windows-nt/Source/XPSP1/NT/public/sdk/inc/dxtmpl.h

1331 lines
38 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
/*****************************************************************************
* DXTmpl.h *
*-----------*
* This is the header file contains the DX collection class templates. It
* has been derived from the MFC collection templates for compatibility.
*-----------------------------------------------------------------------------
* Created by: Ed Connell Date: 05/17/95
*
*****************************************************************************/
#ifndef DXTmpl_h
#define DXTmpl_h
#ifndef _INC_LIMITS
#include <limits.h>
#endif
#ifndef _INC_STRING
#include <string.h>
#endif
#ifndef _INC_STDLIB
#include <stdlib.h>
#endif
#ifndef _INC_SEARCH
#include <search.h>
#endif
#define DXASSERT_VALID( pObj )
/////////////////////////////////////////////////////////////////////////////
typedef void* DXLISTPOS;
typedef DWORD DXLISTHANDLE;
#define DX_BEFORE_START_POSITION ((void*)-1L)
inline BOOL DXIsValidAddress(const void* lp, UINT nBytes, BOOL bReadWrite)
{
// simple version using Win-32 APIs for pointer validation.
return (lp != NULL && !IsBadReadPtr(lp, nBytes) &&
(!bReadWrite || !IsBadWritePtr((LPVOID)lp, nBytes)));
}
/////////////////////////////////////////////////////////////////////////////
// global helpers (can be overridden)
template<class TYPE>
inline void DXConstructElements(TYPE* pElements, int nCount)
{
_ASSERT( nCount == 0 ||
DXIsValidAddress( pElements, nCount * sizeof(TYPE), TRUE ) );
// default is bit-wise zero initialization
memset((void*)pElements, 0, nCount * sizeof(TYPE));
}
template<class TYPE>
inline void DXDestructElements(TYPE* pElements, int nCount)
{
_ASSERT( ( nCount == 0 ||
DXIsValidAddress( pElements, nCount * sizeof(TYPE), TRUE ) ) );
pElements; // not used
nCount; // not used
// default does nothing
}
template<class TYPE>
inline void DXCopyElements(TYPE* pDest, const TYPE* pSrc, int nCount)
{
_ASSERT( ( nCount == 0 ||
DXIsValidAddress( pDest, nCount * sizeof(TYPE), TRUE )) );
_ASSERT( ( nCount == 0 ||
DXIsValidAddress( pSrc, nCount * sizeof(TYPE), FALSE )) );
// default is bit-wise copy
memcpy(pDest, pSrc, nCount * sizeof(TYPE));
}
template<class TYPE, class ARG_TYPE>
BOOL DXCompareElements(const TYPE* pElement1, const ARG_TYPE* pElement2)
{
_ASSERT( DXIsValidAddress( pElement1, sizeof(TYPE), FALSE ) );
_ASSERT( DXIsValidAddress( pElement2, sizeof(ARG_TYPE), FALSE ) );
return *pElement1 == *pElement2;
}
template<class ARG_KEY>
inline UINT DXHashKey(ARG_KEY key)
{
// default identity hash - works for most primitive values
return ((UINT)(void*)(DWORD)key) >> 4;
}
/////////////////////////////////////////////////////////////////////////////
// CDXPlex
struct CDXPlex // warning variable length structure
{
CDXPlex* pNext;
UINT nMax;
UINT nCur;
/* BYTE data[maxNum*elementSize]; */
void* data() { return this+1; }
static CDXPlex* PASCAL Create( CDXPlex*& pHead, UINT nMax, UINT cbElement )
{
CDXPlex* p = (CDXPlex*) new BYTE[sizeof(CDXPlex) + nMax * cbElement];
if (p == NULL)
return NULL;
p->nMax = nMax;
p->nCur = 0;
p->pNext = pHead;
pHead = p; // change head (adds in reverse order for simplicity)
return p;
}
void FreeDataChain()
{
CDXPlex* p = this;
while (p != NULL)
{
BYTE* bytes = (BYTE*) p;
CDXPlex* pNext = p->pNext;
delete bytes;
p = pNext;
}
}
};
/////////////////////////////////////////////////////////////////////////////
// CDXArray<TYPE, ARG_TYPE>
template<class TYPE, class ARG_TYPE>
class CDXArray
{
public:
// Construction
CDXArray();
// Attributes
int GetSize() const;
int GetUpperBound() const;
void SetSize(int nNewSize, int nGrowBy = -1);
// Operations
// Clean up
void FreeExtra();
void RemoveAll();
// Accessing elements
TYPE GetAt(int nIndex) const;
void SetAt(int nIndex, ARG_TYPE newElement);
TYPE& ElementAt(int nIndex);
// Direct Access to the element data (may return NULL)
const TYPE* GetData() const;
TYPE* GetData();
// Potentially growing the array
void SetAtGrow(int nIndex, ARG_TYPE newElement);
int Add(ARG_TYPE newElement);
int Append(const CDXArray& src);
void Copy(const CDXArray& src);
// overloaded operator helpers
TYPE operator[](int nIndex) const;
TYPE& operator[](int nIndex);
// Operations that move elements around
void InsertAt(int nIndex, ARG_TYPE newElement, int nCount = 1);
void RemoveAt(int nIndex, int nCount = 1);
