windows-nt/Source/XPSP1/NT/multimedia/opengl/server/soft/so_names.c

2014 lines
62 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
/*
** Copyright 1991, 1922, Silicon Graphics, Inc.
** All Rights Reserved.
**
** This is UNPUBLISHED PROPRIETARY SOURCE CODE of Silicon Graphics, Inc.;
** the contents of this file may not be disclosed to third parties, copied or
** duplicated in any form, in whole or in part, without the prior written
** permission of Silicon Graphics, Inc.
**
** RESTRICTED RIGHTS LEGEND:
** Use, duplication or disclosure by the Government is subject to restrictions
** as set forth in subdivision (c)(1)(ii) of the Rights in Technical Data
** and Computer Software clause at DFARS 252.227-7013, and/or in similar or
** successor clauses in the FAR, DOD or NASA FAR Supplement. Unpublished -
** rights reserved under the Copyright Laws of the United States.
**
** Display list table management routines.
**
** $Revision: 1.3 $
** $Date: 1995/02/11 00:53:45 $
*/
#include "precomp.h"
#pragma hdrstop
#include <namesint.h>
#include "..\..\dlist\dlistint.h"
/************************************************************************/
/*
** The Name Space Management code is used to store and retreive named
** data structures. The data being stored is referred to with void
** pointers to allow for the storage of any type of structure.
**
** Note that this code was developed for dlist name management.
** The bulk of it remains the same, but the semaphores for locking
** dlist access have been moved up one level. The code that uses
** this module for name space management must enclose the calls
** to Names entry points with LOCK and UNLOCK statements.
*/
/************************************************************************/
/*----------------------------------------------------------------------*/
/*
** Internal data structures. Not intended for consumption outside of
** this module.
*/
/*----------------------------------------------------------------------*/
/*
** The name space is implemented as a 2-3 tree.
** The depth of the tree is the same for
** the entire tree (so we always know once we reach that depth that the
** node found is a leaf).
**
** A 2-3 tree in a nutshell goes like this:
**
** Every node at the maximum depth is a leaf, all other nodes are branch
** nodes and have 2 or 3 children.
**
** A new node can be inserted in O(depth) time and an old node can be deleted
** in O(depth) time. During this insertion or deletion, the tree is
** automatically rebalanced.
**
**
** Hmmm. Derrick Burns mentions splay trees. They would probably work
** as well if not better, and might be easier to code. Maybe later -- little
** point in re-writing working code.
**
** Leaf nodes are arrays of sequential display lists. The typical tree will
** actually only be one node (since users will define a few sequential
** lists, all of which fit into one leaf node).
**
** The range of display lists stored in a leaf is indicated by "start" and
** "end" (inclusive).
**
** There are two varieties of leaves. There are leaves which contain unused
** (but reserved) display lists. They are unique in that "lists" will be
** NULL. The other type of leaf contains display lists currently in use.
** "lists" will not be NULL for these leaves, and will point to an array
** containing the actual display lists.
**
** Leaves containing unused (but reserved) display lists are generated when
** the user calls glGenLists().
**
** As the user starts using these reserved lists, the leaf containing unused
** (reserved) lists is split into two (or sometimes three) leaves. One of
** the leaves will contain the display list the user is currently using, and
** the other will contain the rest of the still unused display lists.
**
** When this split takes place, the new leaf (containing the "now used" display
** lists) will be sized to __GL_DLIST_MIN_ARRAY_BLOCK entries if possible
** (with one of the array entries being the new display list, and the other
** entries pointing to a NOP dummy display list). As the user continues
** to define more and more display lists, the leaf containing a range
** of used display lists will continue to grow until it reaches a
** size of __GL_DLIST_MAX_ARRAY_BLOCK entries, at which point a new
** leaf will be created to hold additional lists.
*/
/*
** A leaf node.
** The data pointers are void so diffent types of data structures can
** be managed. The dataInfo pointer points back to information needed
** to manage the specific data structure pointed to by a void pointer.
*/
struct __GLnamesLeafRec {
__GLnamesBranch *parent; /* parent node - must be first */
GLuint start; /* start of range */
GLuint end; /* end of range */
void **dataList; /* array of ptrs to named data */
__GLnamesArrayTypeInfo *dataInfo; /* ptr to data type info */
};
/*
** A branch node.
** The section of the tree in children[0] has name values all <= low.
** The section in children[1] has values: low < value <= medium.
** The section in children[2] (if not NULL) has values > medium.
*/
struct __GLnamesBranchRec {
__GLnamesBranch *parent; /* parent node - must be first */
GLuint low; /* children[0] all <= low */
GLuint medium; /* children[1] all <= medium & > low */
__GLnamesBranch *children[3]; /* children[2] all > medium */
};
/*----------------------------------------------------------------------*/
/*
** Name Space Manager internal routines.
*/
/*----------------------------------------------------------------------*/
/*
** Sets up a new names tree and returns a pointer to it.
*/
__GLnamesArray * FASTCALL __glNamesNewArray(__GLcontext *gc, __GLnamesArrayTypeInfo *dataInfo)
{
__GLnamesArray *array;
int i;
array = (__GLnamesArray *) GCALLOC(gc, sizeof(__GLnamesArray));
if (array == NULL) {
__glSetError(GL_OUT_OF_MEMORY);
return NULL;
}
#ifdef NT
__try
{
InitializeCriticalSection(&array->critsec);
}
__except(EXCEPTION_EXECUTE_HANDLER)
{
GCFREE(gc, array);
__glSetError(GL_OUT_OF_MEMORY);
return NULL;
}
#endif
array->refcount = 1;
array->tree = NULL;
array->depth = 0;
array->dataInfo = dataInfo;
/*
** Pre-allocate a few leaves and branches for paranoid OUT_OF_MEMORY
** reasons.
*/
array->nbranches = __GL_DL_EXTRA_BRANCHES;
array->nleaves = __GL_DL_EXTRA_LEAVES;
for (i = 0; i < __GL_DL_EXTRA_BRANCHES; i++) {
array->branches[i] = (__GLnamesBranch*)
GCALLOC(gc, sizeof(__GLnamesBranch));
if (array->branches[i] == NULL) {
array->nbranches = i;
break;
}
}
for (i = 0; i < __GL_DL_EXTRA_LEAVES; i++) {
array->leaves[i] = (__GLnamesLeaf*)
GCALLOC(gc, sizeof(__GLnamesLeaf));
if (array->leaves[i] == NULL) {
array->nleaves = i;
break;
}
}
return array;
}
static void FASTCALL freeLeafData(__GLcontext *gc, void **dataList)
{
/*
** Note that the actual data pointed to by the elements of this list
** have already been freed with the callback.
*/
GCFREE(gc, dataList);
}
static void FASTCALL freeLeaf(__GLcontext *gc, __GLnamesLeaf *leaf)
{
if (leaf->dataList) {
freeLeafData(gc, leaf->dataList);
}
GCFREE(gc, leaf);
}
static void FASTCALL freeBranch(__GLcontext *gc, __GLnamesBranch *branch)
{
GCFREE(gc, branch);
