windows-nt/Source/XPSP1/NT/public/sdk/inc/wdm.h

15208 lines
351 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
/*++ BUILD Version: 0109 // Increment this if a change has global effects
Copyright (c) Microsoft Corporation. All rights reserved.
Module Name:
wdm.h
Abstract:
This module defines the WDM types, constants, and functions that are
exposed to device drivers.
Revision History:
--*/
#ifndef _WDMDDK_
#define _WDMDDK_
#define _NTDDK_
#ifndef RC_INVOKED
#if _MSC_VER < 1300
#error Compiler version not supported by Windows DDK
#endif
#endif // RC_INVOKED
#define NT_INCLUDED
#define _CTYPE_DISABLE_MACROS
#include <excpt.h>
#include <ntdef.h>
#include <ntstatus.h>
#include <bugcodes.h>
#include <ntiologc.h>
//
// Define types that are not exported.
//
typedef struct _ACCESS_STATE *PACCESS_STATE;
typedef struct _CALLBACK_OBJECT *PCALLBACK_OBJECT;
typedef struct _EPROCESS *PEPROCESS;
typedef struct _ETHREAD *PETHREAD;
typedef struct _IO_TIMER *PIO_TIMER;
typedef struct _KINTERRUPT *PKINTERRUPT;
typedef struct _KTHREAD *PKTHREAD, *PRKTHREAD;
typedef struct _OBJECT_TYPE *POBJECT_TYPE;
typedef struct _SECURITY_QUALITY_OF_SERVICE *PSECURITY_QUALITY_OF_SERVICE;
#if defined(_M_AMD64)
PKTHREAD
NTAPI
KeGetCurrentThread(
VOID
);
#endif // defined(_M_AMD64)
#if defined(_M_IX86)
PKTHREAD NTAPI KeGetCurrentThread();
#endif // defined(_M_IX86)
#if defined(_M_IA64)
//
// Define base address for kernel and user space
//
#ifdef _WIN64
#define UREGION_INDEX 1
#define KREGION_INDEX 7
#define UADDRESS_BASE ((ULONG_PTR)UREGION_INDEX << 61)
#define KADDRESS_BASE ((ULONG_PTR)KREGION_INDEX << 61)
#else // !_WIN64
#define KADDRESS_BASE 0
#define UADDRESS_BASE 0
#endif // !_WIN64
//
// Define Address of Processor Control Registers.
//
#define KIPCR ((ULONG_PTR)(KADDRESS_BASE + 0xffff0000)) // kernel address of first PCR
//
// Define Pointer to Processor Control Registers.
//
#define PCR ((volatile KPCR * const)KIPCR)
PKTHREAD NTAPI KeGetCurrentThread();
#endif // defined(_M_IA64)
#include <mce.h>
#ifndef FAR
#define FAR
#endif
#define PsGetCurrentProcess() IoGetCurrentProcess()
#define PsGetCurrentThread() ((PETHREAD) (KeGetCurrentThread()))
extern NTSYSAPI CCHAR KeNumberProcessors;
//
// Define alignment macros to align structure sizes and pointers up and down.
//
#define ALIGN_DOWN(length, type) \
((ULONG)(length) & ~(sizeof(type) - 1))
#define ALIGN_UP(length, type) \
(ALIGN_DOWN(((ULONG)(length) + sizeof(type) - 1), type))
#define ALIGN_DOWN_POINTER(address, type) \
((PVOID)((ULONG_PTR)(address) & ~((ULONG_PTR)sizeof(type) - 1)))
#define ALIGN_UP_POINTER(address, type) \
(ALIGN_DOWN_POINTER(((ULONG_PTR)(address) + sizeof(type) - 1), type))
#define POOL_TAGGING 1
#ifndef DBG
#define DBG 0
#endif
#if DBG
#define IF_DEBUG if (TRUE)
#else
#define IF_DEBUG if (FALSE)
#endif
#if DEVL
extern ULONG NtGlobalFlag;
#define IF_NTOS_DEBUG( FlagName ) \
if (NtGlobalFlag & (FLG_ ## FlagName))
#else
#define IF_NTOS_DEBUG( FlagName ) if (FALSE)
#endif
//
// Kernel definitions that need to be here for forward reference purposes
//
//
// Processor modes.