void InsertAt(int nStartIndex, CDXArray* pNewArray);
void Sort(int (__cdecl *compare )(const void *elem1, const void *elem2 ));
// Implementation
protected:
TYPE* m_pData; // the actual array of data
int m_nSize; // # of elements (upperBound - 1)
int m_nMaxSize; // max allocated
int m_nGrowBy; // grow amount
public:
~CDXArray();
#ifdef _DEBUG
// void Dump(CDumpContext&) const;
void AssertValid() const;
#endif
};
/////////////////////////////////////////////////////////////////////////////
// CDXArray<TYPE, ARG_TYPE> inline functions
template<class TYPE, class ARG_TYPE>
inline int CDXArray<TYPE, ARG_TYPE>::GetSize() const
{ return m_nSize; }
template<class TYPE, class ARG_TYPE>
inline int CDXArray<TYPE, ARG_TYPE>::GetUpperBound() const
{ return m_nSize-1; }
template<class TYPE, class ARG_TYPE>
inline void CDXArray<TYPE, ARG_TYPE>::RemoveAll()
{ SetSize(0, -1); }
template<class TYPE, class ARG_TYPE>
inline TYPE CDXArray<TYPE, ARG_TYPE>::GetAt(int nIndex) const
{ _ASSERT( (nIndex >= 0 && nIndex < m_nSize) );
return m_pData[nIndex]; }
template<class TYPE, class ARG_TYPE>
inline void CDXArray<TYPE, ARG_TYPE>::SetAt(int nIndex, ARG_TYPE newElement)
{ _ASSERT( (nIndex >= 0 && nIndex < m_nSize) );
m_pData[nIndex] = newElement; }
template<class TYPE, class ARG_TYPE>
inline TYPE& CDXArray<TYPE, ARG_TYPE>::ElementAt(int nIndex)
{ _ASSERT( (nIndex >= 0 && nIndex < m_nSize) );
return m_pData[nIndex]; }
template<class TYPE, class ARG_TYPE>
inline const TYPE* CDXArray<TYPE, ARG_TYPE>::GetData() const
{ return (const TYPE*)m_pData; }
template<class TYPE, class ARG_TYPE>
inline TYPE* CDXArray<TYPE, ARG_TYPE>::GetData()
{ return (TYPE*)m_pData; }
template<class TYPE, class ARG_TYPE>
inline int CDXArray<TYPE, ARG_TYPE>::Add(ARG_TYPE newElement)
{ int nIndex = m_nSize;
SetAtGrow(nIndex, newElement);
return nIndex; }
template<class TYPE, class ARG_TYPE>
inline TYPE CDXArray<TYPE, ARG_TYPE>::operator[](int nIndex) const
{ return GetAt(nIndex); }
template<class TYPE, class ARG_TYPE>
inline TYPE& CDXArray<TYPE, ARG_TYPE>::operator[](int nIndex)
{ return ElementAt(nIndex); }
/////////////////////////////////////////////////////////////////////////////
// CDXArray<TYPE, ARG_TYPE> out-of-line functions
template<class TYPE, class ARG_TYPE>
CDXArray<TYPE, ARG_TYPE>::CDXArray()
{
m_pData = NULL;
m_nSize = m_nMaxSize = m_nGrowBy = 0;
}
template<class TYPE, class ARG_TYPE>
CDXArray<TYPE, ARG_TYPE>::~CDXArray()
{
DXASSERT_VALID( this );
if (m_pData != NULL)
{
DXDestructElements(m_pData, m_nSize);
delete[] (BYTE*)m_pData;
}
}
template<class TYPE, class ARG_TYPE>
void CDXArray<TYPE, ARG_TYPE>::SetSize(int nNewSize, int nGrowBy)
{
DXASSERT_VALID( this );
_ASSERT( nNewSize >= 0 );
if (nGrowBy != -1)
m_nGrowBy = nGrowBy; // set new size
if (nNewSize == 0)
{
// shrink to nothing
if (m_pData != NULL)
{
DXDestructElements(m_pData, m_nSize);
delete[] (BYTE*)m_pData;
m_pData = NULL;
}
m_nSize = m_nMaxSize = 0;
}
else if (m_pData == NULL)
{
// create one with exact size
#ifdef SIZE_T_MAX
_ASSERT( nNewSize <= SIZE_T_MAX/sizeof(TYPE) ); // no overflow
#endif
m_pData = (TYPE*) new BYTE[nNewSize * sizeof(TYPE)];
DXConstructElements(m_pData, nNewSize);
m_nSize = m_nMaxSize = nNewSize;
}
else if (nNewSize <= m_nMaxSize)
{
// it fits
if (nNewSize > m_nSize)
{
// initialize the new elements
DXConstructElements(&m_pData[m_nSize], nNewSize-m_nSize);
}
else if (m_nSize > nNewSize)
{
// destroy the old elements
DXDestructElements(&m_pData[nNewSize], m_nSize-nNewSize);
}
m_nSize = nNewSize;
}
else
{
// otherwise, grow array
int nGrowBy = m_nGrowBy;
if (nGrowBy == 0)
{
// heuristically determe growth when nGrowBy == 0
// (this avoids heap fragmentation in many situations)
nGrowBy = min(1024, max(4, m_nSize / 8));
}
int nNewMax;
if (nNewSize < m_nMaxSize + nGrowBy)
nNewMax = m_nMaxSize + nGrowBy; // granularity
else
nNewMax = nNewSize; // no slush
_ASSERT( nNewMax >= m_nMaxSize ); // no wrap around
#ifdef SIZE_T_MAX
_ASSERT( nNewMax <= SIZE_T_MAX/sizeof(TYPE) ); // no overflow
#endif
TYPE* pNewData = (TYPE*) new BYTE[nNewMax * sizeof(TYPE)];
// oh well, it's better than crashing
if (pNewData == NULL)
return;
// copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(TYPE));
// construct remaining elements
_ASSERT( nNewSize > m_nSize );
DXConstructElements(&pNewData[m_nSize], nNewSize-m_nSize);
// get rid of old stuff (note: no destructors called)