}
/*
** Free an entire names tree.
*/
void FASTCALL __glNamesFreeTree(__GLcontext *gc, __GLnamesArray *array,
__GLnamesBranch *tree, GLint depth)
{
GLuint i;
__GLnamesLeaf *leaf;
void *empty;
GLint maxdepth = array->depth;
__GL_NAMES_ASSERT_LOCKED(array);
if (tree == NULL) return;
if (depth < maxdepth) {
__glNamesFreeTree(gc, array, tree->children[2], depth+1);
__glNamesFreeTree(gc, array, tree->children[1], depth+1);
__glNamesFreeTree(gc, array, tree->children[0], depth+1);
freeBranch(gc, tree);
} else {
leaf = (__GLnamesLeaf *) tree;
empty = array->dataInfo->empty;
if (leaf->dataList) {
for (i=leaf->start; i<=leaf->end; i++) {
if (leaf->dataList[i - leaf->start] != empty) {
ASSERTOPENGL(leaf->dataInfo->free != NULL,
"No free function\n");
(*leaf->dataInfo->free)(gc,
leaf->dataList[i - leaf->start]);
leaf->dataList[i - leaf->start] = empty;
}
}
}
freeLeaf(gc, leaf);
}
}
void FASTCALL __glNamesFreeArray(__GLcontext *gc, __GLnamesArray *array)
{
GLuint i;
__GL_NAMES_ASSERT_LOCKED(array);
for (i = 0; i < array->nbranches; i++) {
GCFREE(gc, array->branches[i]);
}
for (i = 0; i < array->nleaves; i++) {
GCFREE(gc, array->leaves[i]);
}
__glNamesFreeTree(gc, array, array->tree, 0);
__GL_NAMES_UNLOCK(array);
#ifdef NT
DeleteCriticalSection(&array->critsec);
#endif
GCFREE(gc, array);
}
/*
** Find the leaf with the given name.
** If exact is TRUE, then only the leaf that contains this name will
** be returned (NULL, otherwise).
** If exact is FALSE, than the leaf containing the number will be returned
** if it exists, and otherwise the next highest leaf will be returned.
** A NULL value indicates that number is higher than any other leaves in
** the tree.
** This routine has been tuned for the case of finding the number in
** the tree, since this is the most likely case when dispatching a
** display list.
*/
static __GLnamesLeaf * FASTCALL findLeaf(__GLnamesArray *array, GLuint number,
GLint exact)
{
__GLnamesBranch *branch;
__GLnamesLeaf *leaf;
int depth = array->depth, r;
__GL_NAMES_ASSERT_LOCKED(array);
branch = array->tree;
while (depth > 0 && branch) {
/* rather than following if-then-else code
* for correct branch, evaluate all conditions
* quickly to compute correct branch.
*/
int r = (number > branch->low) + (number > branch->medium);
ASSERTOPENGL(branch->low <= branch->medium,
"Branch ordering wrong\n");
branch = branch->children[r];
--depth;
}
if (!(leaf = (__GLnamesLeaf *) branch)) return NULL;
/* the case we want to optimize is the one in which we
* actually find the node, so evaluate both conditions
* quickly, since both results are required in this case
* and return appropriately. the choice of the final
* if construct is to match the current vagaries of the
* 3.19 compiler code generator (db)
*/
r = (leaf->end < number) | (exact&(number<leaf->start));
if (!r) return leaf;
return NULL;
}
/*
** Copy data from leaf->lists into newleaf->lists.
*/
static void FASTCALL copyLeafInfo(__GLnamesLeaf *leaf, __GLnamesLeaf *newleaf)
{
GLint offset;
GLuint number;
GLuint i;
number = newleaf->end - newleaf->start + 1;
offset = newleaf->start - leaf->start;
for (i = 0; i < number; i++) {
newleaf->dataList[i] = leaf->dataList[i+offset];
}
}
/*
** Attempt to fix a possible situation caused by lack of memory.
*/
static GLboolean FASTCALL fixMemoryProblem(__GLcontext *gc, __GLnamesArray *array)
{
GLuint i;
__GL_NAMES_ASSERT_LOCKED(array);
for (i = array->nbranches; i < __GL_DL_EXTRA_BRANCHES; i++) {
array->branches[i] = (__GLnamesBranch*)
GCALLOC(gc, sizeof(__GLnamesBranch));
if (array->branches[i] == NULL) {
array->nbranches = i;
return GL_FALSE;
}
}
array->nbranches = __GL_DL_EXTRA_BRANCHES;
for (i = array->nleaves; i < __GL_DL_EXTRA_LEAVES; i++) {
array->leaves[i] = (__GLnamesLeaf*) GCALLOC(gc, sizeof(__GLnamesLeaf));
if (array->leaves[i] == NULL) {
array->nleaves = i;
return GL_FALSE;
}
}
array->nleaves = __GL_DL_EXTRA_LEAVES;
return GL_TRUE;
}
/*
** Compute the maximum value contained in the given tree. If
** curdepth == maxdepth, the tree is simply a leaf.
*/
static GLuint FASTCALL computeMax(__GLnamesBranch *branch, GLint curdepth,
GLint maxdepth)
{
__GLnamesLeaf *leaf;
while (curdepth < maxdepth) {
if (branch->children[2] != NULL) {
branch = branch->children[2];
} else if (branch->children[1] != NULL) {
return branch->medium;
} else {
return branch->low;
}
curdepth++;
}
leaf = (__GLnamesLeaf *) branch;
return leaf->end;
}
/*
** Make sure that all parents of this child know that maxval is the
** highest value that can be found in this child.
*/
static void FASTCALL pushMaxVal(__GLnamesBranch *child, GLuint maxval)
{
__GLnamesBranch *parent;
while (parent = child->parent) {
if (parent->children[0] == child) {
parent->low = maxval;
if (parent->children[1] != NULL) {
return;
}
} else if (parent->children[1] == child) {
parent->medium = maxval;
if (parent->children[2] != NULL) {
return;
}
} else {
ASSERTOPENGL(parent->children[2] == child,
"Parent/child relationship incorrect\n");
}
child = parent;
}
}
static GLboolean FASTCALL allocLeafData(__GLcontext *gc, __GLnamesLeaf *leaf)
{
GLint number;
GLint i;
number = leaf->end - leaf->start + 1;
leaf->dataList = (void **) GCALLOC(gc, (size_t)(sizeof(void *)*number));
if (!leaf->dataList) return GL_FALSE;
for (i=0; i < number; i++) {
leaf->dataList[i] = leaf->dataInfo->empty;
}
return GL_TRUE;
}
static GLboolean FASTCALL reallocLeafData(__GLcontext *gc, __GLnamesLeaf *leaf)
{
size_t number;
void **answer;
number = (size_t) (leaf->end - leaf->start + 1);
answer = (void **) GCREALLOC(gc, leaf->dataList, sizeof(void *)*number);
if (answer) {
leaf->dataList = answer;
return GL_TRUE;
} else {
/*
** Crud! Out of memory!
*/
return GL_FALSE;
}
}
static __GLnamesLeaf * FASTCALL allocLeaf(__GLcontext *gc, __GLnamesArray *array)
{
__GLnamesLeaf *leaf;
leaf = (__GLnamesLeaf *) GCALLOC(gc, sizeof(__GLnamesLeaf));
