAllocateIrp(PdoDeviceObject->StackSize, FALSE);
if (!Irp) {
return STATUS_INSUFFICIENT_RESOURCES;
}
NextStack = IoGetNextIrpStackLocation(Irp);
ASSERT(NextStack != NULL);
NextStack->MajorFunction = IRP_MJ_PNP;
NextStack->MinorFunction = IRP_MN_QUERY_CAPABILITIES;
//
// Initialize the capabilities that we will send down
//
RtlZeroMemory(DeviceCapabilities, sizeof(DEVICE_CAPABILITIES) );
DeviceCapabilities->Size = sizeof(DEVICE_CAPABILITIES);
DeviceCapabilities->Version = 1;
DeviceCapabilities->Address = -1;
DeviceCapabilities->UINumber = -1;
KeInitializeEvent(&Event, NotificationEvent, FALSE);
IoSetCompletionRoutine(Irp,
SCSynchCompletionRoutine,
&Event,
TRUE,
TRUE,
TRUE);
NextStack->Parameters.DeviceCapabilities.Capabilities = DeviceCapabilities;
DebugPrint((DebugLevelInfo,
"Capabilities Version %x Flags %x\n",
(ULONG)DeviceCapabilities->Version,
*(UNALIGNED ULONG*)(&DeviceCapabilities->Version+1)));
Irp->IoStatus.Status = STATUS_NOT_SUPPORTED; // bug #282910
Status = IoCallDriver(PdoDeviceObject,
Irp);
if (Status == STATUS_PENDING) {
//
// block waiting for completion
//
KeWaitForSingleObject(
&Event,
Suspended,
KernelMode,
FALSE,
NULL);
}
//
// obtain final status and free IRP.
//
Status = Irp->IoStatus.Status;
IoFreeIrp(Irp);
return (Status);
}
NTSTATUS
SCEnableEventSynchronized(
IN PVOID ServiceContext
)
/*++
Routine Description:
This routine inserts the new event on the queue, and calls the minidriver
with the event.
Arguments:
ServiceContext - Supplies a pointer to the interrupt context which contains
pointers to the interrupt data and where to save it.
Return Value:
Returns TRUE if there is new work and FALSE otherwise.
Notes:
Called via KeSynchronizeExecution with the port device extension spinlock
held.
--*/
{
PHW_EVENT_DESCRIPTOR Event = ServiceContext;
NTSTATUS Status = STATUS_SUCCESS;
PSTREAM_OBJECT StreamObject = CONTAINING_RECORD(
Event->StreamObject,
STREAM_OBJECT,
HwStreamObject);
PDEVICE_EXTENSION DeviceExtension = StreamObject->DeviceExtension;
//
// insert the event on our list, in case the minidriver decides to signal
// from within this call.
//
InsertHeadList(&StreamObject->NotifyList,
&Event->EventEntry->ListEntry);
//
// call the minidriver's event routine, if present.
//
if (StreamObject->HwStreamObject.HwEventRoutine) {
Status = StreamObject->HwStreamObject.HwEventRoutine(Event);
} // if eventroutine
if (!NT_SUCCESS(Status)) {
//
// minidriver did not like it. remove the entry from the list.
//
DebugPrint((DebugLevelError, "StreamEnableEvent: minidriver failed enable!\n"));
RemoveEntryList(&Event->EventEntry->ListEntry);
}
return (Status);
}
NTSTATUS
SCEnableDeviceEventSynchronized(
IN PVOID ServiceContext
)
/*++
Routine Description:
This routine inserts the new event on the queue, and calls the minidriver
with the event.
Arguments:
ServiceContext - Supplies a pointer to the interrupt context which contains
pointers to the interrupt data and where to save it.
Return Value:
Returns TRUE if there is new work and FALSE otherwise.
Notes:
--*/
{
PHW_EVENT_DESCRIPTOR Event = ServiceContext;
NTSTATUS Status = STATUS_SUCCESS;
PDEVICE_EXTENSION DeviceExtension = (PDEVICE_EXTENSION)Event->DeviceExtension - 1;
IF_MF( PFILTER_INSTANCE FilterInstance = (PFILTER_INSTANCE)Event->HwInstanceExtension -1;)
//
// insert the event on our list, in case the minidriver decides to signal
// from within this call.
