windows-nt/Source/XPSP1/NT/public/sdk/inc/dmobase.h

2627 lines
84 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
//------------------------------------------------------------------------------
// File: DMOBase.h
//
// Desc: A collection of DMO base classes.
//
// Copyright (c) 1999-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
// Current hierarchy:
//
// IMediaObject
// |
// +-- C1in1outDMO - generic base class for DMOs with 1 in and 1 out
// | |
// | +-- FBRDMO - base class for fixed sample size, fixed bitrate DMOs
// | | |
// | | +-- CPCMDMO - base class for PCM audio DMOs
// | |
// | +-- C1for1DMO - base class for single sample per buffer 1-in/1-out DMOs
// | |
// | +-- C1for1QCDMO - adds IDMOQualityControl to C1for1DMO
// |
// +-- CGenericDMO - resonably generic base class for multi-input/output DMOs
//
#ifndef __DMOBASE_H_
#define __DMOBASE_H_
#include "dmo.h"
#include "assert.h"
#include "math.h"
//
// locking helper class
//
#ifdef DMO_NOATL
class CDMOAutoLock {
public:
CDMOAutoLock(CRITICAL_SECTION* pcs)
: m_pcs(pcs)
{
EnterCriticalSection(m_pcs);
}
~CDMOAutoLock() {
LeaveCriticalSection(m_pcs);
}
private:
CRITICAL_SECTION* m_pcs;
};
#else
class CDMOAutoLock {
public:
CDMOAutoLock(CComAutoCriticalSection* pcs)
: m_pcs(pcs)
{
m_pcs->Lock();
}
~CDMOAutoLock() {
m_pcs->Unlock();
}
private:
CComAutoCriticalSection* m_pcs;
};
#endif
//
// C1in1outDMO - generic base class for 1-input/1-output DMOs.
//
//
//
// C1in1outDMO implements all IMediaObject methods. The derived class
// customizes the DMO's behavior by overriding some or all of the following
// virtual functions:
//
// Main Streaming:
// AcceptInput // accept one new input buffer
// ProduceOutput // fill up one output buffer with new data
// AcceptingInput // check if DMO is ready for new input
// Other streaming:
// PrepareForStreaming // hook called after both types have been set
// Discontinuity // notify DMO of a discontinuity
// DoFlush // discard all data and start anew
// Mediatype negotiation:
// GetInputType // input type enumerator
// GetOutputType // output type enumerator
// CheckInputType // verifies proposed input type is acceptable
// CheckOutputType // verifies proposed output type is acceptable
// Buffer size negotiation:
// GetInputFlags // input data flow flags
// GetOutputFlags // output fata flow flags
// GetInputSizeInfo // input buffer size requirements
// GetOutputSizeInfo // output buffer size requirements
//
// This base class assumes that the derived class will not override any
// IMediaObject methods directly - the derived class should override the
// methods listed above instead.
//
//
//
// The base class provides a default implementation for each of the
// overridables listed above. However, to make a useful DMO the derived class
// probably needs to override at least the following two methods:
//
// HRESULT AcceptingInput();
// HRESULT AcceptInput(BYTE* pData,
// ULONG ulSize,
// DWORD dwFlags,
// REFERENCE_TIME rtTimestamp,
// REFERENCE_TIME rtTimelength,
// IMediaBuffer* pMediaBuffer);
// HRESULT ProduceOutput(BYTE *pData,
// ULONG ulAvail,
// ULONG* pulUsed,
// DWORD* pdwStatus,
// REFERENCE_TIME *prtTimestamp,
// REFERENCE_TIME *prtTimelength);
//
// All good DMOs should also override these (the default implementation
// simply accepts any mediatype, which in general is not good DMO behavior):
//
// HRESULT GetInputType(ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt);
// HRESULT GetOutputType(ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt);
// HRESULT CheckInputType(const DMO_MEDIA_TYPE *pmt);
// HRESULT CheckOutputType(const DMO_MEDIA_TYPE *pmt);
//
// DMOs that store data and/or state information may need to implement
//
// HRESULT PrepareForStreaming();
// HRESULT Discontinuity();
// HRESULT Flush();
//
// Finally, DMOs that make any buffer size assumptions will need to override
// these:
//
// HRESULT GetInputFlags(DWORD* pdwFlags);
// HRESULT GetOutputFlags(DWORD* pdwFlags);
// HRESULT GetInputSizeInfo(ULONG *pulSize, ULONG *pcbMaxLookahead, ULONG *pulAlignment);
// HRESULT GetOutputSizeInfo(ULONG *pulSize, ULONG *pulAlignment);
//
//
//
// The following functions are provided by this base class exclusively for use
// by the derived class. The derived class should call these to find out the
// currently set mediatype(s) whenever it needs to make a decision that
// depends on the mediatype used. Each of these returns NULL if the mediatype
// has not been set yet.
//
// DMO_MEDIA_TYPE *InputType();
// DMO_MEDIA_TYPE *OutputType().
//
#define PROLOGUE \
CDMOAutoLock l(&m_cs); \
if (ulStreamIndex >= 1) \
return DMO_E_INVALIDSTREAMINDEX
class C1in1outDMO : public IMediaObject
{
public:
C1in1outDMO() :
m_bInputTypeSet(FALSE),
m_bOutputTypeSet(FALSE),
m_bIncomplete(FALSE)
{
#ifdef DMO_NOATL
InitializeCriticalSection(&m_cs);
#endif
}
~C1in1outDMO() {
FreeInputType();
FreeOutputType();
#ifdef DMO_NOATL
DeleteCriticalSection(&m_cs);
#endif
}
public:
//
// IMediaObject methods
//
STDMETHODIMP GetStreamCount(unsigned long *pulNumberOfInputStreams, unsigned long *pulNumberOfOutputStreams)
{
CDMOAutoLock l(&m_cs);
if (pulNumberOfInputStreams == NULL ||
pulNumberOfOutputStreams == NULL) {
return E_POINTER;
}
*pulNumberOfInputStreams = 1;
*pulNumberOfOutputStreams = 1;
return S_OK;
}
STDMETHODIMP GetInputStreamInfo(ULONG ulStreamIndex, DWORD *pdwFlags)
{
if( NULL == pdwFlags ) {
return E_POINTER;
}
PROLOGUE;
return GetInputFlags(pdwFlags);
}
STDMETHODIMP GetOutputStreamInfo(ULONG ulStreamIndex, DWORD *pdwFlags)
{
if( NULL == pdwFlags ) {
return E_POINTER;
}
PROLOGUE;
return GetOutputFlags(pdwFlags);
}
STDMETHODIMP GetInputType(ULONG ulStreamIndex, ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt) {
PROLOGUE;
return GetInputType(ulTypeIndex, pmt);
}
STDMETHODIMP GetOutputType(ULONG ulStreamIndex, ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt) {
PROLOGUE;
return GetOutputType(ulTypeIndex, pmt);
}
STDMETHODIMP GetInputCurrentType(ULONG ulStreamIndex, DMO_MEDIA_TYPE *pmt) {
PROLOGUE;
if (m_bInputTypeSet)
return MoCopyMediaType(pmt, &m_InputType);
else
return DMO_E_TYPE_NOT_SET;
}
STDMETHODIMP GetOutputCurrentType(ULONG ulStreamIndex, DMO_MEDIA_TYPE *pmt) {
PROLOGUE;
if (m_bOutputTypeSet)
return MoCopyMediaType(pmt, &m_OutputType);
else
return DMO_E_TYPE_NOT_SET;
}
STDMETHODIMP GetInputSizeInfo(ULONG ulStreamIndex, ULONG *pulSize, ULONG *pcbMaxLookahead, ULONG *pulAlignment) {
if( (NULL == pulSize) || (NULL == pcbMaxLookahead) || (NULL == pulAlignment) ) {
return E_POINTER;
}
PROLOGUE;
if (!m_bInputTypeSet)
return DMO_E_TYPE_NOT_SET;
return GetInputSizeInfo(pulSize, pcbMaxLookahead, pulAlignment);
}
STDMETHODIMP GetOutputSizeInfo(ULONG ulStreamIndex, ULONG *pulSize, ULONG *pulAlignment) {
if( (NULL == pulSize) || (NULL == pulAlignment) ) {
return E_POINTER;
}
PROLOGUE;
if (!m_bOutputTypeSet)
return DMO_E_TYPE_NOT_SET;
return GetOutputSizeInfo(pulSize, pulAlignment);
}
STDMETHODIMP SetInputType(ULONG ulStreamIndex, const DMO_MEDIA_TYPE *pmt, DWORD dwFlags) {
PROLOGUE;
HRESULT hr = ValidateSetTypeParameters(pmt, dwFlags);
if (FAILED(hr)) {
return hr;
}
if (DMO_SET_TYPEF_CLEAR & dwFlags) {
FreeInputType();
return NOERROR;
} else {
hr = CheckInputType(pmt);
if (FAILED(hr))
return hr;
if (dwFlags & DMO_SET_TYPEF_TEST_ONLY)
return NOERROR;
hr = AtomicCopyMediaType(pmt, &m_InputType, m_bInputTypeSet);
if (FAILED(hr)) {
return hr;
}
m_bInputTypeSet = TRUE;
if (m_bOutputTypeSet) {
hr = PrepareForStreaming();
if (FAILED(hr)) {
FreeInputType();
return hr;
}
}
return NOERROR;
}
}
STDMETHODIMP SetOutputType(ULONG ulStreamIndex, const DMO_MEDIA_TYPE *pmt, DWORD dwFlags) {
PROLOGUE;
HRESULT hr = ValidateSetTypeParameters(pmt, dwFlags);
if (FAILED(hr)) {
return hr;
}
if (DMO_SET_TYPEF_CLEAR & dwFlags) {
FreeOutputType();
return NOERROR;
} else {
hr = CheckOutputType(pmt);
if (FAILED(hr))
return hr;
if (dwFlags & DMO_SET_TYPEF_TEST_ONLY)
return NOERROR;
hr = AtomicCopyMediaType(pmt, &m_OutputType, m_bOutputTypeSet);
if (FAILED(hr)) {
return hr;
}
m_bOutputTypeSet = TRUE;
if (m_bInputTypeSet) {
hr = PrepareForStreaming();
if (FAILED(hr)) {
FreeOutputType();
return hr;
}
}
return NOERROR;
}
}
STDMETHODIMP GetInputStatus(
ULONG ulStreamIndex,
DWORD *pdwStatus
) {
if( NULL == pdwStatus ) {
return E_POINTER;
}
PROLOGUE;
*pdwStatus = 0;
if (AcceptingInput() == S_OK)
*pdwStatus |= DMO_INPUT_STATUSF_ACCEPT_DATA;
return NOERROR;
}
STDMETHODIMP GetInputMaxLatency(unsigned long ulStreamIndex, REFERENCE_TIME *prtLatency) {
return E_NOTIMPL;
}
STDMETHODIMP SetInputMaxLatency(unsigned long ulStreamIndex, REFERENCE_TIME rtLatency) {
return E_NOTIMPL;
}
STDMETHODIMP Discontinuity(ULONG ulStreamIndex) {
PROLOGUE;
return Discontinuity();
}
STDMETHODIMP Flush()
{
CDMOAutoLock l(&m_cs);
DoFlush();
return NOERROR;
}
STDMETHODIMP AllocateStreamingResources() {return S_OK;}
STDMETHODIMP FreeStreamingResources() {return S_OK;}
//
// Processing methods - public entry points
//
STDMETHODIMP ProcessInput(
DWORD ulStreamIndex,
IMediaBuffer *pBuffer, // [in], must not be NULL
DWORD dwFlags, // [in] - discontinuity, timestamp, etc.