if (leaf == NULL) {
/*
** Ouch! No memory? We had better use one of the preallocated
** leaves.
*/
__GL_NAMES_ASSERT_LOCKED(array);
ASSERTOPENGL(array->nleaves != 0,
"No preallocated leaves\n");
array->nleaves--;
leaf = array->leaves[array->nleaves];
}
leaf->parent = NULL;
leaf->dataList = NULL;
leaf->dataInfo = array->dataInfo;
return leaf;
}
/*
** Allocates a branch node.
*/
static __GLnamesBranch * FASTCALL allocBranch(__GLcontext *gc, __GLnamesArray *array)
{
__GLnamesBranch *branch;
branch = (__GLnamesBranch *) GCALLOC(gc, sizeof(__GLnamesBranch));
if (branch == NULL) {
/*
** Ouch! No memory? We had better use one of the preallocated
** branches.
*/
__GL_NAMES_ASSERT_LOCKED(array);
ASSERTOPENGL(array->nbranches != 0,
"No preallocated branches\n");
array->nbranches--;
branch = array->branches[array->nbranches];
}
branch->children[0] = branch->children[1] = branch->children[2] = NULL;
branch->parent = NULL;
return branch;
}
/*
** Remove the child from the parent. depth refers to the parent.
** This deletion may delete a child from a parent with only two children.
** If so, the parent itself will soon be deleted, of course.
*/
static void FASTCALL deleteChild(__GLnamesArray *array, __GLnamesBranch *parent,
__GLnamesBranch *child, GLint depth)
{
GLuint maxval;
GLint maxdepth;
__GL_NAMES_ASSERT_LOCKED(array);
maxdepth = array->depth;
if (parent->children[0] == child) {
parent->children[0] = parent->children[1];
parent->children[1] = parent->children[2];
parent->children[2] = NULL;
parent->low = parent->medium;
if (parent->children[1] != NULL) {
maxval = computeMax(parent->children[1], depth+1, maxdepth);
parent->medium = maxval;
} else parent->medium = 0;
} else if (parent->children[1] == child) {
parent->children[1] = parent->children[2];
parent->children[2] = NULL;
if (parent->children[1] != NULL) {
maxval = computeMax(parent->children[1], depth+1, maxdepth);
parent->medium = maxval;
} else parent->medium = 0;
} else {
ASSERTOPENGL(parent->children[2] == child,
"Parent/child relationship wrong\n");
parent->children[2] = NULL;
pushMaxVal(parent, parent->medium);
}
}
/*
** Add child to parent. child is a leaf if curdepth == maxdepth - 1
** (curdepth refers to the depth of the parent, not the child). Parent
** only has one or two children (thus has room for another child).
*/
static void FASTCALL addChild(__GLnamesBranch *parent, __GLnamesBranch *child,
GLint curdepth, GLint maxdepth)
{
GLuint maxval;
maxval = computeMax(child, curdepth+1, maxdepth);
child->parent = parent;
if (maxval > parent->medium && parent->children[1] != NULL) {
/* This becomes the third child */
parent->children[2] = child;
/* Propagate the maximum value for this child to its parents */
pushMaxVal(parent, maxval);
} else if (maxval > parent->low) {
/* This becomes the second child */
parent->children[2] = parent->children[1];
parent->children[1] = child;
parent->medium = maxval;
if (parent->children[2] == NULL) {
pushMaxVal(parent, maxval);
}
} else {
parent->children[2] = parent->children[1];
parent->children[1] = parent->children[0];
parent->children[0] = child;
parent->medium = parent->low;
parent->low = maxval;
}
}
/*
** From the three children in parent, and the extraChild, build two parents:
** parent and newParent. curdepth refers to the depth of parent. parent
** is part of the tree, so its maxval needs to be propagated up if it
** changes.
*/
static void FASTCALL splitParent(__GLnamesBranch *parent,
__GLnamesBranch *newParent,
__GLnamesBranch *extraChild,
GLint curdepth,
GLint maxdepth)
{
__GLnamesBranch *children[4], *tempchild;
GLuint maxvals[4], tempval;
int i;
/* Collect our four children */
children[0] = parent->children[0];
maxvals[0] = parent->low;
children[1] = parent->children[1];
maxvals[1] = parent->medium;
children[2] = parent->children[2];
maxvals[2] = computeMax(children[2], curdepth+1, maxdepth);
children[3] = extraChild;
maxvals[3] = computeMax(extraChild, curdepth+1, maxdepth);
/* Children 0-2 are sorted. Sort child 3 too. */
for (i = 3; i > 0; i--) {
if (maxvals[i] < maxvals[i-1]) {
tempval = maxvals[i];
tempchild = children[i];
maxvals[i] = maxvals[i-1];
children[i] = children[i-1];
maxvals[i-1] = tempval;
children[i-1] = tempchild;
}
}
/* Construct the two parents */
parent->low = maxvals[0];
parent->children[0] = children[0];
parent->medium = maxvals[1];
parent->children[1] = children[1];
parent->children[2] = NULL;
children[0]->parent = parent;
children[1]->parent = parent;
pushMaxVal(parent, maxvals[1]);
newParent->low = maxvals[2];
newParent->children[0] = children[2];
newParent->medium = maxvals[3];
newParent->children[1] = children[3];
newParent->children[2] = NULL;
children[2]->parent = newParent;
children[3]->parent = newParent;
}
/*
** Build a parent from child1 and child2. depth tells the depth of
** the trees pointed to by child1 and child2.
*/
static void FASTCALL buildParent(__GLnamesBranch *parent, __GLnamesBranch *child1,
__GLnamesBranch *child2, GLint depth)
{
GLuint maxChild1, maxChild2;
child1->parent = parent;
child2->parent = parent;
maxChild1 = computeMax(child1, 0, depth);
maxChild2 = computeMax(child2, 0, depth);
if (maxChild2 > maxChild1) {
parent->children[0] = child1;
parent->low = maxChild1;
parent->children[1] = child2;
parent->medium = maxChild2;
} else {
parent->children[0] = child2;
parent->low = maxChild2;
parent->children[1] = child1;
parent->medium = maxChild1;
}
}
/*
** Insert the new leaf into the tree.
*/
static void FASTCALL insertLeaf(__GLcontext *gc, __GLnamesArray *array,
__GLnamesLeaf *leaf)
{
__GLnamesBranch *extraChild;
__GLnamesBranch *branch;
__GLnamesBranch *parent;
__GLnamesBranch *newParent;
GLint maxdepth, curdepth;
GLuint number;
__GL_NAMES_ASSERT_LOCKED(array);
number = leaf->end;
maxdepth = array->depth;
branch = array->tree;
if (!branch) {
/* No tree! Make a one leaf tree. */
array->depth = 0;
array->tree = (__GLnamesBranch *) leaf;
return;
}
curdepth = 0;
while (curdepth < maxdepth) {
if (number <= branch->low) {
branch = branch->children[0];
} else if (number <= branch->medium) {
branch = branch->children[1];
} else {
if (branch->children[2] != NULL) {
branch = branch->children[2];
} else {
branch = branch->children[1];
}
}
curdepth++;