//
IFN_MF(InsertHeadList(&DeviceExtension->NotifyList,&Event->EventEntry->ListEntry);)
IF_MF(InsertHeadList(&FilterInstance->NotifyList,&Event->EventEntry->ListEntry);)
//
// call the minidriver's event routine, if present.
//
IFN_MF(
if (DeviceExtension->HwEventRoutine) {
Status = DeviceExtension->HwEventRoutine(Event);
} // if eventroutine
)
IF_MF(
if (FilterInstance->HwEventRoutine) {
Status = FilterInstance->HwEventRoutine(Event);
} // if eventroutine
)
if (!NT_SUCCESS(Status)) {
//
// minidriver did not like it. remove the entry from the list.
//
DebugPrint((DebugLevelError, "DeviceEnableEvent: minidriver failed enable!\n"));
RemoveEntryList(&Event->EventEntry->ListEntry);
}
return (Status);
}
VOID
SCFreeDeadEvents(
IN PDEVICE_EXTENSION DeviceExtension
)
/*++
Routine Description:
Free dead events at passive level
Arguments:
DeviceExtension - address of device extension.
Return Value:
None
--*/
{
LIST_ENTRY EventList;
PLIST_ENTRY EventListEntry;
PKSEVENT_ENTRY EventEntry;
KIRQL Irql;
//
// capture the dead list at the appropriate synchronization level.
//
// hack to save code. store the DeviceExtension* in the list entry.
EventList.Flink = (PLIST_ENTRY) DeviceExtension;
KeAcquireSpinLock(&DeviceExtension->SpinLock, &Irql);
DeviceExtension->SynchronizeExecution(
DeviceExtension->InterruptObject,
(PVOID) SCGetDeadListSynchronized,
&EventList);
KeReleaseSpinLock(&DeviceExtension->SpinLock, Irql);
//
// discard each event on the captured list
//
while (!IsListEmpty(&EventList)) {
EventListEntry = RemoveHeadList(&EventList);
EventEntry = CONTAINING_RECORD(EventListEntry,
KSEVENT_ENTRY,
ListEntry);
KsDiscardEvent(EventEntry);
} // while not empty
//
// show event has been run
//
DeviceExtension->DeadEventItemQueued = FALSE;
return;
}
VOID
SCGetDeadListSynchronized(
IN PLIST_ENTRY NewEventList
)
/*++
Routine Description:
Get the list of dead events at the appropriate sync level
Arguments:
NewListEntry - list head to add the event list.
Return Value:
None
--*/
{
PDEVICE_EXTENSION DeviceExtension = (PDEVICE_EXTENSION) NewEventList->Flink;
PLIST_ENTRY ListEntry;
InitializeListHead(NewEventList);
//
// capture the dead list to our temp list head
//
while (!IsListEmpty(&DeviceExtension->DeadEventList)) {
ListEntry = RemoveTailList(&DeviceExtension->DeadEventList);
InsertHeadList(NewEventList,
ListEntry);
} // while dead list not empty
InitializeListHead(&DeviceExtension->DeadEventList);
return;
}
#if SUPPORT_MULTIPLE_FILTER_TYPES
VOID
SCRescanStreams(
IN PDEVICE_EXTENSION DeviceExtension
)
/*++
Routine Description:
Rescan minidriver streams of all filters with the request
Arguments:
DeviceExtension - address of device extension.