delete[] (BYTE*)m_pData;
m_pData = pNewData;
m_nSize = nNewSize;
m_nMaxSize = nNewMax;
}
}
template<class TYPE, class ARG_TYPE>
int CDXArray<TYPE, ARG_TYPE>::Append(const CDXArray& src)
{
DXASSERT_VALID( this );
_ASSERT( this != &src ); // cannot append to itself
int nOldSize = m_nSize;
SetSize(m_nSize + src.m_nSize);
DXCopyElements(m_pData + nOldSize, src.m_pData, src.m_nSize);
return nOldSize;
}
template<class TYPE, class ARG_TYPE>
void CDXArray<TYPE, ARG_TYPE>::Copy(const CDXArray& src)
{
DXASSERT_VALID( this );
_ASSERT( this != &src ); // cannot copy to itself
SetSize(src.m_nSize);
DXCopyElements(m_pData, src.m_pData, src.m_nSize);
}
template<class TYPE, class ARG_TYPE>
void CDXArray<TYPE, ARG_TYPE>::FreeExtra()
{
DXASSERT_VALID( this );
if (m_nSize != m_nMaxSize)
{
// shrink to desired size
#ifdef SIZE_T_MAX
_ASSERT( m_nSize <= SIZE_T_MAX/sizeof(TYPE)); // no overflow
#endif
TYPE* pNewData = NULL;
if (m_nSize != 0)
{
pNewData = (TYPE*) new BYTE[m_nSize * sizeof(TYPE)];
// oh well, it's better than crashing
if (pNewData == NULL)
return;
// copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(TYPE));
}
// get rid of old stuff (note: no destructors called)
delete[] (BYTE*)m_pData;
m_pData = pNewData;
m_nMaxSize = m_nSize;
}
}
template<class TYPE, class ARG_TYPE>
void CDXArray<TYPE, ARG_TYPE>::SetAtGrow(int nIndex, ARG_TYPE newElement)
{
DXASSERT_VALID( this );
_ASSERT( nIndex >= 0 );
if (nIndex >= m_nSize)
SetSize(nIndex+1, -1);
m_pData[nIndex] = newElement;
}
template<class TYPE, class ARG_TYPE>
void CDXArray<TYPE, ARG_TYPE>::InsertAt(int nIndex, ARG_TYPE newElement, int nCount /*=1*/)
{
DXASSERT_VALID( this );
_ASSERT( nIndex >= 0 ); // will expand to meet need
_ASSERT( nCount > 0 ); // zero or negative size not allowed
if (nIndex >= m_nSize)
{
// adding after the end of the array
SetSize(nIndex + nCount, -1); // grow so nIndex is valid
}
else
{
// inserting in the middle of the array
int nOldSize = m_nSize;
SetSize(m_nSize + nCount, -1); // grow it to new size
// shift old data up to fill gap
memmove(&m_pData[nIndex+nCount], &m_pData[nIndex],
(nOldSize-nIndex) * sizeof(TYPE));
// re-init slots we copied from
DXConstructElements(&m_pData[nIndex], nCount);
}
// insert new value in the gap
_ASSERT( nIndex + nCount <= m_nSize );
while (nCount--)
m_pData[nIndex++] = newElement;
}
template<class TYPE, class ARG_TYPE>
void CDXArray<TYPE, ARG_TYPE>::RemoveAt(int nIndex, int nCount)
{
DXASSERT_VALID( this );
_ASSERT( nIndex >= 0 );
_ASSERT( nCount >= 0 );
_ASSERT( nIndex + nCount <= m_nSize );
// just remove a range
int nMoveCount = m_nSize - (nIndex + nCount);
DXDestructElements(&m_pData[nIndex], nCount);
if (nMoveCount)
memcpy(&m_pData[nIndex], &m_pData[nIndex + nCount],
nMoveCount * sizeof(TYPE));
m_nSize -= nCount;
}
template<class TYPE, class ARG_TYPE>
void CDXArray<TYPE, ARG_TYPE>::InsertAt(int nStartIndex, CDXArray* pNewArray)
{
DXASSERT_VALID( this );
DXASSERT_VALID( pNewArray );
_ASSERT( nStartIndex >= 0 );
if (pNewArray->GetSize() > 0)
{
InsertAt(nStartIndex, pNewArray->GetAt(0), pNewArray->GetSize());
for (int i = 0; i < pNewArray->GetSize(); i++)
SetAt(nStartIndex + i, pNewArray->GetAt(i));
}
}
template<class TYPE, class ARG_TYPE>
void CDXArray<TYPE, ARG_TYPE>::Sort(int (__cdecl *compare )(const void *elem1, const void *elem2 ))
{
DXASSERT_VALID( this );
_ASSERT( m_pData != NULL );
qsort( m_pData, m_nSize, sizeof(TYPE), compare );
}
#ifdef _DEBUG
template<class TYPE, class ARG_TYPE>
void CDXArray<TYPE, ARG_TYPE>::AssertValid() const
{
if (m_pData == NULL)
{
_ASSERT( m_nSize == 0 );
_ASSERT( m_nMaxSize == 0 );
}
else
{
_ASSERT( m_nSize >= 0 );
_ASSERT( m_nMaxSize >= 0 );
_ASSERT( m_nSize <= m_nMaxSize );
_ASSERT( DXIsValidAddress(m_pData, m_nMaxSize * sizeof(TYPE), TRUE ) );
}
}
#endif //_DEBUG
/////////////////////////////////////////////////////////////////////////////
// CDXList<TYPE, ARG_TYPE>
template<class TYPE, class ARG_TYPE>
class CDXList
{
protected:
struct CNode
{
CNode* pNext;
CNode* pPrev;
TYPE data;
};
public:
// Construction
CDXList(int nBlockSize = 10);
// Attributes (head and tail)
// count of elements
int GetCount() const;
BOOL IsEmpty() const;
// peek at head or tail
TYPE& GetHead();
TYPE GetHead() const;
TYPE& GetTail();
TYPE GetTail() const;
// Operations
// get head or tail (and remove it) - don't call on empty list !