}
/*
** Ok, we just managed to work our way to the bottom of the tree.
** 'leaf' becomes the extraChild, and we now try to insert it anywhere
** it will fit.
*/
extraChild = (__GLnamesBranch *) leaf;
parent = branch->parent;
curdepth--;
while (parent) {
if (parent->children[2] == NULL) {
/* We have room to squeeze this node in here! */
addChild(parent, extraChild, curdepth, maxdepth);
return;
}
/*
** We have one parent and four children. This simply
** won't do. We create a new parent, and end up with two
** parents with two children each. That works.
*/
newParent = allocBranch(gc, array);
splitParent(parent, newParent, extraChild, curdepth, maxdepth);
/*
** Great. Now newParent becomes the orphan, and we try to
** trivially insert it up a level.
*/
extraChild = newParent;
branch = parent;
parent = branch->parent;
curdepth--;
}
/* We just reached the top node, and there is no parent, and we
** still haven't managed to rid ourselves of an extra child. So,
** we make a new parent to take branch and extraChild as it's two
** children. We have to increase the depth of the tree, of course.
*/
ASSERTOPENGL(curdepth == -1, "Wrong depth at top\n");
parent = allocBranch(gc, array);
buildParent(parent, branch, extraChild, maxdepth);
array->tree = parent;
array->depth++;
}
/*
** Delete the given leaf from the tree. The leaf itself is not
** freed or anything, so the calling procedure needs to worry about it.
*/
static void FASTCALL deleteLeaf(__GLcontext *gc, __GLnamesArray *array,
__GLnamesLeaf *leaf)
{
__GLnamesBranch *orphan;
__GLnamesBranch *parent, *newParent;
__GLnamesBranch *grandparent;
GLint depth, maxdepth;
GLuint maxval;
__GL_NAMES_ASSERT_LOCKED(array);
maxdepth = depth = array->depth;
parent = leaf->parent;
if (parent == NULL) {
/* Ack! We just nuked the only node! */
array->tree = NULL;
return;
}
deleteChild(array, parent, (__GLnamesBranch *) leaf, depth-1);
/*
** depth is the depth of the child in this case.
*/
depth--;
while (parent->children[1] == NULL) {
/* Crud. Need to do work. */
orphan = parent->children[0];
/* Ax the parent, insert child into grandparent. */
grandparent = parent->parent;
if (grandparent == NULL) {
/*
** Hmmm. Parent was the root. Nuke it and make the orphan
** the new root.
*/
freeBranch(gc, parent);
array->tree = orphan;
orphan->parent = NULL;
array->depth--;
return;
}
deleteChild(array, grandparent, parent, depth-1);
freeBranch(gc, parent);
/* The parent is dead. Find a new parent. */
maxval = computeMax(orphan, depth+1, maxdepth);
if (grandparent->children[1] == NULL ||
maxval <= grandparent->low) {
parent = grandparent->children[0];
} else {
parent = grandparent->children[1];
}
/* Insert orphan into new parent. */
if (parent->children[2] != NULL) {
newParent = allocBranch(gc, array);
splitParent(parent, newParent, orphan, depth, maxdepth);
/* We know there is room! */
addChild(grandparent, newParent, depth-1, maxdepth);
return;
}
/* The parent has room for the child */
addChild(parent, orphan, depth, maxdepth);
depth--;
parent = grandparent;
}
}
/*
** Shrink the leaf by adjusting start and end.
** If necessary, call pushMaxVal() to notify the database about the change.
** Also fix up the lists pointer if necessary.
*/
static void FASTCALL resizeLeaf(__GLcontext *gc, __GLnamesLeaf *leaf,
GLuint newstart, GLuint newend)
{
GLuint oldstart, oldend;
GLuint newsize, offset, i;
oldstart = leaf->start;
oldend = leaf->end;
leaf->start = newstart;
if (newend != oldend) {
leaf->end = newend;
pushMaxVal((__GLnamesBranch *) leaf, newend);
}
if (leaf->dataList == NULL) return;
/*
** Copy the appropriate pointers to the begining of the array, and
** realloc it.
*/
offset = newstart - oldstart;
newsize = newend - newstart + 1;
if (offset) {
for (i=0; i<newsize; i++) {
/*
** Copy the whole structure with one line.
*/
leaf->dataList[i] = leaf->dataList[i+offset];
}
}
reallocLeafData(gc, leaf);
}
/*
** Find the previous leaf (before "leaf") in the tree.
*/
static __GLnamesLeaf * FASTCALL prevLeaf(__GLnamesLeaf *leaf)
{
__GLnamesBranch *branch, *child;
GLint reldepth;
branch = leaf->parent;
if (!branch) return NULL; /* A one leaf tree! */
child = (__GLnamesBranch *) leaf;
/* We start off at a relative depth of 1 above the child (-1) */
reldepth = -1;
while (branch) {
/* If the child was the 3rd child, branch down to the second. */
if (branch->children[2] == child) {
branch = branch->children[1];
reldepth++; /* One level lower */
break;
} else if (branch->children[1] == child) {
/* If the child was the 2nd child, branch down to the first */
branch = branch->children[0];
reldepth++; /* One level lower */
break;
} else {
/* Must have been 1st child */
ASSERTOPENGL(branch->children[0] == child,
"Parent/child relationship wrong\n");
}
/*
** Otherwise, we have already visited all of this branch's children,
** so we go up a level.
*/
child = branch;
branch = branch->parent;
reldepth--; /* One level higher */
}
if (!branch) return NULL; /* All leaves visited! */
/* Go down the 'right'most trail of this branch until we get to
** a child, then return it.
*/
while (reldepth) {
if (branch->children[2] != NULL) {
branch = branch->children[2];
} else if (branch->children[1] != NULL) {
branch = branch->children[1];
} else {
branch = branch->children[0];
}
reldepth++; /* One level lower */
}
return (__GLnamesLeaf *) branch;
}
/*
** Find the first leaf in the tree.
*/
static __GLnamesLeaf * FASTCALL firstLeaf(__GLnamesArray *array)
{
__GLnamesBranch *branch;
GLint maxdepth, curdepth;
__GL_NAMES_ASSERT_LOCKED(array);
maxdepth = array->depth;
curdepth = 0;
branch = array->tree;
/* No tree, no leaves! */
if (!branch) return NULL;
/* Take the 'left'most branch until we reach a leaf */
while (curdepth != maxdepth) {
branch = branch->children[0];
curdepth++;
}
return (__GLnamesLeaf *) branch;
}
/*
** Find the next leaf (after "leaf") in the tree.
*/
static __GLnamesLeaf * FASTCALL nextLeaf(__GLnamesLeaf *leaf)
{
__GLnamesBranch *branch, *child;
GLint reldepth;
branch = leaf->parent;
if (!branch) return NULL; /* A one leaf tree! */
child = (__GLnamesBranch *) leaf;
/* We start off at a relative depth of 1 above the child (-1) */
reldepth = -1;
while (branch) {
/* If the child was the 1st child, branch down to the second. */
if (branch->children[0] == child) {
branch = branch->children[1];
reldepth++; /* One level lower */
break;