Return Value:
None
--*/
{
PHW_STREAM_DESCRIPTOR StreamBuffer;
PDEVICE_OBJECT DeviceObject = DeviceExtension->DeviceObject;
PFILTER_INSTANCE FilterInstance;
BOOLEAN RequestIssued;
KEVENT Event;
NTSTATUS Status;
IO_STATUS_BLOCK IoStatusBlock;
PIRP Irp;
ULONG ul;
PLIST_ENTRY Node;
PAGED_CODE();
TRAP;
DebugPrint((DebugLevelVerbose, "'RescanStreams: enter\n"));
//
// take the control event to avoid race
//
KeWaitForSingleObject(&DeviceExtension->ControlEvent,
Executive,
KernelMode,
FALSE,// not alertable
NULL);
ASSERT( !IsListEmpty( DeviceExtension->FilterInstanceList ));
Node = &DeviceExtension->FilterInstanceList;
while ( Node != Node->Flink ) {
FilterInstance = CONTAINING_RECORD(Node,
FILTER_INSTANCE,
NextFilterInstance);
if ( InterlockedExchange( &FilterInstance->NeedReenumeration, 0)) {
//
// send an SRB to retrieve the stream information
//
ASSERT( FilterInstance->StreamDescriptorSize );
StreamBuffer =
ExAllocatePool(NonPagedPool,
FilterInstance->StreamDescriptorSize);
if (!StreamBuffer) {
DebugPrint((DebugLevelError,
"RescanStreams: couldn't allocate!\n"));
TRAP;
KeSetEvent( &DeviceExtension->ControlEvent,IO_NO_INCREMENT, FALSE);
return;
}
//
// zero-init the buffer
//
RtlZeroMemory(StreamBuffer, ConfigInfo->StreamDescriptorSize);
//
// allocate IRP for issuing the get stream info.
// Since this IRP
// should not really be referenced, use dummy IOCTL code.
// I chose this one since it will always fail in the KS
// property handler if someone is silly enough to try to
// process it. Also make the irp internal i/o control.
//
// IoVerifier.c test code does not check IrpStack bound like
// the formal production code. And the owner does not want to
// fix it. It's more productive just work around here.
//Irp = IoBuildDeviceIoControlRequest(
// IOCTL_KS_PROPERTY,
// DeviceObject,
// NULL,
// 0,
// NULL,
// 0,
// TRUE,
// &Event,
// &IoStatusBlock);
Irp = IoAllocateIrp(DeviceObject->StackSize, FALSE);
if (!Irp) {
//
// could not allocate IRP. fail.
//
ExFreePool( StreamBuffer );
DebugPrint((DebugLevelError, "RescanStreams: couldn't allocate!\n"));
TRAP;
return;
} else {
PIO_STACK_LOCATION NextStack;
//
// This is a dummy Ir, the MJ is arbitrary
//
NextStack = IoGetNextIrpStackLocation(Irp);
ASSERT(NextStack != NULL);
NextStack->MajorFunction = IRP_MJ_PNP;
NextStack->MinorFunction = IRP_MN_CANCEL_STOP_DEVICE;
Irp->UserIosb = &IoStatusBlock;
Irp->UserEvent = &Event;
}
//
// show one more I/O pending on the device.
//
InterlockedIncrement(&DeviceExtension->OneBasedIoCount);
//
// submit the command to retrieve the stream info.
// additional processing will be done by the callback
// procedure.
//
Status = SCSubmitRequest(SRB_GET_STREAM_INFO,
StreamBuffer,
ConfigInfo->StreamDescriptorSize,
SCStreamInfoCallback,
DeviceExtension,
FilterInstance->HwInstanceExtension,
NULL,
Irp,
&RequestIssued,
&DeviceExtension->PendingQueue,
(PVOID) DeviceExtension->
MinidriverData->HwInitData.
HwReceivePacket
);
if (!RequestIssued) {
KeSetEvent( &DeviceExtension->ControlEvent, IO_NO_INCREMENT, FALSE);
ExFreePool(StreamBuffer);
DebugPrint((DebugLevelError, "RescanStreams: couldn't issue request!\n"));
TRAP;
SCCompleteIrp(Irp, Status, DeviceExtension);
return;
}
} // check all filterinstances
//
// processing will continue in callback procedure.
//
return;
}
#else // SUPPORT_MULTIPLE_FILTER_TYPES
VOID
SCRescanStreams(
IN PDEVICE_EXTENSION DeviceExtension
)
/*++
Routine Description:
Rescan minidriver streams
Arguments:
DeviceExtension - address of device extension.