//
typedef CCHAR KPROCESSOR_MODE;
typedef enum _MODE {
KernelMode,
UserMode,
MaximumMode
} MODE;
//
// APC function types
//
//
// Put in an empty definition for the KAPC so that the
// routines can reference it before it is declared.
//
struct _KAPC;
typedef
VOID
(*PKNORMAL_ROUTINE) (
IN PVOID NormalContext,
IN PVOID SystemArgument1,
IN PVOID SystemArgument2
);
typedef
VOID
(*PKKERNEL_ROUTINE) (
IN struct _KAPC *Apc,
IN OUT PKNORMAL_ROUTINE *NormalRoutine,
IN OUT PVOID *NormalContext,
IN OUT PVOID *SystemArgument1,
IN OUT PVOID *SystemArgument2
);
typedef
VOID
(*PKRUNDOWN_ROUTINE) (
IN struct _KAPC *Apc
);
typedef
BOOLEAN
(*PKSYNCHRONIZE_ROUTINE) (
IN PVOID SynchronizeContext
);
typedef
BOOLEAN
(*PKTRANSFER_ROUTINE) (
VOID
);
//
//
// Asynchronous Procedure Call (APC) object
//
//
typedef struct _KAPC {
CSHORT Type;
CSHORT Size;
ULONG Spare0;
struct _KTHREAD *Thread;
LIST_ENTRY ApcListEntry;
PKKERNEL_ROUTINE KernelRoutine;
PKRUNDOWN_ROUTINE RundownRoutine;
PKNORMAL_ROUTINE NormalRoutine;
PVOID NormalContext;
//
// N.B. The following two members MUST be together.
//
PVOID SystemArgument1;
PVOID SystemArgument2;
CCHAR ApcStateIndex;
KPROCESSOR_MODE ApcMode;
BOOLEAN Inserted;
} KAPC, *PKAPC, *RESTRICTED_POINTER PRKAPC;
//
// DPC routine
//
struct _KDPC;
typedef
VOID
(*PKDEFERRED_ROUTINE) (
IN struct _KDPC *Dpc,
IN PVOID DeferredContext,
IN PVOID SystemArgument1,
IN PVOID SystemArgument2
);
//
// Define DPC importance.
//
// LowImportance - Queue DPC at end of target DPC queue.
// MediumImportance - Queue DPC at end of target DPC queue.
// HighImportance - Queue DPC at front of target DPC DPC queue.
//
// If there is currently a DPC active on the target processor, or a DPC
// interrupt has already been requested on the target processor when a
// DPC is queued, then no further action is necessary. The DPC will be
// executed on the target processor when its queue entry is processed.
//
// If there is not a DPC active on the target processor and a DPC interrupt
// has not been requested on the target processor, then the exact treatment
// of the DPC is dependent on whether the host system is a UP system or an
// MP system.
//
// UP system.
//
// If the DPC is of medium or high importance, the current DPC queue depth
// is greater than the maximum target depth, or current DPC request rate is
// less the minimum target rate, then a DPC interrupt is requested on the
// host processor and the DPC will be processed when the interrupt occurs.
// Otherwise, no DPC interupt is requested and the DPC execution will be
// delayed until the DPC queue depth is greater that the target depth or the
// minimum DPC rate is less than the target rate.
//
// MP system.
//
// If the DPC is being queued to another processor and the depth of the DPC
// queue on the target processor is greater than the maximum target depth or
// the DPC is of high importance, then a DPC interrupt is requested on the
// target processor and the DPC will be processed when the interrupt occurs.
// Otherwise, the DPC execution will be delayed on the target processor until
// the DPC queue depth on the target processor is greater that the maximum
// target depth or the minimum DPC rate on the target processor is less than
// the target mimimum rate.