} else if (branch->children[1] == child) {
/*
** If the child was the 2nd child, and there is a third, branch
** down to it.
*/
if (branch->children[2] != NULL) {
branch = branch->children[2];
reldepth++; /* One level lower */
break;
}
} else {
/* Must have been 3rd child */
ASSERTOPENGL(branch->children[2] == child,
"Parent/child relationship wrong\n");
}
/*
** Otherwise, we have already visited all of this branch's children,
** so we go up a level.
*/
child = branch;
branch = branch->parent;
reldepth--; /* One level higher */
}
if (!branch) return NULL; /* All leaves visited! */
/* Go down the 'left'most trail of this branch until we get to
** a child, then return it.
*/
while (reldepth) {
branch = branch->children[0];
reldepth++; /* One level lower */
}
return (__GLnamesLeaf *) branch;
}
/*
** Merge leaf2 into leaf1, and free leaf2.
** Need to pushMaxVal on the new leaf.
** We can assume that leaf1 and leaf2 are fit for merging.
** The return value is GL_TRUE if we did it.
*/
static GLboolean FASTCALL mergeLeaves(__GLcontext *gc, __GLnamesLeaf *leaf1,
__GLnamesLeaf *leaf2)
{
GLuint end;
GLuint i;
GLuint number, offset;
/* If we don't have to merge lists, it is easy. */
if (leaf1->dataList == NULL) {
ASSERTOPENGL(leaf2->dataList == NULL, "Data already exists\n");
if (leaf1->start < leaf2->start) {
leaf1->end = leaf2->end;
pushMaxVal((__GLnamesBranch *) leaf1, leaf1->end);
} else {
leaf1->start = leaf2->start;
}
freeLeaf(gc, leaf2);
return GL_TRUE;
}
/*
** Yick! Need to merge lists.
*/
ASSERTOPENGL(leaf2->dataList != NULL, "No data\n");
if (leaf1->start < leaf2->start) {
/*
** Expand size of leaf1's array, copy leaf2's array into it,
** free leaf2.
*/
offset = leaf1->end - leaf1->start + 1;
number = leaf2->end - leaf2->start + 1;
end = leaf1->end;
leaf1->end = leaf2->end;
if (!reallocLeafData(gc, leaf1)) {
/*
** Heavens! No memory? That sucks!
** We won't bother merging. It is never an absolutely critical
** operation.
*/
leaf1->end = end;
return GL_FALSE;
}
for (i = 0; i < number; i++) {
leaf1->dataList[i+offset] = leaf2->dataList[i];
}
freeLeaf(gc, leaf2);
pushMaxVal((__GLnamesBranch *) leaf1, leaf1->end);
} else {
/*
** Expand the size of leaf2's array, copy leaf1's array into it.
** Then free leaf1's array, copy leaf2's array to leaf1, and free
** leaf2.
*/
offset = leaf2->end - leaf2->start + 1;
number = leaf1->end - leaf1->start + 1;
end = leaf2->end;
leaf2->end = leaf1->end;
if (!reallocLeafData(gc, leaf2)) {
/*
** Heavens! No memory? That sucks!
** We won't bother merging. It is never an absolutely critical
** operation.
*/
leaf2->end = end;
return GL_FALSE;
}
for (i = 0; i < number; i++) {
leaf2->dataList[i+offset] = leaf1->dataList[i];
}
freeLeafData(gc, leaf1->dataList);
leaf1->start = leaf2->start;
leaf1->dataList = leaf2->dataList;
leaf2->dataList = NULL;
freeLeaf(gc, leaf2);
}
return GL_TRUE;
}
/*
** Check if this leaf can merge with any neighbors, and if so, do it.
*/
static void FASTCALL mergeLeaf(__GLcontext *gc, __GLnamesArray *array,
__GLnamesLeaf *leaf)
{
__GLnamesLeaf *next, *prev;
__GL_NAMES_ASSERT_LOCKED(array);
next = nextLeaf(leaf);
if (next) {
/* Try to merge with next leaf */
if (leaf->end + 1 == next->start) {
if ((leaf->dataList == NULL && next->dataList == NULL) ||
(next->dataList && leaf->dataList &&
next->end - leaf->start < (GLuint) __GL_DLIST_MAX_ARRAY_BLOCK)) {
/* It's legal to merge these leaves */
deleteLeaf(gc, array, next);
if (!mergeLeaves(gc, leaf, next)) {
/*
** Ack! No memory? We bail on the merge.
*/
insertLeaf(gc, array, next);
return;
}
}
}
}
prev = prevLeaf(leaf);
if (prev) {
/* Try to merge with prev leaf */
if (prev->end + 1 == leaf->start) {
if ((prev->dataList == NULL && leaf->dataList == NULL) ||
(leaf->dataList && prev->dataList &&
leaf->end - prev->start < (GLuint) __GL_DLIST_MAX_ARRAY_BLOCK)) {
/* It's legal to merge these leaves */
deleteLeaf(gc, array, prev);
if (!mergeLeaves(gc, leaf, prev)) {
/*
** Ack! No memory? We bail on the merge.
*/
insertLeaf(gc, array, prev);
return;
}
}
}
}
}
GLboolean FASTCALL __glNamesNewData(__GLcontext *gc, __GLnamesArray *array,
GLuint name, void *data)
{
__GLnamesLeaf *leaf, *newleaf;
GLint entry;
GLuint start, end;
__GL_NAMES_LOCK(array);
leaf = findLeaf(array, name, GL_TRUE);
/*
** First we check for possible memory problems, since it will be
** difficult to back out once we start.
*/
if (leaf == NULL || leaf->dataList == NULL) {
/*
** May need memory in these cases.
*/
if (array->nbranches != __GL_DL_EXTRA_BRANCHES ||
array->nleaves != __GL_DL_EXTRA_LEAVES) {
if (!fixMemoryProblem(gc, array)) {
__GL_NAMES_UNLOCK(array);
__glSetError(GL_OUT_OF_MEMORY);
return GL_FALSE;
}
}
}
if (!leaf) {
/*
** Make new leaf with just this display list
*/
leaf = allocLeaf(gc, array);
leaf->start = leaf->end = name;
if (data) {
if (!allocLeafData(gc, leaf)) {
/*
** Bummer. No new list for you!
*/
freeLeaf(gc, leaf);
__GL_NAMES_UNLOCK(array);
__glSetError(GL_OUT_OF_MEMORY);
return GL_FALSE;
}
leaf->dataList[0] = data;
(*(GLint *)data) = 1; /* set the refcount */
}
insertLeaf(gc, array, leaf);
mergeLeaf(gc, array, leaf);
__GL_NAMES_UNLOCK(array);
return GL_TRUE;
} else if (leaf->dataList) {
/*
** Simply update the appropriate entry in the lists array
*/
entry = name - leaf->start;
if (leaf->dataList[entry] != leaf->dataInfo->empty) {
ASSERTOPENGL(leaf->dataInfo->free != NULL,
"No free function\n");
(*leaf->dataInfo->free)(gc, leaf->dataList[entry]);
leaf->dataList[entry] = leaf->dataInfo->empty;
}
if (data) {
leaf->dataList[entry] = data;
(*(GLint *)data) = 1; /* set the refcount */
}
__GL_NAMES_UNLOCK(array);
return GL_TRUE;
} else {
if (!data) {
/*
** If there isn't really any list, we are done.
*/
__GL_NAMES_UNLOCK(array);
return GL_TRUE;