REFERENCE_TIME rtTimestamp, // [in], valid if flag set
REFERENCE_TIME rtTimelength // [in], valid if flag set
) {
PROLOGUE;
if (!TypesSet()) {
return DMO_E_TYPE_NOT_SET;
}
if (AcceptingInput() != S_OK)
return DMO_E_NOTACCEPTING;
if (!pBuffer)
return E_POINTER;
// deal with the IMediaBuffer so the derived class doesn't have to
BYTE *pData;
ULONG ulSize;
HRESULT hr = pBuffer->GetBufferAndLength(&pData, &ulSize);
if (FAILED(hr))
return hr;
if (pData == NULL)
ulSize = 0;
m_bIncomplete = TRUE; // new input means we may be able to produce output
return AcceptInput(pData, ulSize, dwFlags, rtTimestamp, rtTimelength, pBuffer);
}
STDMETHODIMP ProcessOutput(
DWORD dwReserved,
DWORD ulOutputBufferCount,
DMO_OUTPUT_DATA_BUFFER *pOutputBuffers,
DWORD *pdwStatus)
{
HRESULT hr;
CDMOAutoLock l(&m_cs);
if (pdwStatus == NULL) {
return E_POINTER;
}
*pdwStatus = 0;
if (ulOutputBufferCount != 1)
return E_INVALIDARG;
if (!TypesSet()) {
return DMO_E_TYPE_NOT_SET;
}
pOutputBuffers[0].dwStatus = 0;
// deal with the IMediaBuffer so the derived class doesn't have to
BYTE *pOut;
ULONG ulSize;
ULONG ulAvail;
if (pOutputBuffers[0].pBuffer) {
hr = pOutputBuffers[0].pBuffer->GetBufferAndLength(&pOut, &ulSize);
if (FAILED(hr)) return hr;
hr = pOutputBuffers[0].pBuffer->GetMaxLength(&ulAvail);
if (FAILED(hr)) return hr;
if (ulSize) { // skip any already used portion of the buffer
if (ulSize > ulAvail)
return E_INVALIDARG;
ulAvail -= ulSize;
pOut += ulSize;
}
}
else { // no IMediaBuffer
//
// If (a) the output stream says it can operate without buffers, AND
// (b) the DISCARD flag was set in dwReserved,
// then call ProduceOutput with a NULL output buffer pointer.
//
// Otherwise just return the INCOMPLETE flag without any processing.
//
DWORD dwFlags;
if (SUCCEEDED(GetOutputFlags(&dwFlags)) &&
((dwFlags & DMO_OUTPUT_STREAMF_DISCARDABLE) ||
(dwFlags & DMO_OUTPUT_STREAMF_OPTIONAL)
) &&
(dwReserved & DMO_PROCESS_OUTPUT_DISCARD_WHEN_NO_BUFFER))
{ // process, but discard the output
pOut = NULL;
ulAvail = 0;
}
else { // just report the incomplete status without altering our state
if (m_bIncomplete)
pOutputBuffers[0].dwStatus |= DMO_OUTPUT_DATA_BUFFERF_INCOMPLETE;
return NOERROR;
}
}
ULONG ulProduced = 0;
hr = ProduceOutput(pOut,
ulAvail,
&ulProduced,
&(pOutputBuffers[0].dwStatus),
&(pOutputBuffers[0].rtTimestamp),
&(pOutputBuffers[0].rtTimelength));
if (FAILED(hr))
return hr;
HRESULT hrProcess = hr; // remember this in case it's S_FALSE
// remember the DMO's incomplete status
if (pOutputBuffers[0].dwStatus & DMO_OUTPUT_DATA_BUFFERF_INCOMPLETE)
m_bIncomplete = TRUE;
else
m_bIncomplete = FALSE;
if (pOut) { // if using an output buffer, set the amount we used
if (ulProduced > ulAvail)
return E_FAIL;
hr = pOutputBuffers[0].pBuffer->SetLength(ulSize + ulProduced);
if (FAILED(hr))
return hr;
}
return hrProcess;
}
#ifdef FIX_LOCK_NAME
STDMETHODIMP DMOLock(LONG lLock)
#else
STDMETHODIMP Lock(LONG lLock)
#endif
{
if (lLock) {
#ifdef DMO_NOATL
EnterCriticalSection(&m_cs);
#else
m_cs.Lock();
#endif
}
else
{
#ifdef DMO_NOATL
LeaveCriticalSection(&m_cs);
#else
m_cs.Unlock();
#endif
}
return S_OK;
}
protected:
HRESULT AtomicCopyMediaType(const DMO_MEDIA_TYPE *pmtSource, DMO_MEDIA_TYPE *pmtDestination, BOOL bDestinationInitialized) {
// pmtDestination should always point to a valid DMO_MEDIA_TYPE structure.
assert(NULL != pmtDestination);
DMO_MEDIA_TYPE mtTempDestination;
// actually set the type
HRESULT hr = MoCopyMediaType(&mtTempDestination, pmtSource);
if (FAILED(hr)) {
return hr;
}
// Free any previous mediatype
if (bDestinationInitialized) {
MoFreeMediaType(pmtDestination);
}
*pmtDestination = mtTempDestination;
return S_OK;
}
//
// private methods for use by derived class
//
DMO_MEDIA_TYPE *InputType() {
if (m_bInputTypeSet)
return &m_InputType;
else
return NULL;
}
DMO_MEDIA_TYPE *OutputType() {
if (m_bOutputTypeSet)
return &m_OutputType;
else
return NULL;
}
protected:
//
// To be overriden by the derived class
//
virtual HRESULT GetInputFlags(DWORD* pdwFlags) {
*pdwFlags = 0; // default implementation assumes no lookahead
return NOERROR;
}
virtual HRESULT GetOutputFlags(DWORD* pdwFlags) {
*pdwFlags = 0;
return NOERROR;
}
virtual HRESULT GetInputType(ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt) {
return DMO_E_NO_MORE_ITEMS; // default implementation exposes no types
}
virtual HRESULT GetOutputType(ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt) {
return DMO_E_NO_MORE_ITEMS; // default implementation exposes no types
}
virtual HRESULT CheckInputType(const DMO_MEDIA_TYPE *pmt) {
if ((pmt == NULL) || ((pmt->cbFormat > 0) && (pmt->pbFormat == NULL)))
return E_POINTER;
return S_OK; // default implementation accepts anything
}
virtual HRESULT CheckOutputType(const DMO_MEDIA_TYPE *pmt) {
if ((pmt == NULL) || ((pmt->cbFormat > 0) && (pmt->pbFormat == NULL)))
return E_POINTER;
return S_OK; // default implementation accepts anything
}
virtual HRESULT GetInputSizeInfo(ULONG *pulSize, ULONG *pcbMaxLookahead, ULONG *pulAlignment) {
*pulSize = 1; // default implementation imposes no size requirements
*pcbMaxLookahead = 0; // default implementation assumes no lookahead
*pulAlignment = 1; // default implementation assumes no alignment
return NOERROR;
}
virtual HRESULT GetOutputSizeInfo(ULONG *pulSize, ULONG *pulAlignment) {
*pulSize = 1; // default implementation imposes no size requirements
*pulAlignment = 1; // default implementation assumes no alignment
return NOERROR;
}
virtual HRESULT PrepareForStreaming() {
return NOERROR;
}
virtual HRESULT AcceptingInput() {
return S_FALSE;
}
virtual HRESULT Discontinuity() {
return NOERROR;
}
virtual HRESULT DoFlush() {
return NOERROR;
}
virtual HRESULT AcceptInput(BYTE* pData,
ULONG ulSize,
DWORD dwFlags,
REFERENCE_TIME rtTimestamp,
REFERENCE_TIME rtTimelength,
IMediaBuffer* pMediaBuffer
) {
m_bIncomplete = FALSE;
return S_FALSE;
}
virtual HRESULT ProduceOutput(BYTE *pData,
ULONG ulAvail,
ULONG* pulUsed,
DWORD* pdwStatus,
REFERENCE_TIME *prtTimestamp,
REFERENCE_TIME *prtTimelength
) {
*pulUsed = 0;
return S_FALSE;
}
HRESULT ValidateSetTypeParameters(const DMO_MEDIA_TYPE *pmt, DWORD dwFlags)
{
// Validate parameters.
if (!(DMO_SET_TYPEF_CLEAR & dwFlags)) {
// The DMO specification states that pmt CANNOT be NULL if
// the DMO_SET_TYPEF_CLEAR flag is NOT set.
if (NULL == pmt) {
return E_POINTER;
}
}
// The caller cannot set the DMO_SET_TYPEF_CLEAR flag and the
// DMO_SET_TYPEF_TEST_ONLY flag. The DMO specification prohibits
// this combination because the two flags are mutually exclusive.
if ((DMO_SET_TYPEF_CLEAR & dwFlags) && (DMO_SET_TYPEF_TEST_ONLY & dwFlags)) {
return E_INVALIDARG;
}
// Check for illegal flags.
if (~(DMO_SET_TYPEF_CLEAR | DMO_SET_TYPEF_TEST_ONLY) & dwFlags) {
return E_INVALIDARG;
}
return S_OK;
}
bool TypesSet() {
return m_bInputTypeSet && m_bOutputTypeSet;
}
void FreeInputType() {
if (m_bInputTypeSet) {
MoFreeMediaType( &m_InputType );
m_bInputTypeSet = FALSE;
}
}
void FreeOutputType() {
if (m_bOutputTypeSet) {
MoFreeMediaType( &m_OutputType );
m_bOutputTypeSet = FALSE;
}
}
protected:
// mediatype stuff
BOOL m_bInputTypeSet;
BOOL m_bOutputTypeSet;
DMO_MEDIA_TYPE m_InputType;
DMO_MEDIA_TYPE m_OutputType;
BOOL m_bIncomplete;
protected:
#ifdef DMO_NOATL
CRITICAL_SECTION m_cs;
#else
CComAutoCriticalSection m_cs;
#endif
};
//
// C1for1DMO - base class for 1-input/1-output DMOs which
// - work on whole samples at a time, one sample per buffer
// - produce exactly one output sample for every input sample
// - don't need to accumulate more than 1 input sample before producing
// - don't produce any additional stuff at the end
// - the output sample corresponds in time to the input sample
//
// The derived class must implement:
// HRESULT Process(BYTE* pIn,
// ULONG ulBytesIn,
// BYTE* pOut,
// ULONG* pulProduced);
// HRESULT GetSampleSizes(ULONG* pulMaxInputSampleSize,
// ULONG* pulMaxOutputSampleSize);
//
//
// The derived class should implement:
// HRESULT GetInputType(ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt);
// HRESULT GetOutputType(ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt);
// HRESULT CheckInputType(const DMO_MEDIA_TYPE *pmt);
// HRESULT CheckOutputType(const DMO_MEDIA_TYPE *pmt);
//
// The derived class may implement if it needs to:
// HRESULT Init();
//
// The following methods are implemented by the base class. The derived class
// should call these to find out if the input/output type has been set and if
// so what it was set to.