Return Value:
None
--*/
{
PHW_STREAM_DESCRIPTOR StreamBuffer;
PDEVICE_OBJECT DeviceObject = DeviceExtension->DeviceObject;
PPORT_CONFIGURATION_INFORMATION ConfigInfo =
DeviceExtension->ConfigurationInformation;
BOOLEAN RequestIssued;
KEVENT Event;
NTSTATUS Status;
IO_STATUS_BLOCK IoStatusBlock;
PIRP Irp;
PAGED_CODE();
TRAP;
DebugPrint((DebugLevelVerbose, "'RescanStreams: enter\n"));
//
// send an SRB to retrieve the stream information
//
ASSERT(ConfigInfo->StreamDescriptorSize);
StreamBuffer =
ExAllocatePool(NonPagedPool,
ConfigInfo->StreamDescriptorSize
);
if (!StreamBuffer) {
DebugPrint((DebugLevelError, "RescanStreams: couldn't allocate!\n"));
TRAP;
return;
}
//
// take the control event to avoid race
//
KeWaitForSingleObject(&DeviceExtension->ControlEvent,
Executive,
KernelMode,
FALSE,// not alertable
NULL);
//
// zero-init the buffer
//
RtlZeroMemory(StreamBuffer, ConfigInfo->StreamDescriptorSize);
//
// allocate IRP for issuing the get stream info.
// Since this IRP
// should not really be referenced, use dummy IOCTL code.
// I chose this one since it will always fail in the KS
// property handler if someone is silly enough to try to
// process it. Also make the irp internal i/o control.
//
Irp = IoBuildDeviceIoControlRequest(
IOCTL_KS_PROPERTY,
DeviceObject,
NULL,
0,
NULL,
0,
TRUE,
&Event,
&IoStatusBlock);
if (!Irp) {
//
// could not allocate IRP. fail.
//
ExFreePool( StreamBuffer );
DebugPrint((DebugLevelError, "RescanStreams: couldn't allocate!\n"));
TRAP;
return;
} // if ! irp
//
// show one more I/O pending on the device.
//
InterlockedIncrement(&DeviceExtension->OneBasedIoCount);
//
// submit the command to retrieve the stream info.
// additional processing will be done by the callback
// procedure.
//
Status = SCSubmitRequest(SRB_GET_STREAM_INFO,
StreamBuffer,
ConfigInfo->StreamDescriptorSize,
SCStreamInfoCallback,
DeviceExtension,
NULL,
NULL,
Irp,
&RequestIssued,
&DeviceExtension->PendingQueue,
(PVOID) DeviceExtension->
MinidriverData->HwInitData.
HwReceivePacket
);
if (!RequestIssued) {
ExFreePool(StreamBuffer);
DebugPrint((DebugLevelError, "RescanStreams: couldn't issue request!\n"));
TRAP;
SCCompleteIrp(Irp, Status, DeviceExtension);
return;
}
//
// processing will continue in callback procedure.
//
return;
}
#endif // SUPPORT_MULTIPLE_FILTER_TYPES
BOOLEAN
SCCheckIfStreamsRunning(
IN PFILTER_INSTANCE FilterInstance
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
PSTREAM_OBJECT StreamObject;
PLIST_ENTRY StreamListEntry,
StreamObjectEntry;
//
// process the streams on this list
//
StreamListEntry = StreamObjectEntry = &FilterInstance->FirstStream;
while (StreamObjectEntry->Flink != StreamListEntry) {
StreamObjectEntry = StreamObjectEntry->Flink;
//
// follow the link to the stream
// object
//
StreamObject = CONTAINING_RECORD(StreamObjectEntry,
STREAM_OBJECT,
NextStream);
if (StreamObject->CurrentState == KSSTATE_RUN) {
return (TRUE);
} // if running
} // while streams
return (FALSE);
}
VOID
SCCallBackSrb(
IN PSTREAM_REQUEST_BLOCK Srb,
IN PDEVICE_EXTENSION DeviceExtension
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
KIRQL Irql;
if (DeviceExtension->NoSync) {
KeAcquireSpinLock(&DeviceExtension->SpinLock, &Irql);
if (Srb->DoNotCallBack) {
TRAP;
DebugPrint((DebugLevelError, "'ScCallback: NOT calling back request - Irp = %x",