}
/*
** Allocate some or all of the lists in leaf. If only some, then
** leaf needs to be split into two or three leaves.
**
** First we decide what range of numbers to allocate an array for.
** (be careful of possible word wrap error)
*/
start = name - __GL_DLIST_MIN_ARRAY_BLOCK/2;
if (start < leaf->start || start > name) {
start = leaf->start;
}
end = start + __GL_DLIST_MIN_ARRAY_BLOCK - 1;
if (end > leaf->end || end < start) {
end = leaf->end;
}
if (start - leaf->start < (GLuint) __GL_DLIST_MIN_ARRAY_BLOCK) {
start = leaf->start;
}
if (leaf->end - end < (GLuint) __GL_DLIST_MIN_ARRAY_BLOCK) {
end = leaf->end;
}
if (start == leaf->start) {
if (end == leaf->end) {
/*
** Simply allocate the entire array.
*/
if (!allocLeafData(gc, leaf)) {
/*
** Whoa! No memory! Never mind!
*/
__glSetError(GL_OUT_OF_MEMORY);
__GL_NAMES_UNLOCK(array);
return GL_FALSE;
}
{
GLint entry = name - leaf->start;
leaf->dataList[entry] = data;
(*(GLint *)data) = 1; /* set the refcount */
}
mergeLeaf(gc, array, leaf);
__GL_NAMES_UNLOCK(array);
return GL_TRUE;
} else {
/*
** Shrink the existing leaf, and create a new one to hold
** the new arrays (done outside the "if" statement).
*/
resizeLeaf(gc, leaf, end+1, leaf->end);
}
} else if (end == leaf->end) {
/*
** Shrink the existing leaf, and create a new one to hold
** the new arrays (done outside the "if" statement).
*/
resizeLeaf(gc, leaf, leaf->start, start-1);
} else {
/*
** Crud. The middle of the leaf was deleted. This is tough.
*/
newleaf = allocLeaf(gc, array);
newleaf->start = end+1;
newleaf->end = leaf->end;
resizeLeaf(gc, leaf, leaf->start, start-1);
insertLeaf(gc, array, newleaf);
}
leaf = allocLeaf(gc, array);
leaf->start = start;
leaf->end = end;
if (!allocLeafData(gc, leaf)) {
/*
** Whoa! No memory! Never mind!
*/
insertLeaf(gc, array, leaf);
mergeLeaf(gc, array, leaf);
__glSetError(GL_OUT_OF_MEMORY);
__GL_NAMES_UNLOCK(array);
return GL_FALSE;
}
{
GLint entry = name - leaf->start;
leaf->dataList[entry] = data;
(*(GLint *)data) = 1; /* set the refcount */
}
insertLeaf(gc, array, leaf);
mergeLeaf(gc, array, leaf);
__GL_NAMES_UNLOCK(array);
return GL_TRUE;
}
}
/*
** Lock the named data. Locking data both looks the data up,
** and guarantees that another thread will not delete the data out from
** under us. This data will be unlocked with __glNamesUnlockData().
**
** A return value of NULL indicates that no data with the specified name
** was found.
*/
void * FASTCALL __glNamesLockData(__GLcontext *gc, __GLnamesArray *array,
GLuint name)
{
__GLnamesLeaf *leaf;
void *data;
GLint offset;
__GL_NAMES_LOCK(array);
/*
** Lock access to data.
*/
leaf = findLeaf(array, name, GL_TRUE);
if (leaf == NULL || leaf->dataList == NULL) {
__GL_NAMES_UNLOCK(array);
return NULL;
}
offset = name - leaf->start;
data = leaf->dataList[offset];
if (data) {
(*(GLint *)data)++; /* Increment the refcount. */
}
__GL_NAMES_UNLOCK(array);
return data;
}
/*
** Lock all of the data in the user's names array. Locking data
** both looks the data up, and guarantees that another thread will not
** delete the data out from under us. These data structs will be unlocked
** with __glNamesUnlockDataList().
**
** All entries of the array are guaranteed to be non-NULL. This is
** accomplished by sticking an empty data structure in those slots where
** no data was set.
*/
void FASTCALL __glNamesLockDataList(__GLcontext *gc, __GLnamesArray *array,
GLsizei n, GLenum type, GLuint base,
const GLvoid *names, void *dataPtrs[])
{
__GLnamesLeaf *leaf;
void **data;
void *tempData;
void *empty;
GLuint curName;
__GL_NAMES_LOCK(array);
empty = array->dataInfo->empty;
data = dataPtrs;
/*
** Note that this code is designed to take advantage of coherence.
** After looking up (and locking) a single display list in
** listnums[], the next list is checked for in the same leaf that
** contained the previous. This will make typical uses of CallLists()
** quite fast (text, for example).
*/
/*
** Lock access to array.
*/
switch(type) {
case GL_BYTE:
/*
** Coded poorly for optimization purposes
*/
{
const GLbyte *p = (const GLbyte *) names;
Bstart:
if (--n >= 0) {
/* Optimization for possibly common font case */
curName = base + *p++;
Bfind:
leaf = findLeaf(array, curName, GL_TRUE);
if (leaf && leaf->dataList) {
GLint reldiff;
GLuint relend;
void **leafData;
leafData = leaf->dataList;
tempData = leafData[curName - leaf->start];
/* All possible display lists can be found here */
reldiff = base - leaf->start;
relend = leaf->end - leaf->start;
Bsave:
(*(GLint *)tempData)++; /* increment the refcount */
*data++ = tempData;
if (--n >= 0) {
curName = *p++ + reldiff;
if (curName <= relend) {
tempData = leafData[curName];
goto Bsave;
}
curName = curName + leaf->start;
goto Bfind;
}
} else {
(*(GLint *)empty)++; /* increment refcount */
*data++ = empty;
goto Bstart;
}
}
}
break;
case GL_UNSIGNED_BYTE:
/*
** Coded poorly for optimization purposes
*/
{
const GLubyte *p = (const GLubyte *) names;
UBstart:
if (--n >= 0) {
/* Optimization for possibly common font case */
curName = base + *p++;
UBfind:
leaf = findLeaf(array, curName, GL_TRUE);
if (leaf && leaf->dataList) {
GLint reldiff;
GLuint relend;
void **leafData;
leafData = leaf->dataList;
tempData = leafData[curName - leaf->start];
/* All possible display lists can be found here */
reldiff = base - leaf->start;
relend = leaf->end - leaf->start;
UBsave:
(*(GLint *)tempData)++; /* increment the refcount */
*data++ = tempData;
if (--n >= 0) {
curName = *p++ + reldiff;
if (curName <= relend) {
tempData = leafData[curName];
goto UBsave;
}
curName = curName + leaf->start;
goto UBfind;
}
} else {
(*(GLint *)empty)++; /* increment refcount */