TYPE RemoveHead();
TYPE RemoveTail();
// add before head or after tail
DXLISTPOS AddHead(ARG_TYPE newElement);
DXLISTPOS AddTail(ARG_TYPE newElement);
// add another list of elements before head or after tail
void AddHead(CDXList* pNewList);
void AddTail(CDXList* pNewList);
// remove all elements
void RemoveAll();
// iteration
DXLISTPOS GetHeadPosition() const;
DXLISTPOS GetTailPosition() const;
TYPE& GetNext(DXLISTPOS& rPosition); // return *Position++
TYPE GetNext(DXLISTPOS& rPosition) const; // return *Position++
TYPE& GetPrev(DXLISTPOS& rPosition); // return *Position--
TYPE GetPrev(DXLISTPOS& rPosition) const; // return *Position--
// getting/modifying an element at a given position
TYPE& GetAt(DXLISTPOS position);
TYPE GetAt(DXLISTPOS position) const;
void SetAt(DXLISTPOS pos, ARG_TYPE newElement);
void RemoveAt(DXLISTPOS position);
// inserting before or after a given position
DXLISTPOS InsertBefore(DXLISTPOS position, ARG_TYPE newElement);
DXLISTPOS InsertAfter(DXLISTPOS position, ARG_TYPE newElement);
// helper functions (note: O(n) speed)
DXLISTPOS Find(ARG_TYPE searchValue, DXLISTPOS startAfter = NULL) const;
// defaults to starting at the HEAD, return NULL if not found
DXLISTPOS FindIndex(int nIndex) const;
// get the 'nIndex'th element (may return NULL)
// Implementation
protected:
CNode* m_pNodeHead;
CNode* m_pNodeTail;
int m_nCount;
CNode* m_pNodeFree;
struct CDXPlex* m_pBlocks;
int m_nBlockSize;
CNode* NewNode(CNode*, CNode*);
void FreeNode(CNode*);
public:
~CDXList();
#ifdef _DEBUG
void AssertValid() const;
#endif
};
/////////////////////////////////////////////////////////////////////////////
// CDXList<TYPE, ARG_TYPE> inline functions
template<class TYPE, class ARG_TYPE>
inline int CDXList<TYPE, ARG_TYPE>::GetCount() const
{ return m_nCount; }
template<class TYPE, class ARG_TYPE>
inline BOOL CDXList<TYPE, ARG_TYPE>::IsEmpty() const
{ return m_nCount == 0; }
template<class TYPE, class ARG_TYPE>
inline TYPE& CDXList<TYPE, ARG_TYPE>::GetHead()
{ _ASSERT( m_pNodeHead != NULL );
return m_pNodeHead->data; }
template<class TYPE, class ARG_TYPE>
inline TYPE CDXList<TYPE, ARG_TYPE>::GetHead() const
{ _ASSERT( m_pNodeHead != NULL );
return m_pNodeHead->data; }
template<class TYPE, class ARG_TYPE>
inline TYPE& CDXList<TYPE, ARG_TYPE>::GetTail()
{ _ASSERT( m_pNodeTail != NULL );
return m_pNodeTail->data; }
template<class TYPE, class ARG_TYPE>
inline TYPE CDXList<TYPE, ARG_TYPE>::GetTail() const
{ _ASSERT( m_pNodeTail != NULL );
return m_pNodeTail->data; }
template<class TYPE, class ARG_TYPE>
inline DXLISTPOS CDXList<TYPE, ARG_TYPE>::GetHeadPosition() const
{ return (DXLISTPOS) m_pNodeHead; }
template<class TYPE, class ARG_TYPE>
inline DXLISTPOS CDXList<TYPE, ARG_TYPE>::GetTailPosition() const
{ return (DXLISTPOS) m_pNodeTail; }
template<class TYPE, class ARG_TYPE>
inline TYPE& CDXList<TYPE, ARG_TYPE>::GetNext(DXLISTPOS& rPosition) // return *Position++
{ CNode* pNode = (CNode*) rPosition;
_ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) );
rPosition = (DXLISTPOS) pNode->pNext;
return pNode->data; }
template<class TYPE, class ARG_TYPE>
inline TYPE CDXList<TYPE, ARG_TYPE>::GetNext(DXLISTPOS& rPosition) const // return *Position++
{ CNode* pNode = (CNode*) rPosition;
_ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) );
rPosition = (DXLISTPOS) pNode->pNext;
return pNode->data; }
template<class TYPE, class ARG_TYPE>
inline TYPE& CDXList<TYPE, ARG_TYPE>::GetPrev(DXLISTPOS& rPosition) // return *Position--
{ CNode* pNode = (CNode*) rPosition;
_ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) );
rPosition = (DXLISTPOS) pNode->pPrev;
return pNode->data; }
template<class TYPE, class ARG_TYPE>
inline TYPE CDXList<TYPE, ARG_TYPE>::GetPrev(DXLISTPOS& rPosition) const // return *Position--
{ CNode* pNode = (CNode*) rPosition;
_ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) );
rPosition = (DXLISTPOS) pNode->pPrev;
return pNode->data; }
template<class TYPE, class ARG_TYPE>
inline TYPE& CDXList<TYPE, ARG_TYPE>::GetAt(DXLISTPOS position)
{ CNode* pNode = (CNode*) position;
_ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) );
return pNode->data; }
template<class TYPE, class ARG_TYPE>
inline TYPE CDXList<TYPE, ARG_TYPE>::GetAt(DXLISTPOS position) const
{ CNode* pNode = (CNode*) position;
_ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) );
return pNode->data; }
template<class TYPE, class ARG_TYPE>
inline void CDXList<TYPE, ARG_TYPE>::SetAt(DXLISTPOS pos, ARG_TYPE newElement)
{ CNode* pNode = (CNode*) pos;
_ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) );
pNode->data = newElement; }
/////////////////////////////////////////////////////////////////////////////
// CDXList<TYPE, ARG_TYPE> out-of-line functions
template<class TYPE, class ARG_TYPE>
CDXList<TYPE, ARG_TYPE>::CDXList( int nBlockSize )
{
_ASSERT( nBlockSize > 0 );
m_nCount = 0;
m_pNodeHead = m_pNodeTail = m_pNodeFree = NULL;
m_pBlocks = NULL;
m_nBlockSize = nBlockSize;
}
template<class TYPE, class ARG_TYPE>
void CDXList<TYPE, ARG_TYPE>::RemoveAll()
{
DXASSERT_VALID( this );
// destroy elements
CNode* pNode;
for (pNode = m_pNodeHead; pNode != NULL; pNode = pNode->pNext)
DXDestructElements(&pNode->data, 1);
m_nCount = 0;
m_pNodeHead = m_pNodeTail = m_pNodeFree = NULL;
m_pBlocks->FreeDataChain();
m_pBlocks = NULL;
}
template<class TYPE, class ARG_TYPE>
CDXList<TYPE, ARG_TYPE>::~CDXList()
{
RemoveAll();
_ASSERT( m_nCount == 0 );
}
/////////////////////////////////////////////////////////////////////////////
// Node helpers
//
// Implementation note: CNode's are stored in CDXPlex blocks and
// chained together. Free blocks are maintained in a singly linked list
// using the 'pNext' member of CNode with 'm_pNodeFree' as the head.
// Used blocks are maintained in a doubly linked list using both 'pNext'
// and 'pPrev' as links and 'm_pNodeHead' and 'm_pNodeTail'
// as the head/tail.
//
// We never free a CDXPlex block unless the List is destroyed or RemoveAll()
// is used - so the total number of CDXPlex blocks may grow large depending
// on the maximum past size of the list.
//
template<class TYPE, class ARG_TYPE>
CDXList<TYPE, ARG_TYPE>::CNode*
CDXList<TYPE, ARG_TYPE>::NewNode(CDXList::CNode* pPrev, CDXList::CNode* pNext)
{
if (m_pNodeFree == NULL)
{
// add another block
CDXPlex* pNewBlock = CDXPlex::Create(m_pBlocks, m_nBlockSize,
sizeof(CNode));
// chain them into free list
CNode* pNode = (CNode*) pNewBlock->data();
// free in reverse order to make it easier to debug
pNode += m_nBlockSize - 1;
for (int i = m_nBlockSize-1; i >= 0; i--, pNode--)
{
pNode->pNext = m_pNodeFree;
m_pNodeFree = pNode;
}
}
_ASSERT( m_pNodeFree != NULL ); // we must have something
CDXList::CNode* pNode = m_pNodeFree;
m_pNodeFree = m_pNodeFree->pNext;
pNode->pPrev = pPrev;
pNode->pNext = pNext;
m_nCount++;
_ASSERT( m_nCount > 0 ); // make sure we don't overflow
DXConstructElements(&pNode->data, 1);
return pNode;
}
template<class TYPE, class ARG_TYPE>
void CDXList<TYPE, ARG_TYPE>::FreeNode(CDXList::CNode* pNode)
{
DXDestructElements(&pNode->data, 1);
pNode->pNext = m_pNodeFree;
m_pNodeFree = pNode;
m_nCount--;
_ASSERT( m_nCount >= 0 ); // make sure we don't underflow
}
template<class TYPE, class ARG_TYPE>
DXLISTPOS CDXList<TYPE, ARG_TYPE>::AddHead(ARG_TYPE newElement)
{
DXASSERT_VALID( this );
CNode* pNewNode = NewNode(NULL, m_pNodeHead);
pNewNode->data = newElement;
if (m_pNodeHead != NULL)
m_pNodeHead->pPrev = pNewNode;
else
m_pNodeTail = pNewNode;
m_pNodeHead = pNewNode;
return (DXLISTPOS) pNewNode;
}
template<class TYPE, class ARG_TYPE>
DXLISTPOS CDXList<TYPE, ARG_TYPE>::AddTail(ARG_TYPE newElement)
{
DXASSERT_VALID( this );
CNode* pNewNode = NewNode(m_pNodeTail, NULL);
pNewNode->data = newElement;
if (m_pNodeTail != NULL)
m_pNodeTail->pNext = pNewNode;
else
m_pNodeHead = pNewNode;
m_pNodeTail = pNewNode;
return (DXLISTPOS) pNewNode;
}
template<class TYPE, class ARG_TYPE>
void CDXList<TYPE, ARG_TYPE>::AddHead(CDXList* pNewList)
{
DXASSERT_VALID( this );
DXASSERT_VALID( pNewList );
// add a list of same elements to head (maintain order)
DXLISTPOS pos = pNewList->GetTailPosition();
while (pos != NULL)
AddHead(pNewList->GetPrev(pos));
}
template<class TYPE, class ARG_TYPE>
void CDXList<TYPE, ARG_TYPE>::AddTail(CDXList* pNewList)
{
DXASSERT_VALID( this );
DXASSERT_VALID( pNewList );
// add a list of same elements
DXLISTPOS pos = pNewList->GetHeadPosition();
while (pos != NULL)
AddTail(pNewList->GetNext(pos));
}
template<class TYPE, class ARG_TYPE>
TYPE CDXList<TYPE, ARG_TYPE>::RemoveHead()
{
DXASSERT_VALID( this );
_ASSERT( m_pNodeHead != NULL ); // don't call on empty list !!!