// DMO_MEDIA_TYPE *InputType();
// DMO_MEDIA_TYPE *OutputType().
//
class C1for1DMO : public C1in1outDMO
{
public:
C1for1DMO() :
m_pBuffer(NULL)
{
}
~C1for1DMO() {
if (m_pBuffer)
m_pBuffer->Release();
}
protected:
//
// Implement C1in1outDMO overridables
//
virtual HRESULT GetInputFlags(DWORD* pdwFlags) {
*pdwFlags = DMO_INPUT_STREAMF_WHOLE_SAMPLES |
DMO_INPUT_STREAMF_SINGLE_SAMPLE_PER_BUFFER;
return NOERROR;
}
virtual HRESULT GetOutputFlags(DWORD* pdwFlags) {
*pdwFlags = DMO_OUTPUT_STREAMF_WHOLE_SAMPLES |
DMO_OUTPUT_STREAMF_SINGLE_SAMPLE_PER_BUFFER;
return NOERROR;
}
HRESULT GetInputSizeInfo(ULONG *pulSize, ULONG *pcbMaxLookahead, ULONG *pulAlignment) {
HRESULT hr = GetSampleSizes(&m_ulMaxInputSize, &m_ulMaxOutputSize);
if (FAILED(hr))
return hr;
*pulSize = m_ulMaxInputSize;
*pcbMaxLookahead = 0;
*pulAlignment = 1;
return NOERROR;
}
HRESULT GetOutputSizeInfo(ULONG *pulSize, ULONG *pulAlignment) {
HRESULT hr = GetSampleSizes(&m_ulMaxInputSize, &m_ulMaxOutputSize);
if (FAILED(hr))
return hr;
*pulSize = m_ulMaxOutputSize;
*pulAlignment = 1;
return NOERROR;
}
HRESULT PrepareForStreaming() {
HRESULT hr = GetSampleSizes(&m_ulMaxInputSize, &m_ulMaxOutputSize);
if (FAILED(hr))
return hr;
return Init();
}
HRESULT AcceptingInput() {
return m_pBuffer ? S_FALSE : S_OK; // accept unless holding one already
}
HRESULT AcceptInput(BYTE* pData,
ULONG ulSize,
DWORD dwFlags,
REFERENCE_TIME rtTimestamp,
REFERENCE_TIME rtTimelength,
IMediaBuffer* pMediaBuffer
) {
if (AcceptingInput() != S_OK)
return E_FAIL;
m_pData = pData;
m_ulSize = ulSize;
m_dwFlags = dwFlags;
m_rtTimestamp = rtTimestamp;
m_rtTimelength = rtTimelength;
m_pBuffer = pMediaBuffer;
pMediaBuffer->AddRef();
return NOERROR;
}
HRESULT DoFlush() {
Discontinuity();
if (m_pBuffer) {
m_pBuffer->Release();
m_pBuffer = NULL;
}
return NOERROR;
}
HRESULT ProduceOutput(BYTE *pOut,
ULONG ulAvail,
ULONG* pulUsed,
DWORD* pdwStatus,
REFERENCE_TIME *prtTimestamp,
REFERENCE_TIME *prtTimelength
) {
*pulUsed = 0;
*pdwStatus = 0;
if (!m_pBuffer)
return S_FALSE;
if (pOut) {
if (ulAvail < m_ulMaxOutputSize)
return E_INVALIDARG;
}
HRESULT hr = Process(m_pData, m_ulSize, pOut, pulUsed);
m_pBuffer->Release();
m_pBuffer = NULL;
if (FAILED(hr))
return hr;
if (*pulUsed == 0)
return S_FALSE;
if (m_dwFlags & DMO_INPUT_DATA_BUFFERF_SYNCPOINT)
*pdwStatus |= DMO_OUTPUT_DATA_BUFFERF_SYNCPOINT;
if (m_dwFlags & DMO_INPUT_DATA_BUFFERF_TIME)
*pdwStatus |= DMO_OUTPUT_DATA_BUFFERF_TIME;
if (m_dwFlags & DMO_INPUT_DATA_BUFFERF_TIMELENGTH)
*pdwStatus |= DMO_OUTPUT_DATA_BUFFERF_TIMELENGTH;
*prtTimestamp = m_rtTimestamp;
*prtTimelength = m_rtTimelength;
return hr;
}
protected:
//
// To be implemented by derived class
//
virtual HRESULT Process(BYTE* pIn,
ULONG ulBytesIn,
BYTE* pOut,
ULONG* pulProduced) = 0;
virtual HRESULT GetSampleSizes(ULONG* pulMaxInputSampleSize,
ULONG* pulMaxOutputSampleSize) = 0;
virtual HRESULT Init() {
return NOERROR;
}
IMediaBuffer* m_pBuffer;
BYTE* m_pData;
ULONG m_ulSize;
DWORD m_dwFlags;
REFERENCE_TIME m_rtTimestamp;
REFERENCE_TIME m_rtTimelength;
ULONG m_ulMaxOutputSize;
ULONG m_ulMaxInputSize;
};
//
// C1for1QCDMO - adds an IDMOQualityControl implementation to C1for1DMO. Just like
// C1for1DMO, this base class assumes that the DMO produces exactly one output sample
// for each input sample, etc. etc.
//
// A class that derives from C1for1QCDMO has access to / ability to override all
// the same methods as with C1for1DMO, except
// (1) A class derived from C1for1QCDMO should override QCProcess instead of
// Process because C1for1QCDMO::Process implements some code required for
// quality control. QCProcess has the same prototype as C1for1DMO::Process.
// (2) If a class derived from C1for1QCDMO overrides Init(), it should at some
// point call C1for1QCDMO::Init() to make sure C1for1QCDMO's quality control
// data members are properly initialized.
//
class C1for1QCDMO : public C1for1DMO, public IDMOQualityControl {
public:
//
// IDMOQualityControl
//
STDMETHODIMP SetNow(REFERENCE_TIME rtNow) {
// Remember SetNow values even if quality control is not currently enabled
DWORD dwTicks = GetTickCount();
CDMOAutoLock l(&m_cs);
m_rtNow = rtNow;
m_dwNow = dwTicks;
return NOERROR;
}
STDMETHODIMP SetStatus(DWORD dwFlags) {
// Any point in grabbing the object lock here ?
if (dwFlags & DMO_QUALITY_STATUS_ENABLED)
m_bQualityControlEnabled = TRUE;
else
m_bQualityControlEnabled = FALSE;
return NOERROR;
}
STDMETHODIMP GetStatus(DWORD *pdwFlags) {
// Any point in grabbing the object lock here ?
if (m_bQualityControlEnabled)
*pdwFlags = DMO_QUALITY_STATUS_ENABLED;
else
*pdwFlags = 0;
return NOERROR;
}
protected:
HRESULT Init() {
m_bQualityControlEnabled = FALSE;
m_rtProcess = 100000; // 10 ms - initial guess at processing time
return NOERROR;
}
// Override Process to add quality control
HRESULT Process(BYTE* pIn,ULONG ulBytesIn,BYTE* pOut,ULONG* pulProduced) {
// Skip the sample if it is likely to be late.
if (m_bQualityControlEnabled &&
(m_dwFlags & DMO_INPUT_DATA_BUFFERF_TIME) && // timestamp present
(m_rtNow + (GetTickCount() - m_dwNow) * 10000 + m_rtProcess > m_rtTimestamp + 0000000)) {
*pulProduced = 0;
return S_FALSE;
}
DWORD dwBefore = GetTickCount();
HRESULT hr = QCProcess(m_pData, m_ulSize, pOut, pulProduced);
DWORD dwAfter = GetTickCount();
// Make the new m_rtProcess a weighted average of the old m_rtProcess
// and the value we just got. 0.8 and 0.2 give a time constant of about 4,
// and it takes about 10 iterations to reach 90% - seems reasonable, but
// I don't know what the optimal value is.
m_rtProcess = (REFERENCE_TIME)(0.8 * m_rtProcess + 0.2 * (((REFERENCE_TIME)(dwAfter - dwBefore)) * 10000));
return hr;
}
// To be implemented by derived class
virtual HRESULT QCProcess(BYTE* pIn,
ULONG ulBytesIn,
BYTE* pOut,
ULONG* pulProduced) = 0;
private:
// variables used by quality control code
BOOL m_bQualityControlEnabled;
REFERENCE_TIME m_rtNow;
DWORD m_dwNow;
REFERENCE_TIME m_rtProcess; // average processing delay
};
//
// CFBRDMO - DMO base class for 'fixed bitrate' DMOs. More specifically,
// this base class assumes the following:
// - 1 input, 1 output;
// - both input and output consist of equally sized 'quanta';
// - input/output quantum sizes can be determined from mediatypes;
// - each output quantum can be generated independently (without looking at
// previous output quanta);
// - if multiple input quanta are needed to generate a particular output
// quantum ('window overhead'), then the range of input required has an upper
// bound derived from mediatypes on both sides (i.e., both 'lookahead'
// and 'input memory' are bounded).
//
// The derived class must implement the following virtual functions:
// HRESULT FBRProcess(DWORD cQuanta, BYTE *pIn, BYTE *pOut);
// HRESULT GetStreamingParams(
// DWORD *pdwInputQuantumSize, // in bytes
// DWORD *pdwOutputQuantumSize, // in bytes
// DWORD *pdwMaxLookahead, // in input quanta, 0 means no lookahead
// DWORD *pdwLookBehind,
// REFERENCE_TIME *prtQuantumDuration, // same for input and output quanta
// REFERENCE_TIME *prtDurationDenominator // optional, normally 1
// );
// The derived class should also implement the following:
// HRESULT GetInputType(ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt);
// HRESULT GetOutputType(ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt);
// HRESULT CheckInputType(const DMO_MEDIA_TYPE *pmt);
// HRESULT CheckOutputType(const DMO_MEDIA_TYPE *pmt);
// The derived class may need to implement the followng:
// HRESULT Init();
// HRESULT Discontinuity();
//
// The derived class may use these entry points into the base class to get
// the currently set mediatypes:
// DMO_MEDIA_TYPE *InputType();
// DMO_MEDIA_TYPE *OutputType().
//
// The sum of *pdwMaxLookahead and *pdwLoookbehind is the 'window overhead' of
// the algorithm (the window overhead is 0 if the algorithm only needs the
// current input sample).
//
// Because the non-zero window overhead case is more complicated, it is handled by a
// separate set of functions in this base class. The names of all non-zero
// window overhead functions have the 'NZWO' prefix. The names of the
// zero window overhead functions begin with 'ZWO'.
//
// A data copy on the input side is necessary in the non-zero window overhead case.