*data++ = empty;
goto UBstart;
}
}
}
break;
case GL_SHORT:
{
const GLshort *p = (const GLshort *) names;
leaf = NULL;
while (--n >= 0) {
curName = base + *p++;
if (leaf==NULL || curName<leaf->start || curName>leaf->end) {
leaf = findLeaf(array, curName, GL_TRUE);
}
if (leaf && leaf->dataList) {
tempData = leaf->dataList[curName - leaf->start];
(*(GLint *)tempData)++; /* increment the refcount */
*data++ = tempData;
} else {
(*(GLint *)empty)++; /* increment refcount */
*data++ = empty;
}
}
}
break;
case GL_UNSIGNED_SHORT:
{
const GLushort *p = (const GLushort *) names;
leaf = NULL;
while (--n >= 0) {
curName = base + *p++;
if (leaf==NULL || curName<leaf->start || curName>leaf->end) {
leaf = findLeaf(array, curName, GL_TRUE);
}
if (leaf && leaf->dataList) {
tempData = leaf->dataList[curName - leaf->start];
(*(GLint *)tempData)++; /* increment the refcount */
*data++ = tempData;
} else {
(*(GLint *)empty)++; /* increment refcount */
*data++ = empty;
}
}
}
break;
case GL_INT:
{
const GLint *p = (const GLint *) names;
leaf = NULL;
while (--n >= 0) {
curName = base + *p++;
if (leaf==NULL || curName<leaf->start || curName>leaf->end) {
leaf = findLeaf(array, curName, GL_TRUE);
}
if (leaf && leaf->dataList) {
tempData = leaf->dataList[curName - leaf->start];
(*(GLint *)tempData)++; /* increment the refcount */
*data++ = tempData;
} else {
(*(GLint *)empty)++; /* increment refcount */
*data++ = empty;
}
}
}
break;
case GL_UNSIGNED_INT:
{
const GLuint *p = (const GLuint *) names;
leaf = NULL;
while (--n >= 0) {
curName = base + *p++;
if (leaf==NULL || curName<leaf->start || curName>leaf->end) {
leaf = findLeaf(array, curName, GL_TRUE);
}
if (leaf && leaf->dataList) {
tempData = leaf->dataList[curName - leaf->start];
(*(GLint *)tempData)++; /* increment the refcount */
*data++ = tempData;
} else {
(*(GLint *)empty)++; /* increment refcount */
*data++ = empty;
}
}
}
break;
case GL_FLOAT:
{
const GLfloat *p = (const GLfloat *) names;
leaf = NULL;
while (--n >= 0) {
curName = base + *p++;
if (leaf==NULL || curName<leaf->start || curName>leaf->end) {
leaf = findLeaf(array, curName, GL_TRUE);
}
if (leaf && leaf->dataList) {
tempData = leaf->dataList[curName - leaf->start];
(*(GLint *)tempData)++; /* increment the refcount */
*data++ = tempData;
} else {
(*(GLint *)empty)++; /* increment refcount */
*data++ = empty;
}
}
}
break;
case GL_2_BYTES:
{
const GLubyte *p = (const GLubyte *) names;
leaf = NULL;
while (--n >= 0) {
curName = base + ((p[0] << 8) | p[1]);
p += 2;
if (leaf==NULL || curName<leaf->start || curName>leaf->end) {
leaf = findLeaf(array, curName, GL_TRUE);
}
if (leaf && leaf->dataList) {
tempData = leaf->dataList[curName - leaf->start];
(*(GLint *)tempData)++; /* increment the refcount */
*data++ = tempData;
} else {
(*(GLint *)empty)++; /* increment refcount */
*data++ = empty;
}
}
}
break;
case GL_3_BYTES:
{
const GLubyte *p = (const GLubyte *) names;
leaf = NULL;
while (--n >= 0) {
curName = base + ((p[0] << 16) | (p[1] << 8) | p[2]);
p += 3;
if (leaf==NULL || curName<leaf->start || curName>leaf->end) {
leaf = findLeaf(array, curName, GL_TRUE);
}
if (leaf && leaf->dataList) {
tempData = leaf->dataList[curName - leaf->start];
(*(GLint *)tempData)++; /* increment the refcount */
*data++ = tempData;
} else {
(*(GLint *)empty)++; /* increment refcount */
*data++ = empty;
}
}
}
break;
case GL_4_BYTES:
{
const GLubyte *p = (const GLubyte *) names;
leaf = NULL;
while (--n >= 0) {
curName = base + ((p[0] << 24) | (p[1] << 16) |
(p[2] << 8) | p[3]);
p += 4;
if (leaf==NULL || curName<leaf->start || curName>leaf->end) {
leaf = findLeaf(array, curName, GL_TRUE);
}
if (leaf && leaf->dataList) {
tempData = leaf->dataList[curName - leaf->start];
(*(GLint *)tempData)++; /* increment the refcount */
*data++ = tempData;
} else {
(*(GLint *)empty)++; /* increment refcount */
*data++ = empty;
}
}
}
break;
default:
/* This should be impossible */
ASSERTOPENGL(FALSE, "Default hit\n");
}
__GL_NAMES_UNLOCK(array);
}
/*
** Unlocks data that was previously locked with __glNamesLockData().
*/
void FASTCALL __glNamesUnlockData(__GLcontext *gc, void *data,
__GLnamesCleanupFunc cleanup)
{
GLint *pRefcount;
ASSERTOPENGL(data, "No data to unlock\n");
pRefcount = data;
(*pRefcount)--; /* decrement the refcount */
ASSERTOPENGL(*pRefcount >= 0, "Invalid refcount\n");
if (*pRefcount == 0) {
/*
** We are the last person to see this list alive. Free it.
*/
(*cleanup)(gc, data);
}
}
/*
** Unlocks an array of named data that was previously locked with
** __glNamesLockDataList().
*/
void FASTCALL __glNamesUnlockDataList(__GLcontext *gc, GLsizei n,
void *dataList[],
__GLnamesCleanupFunc cleanup)
{
GLint i;
GLint *pRefcount;
/*
** The refcount comes first in all data definitions, so the
** data pointer also points to the refcount.
*/
for (i = 0; i < n; i++) {
pRefcount = (GLint *)(dataList[i]);
(*pRefcount) --; /* decrement the refcount */
ASSERTOPENGL(*pRefcount >= 0, "Invalid refcount\n");
if (*pRefcount == 0) {
/*
** We are the last person to see this list alive. Free it.
*/
(*cleanup)(gc, (void *)pRefcount);
}
}
}
GLuint FASTCALL __glNamesGenRange(__GLcontext *gc, __GLnamesArray *array,
GLsizei range)
{
GLuint lastUsed;
GLuint nextUsed;
GLuint maxUsed;
__GLnamesLeaf *leaf;
__GLnamesLeaf *nextleaf;
__GLnamesLeaf *newleaf;
__GL_NAMES_LOCK(array);
/*
** First we check for possible memory problems, since it will be
** difficult to back out once we start.
*/
if (array->nbranches != __GL_DL_EXTRA_BRANCHES ||
array->nleaves != __GL_DL_EXTRA_LEAVES) {
if (!fixMemoryProblem(gc, array)) {
__GL_NAMES_UNLOCK(array);
__glSetError(GL_OUT_OF_MEMORY);
return 0;
}
}
leaf = firstLeaf(array);