Srb->HwSRB.Irp));
KeReleaseSpinLock(&DeviceExtension->SpinLock, Irql);
return;
} // if NoCallback
KeReleaseSpinLock(&DeviceExtension->SpinLock, Irql);
} // if NoSync
(Srb->Callback) (Srb);
}
#if DBG
VOID
SCDebugPriorityWorkItem(
IN PDEBUG_WORK_ITEM WorkItemStruct
)
/*++
Routine Description:
Arguments:
Return Value:
None
--*/
{
PCOMMON_OBJECT Object = WorkItemStruct->Object;
PHW_PRIORITY_ROUTINE Routine = WorkItemStruct->HwPriorityRoutine;
PVOID Context = WorkItemStruct->HwPriorityContext;
// DebugPrint((DebugLevelFatal, "F %x\n", WorkItemStruct));
ExFreePool(WorkItemStruct);
Object->PriorityWorkItemScheduled = FALSE;
if (Object->InterruptData.Flags &
INTERRUPT_FLAGS_PRIORITY_CHANGE_REQUEST) {
DebugPrint((DebugLevelFatal, "Stream Minidriver scheduled priority twice!\n"));
ASSERT(1 == 0);
} // if scheduled twice
Routine(Context);
if (Object->InterruptData.Flags &
INTERRUPT_FLAGS_PRIORITY_CHANGE_REQUEST) {
DebugPrint((DebugLevelFatal, "Stream Minidriver scheduled priority twice!\n"));
ASSERT(1 == 0);
} // if scheduled twice
}
#endif
PKSPROPERTY_SET
SCCopyMinidriverProperties(
IN ULONG NumProps,
IN PKSPROPERTY_SET MinidriverProps
)
/*++
Routine Description:
Makes a private copy of the minidriver's properties
Arguments:
NumProps - number of properties to process
MinidriverProps - pointer to the array of properties to process
Return Value:
None.
--*/
{
PKSPROPERTY_ITEM CurrentPropItem;
PKSPROPERTY_SET CurrentProp;
ULONG i,
BufferSize;
PVOID NewPropertyBuffer;
#if DBG
ULONG TotalBufferUsed;
#endif
PAGED_CODE();
CurrentProp = MinidriverProps;
BufferSize = NumProps * sizeof(KSPROPERTY_SET);
//
// walk the minidriver's property sets to determine the size of the
// buffer
// needed. Size computed from # of sets from above, + # of items.
//
for (i = 0; i < NumProps; i++) {
BufferSize += CurrentProp->PropertiesCount * sizeof(KSPROPERTY_ITEM);
//
// index to next property set in
// array
//
CurrentProp++;
} // for number of property sets
if (!(NewPropertyBuffer = ExAllocatePool(NonPagedPool, BufferSize))) {
TRAP;
return (NULL);
}
//
// copy the array of sets over to the 1st part of the buffer.
//
RtlCopyMemory(NewPropertyBuffer,
MinidriverProps,
sizeof(KSPROPERTY_SET) * NumProps);
//
// walk thru the sets, copying the items for each set, and updating the
// pointer to each item array in each set as we go.
//
CurrentProp = (PKSPROPERTY_SET) NewPropertyBuffer;
CurrentPropItem = (PKSPROPERTY_ITEM) ((ULONG_PTR) NewPropertyBuffer + sizeof(KSPROPERTY_SET) * NumProps);
#if DBG
TotalBufferUsed = sizeof(KSPROPERTY_SET) * NumProps;
#endif
for (i = 0; i < NumProps; i++) {
RtlCopyMemory(CurrentPropItem,
CurrentProp->PropertyItem,
CurrentProp->PropertiesCount * sizeof(KSPROPERTY_ITEM));
#if DBG
TotalBufferUsed += CurrentProp->PropertiesCount * sizeof(KSPROPERTY_ITEM);
ASSERT(TotalBufferUsed <= BufferSize);
#endif
CurrentProp->PropertyItem = CurrentPropItem;
CurrentPropItem += CurrentProp->PropertiesCount;
CurrentProp++;
}
return ((PKSPROPERTY_SET) NewPropertyBuffer);
}
PKSEVENT_SET
SCCopyMinidriverEvents(
IN ULONG NumEvents,
IN PKSEVENT_SET MinidriverEvents
)
/*++
Routine Description:
Makes a private copy of the minidriver's properties
Arguments:
NumEvents - number of event sets to process
MinidriverEvents - pointer to the array of properties to process
Return Value:
None.