//
class CFBRDMO : public C1in1outDMO
{
public:
CFBRDMO() :
m_bParametersSet(FALSE),
m_pMediaBuffer(NULL),
m_pAllocAddr(NULL),
m_bStreaming(FALSE)
{
}
~CFBRDMO() {
/*
if (m_bStreaming)
StopStreaming();
*/
if (m_pAllocAddr)
delete[] m_pAllocAddr;
if (m_pMediaBuffer)
m_pMediaBuffer->Release();
}
protected:
//
// Implement C1in1outDMO overridables
//
HRESULT GetInputSizeInfo(ULONG *pulSize, ULONG *pcbMaxLookahead, ULONG *pulAlignment) {
if (!(InputType() && OutputType()))
return DMO_E_TYPE_NOT_SET;
//
// For efficiency reasons we might like to be fed fairly large amounts
// of data at a time, but technically all we need is one quantum.
//
*pulSize = m_ulInputQuantumSize;
*pcbMaxLookahead = 0; // this base class does not rely on HOLDS_BUFFERS
*pulAlignment = 1;
return NOERROR;
}
HRESULT GetOutputSizeInfo(ULONG *pulSize, ULONG *pulAlignment) {
if (!(InputType() && OutputType()))
return DMO_E_TYPE_NOT_SET;
*pulSize = m_ulOutputQuantumSize;
*pulAlignment = 1;
return NOERROR;
}
virtual HRESULT Discontinuity() {
m_bDiscontinuity = TRUE;
return NOERROR;
}
virtual HRESULT AcceptInput(BYTE* pData,
ULONG ulSize,
DWORD dwFlags,
REFERENCE_TIME rtTimestamp,
REFERENCE_TIME rtTimelength,
IMediaBuffer* pBuffer
) {
BOOL bTimestamp = (dwFlags & DMO_INPUT_DATA_BUFFERF_TIME) ? TRUE : FALSE;
if (m_ulWindowOverhead)
return NZWOProcessInput(pBuffer, pData, ulSize, bTimestamp, rtTimestamp);
else
return ZWOProcessInput(pBuffer, pData, ulSize, bTimestamp, rtTimestamp);
}
virtual HRESULT ProduceOutput(BYTE *pOut,
ULONG ulAvail,
ULONG* pulUsed,
DWORD* pdwStatus,
REFERENCE_TIME *prtTimestamp,
REFERENCE_TIME *prtTimelength
) {
HRESULT hr;
if (!m_bParametersSet)
return DMO_E_TYPE_NOT_SET;
// call Discontinuity() if this is the first ProcessOutput() call
if (!m_bStreaming) {
HRESULT hr = Discontinuity();
if (FAILED(hr))
return hr;
m_bStreaming = TRUE;
}
*pdwStatus = 0;
ULONG ulInputQuantaAvailable = InputQuantaAvailable();
if (!ulInputQuantaAvailable)
return S_FALSE; // did not produce anything
ULONG ulOutputQuantaPossible = ulAvail / m_ulOutputQuantumSize;
if (!ulOutputQuantaPossible)
return E_INVALIDARG;
ULONG ulQuantaToProcess = min(ulOutputQuantaPossible, ulInputQuantaAvailable);
assert(ulQuantaToProcess > 0);
BOOL bTimestamp;
if (m_ulWindowOverhead)
hr = NZWOProcessOutput(pOut, ulQuantaToProcess, &bTimestamp, prtTimestamp);
else
hr = ZWOProcessOutput(pOut, ulQuantaToProcess, &bTimestamp, prtTimestamp);
if (FAILED(hr))
return hr;
*pulUsed = ulQuantaToProcess * m_ulOutputQuantumSize;
*pdwStatus |= DMO_OUTPUT_DATA_BUFFERF_SYNCPOINT;
if (bTimestamp)
*pdwStatus |= DMO_OUTPUT_DATA_BUFFERF_TIME;
// any data left ?
if (InputQuantaAvailable()) // yes - set incomplete
*pdwStatus |= DMO_OUTPUT_DATA_BUFFERF_INCOMPLETE;
else if (m_bDiscontinuity) // no - process any discontinuity
DoFlush();
return NOERROR;
}
HRESULT DoFlush()
{
Discontinuity();
// reset flags
m_bDiscontinuity = FALSE;
m_bTimestamps = FALSE;
if (m_ulWindowOverhead)
NZWODiscardData();
else
ZWODiscardData();
return NOERROR;
}
HRESULT AcceptingInput() {
if (!m_bParametersSet) // uninitialized
return S_FALSE;
BOOL bResult;
if (m_ulWindowOverhead)
bResult = NZWOQueryAccept();
else
bResult = ZWOQueryAccept();
return bResult ? S_OK : S_FALSE;
}
// End C1in1out overridables implementation
private:
//
// Common private code (window overhead or no window overhead)
//
// returns the number of input quanta available minus any window overhead
ULONG InputQuantaAvailable() {
if (m_ulWindowOverhead)
return NZWOAvail();
else
return ZWOAvail();
}
// Private method to compute/allocate stuff once all types have been set.
HRESULT PrepareForStreaming () {
m_bParametersSet = FALSE;
// Now that both types are set, query the derived class for params
HRESULT hr;
if (FAILED(hr = GetStreamingParams(&m_ulInputQuantumSize,
&m_ulOutputQuantumSize,
&m_ulLookahead,
&m_ulLookbehind,
&m_rtDurationNumerator,
&m_rtDenominator)))
return hr;
// m_ulOutputQuantumSize and m_ulInputQuantumSize should never be 0.
assert( (0 != m_ulInputQuantumSize) && (0 != m_ulOutputQuantumSize) );
if (!m_rtDenominator) {
assert(!"bad object - duration denominator should not be 0 !");
return E_FAIL;
}
// Attempt to reduce the fraction. Probably the most complicated number
// we will ever see is 44100 = (3 * 7 * 2 * 5) ^ 2, so trying the first
// few numbers should suffice in most cases.
DWORD dwP[] = {2,3,5,7,11,13,17,19,23,29,31};
for (DWORD c = 0; c < sizeof(dwP) / sizeof(DWORD); c++) {
while ((m_rtDurationNumerator % dwP[c] == 0) &&
(m_rtDenominator % dwP[c] == 0)) {
m_rtDurationNumerator /= dwP[c];
m_rtDenominator /= dwP[c];
}
}
// We cannot afford to have huge denominators, unfortunately, because
// we store timestamp numerators using 64 bits, so a large denominator
// could result in timestamp overflows. So if the denominator is still
// too large, reduce it anyway with loss of precision.
ULONG ulMax = 0x10000; // largest acceptable denominator value
if (m_rtDenominator >= ulMax) {
double actual_ratio = (double)m_rtDurationNumerator * (double)m_rtDenominator;
ULONG ulDenominator = 1;
// Repeatedly increase the denominator until either the actual ratio
// can be represented precisely using the denominator, or the
// denominator gets too large.
do {
double fractional_part = actual_ratio * (double)ulDenominator
- floor(actual_ratio * (double)ulDenominator);
if (fractional_part == 0)
break;
ULONG ulNewDenominator = (ULONG)floor(ulDenominator / fractional_part);
if (ulNewDenominator >= ulMax)
break;
ulDenominator = ulNewDenominator;
} while(1);
m_rtDurationNumerator = (ULONG)floor(actual_ratio * ulDenominator);
m_rtDenominator = ulDenominator;
}
m_ulWindowOverhead = m_ulLookahead + m_ulLookbehind;
if (!m_ulWindowOverhead) // No window overhead - the simple case
m_bParametersSet = TRUE;
else // The complicated case with window overhead
AllocateCircularBuffer();
m_bTimestamps = FALSE;
m_bDiscontinuity = FALSE;
if (m_bStreaming) {
//StopStreaming();
m_bStreaming = FALSE;
}
hr = Init();
if( FAILED( hr ) ) {
m_bParametersSet = FALSE;
return hr;
}
return m_bParametersSet ? NOERROR : E_FAIL;
}
// end common code
//
// zero window overhead case code
//
HRESULT ZWOProcessInput(IMediaBuffer* pBuffer,
BYTE* pData,
ULONG ulSize,
BOOL bTimestamp,
REFERENCE_TIME rtTimestamp) {
assert(!m_pMediaBuffer);
m_bTimestamp = bTimestamp;
m_rtTimestamp = rtTimestamp;
m_pData = pData;
m_ulData = ulSize;
m_ulUsed = 0;
// make sure they gave us a meaningful amount of data
if (m_ulData < m_ulInputQuantumSize)
return S_FALSE;
// save the buffer we were given
m_pMediaBuffer = pBuffer;
pBuffer->AddRef();
return NOERROR;
}
HRESULT ZWOProcessOutput(BYTE* pOut,
ULONG ulQuantaToProcess,
BOOL* pbTimestamp,
REFERENCE_TIME* prtTimestamp) {
assert(m_ulUsed % m_ulInputQuantumSize == 0);
HRESULT hr = FBRProcess(ulQuantaToProcess, m_pData + m_ulUsed, pOut);
if (FAILED(hr)) return hr;
ZWOConsume(ulQuantaToProcess);
if (m_bTimestamp) { // there was a timestamp on this input buffer
// m_rtTimestamp refers to the beginning of the input buffer.
// Extrapolate to the beginning of the area we just processed.
*prtTimestamp = m_rtTimestamp +
(m_ulUsed % m_ulInputQuantumSize) * m_rtDurationNumerator /
m_rtDenominator;
*pbTimestamp = TRUE;
}
else if (m_bTimestamps) { // there was a timestamp earlier
// should we extrapolate from a previous timestamp ?
*pbTimestamp = FALSE;
}
else // no timestamps at all
*pbTimestamp = FALSE;
return NOERROR;
}
ULONG ZWOAvail() {
if (m_pMediaBuffer) {
assert(m_ulData - m_ulUsed >= m_ulInputQuantumSize);
return (m_ulData - m_ulUsed) / m_ulInputQuantumSize;
}
else
return 0;
}
void ZWOConsume(ULONG ulN) { // the zero window overhead version
assert(m_pMediaBuffer);
m_ulUsed += ulN * m_ulInputQuantumSize;
assert(m_ulData >= m_ulUsed);
if (m_ulData - m_ulUsed < m_ulInputQuantumSize) {
m_pMediaBuffer->Release();
m_pMediaBuffer = NULL;
}
}
BOOL ZWOQueryAccept() {
// Accept if and only if (IFF) the DMO is not already holding a buffer.
if (!m_pMediaBuffer)
return TRUE;
else
return FALSE;
}
void ZWODiscardData() {
if (m_pMediaBuffer) {
m_pMediaBuffer->Release();
m_pMediaBuffer = NULL;
}
}
// End zero window overhead case code
//
// Non zero window overhead case code.
//
HRESULT NZWOProcessInput(IMediaBuffer* pBuffer,
BYTE* pData,
ULONG ulSize,
BOOL bTimestamp,
REFERENCE_TIME rtTimestamp) {
if (bTimestamp) { // process the timestamp
if (!m_bTimestamps) { // this is the first timestamp we've seen
// Just getting started - initialize the timestamp to refer to
// the first input quantum for which we will actually generate
// output (the first m_ulLookbehind quanta are pure lookbehind and
// generate no output).
m_rtTimestampNumerator = rtTimestamp * m_rtDenominator
+ m_ulLookbehind * m_rtDurationNumerator;
}
else {
// We are already streaming and just got a new timestamp. Use it
// to check if our stored timestamp has somehow drifted away from
// where it should be and adjust if it is far enough off.