_ASSERT( DXIsValidAddress(m_pNodeHead, sizeof(CNode), TRUE ) );
CNode* pOldNode = m_pNodeHead;
TYPE returnValue = pOldNode->data;
m_pNodeHead = pOldNode->pNext;
if (m_pNodeHead != NULL)
m_pNodeHead->pPrev = NULL;
else
m_pNodeTail = NULL;
FreeNode(pOldNode);
return returnValue;
}
template<class TYPE, class ARG_TYPE>
TYPE CDXList<TYPE, ARG_TYPE>::RemoveTail()
{
DXASSERT_VALID( this );
_ASSERT( m_pNodeTail != NULL ); // don't call on empty list !!!
_ASSERT( DXIsValidAddress(m_pNodeTail, sizeof(CNode), TRUE ) );
CNode* pOldNode = m_pNodeTail;
TYPE returnValue = pOldNode->data;
m_pNodeTail = pOldNode->pPrev;
if (m_pNodeTail != NULL)
m_pNodeTail->pNext = NULL;
else
m_pNodeHead = NULL;
FreeNode(pOldNode);
return returnValue;
}
template<class TYPE, class ARG_TYPE>
DXLISTPOS CDXList<TYPE, ARG_TYPE>::InsertBefore(DXLISTPOS position, ARG_TYPE newElement)
{
DXASSERT_VALID( this );
if (position == NULL)
return AddHead(newElement); // insert before nothing -> head of the list
// Insert it before position
CNode* pOldNode = (CNode*) position;
CNode* pNewNode = NewNode(pOldNode->pPrev, pOldNode);
pNewNode->data = newElement;
if (pOldNode->pPrev != NULL)
{
_ASSERT( DXIsValidAddress(pOldNode->pPrev, sizeof(CNode), TRUE ) );
pOldNode->pPrev->pNext = pNewNode;
}
else
{
_ASSERT( pOldNode == m_pNodeHead );
m_pNodeHead = pNewNode;
}
pOldNode->pPrev = pNewNode;
return (DXLISTPOS) pNewNode;
}
template<class TYPE, class ARG_TYPE>
DXLISTPOS CDXList<TYPE, ARG_TYPE>::InsertAfter(DXLISTPOS position, ARG_TYPE newElement)
{
DXASSERT_VALID( this );
if (position == NULL)
return AddTail(newElement); // insert after nothing -> tail of the list
// Insert it before position
CNode* pOldNode = (CNode*) position;
_ASSERT( DXIsValidAddress(pOldNode, sizeof(CNode), TRUE ));
CNode* pNewNode = NewNode(pOldNode, pOldNode->pNext);
pNewNode->data = newElement;
if (pOldNode->pNext != NULL)
{
_ASSERT( DXIsValidAddress(pOldNode->pNext, sizeof(CNode), TRUE ));
pOldNode->pNext->pPrev = pNewNode;
}
else
{
_ASSERT( pOldNode == m_pNodeTail );
m_pNodeTail = pNewNode;
}
pOldNode->pNext = pNewNode;
return (DXLISTPOS) pNewNode;
}
template<class TYPE, class ARG_TYPE>
void CDXList<TYPE, ARG_TYPE>::RemoveAt(DXLISTPOS position)
{
DXASSERT_VALID( this );
CNode* pOldNode = (CNode*) position;
_ASSERT( DXIsValidAddress(pOldNode, sizeof(CNode), TRUE ) );
// remove pOldNode from list
if (pOldNode == m_pNodeHead)
{
m_pNodeHead = pOldNode->pNext;
}
else
{
_ASSERT( DXIsValidAddress(pOldNode->pPrev, sizeof(CNode), TRUE ) );
pOldNode->pPrev->pNext = pOldNode->pNext;
}
if (pOldNode == m_pNodeTail)
{
m_pNodeTail = pOldNode->pPrev;
}
else
{
_ASSERT( DXIsValidAddress(pOldNode->pNext, sizeof(CNode), TRUE ) );
pOldNode->pNext->pPrev = pOldNode->pPrev;
}
FreeNode(pOldNode);
}
template<class TYPE, class ARG_TYPE>
DXLISTPOS CDXList<TYPE, ARG_TYPE>::FindIndex(int nIndex) const
{
DXASSERT_VALID( this );
_ASSERT( nIndex >= 0 );
if (nIndex >= m_nCount)
return NULL; // went too far
CNode* pNode = m_pNodeHead;
while (nIndex--)
{
_ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ));
pNode = pNode->pNext;
}
return (DXLISTPOS) pNode;
}
template<class TYPE, class ARG_TYPE>
DXLISTPOS CDXList<TYPE, ARG_TYPE>::Find(ARG_TYPE searchValue, DXLISTPOS startAfter) const
{
DXASSERT_VALID( this );
CNode* pNode = (CNode*) startAfter;
if (pNode == NULL)
{
pNode = m_pNodeHead; // start at head
}
else
{
_ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) );
pNode = pNode->pNext; // start after the one specified
}
for (; pNode != NULL; pNode = pNode->pNext)
if (DXCompareElements(&pNode->data, &searchValue))
return (DXLISTPOS)pNode;
return NULL;
}
#ifdef _DEBUG
template<class TYPE, class ARG_TYPE>
void CDXList<TYPE, ARG_TYPE>::AssertValid() const
{
if (m_nCount == 0)
{
// empty list
_ASSERT( m_pNodeHead == NULL );
_ASSERT( m_pNodeTail == NULL );
}
else
{
// non-empty list
_ASSERT( DXIsValidAddress(m_pNodeHead, sizeof(CNode), TRUE ));
_ASSERT( DXIsValidAddress(m_pNodeTail, sizeof(CNode), TRUE ));
}
}
#endif //_DEBUG
/////////////////////////////////////////////////////////////////////////////
// CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE>
class CDXMap
{
protected:
// Association
struct CAssoc
{
CAssoc* pNext;
UINT nHashValue; // needed for efficient iteration
KEY key;
VALUE value;
};
public:
// Construction
CDXMap( int nBlockSize = 10 );
// Attributes
// number of elements