--*/
{
PKSEVENT_ITEM CurrentEventItem;
PKSEVENT_SET CurrentEvent;
ULONG i,
BufferSize;
PVOID NewEventBuffer;
#if DBG
ULONG TotalBufferUsed;
#endif
PAGED_CODE();
CurrentEvent = MinidriverEvents;
BufferSize = NumEvents * sizeof(KSEVENT_SET);
//
// walk the minidriver's property sets to determine the size of the
// buffer
// needed. Size computed from # of sets from above, + # of items.
//
for (i = 0; i < NumEvents; i++) {
BufferSize += CurrentEvent->EventsCount * sizeof(KSEVENT_ITEM);
//
// index to next property set in
// array
//
CurrentEvent++;
} // for number of property sets
if (!(NewEventBuffer = ExAllocatePool(NonPagedPool, BufferSize))) {
TRAP;
return (NULL);
}
//
// copy the array of sets over to the 1st part of the buffer.
//
RtlCopyMemory(NewEventBuffer,
MinidriverEvents,
sizeof(KSEVENT_SET) * NumEvents);
//
// walk thru the sets, copying the items for each set, and updating the
// pointer to each item array in each set as we go.
//
CurrentEvent = (PKSEVENT_SET) NewEventBuffer;
CurrentEventItem = (PKSEVENT_ITEM) ((ULONG_PTR) NewEventBuffer + sizeof(KSEVENT_SET) * NumEvents);
#if DBG
TotalBufferUsed = sizeof(KSEVENT_SET) * NumEvents;
#endif
for (i = 0; i < NumEvents; i++) {
RtlCopyMemory(CurrentEventItem,
CurrentEvent->EventItem,
CurrentEvent->EventsCount * sizeof(KSEVENT_ITEM));
#if DBG
TotalBufferUsed += CurrentEvent->EventsCount * sizeof(KSEVENT_ITEM);
ASSERT(TotalBufferUsed <= BufferSize);
#endif
CurrentEvent->EventItem = CurrentEventItem;
CurrentEventItem += CurrentEvent->EventsCount;
CurrentEvent++;
}
return ((PKSEVENT_SET) NewEventBuffer);
}
#ifdef ENABLE_KS_METHODS
PKSMETHOD_SET
SCCopyMinidriverMethods(
IN ULONG NumMethods,
IN PKSMETHOD_SET MinidriverMethods
)
/*++
Routine Description:
Makes a private copy of the minidriver's properties
Arguments:
NumMethods - number of properties to process
MinidriverMethods - pointer to the array of properties to process
Return Value:
None.
--*/
{
PKSMETHOD_ITEM CurrentMethodItem;
PKSMETHOD_SET CurrentMethod;
ULONG i,
BufferSize;
PVOID NewMethodBuffer;
#if DBG
ULONG TotalBufferUsed;
#endif
PAGED_CODE();
CurrentMethod = MinidriverMethods;
BufferSize = NumMethods * sizeof(KSMETHOD_SET);
//
// walk the minidriver's property sets to determine the size of the
// buffer
// needed. Size computed from # of sets from above, + # of items.
//
for (i = 0; i < NumMethods; i++) {
BufferSize += CurrentMethod->MethodsCount * sizeof(KSMETHOD_ITEM);
//
// index to next property set in
// array
//
CurrentMethod++;
} // for number of property sets
if (!(NewMethodBuffer = ExAllocatePool(NonPagedPool, BufferSize))) {
TRAP;
return (NULL);
}
//
// copy the array of sets over to the 1st part of the buffer.
//
RtlCopyMemory(NewMethodBuffer,
MinidriverMethods,
sizeof(KSMETHOD_SET) * NumMethods);
//
// walk thru the sets, copying the items for each set, and updating the
// pointer to each item array in each set as we go.
//
CurrentMethod = (PKSMETHOD_SET) NewMethodBuffer;
CurrentMethodItem = (PKSMETHOD_ITEM) ((ULONG_PTR) NewMethodBuffer + sizeof(KSMETHOD_SET) * NumMethods);
#if DBG
TotalBufferUsed = sizeof(KSMETHOD_SET) * NumMethods;
#endif
for (i = 0; i < NumMethods; i++) {
RtlCopyMemory(CurrentMethodItem,
CurrentMethod->MethodItem,
CurrentMethod->MethodsCount * sizeof(KSMETHOD_ITEM));
#if DBG
TotalBufferUsed += CurrentMethod->MethodsCount * sizeof(KSMETHOD_ITEM);
ASSERT(TotalBufferUsed <= BufferSize);
#endif
CurrentMethod->MethodItem = CurrentMethodItem;
CurrentMethodItem += CurrentMethod->MethodsCount;
CurrentMethod++;
}
return ((PKSMETHOD_SET) NewMethodBuffer);
}
VOID
SCUpdateMinidriverMethods(
IN ULONG NumMethods,
IN PKSMETHOD_SET MinidriverMethods,
IN BOOLEAN Stream
)
/*++
Routine Description:
Process method to the device.