ULONG ulInputQuantaAvailable = InputQuantaAvailable();
if (ulInputQuantaAvailable) {
// ulInputQuantaAvailable is how far back in time the next
// quantum we would process is located relative the beginning
// of the new buffer we just received.
// Compute what the timestamp back there ought to be now.
REFERENCE_TIME rtTimestampNumerator;
rtTimestampNumerator = m_rtDenominator * rtTimestamp
- ulInputQuantaAvailable * m_rtDurationNumerator;
// Adjust the stored timestamp if it is off by more than half
// the duration of a quantum. Should also have a DbgLog here.
if ((m_rtTimestampNumerator >= rtTimestampNumerator + m_rtDurationNumerator / 2) ||
(m_rtTimestampNumerator <= rtTimestampNumerator - m_rtDurationNumerator / 2)) {
m_rtTimestampNumerator = rtTimestampNumerator;
}
}
else {
// We must still be accumulating the initial window overhead.
// Too early to need an adjustment, one would hope.
}
}
m_bTimestamps = TRUE;
}
if (BufferUsed() + ulSize > m_ulBufferAllocated)
return E_FAIL; // need a max input size to prevent this
// append to our buffer
AppendData(pData, ulSize);
// are we ready to produce now ?
if (NZWOAvail())
return NOERROR;
else
return S_FALSE; // no output can be produced yet
}
HRESULT NZWOProcessOutput(BYTE* pOut,
ULONG ulQuantaToProcess,
BOOL* pbTimestamp,
REFERENCE_TIME* prtTimestamp) {
//
// Handle any timestamps
//
if (m_bTimestamps) {
// In window overhead mode the stored timestamp refers to the input
// data immediately after lookbehind, which corresponds to the
// begining of the output buffer by definition of FDRProcess.
*prtTimestamp = m_rtTimestampNumerator / m_rtDenominator;
*pbTimestamp = TRUE;
}
else
*pbTimestamp = FALSE;
//
// Handle the data
//
HRESULT hr;
ULONG ulInputNeeded = m_ulInputQuantumSize * (ulQuantaToProcess + m_ulWindowOverhead);
assert(ulInputNeeded < BufferUsed());
if (m_ulDataHead + ulInputNeeded <= m_ulBufferAllocated) {
// No wraparound, everything is easy
hr = FBRProcess(ulQuantaToProcess,
m_pCircularBuffer + m_ulDataHead + m_ulLookbehind * m_ulInputQuantumSize,
pOut);
if (FAILED(hr))
return hr;
NZWOConsume(ulQuantaToProcess);
}
else { // The data we want to send wraps around the end
// Q.: does it wrap around inside the window overhead area
// or inside the main data area ?
if (m_ulDataHead + m_ulWindowOverhead * m_ulInputQuantumSize < m_ulBufferAllocated) {
// The wraparound occurs inside the main data area. Advance the
// window overhead up to the wraparound point by processing some data.
ULONG ulAdvance = m_ulBufferAllocated - (m_ulDataHead + m_ulWindowOverhead * m_ulInputQuantumSize);
assert(ulAdvance % m_ulInputQuantumSize == 0);
ulAdvance /= m_ulInputQuantumSize; // convert to quanta
assert(ulAdvance > 0);
assert(ulAdvance < ulQuantaToProcess);
hr = FBRProcess(ulAdvance,
m_pCircularBuffer + m_ulDataHead + m_ulLookbehind * m_ulInputQuantumSize,
pOut);
if (FAILED(hr))
return hr;
NZWOConsume(ulAdvance);
// Adjust stuff so that the code below can act
// as if this extra process call never happened.
pOut += m_ulOutputQuantumSize * ulAdvance;
ulQuantaToProcess -= ulAdvance;
assert(ulQuantaToProcess > 0);
// Now the wraparound point should be exactly on the boundary
// between window overhead and main data.
assert(m_ulDataHead + m_ulWindowOverhead * m_ulInputQuantumSize == m_ulBufferAllocated);
} // wraparound in main data
// When we get here, the wraparound point occurs somewhere inside
// the window overhead area or right on the border between window overhead and
// main data.
assert(m_ulDataHead + m_ulWindowOverhead * m_ulInputQuantumSize >= m_ulBufferAllocated);
ULONG ulLookaheadToCopy = m_ulBufferAllocated - m_ulDataHead;
// copy to the special area we reserved at the front
memcpy(m_pCircularBuffer - ulLookaheadToCopy,
m_pCircularBuffer + m_ulDataHead,
ulLookaheadToCopy);
// Now the block we are interested in is all in one piece
hr = FBRProcess(ulQuantaToProcess,
m_pCircularBuffer - ulLookaheadToCopy + m_ulLookbehind * m_ulInputQuantumSize,
pOut);
if (FAILED(hr))
return hr;
NZWOConsume(ulQuantaToProcess);
} // data handling - wraparound case
return NOERROR;
}
void AllocateCircularBuffer() {
// free any previously allocated input buffer
if (m_pAllocAddr)
delete[] m_pAllocAddr;
// need a better way to decide this number
m_ulBufferAllocated = max(m_ulInputQuantumSize * 16, 65536L);
m_ulDataHead = m_ulDataTail = 0;
// reserve room at the front for copying window overhead
ULONG ulPrefix = m_ulWindowOverhead * m_ulInputQuantumSize;
m_pAllocAddr = new BYTE[m_ulBufferAllocated + ulPrefix];
if (!m_pAllocAddr)
return;
m_pCircularBuffer = m_pAllocAddr + ulPrefix;
m_bParametersSet = TRUE;
}
BOOL NZWOQueryAccept() {
// We are using a temp input buffer. Is there room to append more ?
// The answer really depends on how much data they will try to feed
// us. Without knowing the maximum input buffer size, we will accept
// more if the input buffer is less than half full.
if (2 * BufferUsed() < m_ulBufferAllocated)
return TRUE;
else
return FALSE;
}
ULONG NZWOAvail() {
ULONG ulInputQuantaAvailable = BufferUsed() / m_ulInputQuantumSize;
if (ulInputQuantaAvailable > m_ulWindowOverhead)
return ulInputQuantaAvailable - m_ulWindowOverhead;
else
return 0;
}
void NZWOConsume(ULONG ulN) { // the window overhead version
assert(ulN * m_ulInputQuantumSize <= BufferUsed());
m_ulDataHead += ulN * m_ulInputQuantumSize;
if (m_ulDataHead > m_ulBufferAllocated) //wraparound
m_ulDataHead -= m_ulBufferAllocated;
// Advance the timestamp.
// The same denominator is used for both timestamp and duration.
m_rtTimestampNumerator += ulN * m_rtDurationNumerator;
}
ULONG BufferUsed() {
if (m_ulDataTail >= m_ulDataHead)
return m_ulDataTail - m_ulDataHead;
else
return m_ulBufferAllocated - (m_ulDataHead - m_ulDataTail);
}
void AppendData(BYTE *pData, ULONG ulSize) {
if (m_ulDataTail + ulSize <= m_ulBufferAllocated) { // no wraparound
memcpy(m_pCircularBuffer + m_ulDataTail, pData, ulSize);
m_ulDataTail += ulSize;
}
else { // wraparound
memcpy(m_pCircularBuffer + m_ulDataTail, pData, m_ulBufferAllocated - m_ulDataTail);
memcpy(m_pCircularBuffer, pData + m_ulBufferAllocated - m_ulDataTail, ulSize - (m_ulBufferAllocated - m_ulDataTail));
m_ulDataTail += ulSize;
m_ulDataTail -= m_ulBufferAllocated;
}
}
void NZWODiscardData() {
m_ulDataHead = m_ulDataTail = 0;
}
// End window overhead case code
protected:
//
// To be implemebted by the derived class
//
virtual HRESULT FBRProcess(DWORD cQuanta, BYTE *pIn, BYTE *pOut) = 0;
virtual HRESULT GetStreamingParams(
DWORD *pdwInputQuantumSize, // in bytes
DWORD *pdwOutputQuantumSize, // in bytes
DWORD *pdwMaxLookahead, // in input quanta, 0 means no lookahead
DWORD *pdwLookbehind,
REFERENCE_TIME *prtQuantumDuration, // same for input and output quanta
REFERENCE_TIME *prtDurationDenominator // optional, normally 1
) = 0;
virtual HRESULT Init() {
return NOERROR;
}
private:
BOOL m_bNewInput;
// streaming parameters
BOOL m_bParametersSet;
ULONG m_ulInputQuantumSize;
ULONG m_ulOutputQuantumSize;
ULONG m_ulLookahead;
ULONG m_ulLookbehind;
ULONG m_ulWindowOverhead;
REFERENCE_TIME m_rtDurationNumerator;
REFERENCE_TIME m_rtDenominator;
// streaming state
BOOL m_bTimestamps; // we have seen at least one timestamp
BOOL m_bDiscontinuity;
BOOL m_bStreaming;
// zero window overhead case input data
IMediaBuffer *m_pMediaBuffer;
BYTE *m_pData;
ULONG m_ulData;
ULONG m_ulUsed;
BOOL m_bTimestamp; // timestamp on current buffer
REFERENCE_TIME m_rtTimestamp;
// window overhead case input data
BYTE *m_pCircularBuffer;
BYTE *m_pAllocAddr;
ULONG m_ulBufferAllocated;
ULONG m_ulDataHead;
ULONG m_ulDataTail;
REFERENCE_TIME m_rtTimestampNumerator; // uses the same denominator as duration
};
// CPCMDMO - base class for PCM audio transform filters.
// Helps non-converting PCM audio transforms with mediatype negotiation.
// Based on CFBRDMO - study that first.