int GetCount() const;
BOOL IsEmpty() const;
// Lookup
BOOL Lookup(ARG_KEY key, VALUE& rValue) const;
// Operations
// Lookup and add if not there
VALUE& operator[](ARG_KEY key);
// add a new (key, value) pair
void SetAt(ARG_KEY key, ARG_VALUE newValue);
// removing existing (key, ?) pair
BOOL RemoveKey(ARG_KEY key);
void RemoveAll();
// iterating all (key, value) pairs
DXLISTPOS GetStartPosition() const;
void GetNextAssoc(DXLISTPOS& rNextPosition, KEY& rKey, VALUE& rValue) const;
// advanced features for derived classes
UINT GetHashTableSize() const;
void InitHashTable(UINT hashSize, BOOL bAllocNow = TRUE);
// Implementation
protected:
CAssoc** m_pHashTable;
UINT m_nHashTableSize;
int m_nCount;
CAssoc* m_pFreeList;
struct CDXPlex* m_pBlocks;
int m_nBlockSize;
CAssoc* NewAssoc();
void FreeAssoc(CAssoc*);
CAssoc* GetAssocAt(ARG_KEY, UINT&) const;
public:
~CDXMap();
#ifdef _DEBUG
// void Dump(CDumpContext&) const;
void AssertValid() const;
#endif
};
/////////////////////////////////////////////////////////////////////////////
// CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE> inline functions
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE>
inline int CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::GetCount() const
{ return m_nCount; }
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE>
inline BOOL CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::IsEmpty() const
{ return m_nCount == 0; }
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE>
inline void CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::SetAt(ARG_KEY key, ARG_VALUE newValue)
{ (*this)[key] = newValue; }
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE>
inline DXLISTPOS CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::GetStartPosition() const
{ return (m_nCount == 0) ? NULL : DX_BEFORE_START_POSITION; }
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE>
inline UINT CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::GetHashTableSize() const
{ return m_nHashTableSize; }
/////////////////////////////////////////////////////////////////////////////
// CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE> out-of-line functions
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE>
CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::CDXMap( int nBlockSize )
{
_ASSERT( nBlockSize > 0 );
m_pHashTable = NULL;
m_nHashTableSize = 17; // default size
m_nCount = 0;
m_pFreeList = NULL;
m_pBlocks = NULL;
m_nBlockSize = nBlockSize;
}
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE>
void CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::InitHashTable(
UINT nHashSize, BOOL bAllocNow)
//
// Used to force allocation of a hash table or to override the default
// hash table size of (which is fairly small)
{
DXASSERT_VALID( this );
_ASSERT( m_nCount == 0 );
_ASSERT( nHashSize > 0 );
if (m_pHashTable != NULL)
{
// free hash table
delete[] m_pHashTable;
m_pHashTable = NULL;
}
if (bAllocNow)
{
m_pHashTable = new CAssoc* [nHashSize];
// oh well, it's better than crashing
if (m_pHashTable == NULL)
return;
memset(m_pHashTable, 0, sizeof(CAssoc*) * nHashSize);
}
m_nHashTableSize = nHashSize;
}
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE>
void CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::RemoveAll()
{
DXASSERT_VALID( this );
if (m_pHashTable != NULL)
{
// destroy elements (values and keys)
for (UINT nHash = 0; nHash < m_nHashTableSize; nHash++)
{
CAssoc* pAssoc;
for (pAssoc = m_pHashTable[nHash]; pAssoc != NULL;
pAssoc = pAssoc->pNext)
{
DXDestructElements(&pAssoc->value, 1);
DXDestructElements(&pAssoc->key, 1);
}
}
}
// free hash table
delete[] m_pHashTable;
m_pHashTable = NULL;
m_nCount = 0;
m_pFreeList = NULL;
m_pBlocks->FreeDataChain();
m_pBlocks = NULL;
}
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE>
CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::~CDXMap()
{
RemoveAll();
_ASSERT( m_nCount == 0 );
}
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE>
CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::CAssoc*
CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::NewAssoc()
{
if (m_pFreeList == NULL)
{
// add another block
CDXPlex* newBlock = CDXPlex::Create(m_pBlocks, m_nBlockSize, sizeof(CDXMap::CAssoc));
// chain them into free list
CDXMap::CAssoc* pAssoc = (CDXMap::CAssoc*) newBlock->data();