/*
** Can we possibly allocate the appropriate number before the first leaf?
*/
if (leaf && leaf->start > (GLuint)range) {
if (leaf->dataList == NULL) {
/*
** Ha! We can trivially extend leaf!
*/
leaf->start -= range;
__GL_NAMES_UNLOCK(array);
return leaf->start;
} else {
/*
** Must make a new leaf
*/
newleaf = allocLeaf(gc, array);
newleaf->start = 1;
newleaf->end = range;
insertLeaf(gc, array, newleaf);
__GL_NAMES_UNLOCK(array);
return 1;
}
}
while (leaf) {
nextleaf = nextLeaf(leaf);
if (!nextleaf) break;
lastUsed = leaf->end + 1;
nextUsed = nextleaf->start;
/* Room for (lastUsed) - (nextUsed-1) here */
if (nextUsed - lastUsed >= (GLuint)range) {
if (leaf->dataList == NULL) {
/* Trivial to expand 'leaf' */
leaf->end += range;
pushMaxVal((__GLnamesBranch *) leaf, leaf->end);
if (nextUsed - lastUsed == (GLuint)range && nextleaf->dataList == NULL) {
mergeLeaf(gc, array, leaf);
}
__GL_NAMES_UNLOCK(array);
return lastUsed;
} else if (nextleaf->dataList == NULL) {
/* Trivial to expand 'nextleaf' */
nextleaf->start -= range;
__GL_NAMES_UNLOCK(array);
return nextleaf->start;
} else {
newleaf = allocLeaf(gc, array);
newleaf->start = lastUsed;
newleaf->end = lastUsed + range - 1;
insertLeaf(gc, array, newleaf);
__GL_NAMES_UNLOCK(array);
return lastUsed;
}
}
leaf = nextleaf;
}
if (leaf == NULL) {
newleaf = allocLeaf(gc, array);
newleaf->start = 1;
newleaf->end = range;
insertLeaf(gc, array, newleaf);
__GL_NAMES_UNLOCK(array);
return 1;
} else {
lastUsed = leaf->end;
maxUsed = lastUsed + range;
if (maxUsed < lastUsed) {
/* Word wrap! Ack! */
__GL_NAMES_UNLOCK(array);
return 0;
}
if (leaf->dataList == NULL) {
/* Trivial to expand 'leaf' */
leaf->end += range;
pushMaxVal((__GLnamesBranch *) leaf, leaf->end);
__GL_NAMES_UNLOCK(array);
return lastUsed + 1;
} else {
/* Need to make new leaf */
newleaf = allocLeaf(gc, array);
newleaf->start = lastUsed + 1;
newleaf->end = maxUsed;
insertLeaf(gc, array, newleaf);
__GL_NAMES_UNLOCK(array);
return lastUsed + 1;
}
}
}
void FASTCALL __glNamesDeleteRange(__GLcontext *gc, __GLnamesArray *array,
GLuint name, GLsizei range)
{
__GLnamesLeaf *leaf;
/*LINTED nextleaf ok; lint doesn't understand for loops*/
__GLnamesLeaf *nextleaf;
__GLnamesLeaf *newleaf;
void *empty;
GLuint start, end, i;
GLuint firstdel, lastdel;
GLuint memoryProblem;
if (range == 0) return;
__GL_NAMES_LOCK(array);
/*
** First we check for possible memory problems, since it will be
** difficult to back out once we start. We note a possible problem,
** and check for it before fragmenting a leaf.
*/
memoryProblem = 0;
if (array->nbranches != __GL_DL_EXTRA_BRANCHES ||
array->nleaves != __GL_DL_EXTRA_LEAVES) {
memoryProblem = 1;
}
firstdel = name;
lastdel = name+range-1;
/*LINTED nextleaf ok; lint bug*/
for (leaf = findLeaf(array, name, GL_FALSE); leaf != NULL;
leaf = nextleaf) {
nextleaf = nextLeaf(leaf);
start = leaf->start;
end = leaf->end;
if (lastdel < start) break;
if (firstdel > end) continue;
if (firstdel > start) start = firstdel;
if (lastdel < end) end = lastdel;
/*
** Need to delete the range of lists from start to end.
*/
if (leaf->dataList) {
empty = array->dataInfo->empty;
for (i=start; i<=end; i++) {
if (leaf->dataList[i - leaf->start] != empty) {
(*leaf->dataInfo->free)(gc,
(void *)leaf->dataList[i - leaf->start]);
leaf->dataList[i - leaf->start] = empty;
}
}
}
if (start == leaf->start) {
if (end == leaf->end) {
/* Bye bye leaf! */
deleteLeaf(gc, array, leaf);
freeLeaf(gc, leaf);
} else {
/* Shrink leaf */
resizeLeaf(gc, leaf, end+1, leaf->end);
}
} else if (end == leaf->end) {
/* Shrink leaf */
resizeLeaf(gc, leaf, leaf->start, start-1);
} else {
if (memoryProblem) {
if (!fixMemoryProblem(gc, array)) {
__GL_NAMES_UNLOCK(array);
__glSetError(GL_OUT_OF_MEMORY);
return;
}
}
/* Crud. The middle of the leaf was deleted. This is tough. */
newleaf = allocLeaf(gc, array);
newleaf->start = end+1;
newleaf->end = leaf->end;
if (leaf->dataList) {
if (!allocLeafData(gc, newleaf)) {
/*
** Darn! We are in trouble. This is a bad spot for an
** out of memory error. It is also darn unlikely,
** because we just freed up some memory.
*/
freeLeaf(gc, newleaf);
__GL_NAMES_UNLOCK(array);
__glSetError(GL_OUT_OF_MEMORY);
return;
}
copyLeafInfo(leaf, newleaf);
}
resizeLeaf(gc, leaf, leaf->start, start-1);
insertLeaf(gc, array, newleaf);
break;
}
}
__GL_NAMES_UNLOCK(array);
}
GLboolean FASTCALL __glNamesIsName(__GLcontext *gc, __GLnamesArray *array,
GLuint name)
{
GLboolean isName;
__GL_NAMES_LOCK(array);
/*
** If the name retrieves a leaf, it is in the current name space.
*/
isName = findLeaf(array, name, GL_TRUE) != NULL;
__GL_NAMES_UNLOCK(array);
return isName;
}
/*
** Generates a list of (not necessarily contiguous) names.
*/
void FASTCALL __glNamesGenNames(__GLcontext *gc, __GLnamesArray *array,
GLsizei n, GLuint* names)
{
GLuint start, nameVal;
int i;
if (NULL == names) return;
start = __glNamesGenRange(gc, array, n);
for (i=0, nameVal=start; i < n; i++, nameVal++) {
names[i] = nameVal;
}
}
/*
** Deletes a list of (not necessarily contiguous) names.
*/
void FASTCALL __glNamesDeleteNames(__GLcontext *gc, __GLnamesArray *array,
GLsizei n, const GLuint* names)
{
GLuint start, rangeVal, i;
/*
** Because of resizing leaves, etc, it is best to work in ranges
** as much as possible. So break the list into ranges
** and delete them that way. This degrades into deleting
** them one at a time if the list is disjoint or non-ascending.
** It also only calls DeleteRange once if the list is a
** contiguous range of names.
*/
start = rangeVal = names[0];
for (i=0; i < (GLuint)n; i++, rangeVal++) {
if (names[i] != rangeVal) {
__glNamesDeleteRange(gc,array,start,rangeVal-start);
start = rangeVal = names[i];
}
}
__glNamesDeleteRange(gc,array,start,rangeVal-start);
return;
}