//
// Derived class must implement:
// FBRProcess()
// Deriver class may implement:
// Discontinuity() // default implementaion does nothing
// Init() // default implementaion does nothing
// GetPCMParams() // default implementation proposes 44100/2/16
// CheckPCMParams() // default implementation accepts any 8/16 bit format
// GetWindowParams() // default implementation assumes no lookahead/lookbehind
//
// This class conveniently provides the following data members accessible
// by the derived class:
// ULONG m_ulSamplingRate
// ULONG m_cChannels
// BOOL m_b8bit
//
#include <mmreg.h>
#include <uuids.h>
class CPCMDMO : public CFBRDMO
{
protected:
//
// implement pure virtual CFBRDMO methods
//
HRESULT GetInputType(ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt) {
if (ulTypeIndex > 0)
return DMO_E_NO_MORE_ITEMS;
if (pmt != NULL) {
HRESULT hr = GetType(pmt, OutputType());
if (FAILED(hr)) {
return hr;
}
}
return S_OK;
}
HRESULT GetOutputType(ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt) {
if (ulTypeIndex > 0)
return DMO_E_NO_MORE_ITEMS;
if (pmt != NULL) {
HRESULT hr = GetType(pmt, InputType());
if (FAILED(hr)) {
return hr;
}
}
return S_OK;
}
HRESULT CheckInputType(const DMO_MEDIA_TYPE *pmt) {
return CheckType(pmt, OutputType());
}
HRESULT CheckOutputType(const DMO_MEDIA_TYPE *pmt) {
return CheckType(pmt, InputType());
}
HRESULT Init() {
return NOERROR;
}
HRESULT Discontinuity() {
return NOERROR;
}
HRESULT GetStreamingParams(
DWORD *pdwInputQuantumSize, // in bytes
DWORD *pdwOutputQuantumSize, // in bytes
DWORD *pdwMaxLookahead, // in input quanta, 0 means no lookahead
DWORD *pdwMaxLookbehind,
REFERENCE_TIME *prtQuantumDuration, // same for input and output quanta
REFERENCE_TIME *prtDurationDenominator // optional, normally 1
) {
// Sanity check: all of this should have been taken care of by base class
DMO_MEDIA_TYPE* pmtIn = InputType();
DMO_MEDIA_TYPE* pmtOut = OutputType();
if (!pmtIn || !pmtOut)
return DMO_E_TYPE_NOT_SET;
if (CheckType(pmtIn, NULL) || CheckType(pmtOut, pmtIn))
return DMO_E_TYPE_NOT_ACCEPTED;
WAVEFORMATEX *pWave = (WAVEFORMATEX*)pmtIn->pbFormat;
m_b8bit = (pWave->wBitsPerSample == 8);
m_cChannels = pWave->nChannels;
m_ulSamplingRate = pWave->nSamplesPerSec;
*pdwInputQuantumSize = pWave->nBlockAlign;
*pdwOutputQuantumSize = pWave->nBlockAlign;
*prtQuantumDuration = 10000000; // rt units per sec
*prtDurationDenominator = pWave->nSamplesPerSec;
GetWindowParams(pdwMaxLookahead, pdwMaxLookbehind);
return NOERROR;
}
protected:
//
// Methods to be overridden by derived class
//
// We use this to get lookahead/lookbehind from the derived class
virtual void GetWindowParams(DWORD *pdwMaxLookahead,
DWORD *pdwMaxLookbehind) {
*pdwMaxLookahead = 0;
*pdwMaxLookbehind = 0;
}
// derived class can override these if it has specific requirements
virtual void GetPCMParams(BOOL* pb8bit, DWORD* pcChannels, DWORD* pdwSamplesPerSec) {
// These values are what the DMO will advertise in its media type.
// Specifying them here does not mean that this is the only acceptable
// combination - CheckPCMParams() is the ultimate authority on what we will
// accept.
*pb8bit = FALSE;
*pcChannels = 2;
*pdwSamplesPerSec = 44100;
}
virtual BOOL CheckPCMParams(BOOL b8bit, DWORD cChannels, DWORD dwSamplesPerSec) {
// Default implementation accepts anything. Override if you have specific
// requirements WRT sampling rate, number of channels, or bit depth.
return TRUE;
}
private:
//
// private helpers
//
HRESULT GetType(DMO_MEDIA_TYPE* pmt, const DMO_MEDIA_TYPE *pmtOther) {
HRESULT hr;
// If the other type is set, enumerate that. Otherwise propose 44100/2/16.
if (pmtOther) {
hr = MoCopyMediaType(pmt, pmtOther);
if (FAILED(hr)) {
return hr;
}
return NOERROR;
}
hr = MoInitMediaType(pmt, sizeof(WAVEFORMATEX));
if (FAILED(hr))
return hr;
pmt->majortype = MEDIATYPE_Audio;
pmt->subtype = MEDIASUBTYPE_PCM;
pmt->formattype = FORMAT_WaveFormatEx;
WAVEFORMATEX* pWave = (WAVEFORMATEX*) pmt->pbFormat;
pWave->wFormatTag = WAVE_FORMAT_PCM;
BOOL b8bit;
DWORD cChannels;
GetPCMParams(&b8bit, &cChannels, &(pWave->nSamplesPerSec));
(pWave->nChannels) = (unsigned short)cChannels;
pWave->wBitsPerSample = b8bit ? 8 : 16;
pWave->nBlockAlign = pWave->nChannels * pWave->wBitsPerSample / 8;
pWave->nAvgBytesPerSec = pWave->nSamplesPerSec * pWave->nBlockAlign;
pWave->cbSize = 0;
return NOERROR;
}
HRESULT CheckType(const DMO_MEDIA_TYPE *pmt, DMO_MEDIA_TYPE *pmtOther) {
if (NULL == pmt) {
return E_POINTER;
}
// verify that this is PCM with a WAVEFORMATEX format specifier
if ((pmt->majortype != MEDIATYPE_Audio) ||
(pmt->subtype != MEDIASUBTYPE_PCM) ||
(pmt->formattype != FORMAT_WaveFormatEx) ||
(pmt->cbFormat < sizeof(WAVEFORMATEX)) ||
(pmt->pbFormat == NULL))
return DMO_E_TYPE_NOT_ACCEPTED;
// If other type set, accept only if identical to that. Otherwise accept
// any standard PCM audio.
if (pmtOther) {
if (memcmp(pmt->pbFormat, pmtOther->pbFormat, sizeof(WAVEFORMATEX)))
return DMO_E_TYPE_NOT_ACCEPTED;
}
else {
WAVEFORMATEX* pWave = (WAVEFORMATEX*)pmt->pbFormat;
if ((pWave->wFormatTag != WAVE_FORMAT_PCM) ||
((pWave->wBitsPerSample != 8) && (pWave->wBitsPerSample != 16)) ||
(pWave->nBlockAlign != pWave->nChannels * pWave->wBitsPerSample / 8) ||
(pWave->nAvgBytesPerSec != pWave->nSamplesPerSec * pWave->nBlockAlign) ||
!CheckPCMParams((pWave->wBitsPerSample == 8), pWave->nChannels, pWave->nSamplesPerSec))
return DMO_E_TYPE_NOT_ACCEPTED;
}
return NOERROR;
}
protected:
// format info - the derived class may look at these (but no modify)
ULONG m_ulSamplingRate;
ULONG m_cChannels;
BOOL m_b8bit;
};
//
// CGenericDMO - generic DMO base class. This is currently the only base
// class for DMOs that have multiple inputs or multiple outputs.
//
// This base class tries to be reasonably generic. The derived class reports
// how many streams it supports and describes each stream by calling
// CreateInputStreams() and CreateOutputStreams(). Each of these functions
// takes an array of STREAMDESCRIPTOR structures, each of which poits to an
// array of FORMATENTRY structures.
//
// This base class uses CInputStream and COutputStream classes (both derived
// from CStream) to keep track of input and output stream. However, these
// objects are not visible to the derived class - the derived class only sees
// stream IDs.
//
// One limitation of the scheme use here is that the derived class cannot
// override the GetType/SetType methods individually for each stream. It must
// either (a) live with a static, finite set of types communicated via the
// STREAMDESCRIPTOR structure, or (b) override all IMediaObject type methods
// and handle type negotiation for all streams itself.
//
// Processing occurs when the base class calles DoProcess (overridden by the
// derived class). DoProcess receives an array of input buffer structs and
// an array of output buffer structs. The base class takes care of talking
// to IMediaBuffers, so the derived class only sees actual data pointers.
//
// flags used to communicate with the derived class
enum _INPUT_STATUS_FLAGS {
INPUT_STATUSF_RESIDUAL // cannot be further processed w/o additional input
};
// These are used to pass buffers between this class and the derived class.
typedef struct _INPUTBUFFER {
BYTE *pData; // [in] - if NULL, the rest are garbage
DWORD cbSize; // [in]
DWORD cbUsed; // [out]
DWORD dwFlags; // [in] - DMO_INPUT_DATA_BUFFERF_XXX
DWORD dwStatus; // [out] - INPUT_STATUSF_XXX from above
REFERENCE_TIME rtTimestamp; // [in]
REFERENCE_TIME rtTimelength; // [in]
} INPUTBUFFER, *PINPUTBUFFER;
typedef struct _OUTPUTBUFFER {
BYTE *pData; // [in]
DWORD cbSize; // [in]
DWORD cbUsed; // [out]
DWORD dwFlags; // [out] - DMO_OUTPUT_DATA_BUFFERF_XXX
REFERENCE_TIME rtTimestamp; // [out]
REFERENCE_TIME rtTimelength; // [out]
} OUTPUTBUFFER, *POUTPUTBUFFER;
// Used by derived class to describe the format supported by each stream
typedef struct _FORMATENTRY
{
const GUID *majortype;
const GUID *subtype;
const GUID *formattype;
DWORD cbFormat;
BYTE* pbFormat;
} FORMATENTRY;
// These are used by the derived class to described its streams
typedef struct _INPUTSTREAMDESCRIPTOR {
DWORD cFormats;
FORMATENTRY *pFormats;
DWORD dwMinBufferSize;
BOOL bHoldsBuffers;
DWORD dwMaxLookahead; // used if HOLDS_BUFFERS set
} INPUTSTREAMDESCRIPTOR;
typedef struct _OUTPUTSTREAMDESCRIPTOR {
DWORD cFormats;
FORMATENTRY *pFormats;
DWORD dwMinBufferSize;
} OUTPUTSTREAMDESCRIPTOR;
// Common input/output stream stuff
class CStream {
public:
DMO_MEDIA_TYPE m_MediaType;
BOOL m_bEOS;
BOOL m_bTypeSet;
DWORD m_cFormats;
FORMATENTRY *m_pFormats;
DWORD m_dwMinBufferSize;
// Should really pass in a format type list
CStream()
{
MoInitMediaType(&m_MediaType, 0);
m_bTypeSet = FALSE;
Flush();
}
~CStream()
{
MoFreeMediaType(&m_MediaType);
}
HRESULT Flush() {
m_bEOS = FALSE;
return NOERROR;
}
HRESULT StreamInfo(unsigned long *pdwFlags)
{
if (pdwFlags == NULL) {
return E_POINTER;
}
*pdwFlags = 0;
return S_OK;
}
HRESULT GetType(ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt)
{
if (ulTypeIndex >= m_cFormats) {
return E_INVALIDARG;
}
// Just return our types
MoInitMediaType(pmt, m_pFormats[ulTypeIndex].cbFormat);
pmt->majortype = *m_pFormats[ulTypeIndex].majortype;
pmt->subtype = *m_pFormats[ulTypeIndex].subtype;
pmt->formattype = *m_pFormats[ulTypeIndex].formattype;
memcpy(pmt->pbFormat, m_pFormats[ulTypeIndex].pbFormat, m_pFormats[ulTypeIndex].cbFormat);
return S_OK;
}
HRESULT GetCurrentType(DMO_MEDIA_TYPE *pmt)
{
if (NULL == pmt) {
return E_POINTER;
}
if (m_bTypeSet) {
// check success
MoCopyMediaType(pmt, &(m_MediaType));
return S_OK;
}
else
return DMO_E_TYPE_NOT_SET;
}
HRESULT SetType(const DMO_MEDIA_TYPE *pmt, DWORD dwFlags)
{
// Need to check this
HRESULT hr = CheckType(pmt, 0);
if (FAILED(hr)) {
return hr;
}
if (dwFlags & DMO_SET_TYPEF_TEST_ONLY) {
return NOERROR; // check konly
}
// check success
MoCopyMediaType(&m_MediaType, pmt);
m_bTypeSet = TRUE;;
return S_OK;
}
HRESULT CheckType(const DMO_MEDIA_TYPE *pmt, DWORD dwFlags)
{
if (pmt == NULL) {
return E_POINTER;
}
//if (dwFlags & ~DMO_SET_TYPEF_NOT_PARTIAL)
// return E_INVALIDARG;
// Default - check GUIDs
bool bMatched = false;
for (DWORD i = 0; i < m_cFormats; i++) {
const FORMATENTRY *pFormat = &(m_pFormats[i]);
if (pmt->majortype == *(pFormat->majortype) &&
pmt->subtype == *(pFormat->subtype) &&
pmt->formattype == *(pFormat->formattype)) {
bMatched = true;
break;
}
}
if (bMatched) {
return S_OK;
} else {
return DMO_E_INVALIDTYPE;
}
}
HRESULT SizeInfo(ULONG *plSize, ULONG *plAlignment)
{
if (plSize == NULL || plAlignment == NULL) {
return E_POINTER;
}
*plAlignment = 1;
*plSize = m_dwMinBufferSize;
return S_OK;
}
};
// Input stream specific stuff
class CInputStream : public CStream {
public:
BOOL m_bHoldsBuffers;
DWORD m_dwMaxLookahead; // used if HOLDS_BUFFERS set
// Current input sample
IMediaBuffer *m_pMediaBuffer;
DWORD m_dwFlags; // discontinuity, etc.