// free in reverse order to make it easier to debug
pAssoc += m_nBlockSize - 1;
for (int i = m_nBlockSize-1; i >= 0; i--, pAssoc--)
{
pAssoc->pNext = m_pFreeList;
m_pFreeList = pAssoc;
}
}
_ASSERT( m_pFreeList != NULL ); // we must have something
CDXMap::CAssoc* pAssoc = m_pFreeList;
m_pFreeList = m_pFreeList->pNext;
m_nCount++;
_ASSERT( m_nCount > 0 ); // make sure we don't overflow
DXConstructElements(&pAssoc->key, 1);
DXConstructElements(&pAssoc->value, 1); // special construct values
return pAssoc;
}
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE>
void CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::FreeAssoc(CDXMap::CAssoc* pAssoc)
{
DXDestructElements(&pAssoc->value, 1);
DXDestructElements(&pAssoc->key, 1);
pAssoc->pNext = m_pFreeList;
m_pFreeList = pAssoc;
m_nCount--;
_ASSERT( m_nCount >= 0 ); // make sure we don't underflow
}
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE>
CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::CAssoc*
CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::GetAssocAt(ARG_KEY key, UINT& nHash) const
// find association (or return NULL)
{
nHash = DXHashKey(key) % m_nHashTableSize;
if (m_pHashTable == NULL)
return NULL;
// see if it exists
CAssoc* pAssoc;
for (pAssoc = m_pHashTable[nHash]; pAssoc != NULL; pAssoc = pAssoc->pNext)
{
if (DXCompareElements(&pAssoc->key, &key))
return pAssoc;
}
return NULL;
}
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE>
BOOL CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::Lookup(ARG_KEY key, VALUE& rValue) const
{
DXASSERT_VALID( this );
UINT nHash;
CAssoc* pAssoc = GetAssocAt(key, nHash);
if (pAssoc == NULL)
return FALSE; // not in map
rValue = pAssoc->value;
return TRUE;
}
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE>
VALUE& CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::operator[](ARG_KEY key)
{
DXASSERT_VALID( this );
UINT nHash;
CAssoc* pAssoc;
if ((pAssoc = GetAssocAt(key, nHash)) == NULL)
{
if (m_pHashTable == NULL)
InitHashTable(m_nHashTableSize);
// it doesn't exist, add a new Association
pAssoc = NewAssoc();
pAssoc->nHashValue = nHash;
pAssoc->key = key;
// 'pAssoc->value' is a constructed object, nothing more
// put into hash table
pAssoc->pNext = m_pHashTable[nHash];
m_pHashTable[nHash] = pAssoc;
}
return pAssoc->value; // return new reference
}
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE>
BOOL CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::RemoveKey(ARG_KEY key)
// remove key - return TRUE if removed
{
DXASSERT_VALID( this );
if (m_pHashTable == NULL)
return FALSE; // nothing in the table
CAssoc** ppAssocPrev;
ppAssocPrev = &m_pHashTable[DXHashKey(key) % m_nHashTableSize];
CAssoc* pAssoc;
for (pAssoc = *ppAssocPrev; pAssoc != NULL; pAssoc = pAssoc->pNext)
{
if (DXCompareElements(&pAssoc->key, &key))
{
// remove it
*ppAssocPrev = pAssoc->pNext; // remove from list
FreeAssoc(pAssoc);
return TRUE;
}
ppAssocPrev = &pAssoc->pNext;
}
return FALSE; // not found
}
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE>
void CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::GetNextAssoc(DXLISTPOS& rNextPosition,
KEY& rKey, VALUE& rValue) const
{
DXASSERT_VALID( this );
_ASSERT( m_pHashTable != NULL ); // never call on empty map
CAssoc* pAssocRet = (CAssoc*)rNextPosition;
_ASSERT( pAssocRet != NULL );
if (pAssocRet == (CAssoc*) DX_BEFORE_START_POSITION)
{
// find the first association
for (UINT nBucket = 0; nBucket < m_nHashTableSize; nBucket++)
if ((pAssocRet = m_pHashTable[nBucket]) != NULL)
break;
_ASSERT( pAssocRet != NULL ); // must find something
}
// find next association
_ASSERT( DXIsValidAddress(pAssocRet, sizeof(CAssoc), TRUE ));
CAssoc* pAssocNext;
if ((pAssocNext = pAssocRet->pNext) == NULL)
{
// go to next bucket
for (UINT nBucket = pAssocRet->nHashValue + 1;
nBucket < m_nHashTableSize; nBucket++)
if ((pAssocNext = m_pHashTable[nBucket]) != NULL)
break;
}
rNextPosition = (DXLISTPOS) pAssocNext;
// fill in return data
rKey = pAssocRet->key;
rValue = pAssocRet->value;
}
#ifdef _DEBUG
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE>
void CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::AssertValid() const
{
_ASSERT( m_nHashTableSize > 0 );
_ASSERT( (m_nCount == 0 || m_pHashTable != NULL) );
// non-empty map should have hash table
}
#endif //_DEBUG
#endif //--- This must be the last line in the file