Arguments:
NumMethods - number of methods to process
MinidriverMethods - pointer to the array of methods to process
Stream - TRUE indicates we are processing a set for the stream
Return Value:
None.
--*/
{
PKSMETHOD_ITEM CurrentMethodId;
PKSMETHOD_SET CurrentMethod;
ULONG i,
j;
PAGED_CODE();
//
// walk the minidriver's property info to fill in the dispatch
// vectors as appropriate.
//
CurrentMethod = MinidriverMethods;
for (i = 0; i < NumMethods; i++) {
CurrentMethodId = (PKSMETHOD_ITEM) CurrentMethod->MethodItem;
for (j = 0; j < CurrentMethod->MethodsCount; j++) {
//
// if support handler is supported, send it to the handler
//
if (CurrentMethodId->SupportHandler) {
if (Stream) {
CurrentMethodId->SupportHandler = StreamClassMinidriverStreamMethod;
} else {
CurrentMethodId->SupportHandler = StreamClassMinidriverDeviceMethod;
} // if stream
}
//
// if method routine is
// supported, add our vector.
//
if (CurrentMethodId->MethodHandler) {
if (Stream) {
CurrentMethodId->MethodHandler = StreamClassMinidriverStreamMethod;
} else {
CurrentMethodId->MethodHandler = StreamClassMinidriverDeviceMethod;
} // if stream
} // if supported
//
// index to next method item in
// array
//
CurrentMethodId++;
} // for number of property items
//
// index to next method set in
// array
//
CurrentMethod++;
} // for number of method sets
}
NTSTATUS
SCMinidriverDeviceMethodHandler(
IN SRB_COMMAND Command,
IN PIRP Irp,
IN PKSMETHOD Method,
IN OUT PVOID MethodInfo
)
/*++
Routine Description:
Process get/set method to the device.
Arguments:
Command - either GET or SET method
Irp - pointer to the IRP
Method - pointer to the method structure
MethodInfo - buffer for method information
Return Value:
NTSTATUS returned as appropriate.
--*/
{
PIO_STACK_LOCATION IrpStack;
PDEVICE_EXTENSION DeviceExtension;
PFILTER_INSTANCE FilterInstance;
PSTREAM_METHOD_DESCRIPTOR MethodDescriptor;
NTSTATUS Status;
BOOLEAN RequestIssued;
PAGED_CODE();
IrpStack = IoGetCurrentIrpStackLocation(Irp);
DeviceExtension = (PDEVICE_EXTENSION)
(IrpStack->DeviceObject)->DeviceExtension;
FilterInstance = IrpStack->FileObject->FsContext;
MethodDescriptor = ExAllocatePool(NonPagedPool,
sizeof(STREAM_METHOD_DESCRIPTOR));
if (MethodDescriptor == NULL) {
DEBUG_BREAKPOINT();
DebugPrint((DebugLevelError,
"SCDeviceMethodHandler: No pool for descriptor"));
return (STATUS_INSUFFICIENT_RESOURCES);
}
//
// compute the index of the method set.
//
// this value is calculated by subtracting the base method set
// pointer from the requested method set pointer.
//
// The requested method set is pointed to by Context[0] by
// KsMethodHandler.
//
MethodDescriptor->MethodSetID = (ULONG)
((ULONG_PTR) Irp->Tail.Overlay.DriverContext[0] -
IFN_MF((ULONG_PTR) DeviceExtension->DeviceMethodsArray)
IF_MF((ULONG_PTR) FilterInstance->DeviceMethodsArray)
) / sizeof(KSMETHOD_SET);
MethodDescriptor->Method = Method;
MethodDescriptor->MethodInfo = MethodInfo;
MethodDescriptor->MethodInputSize =
IrpStack->Parameters.DeviceIoControl.InputBufferLength;
MethodDescriptor->MethodOutputSize =
IrpStack->Parameters.DeviceIoControl.OutputBufferLength;
//
// send a get or set method SRB to the device.