REFERENCE_TIME m_rtTimestamp;
REFERENCE_TIME m_rtTimelength;
BYTE *m_pData;
DWORD m_cbSize;
DWORD m_cbUsed;
// residual
BYTE *m_pbResidual;
DWORD m_cbResidual;
DWORD m_cbResidualBuffer;
// temporary buffer for handling the residual
BYTE *m_pbTemp;
HRESULT Flush() {
if (m_pMediaBuffer) {
m_pMediaBuffer->Release();
m_pMediaBuffer = NULL;
}
return CStream::Flush();
}
CInputStream() {
m_pMediaBuffer = NULL;
m_pbResidual = NULL;
m_pbTemp = NULL;
}
~CInputStream() {
if (m_pMediaBuffer)
m_pMediaBuffer->Release();
if (m_pbResidual)
delete[] m_pbResidual;
}
HRESULT StreamInfo(DWORD *pdwFlags) {
HRESULT hr = CStream::StreamInfo(pdwFlags);
if (FAILED(hr))
return hr;
if (m_bHoldsBuffers)
*pdwFlags |= DMO_INPUT_STREAMF_HOLDS_BUFFERS;
return NOERROR;
}
HRESULT Init(INPUTSTREAMDESCRIPTOR *pDescriptor) {
m_cFormats = pDescriptor->cFormats;
m_pFormats = pDescriptor->pFormats;
m_dwMinBufferSize = pDescriptor->dwMinBufferSize;
m_bHoldsBuffers = pDescriptor->bHoldsBuffers;
m_dwMaxLookahead = pDescriptor->dwMaxLookahead;
// Just in case Init is called multiple times:
// delete any preexisting stuff.
if (m_pMediaBuffer) {
m_pMediaBuffer->Release();
m_pMediaBuffer = NULL;
}
if (m_pbResidual) {
delete[] m_pbResidual;
m_pbResidual = NULL;
}
m_cbResidual = 0;
m_cbResidualBuffer = m_dwMinBufferSize * 2; // enough ?
m_pbResidual = new BYTE[m_cbResidualBuffer];
return NOERROR;
}
HRESULT InputStatus(DWORD *pdwStatus) {
// objects that hold buffers must implement InputStatus themselves
assert(!m_bHoldsBuffers);
*pdwStatus = 0;
if (!m_pMediaBuffer)
*pdwStatus |= DMO_INPUT_STATUSF_ACCEPT_DATA;
return NOERROR;
}
HRESULT Deliver(
IMediaBuffer *pBuffer, // [in], must not be NULL
DWORD dwFlags, // [in] - discontinuity, timestamp, etc.
REFERENCE_TIME rtTimestamp, // [in], valid if flag set
REFERENCE_TIME rtTimelength // [in], valid if flag set
) {
if (!pBuffer)
return E_POINTER;
// objects that hold buffers must implement Deliver themselves
assert(!m_bHoldsBuffers);
DWORD dwStatus = 0;
InputStatus(&dwStatus);
if (!(dwStatus & DMO_INPUT_STATUSF_ACCEPT_DATA))
return DMO_E_NOTACCEPTING;
assert(!m_pMediaBuffer); // can't hold multiple buffers
//Deal with the IMediaBuffer
HRESULT hr;
hr = pBuffer->GetBufferAndLength(&m_pData, &m_cbSize);
if (FAILED(hr))
return hr;
if (!m_cbSize) // empty buffer
return S_FALSE; // no data
pBuffer->AddRef();
m_pMediaBuffer = pBuffer;
m_dwFlags = dwFlags;
m_rtTimestamp = rtTimestamp;
m_rtTimelength = rtTimelength;
m_cbUsed = 0;
return NOERROR;
}
//
// Fetch data from the currently held IMediaBuffer plus any residual
//
HRESULT PrepareInputBuffer(INPUTBUFFER *pBuffer)
{
// Q.: do we even have any data to give it ?
if (m_pMediaBuffer) {
// Is there a residual we need to feed first ?
if (m_cbResidual) {
// Yes, prepend the residual to the new input
// If we have used some of the input buffer by now, we
// should have also used up any residual with that.
assert(m_cbUsed == 0);
// compute how many bytes total we are going to send
pBuffer->cbSize = m_cbResidual
+ m_cbSize;
// Make sure we have at least dwMinBufferSize bytes of data.
// We really should - the input buffer alone ought to be at
// least that big.
assert(pBuffer->cbSize > m_dwMinBufferSize);
// Is the residual buffer big enough to hold the residual plus
// all of the new buffer ?
if (pBuffer->cbSize <= m_cbResidualBuffer) {
// Yes - wonderful, we can use the residual buffer
memcpy(m_pbResidual + m_cbResidual,
m_pData,
m_cbSize);
pBuffer->pData = m_pbResidual;
}
else {
// No - allocate a sufficiently large temporary buffer.
// This is supposed to be a rare case.
m_pbTemp = new BYTE[pBuffer->cbSize];
if (m_pbTemp == NULL)
return E_OUTOFMEMORY;
// copy the residual
memcpy(m_pbTemp,
m_pbResidual,
m_cbResidual);
// append the new buffer
memcpy(m_pbTemp + m_cbResidual,
m_pData,
m_cbSize);
// set the buffer pointer to our temp buffer
pBuffer->pData = m_pbTemp;
}
// is this the correct way to handle timestamps &
// discontinuities when handling a residual ?
pBuffer->dwFlags = 0;
}
else { // no residual
pBuffer->pData = m_pData + m_cbUsed;
pBuffer->cbSize = m_cbSize - m_cbUsed;
pBuffer->dwFlags = m_dwFlags;
pBuffer->rtTimestamp = m_rtTimestamp;
pBuffer->rtTimelength= m_rtTimelength;
}
pBuffer->cbUsed = 0; // derived class should set this
pBuffer->dwStatus = 0; // derived class should set this
}
else {
pBuffer->pData = NULL;
pBuffer->cbSize = 0;
}
return NOERROR;
}
//
// Save any residual and release the IMediaBuffer as appropriate.
// Returns TRUE if there is enough data left to call ProcesInput again.
//
BOOL PostProcessInputBuffer(INPUTBUFFER *pBuffer)
{
BOOL bRet = FALSE;
// did we even give this stream anything ?
if (m_pMediaBuffer) {
// Yes, but did it eat any of it ?
if (pBuffer->cbUsed) {
// Did we even get past the residual
if (pBuffer->cbUsed > m_cbResidual) {
// Yes - reflect this in the current buffer's cbUsed.
m_cbUsed += (pBuffer->cbUsed - m_cbResidual);
m_cbResidual = 0;
}
else {
// No - just subtract from the residual.
// This is a rather silly case.
m_cbResidual -= pBuffer->cbUsed;
memmove(m_pbResidual,
m_pbResidual + pBuffer->cbUsed,
m_cbResidual);
}
}
// Is there enough left to feed again the next time ?
if ((m_cbSize - m_cbUsed <
m_dwMinBufferSize)
|| (pBuffer->dwStatus & INPUT_STATUSF_RESIDUAL)) {
// No - copy the residual and release the buffer
memcpy(m_pbResidual,
m_pData + m_cbUsed,
m_cbSize - m_cbUsed);
m_cbResidual
= pBuffer->cbSize - pBuffer->cbUsed;
m_pMediaBuffer->Release();
m_pMediaBuffer = NULL;
}
else { // Yes - need another Process call to eat remaining input
bRet = TRUE;
}
// Free any temporary buffer we may have used - rare case
if (m_pbTemp) {
delete[] m_pbTemp;
m_pbTemp = NULL;
}
}
return bRet;
}
HRESULT Discontinuity() {
// implement
// m_bDiscontinuity = TRUE;
return NOERROR;
}
HRESULT SizeInfo(ULONG *pulSize,
ULONG *pulMaxLookahead,
ULONG *pulAlignment) {
HRESULT hr = CStream::SizeInfo(pulSize, pulAlignment);
if (FAILED(hr))
return hr;
if (m_bHoldsBuffers)
*pulMaxLookahead = m_dwMaxLookahead;
else
*pulMaxLookahead = *pulSize;
return NOERROR;
}
};
// Output stream specific stuff
class COutputStream : public CStream {
public:
BOOL m_bIncomplete;
DWORD m_cbAlreadyUsed; // temp per-stream variable used during Process
HRESULT Init(OUTPUTSTREAMDESCRIPTOR *pDescriptor) {
m_cFormats = pDescriptor->cFormats;
m_pFormats = pDescriptor->pFormats;
m_dwMinBufferSize = pDescriptor->dwMinBufferSize;
return NOERROR;
}
//
// Initialize the OUTPUTBUFFER struct with info from the IMediaBuffer
//
HRESULT PrepareOutputBuffer(OUTPUTBUFFER *pBuffer, IMediaBuffer *pMediaBuffer, BOOL bNewInput)
{
//
// See if the caller supplied an output buffer
//
if (pMediaBuffer == NULL) {
// This is allowed to be NULL only if (1) the object did not set
// the INCOMPLETE flag for this stream during the last Process
// call, and (2) no new input data has been supplied to the object
// since the last Process call.
if (bNewInput)
return E_POINTER;
if (m_bIncomplete)
return E_POINTER;
// ok - initialize assuming no buffer
pBuffer->cbSize = 0;
pBuffer->pData = NULL;
}
else { // the IMediaBuffer is not NULL - deal with it
HRESULT hr;
hr = pMediaBuffer->GetMaxLength(&pBuffer->cbSize);
if (FAILED(hr))
return hr;
hr = pMediaBuffer->GetBufferAndLength(
&(pBuffer->pData),
&(m_cbAlreadyUsed));
if (FAILED(hr))
return hr;
// Check current size - should we even bother with this ?
if (m_cbAlreadyUsed) {
if (m_cbAlreadyUsed >= pBuffer->cbSize)
return E_INVALIDARG; // buffer already full ?!?
pBuffer->cbSize -= m_cbAlreadyUsed;
pBuffer->pData += m_cbAlreadyUsed;
}
}
// It is really the derived class's job to set these, but we
// will be nice to it and initialize them anyway just in case.
pBuffer->cbUsed = 0;
pBuffer->dwFlags = 0;
return NOERROR;
}
//
// Copy the OUTPUTBUFFER back into the DMO_OUTPUT_DATA_BUFFER (yawn)
//
void PostProcessOutputBuffer(OUTPUTBUFFER *pBuffer, DMO_OUTPUT_DATA_BUFFER *pDMOBuffer, BOOL bForceIncomplete) {
assert(pBuffer->cbUsed <= pBuffer->cbSize);
if (pDMOBuffer->pBuffer)
pDMOBuffer->pBuffer->SetLength(pBuffer->cbUsed + m_cbAlreadyUsed);
pDMOBuffer->dwStatus = pBuffer->dwFlags;
pDMOBuffer->rtTimestamp = pBuffer->rtTimestamp;
pDMOBuffer->rtTimelength = pBuffer->rtTimelength;
// Even if the derived class did not set INCOMPLETE, we may need to
// set it anyway if some input buffer we are holding still has
// enough data to call Process() again.
if (bForceIncomplete)
pDMOBuffer->dwStatus |= DMO_OUTPUT_DATA_BUFFERF_INCOMPLETE;
// remember this output stream's INCOMPLETE state
if (pDMOBuffer->dwStatus & DMO_OUTPUT_DATA_BUFFERF_INCOMPLETE)
m_bIncomplete = TRUE;
else
m_bIncomplete = FALSE;
}
};
// Code that goes at the beginning of every IMediaObject method
#define INPUT_STREAM_PROLOGUE \
CDMOAutoLock l(&m_cs); \
if (ulInputStreamIndex >= m_nInputStreams) \
return DMO_E_INVALIDSTREAMINDEX; \
CInputStream *pStream = &m_pInputStreams[ulInputStreamIndex]
#define OUTPUT_STREAM_PROLOGUE \
CDMOAutoLock l(&m_cs); \
if (ulOutputStreamIndex >= m_nOutputStreams) \
return DMO_E_INVALIDSTREAMINDEX; \
COutputStream *pStream = &m_pOutputStreams[ulOutputStreamIndex]
class CGenericDMO : public IMediaObject
{
public:
CGenericDMO() {
#ifdef DMO_NOATL
InitializeCriticalSection(&m_cs);
#endif
m_nInputStreams = 0;
m_nOutputStreams = 0;
}
#ifdef DMO_NOATL
~CGenericDMO() {
DeleteCriticalSection(&m_cs);
}
#endif
public:
//
// Implement IMediaObject methods
//
STDMETHODIMP GetInputStreamInfo(ULONG ulInputStreamIndex, DWORD *pdwFlags)
{
INPUT_STREAM_PROLOGUE;
return pStream->StreamInfo(pdwFlags);
}
STDMETHODIMP GetOutputStreamInfo(ULONG ulOutputStreamIndex, DWORD *pdwFlags)
{
OUTPUT_STREAM_PROLOGUE;
return pStream->StreamInfo(pdwFlags);
}
STDMETHODIMP GetInputType(ULONG ulInputStreamIndex, ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt) {
INPUT_STREAM_PROLOGUE;
return pStream->GetType(ulTypeIndex, pmt);
}
STDMETHODIMP GetOutputType(ULONG ulOutputStreamIndex, ULONG ulTypeIndex, DMO_MEDIA_TYPE *pmt) {
OUTPUT_STREAM_PROLOGUE;
return pStream->GetType(ulTypeIndex, pmt);
}
STDMETHODIMP GetInputCurrentType(ULONG ulInputStreamIndex, DMO_MEDIA_TYPE *pmt) {
INPUT_STREAM_PROLOGUE;
return pStream->GetCurrentType(pmt);
}
STDMETHODIMP GetOutputCurrentType(ULONG ulOutputStreamIndex, DMO_MEDIA_TYPE *pmt) {
OUTPUT_STREAM_PROLOGUE;
return pStream->GetCurrentType(pmt);
}
STDMETHODIMP GetInputSizeInfo(ULONG ulInputStreamIndex, ULONG *pulSize, ULONG *pcbMaxLookahead, ULONG *pulAlignment) {
INPUT_STREAM_PROLOGUE;
return pStream->SizeInfo(pulSize, pcbMaxLookahead, pulAlignment);
}
STDMETHODIMP GetOutputSizeInfo(ULONG ulOutputStreamIndex, ULONG *pulSize, ULONG *pulAlignment) {
OUTPUT_STREAM_PROLOGUE;
return pStream->SizeInfo(pulSize, pulAlignment);
}
STDMETHODIMP SetInputType(ULONG ulInputStreamIndex, const DMO_MEDIA_TYPE *pmt, DWORD dwFlags) {
INPUT_STREAM_PROLOGUE;
return pStream->SetType(pmt, dwFlags);
}
STDMETHODIMP SetOutputType(ULONG ulOutputStreamIndex, const DMO_MEDIA_TYPE *pmt, DWORD dwFlags) {
OUTPUT_STREAM_PROLOGUE;
return pStream->SetType(pmt, dwFlags);
}
STDMETHODIMP GetInputStatus(
ULONG ulInputStreamIndex,
DWORD *pdwStatus
) {
INPUT_STREAM_PROLOGUE;
return pStream->InputStatus(pdwStatus);
}
STDMETHODIMP GetInputMaxLatency(unsigned long ulInputStreamIndex, REFERENCE_TIME *prtLatency) {
// I don't know what to do with this right now.
// Punt to the derived class ?
return E_NOTIMPL;
}
STDMETHODIMP SetInputMaxLatency(unsigned long ulInputStreamIndex, REFERENCE_TIME rtLatency) {
return E_NOTIMPL;
}
STDMETHODIMP ProcessInput(
DWORD ulInputStreamIndex,
IMediaBuffer *pBuffer, // [in], must not be NULL
DWORD dwFlags, // [in] - discontinuity, timestamp, etc.
REFERENCE_TIME rtTimestamp, // [in], valid if flag set
REFERENCE_TIME rtTimelength // [in], valid if flag set
) {
INPUT_STREAM_PROLOGUE;
return pStream->Deliver(pBuffer, dwFlags, rtTimestamp, rtTimelength);
}
STDMETHODIMP Discontinuity(ULONG ulInputStreamIndex) {
INPUT_STREAM_PROLOGUE;
return pStream->Discontinuity();
}
STDMETHODIMP Flush()
{
CDMOAutoLock l(&m_cs);
// Flush all the streams
ULONG i;
for (i = 0; i < m_nInputStreams; i++) {
m_pInputStreams[i].Flush();
}
for (i = 0; i < m_nOutputStreams; i++) {
m_pOutputStreams[i].Flush();
}
return S_OK;
}
STDMETHODIMP AllocateStreamingResources() {return S_OK;}
STDMETHODIMP FreeStreamingResources() {return S_OK;}
STDMETHODIMP GetStreamCount(unsigned long *pulNumberOfInputStreams, unsigned long *pulNumberOfOutputStreams)
{
CDMOAutoLock l(&m_cs);
if (pulNumberOfInputStreams == NULL ||
pulNumberOfOutputStreams == NULL) {
return E_POINTER;
}
*pulNumberOfInputStreams = m_nInputStreams;
*pulNumberOfOutputStreams = m_nOutputStreams;
return S_OK;
}
STDMETHODIMP ProcessOutput(
DWORD dwReserved,
DWORD ulOutputBufferCount,
DMO_OUTPUT_DATA_BUFFER *pOutputBuffers,
DWORD *pdwStatus)
{
CDMOAutoLock l(&m_cs);
if (ulOutputBufferCount != m_nOutputStreams)
return E_INVALIDARG;
HRESULT hr;
DWORD c;
// Prepare the input buffers
for (c = 0; c < m_nInputStreams; c++) {
// objects that hold buffers must implement Process themselves
assert(!m_pInputStreams[c].m_bHoldsBuffers);
hr = m_pInputStreams[c].PrepareInputBuffer(&m_pInputBuffers[c]);
if (FAILED(hr))
return hr;
}
//
// Prepare the output buffers
//
for (c = 0; c < m_nOutputStreams; c++) {
hr = m_pOutputStreams[c].PrepareOutputBuffer(&m_pOutputBuffers[c], pOutputBuffers[c].pBuffer, m_bNewInput);
if (FAILED(hr))
return hr;
}
hr = DoProcess(m_pInputBuffers,m_pOutputBuffers);
if (FAILED(hr))
return hr; // don't just "return hr", do something !
// post-process input buffers
BOOL bSomeInputStillHasData = FALSE;
for (c = 0; c < m_nInputStreams; c++) {
if (m_pInputStreams[c].PostProcessInputBuffer(&m_pInputBuffers[c]))
bSomeInputStillHasData = TRUE;
}
// post-process output buffers
for (c = 0; c < m_nOutputStreams; c++) {
m_pOutputStreams[c].PostProcessOutputBuffer(&m_pOutputBuffers[c],
&pOutputBuffers[c],
bSomeInputStillHasData);
}
m_bNewInput = FALSE;
return NOERROR;
}
protected:
//
// These are called by the derived class at initialization time
//
HRESULT CreateInputStreams(INPUTSTREAMDESCRIPTOR *pStreams, DWORD cStreams) {
CDMOAutoLock l(&m_cs);
if (pStreams == NULL) {
return E_POINTER;
}
m_pInputStreams = new CInputStream[cStreams];
if (m_pInputStreams == NULL) {
return E_OUTOFMEMORY;
}
DWORD c;
for (c = 0; c < cStreams; c++) {
HRESULT hr = m_pInputStreams[c].Init(&(pStreams[c]));
if (FAILED(hr)) {
delete[] m_pInputStreams;
return hr;
}
}
m_pInputBuffers = new INPUTBUFFER[cStreams];
if (!m_pInputBuffers) {
delete[] m_pInputStreams;
return E_OUTOFMEMORY;
}
m_nInputStreams = cStreams;
return NOERROR;
}
HRESULT CreateOutputStreams(OUTPUTSTREAMDESCRIPTOR *pStreams, DWORD cStreams) {
CDMOAutoLock l(&m_cs);
if (pStreams == NULL) {
return E_POINTER;
}
m_pOutputStreams = new COutputStream[cStreams];
if (m_pOutputStreams == NULL) {
return E_OUTOFMEMORY;
}
DWORD c;
for (c = 0; c < cStreams; c++) {
HRESULT hr = m_pOutputStreams[c].Init(&(pStreams[c]));
if (FAILED(hr)) {
delete[] m_pOutputStreams;
return hr;
}
}
m_pOutputBuffers = new OUTPUTBUFFER[cStreams];
if (!m_pOutputBuffers) {
delete[] m_pOutputStreams;
return E_OUTOFMEMORY;
}
m_nOutputStreams = cStreams;
return NOERROR;
}
virtual HRESULT DoProcess(INPUTBUFFER*, OUTPUTBUFFER *) = 0;
private:
ULONG m_nInputStreams;
CInputStream* m_pInputStreams;
ULONG m_nOutputStreams;
COutputStream* m_pOutputStreams;
INPUTBUFFER* m_pInputBuffers;
OUTPUTBUFFER* m_pOutputBuffers;
BOOL m_bNewInput;
#ifdef DMO_NOATL
CRITICAL_SECTION m_cs;
#else
CComAutoCriticalSection m_cs;
#endif
};
#endif // __DMOBASE_H__