//
Status = SCSubmitRequest(Command,
MethodDescriptor,
0,
SCProcessCompletedMethodRequest,
DeviceExtension,
FilterInstance->HwInstanceExtension,
NULL,
Irp,
&RequestIssued,
&DeviceExtension->PendingQueue,
(PVOID) DeviceExtension->
MinidriverData->HwInitData.
HwReceivePacket
);
if (!RequestIssued) {
DEBUG_BREAKPOINT();
ExFreePool(MethodDescriptor);
}
return (Status);
}
NTSTATUS
SCMinidriverStreamMethodHandler(
IN SRB_COMMAND Command,
IN PIRP Irp,
IN PKSMETHOD Method,
IN OUT PVOID MethodInfo
)
/*++
Routine Description:
Process get or set method to the device.
Arguments:
Command - either GET or SET method
Irp - pointer to the IRP
Method - pointer to the method structure
MethodInfo - buffer for method information
Return Value:
None.
--*/
{
PIO_STACK_LOCATION IrpStack;
PDEVICE_EXTENSION DeviceExtension;
PSTREAM_OBJECT StreamObject;
PSTREAM_METHOD_DESCRIPTOR MethodDescriptor;
NTSTATUS Status;
BOOLEAN RequestIssued;
PAGED_CODE();
IrpStack = IoGetCurrentIrpStackLocation(Irp);
DeviceExtension = (PDEVICE_EXTENSION)
(IrpStack->DeviceObject)->DeviceExtension;
StreamObject = IrpStack->FileObject->FsContext;
MethodDescriptor = ExAllocatePool(NonPagedPool,
sizeof(STREAM_METHOD_DESCRIPTOR));
if (MethodDescriptor == NULL) {
DEBUG_BREAKPOINT();
DebugPrint((DebugLevelError,
"SCDeviceMethodHandler: No pool for descriptor"));
return (STATUS_INSUFFICIENT_RESOURCES);
}
//
// compute the index of the method set.
//
// this value is calculated by subtracting the base method set
// pointer from the requested method set pointer.
//
// The requested method set is pointed to by Context[0] by
// KsMethodHandler.
//
MethodDescriptor->MethodSetID = (ULONG)
((ULONG_PTR) Irp->Tail.Overlay.DriverContext[0] -
(ULONG_PTR) StreamObject->MethodInfo)
/ sizeof(KSMETHOD_SET);
MethodDescriptor->Method = Method;
MethodDescriptor->MethodInfo = MethodInfo;
MethodDescriptor->MethodInputSize =
IrpStack->Parameters.DeviceIoControl.InputBufferLength;
MethodDescriptor->MethodOutputSize =
IrpStack->Parameters.DeviceIoControl.OutputBufferLength;
//
// send a get or set method SRB to the stream.
//
Status = SCSubmitRequest(Command,
MethodDescriptor,
0,
SCProcessCompletedMethodRequest,
DeviceExtension,
StreamObject->FilterInstance->HwInstanceExtension,
&StreamObject->HwStreamObject,
Irp,
&RequestIssued,
&StreamObject->ControlPendingQueue,
(PVOID) StreamObject->HwStreamObject.
ReceiveControlPacket
);
if (!RequestIssued) {
DEBUG_BREAKPOINT();
ExFreePool(MethodDescriptor);
}
return (Status);
}
NTSTATUS
SCProcessCompletedMethodRequest(
IN PSTREAM_REQUEST_BLOCK SRB
)
/*++
Routine Description:
This routine processes a method request which has completed.
Arguments:
SRB- address of completed STREAM request block
Return Value:
None.
--*/
{
PAGED_CODE();
//
// free the method info structure and
// complete the request
//
ExFreePool(SRB->HwSRB.CommandData.MethodInfo);
//
// set the information field from the SRB
// transferlength field
//
SRB->HwSRB.Irp->IoStatus.Information = SRB->HwSRB.ActualBytesTransferred;
return (SCDequeueAndDeleteSrb(SRB));
}
#endif // ENABLE_KS_METHODS