//
// If the DPC is being queued to the current processor and the DPC is not of
// low importance, the current DPC queue depth is greater than the maximum
// target depth, or the minimum DPC rate is less than the minimum target rate,
// then a DPC interrupt is request on the current processor and the DPV will
// be processed whne the interrupt occurs. Otherwise, no DPC interupt is
// requested and the DPC execution will be delayed until the DPC queue depth
// is greater that the target depth or the minimum DPC rate is less than the
// target rate.
//
typedef enum _KDPC_IMPORTANCE {
LowImportance,
MediumImportance,
HighImportance
} KDPC_IMPORTANCE;
//
// Deferred Procedure Call (DPC) object
//
typedef struct _KDPC {
CSHORT Type;
UCHAR Number;
UCHAR Importance;
LIST_ENTRY DpcListEntry;
PKDEFERRED_ROUTINE DeferredRoutine;
PVOID DeferredContext;
PVOID SystemArgument1;
PVOID SystemArgument2;
PULONG_PTR Lock;
} KDPC, *PKDPC, *RESTRICTED_POINTER PRKDPC;
//
// Interprocessor interrupt worker routine function prototype.
//
typedef PVOID PKIPI_CONTEXT;
typedef
VOID
(*PKIPI_WORKER)(
IN PKIPI_CONTEXT PacketContext,
IN PVOID Parameter1,
IN PVOID Parameter2,
IN PVOID Parameter3
);
//
// Define interprocessor interrupt performance counters.
//
typedef struct _KIPI_COUNTS {
ULONG Freeze;
ULONG Packet;
ULONG DPC;
ULONG APC;
ULONG FlushSingleTb;
ULONG FlushMultipleTb;
ULONG FlushEntireTb;
ULONG GenericCall;
ULONG ChangeColor;
ULONG SweepDcache;
ULONG SweepIcache;
ULONG SweepIcacheRange;
ULONG FlushIoBuffers;
ULONG GratuitousDPC;
} KIPI_COUNTS, *PKIPI_COUNTS;
#if defined(NT_UP)
#define HOT_STATISTIC(a) a
#else
#define HOT_STATISTIC(a) (KeGetCurrentPrcb()->a)
#endif
//
// I/O system definitions.
//
// Define a Memory Descriptor List (MDL)
//
// An MDL describes pages in a virtual buffer in terms of physical pages. The
// pages associated with the buffer are described in an array that is allocated
// just after the MDL header structure itself. In a future compiler this will
// be placed at:
//
// ULONG Pages[];
//
// Until this declaration is permitted, however, one simply calculates the
// base of the array by adding one to the base MDL pointer:
//
// Pages = (PULONG) (Mdl + 1);
//
// Notice that while in the context of the subject thread, the base virtual
// address of a buffer mapped by an MDL may be referenced using the following:
//
// Mdl->StartVa | Mdl->ByteOffset
//
typedef struct _MDL {
struct _MDL *Next;
CSHORT Size;
CSHORT MdlFlags;
struct _EPROCESS *Process;
PVOID MappedSystemVa;
PVOID StartVa;
ULONG ByteCount;
ULONG ByteOffset;
} MDL, *PMDL;
#define MDL_MAPPED_TO_SYSTEM_VA 0x0001
#define MDL_PAGES_LOCKED 0x0002
#define MDL_SOURCE_IS_NONPAGED_POOL 0x0004
#define MDL_ALLOCATED_FIXED_SIZE 0x0008
#define MDL_PARTIAL 0x0010
#define MDL_PARTIAL_HAS_BEEN_MAPPED 0x0020
#define MDL_IO_PAGE_READ 0x0040
#define MDL_WRITE_OPERATION 0x0080
#define MDL_PARENT_MAPPED_SYSTEM_VA 0x0100
#define MDL_FREE_EXTRA_PTES 0x0200
#define MDL_IO_SPACE 0x0800
#define MDL_NETWORK_HEADER 0x1000
#define MDL_MAPPING_CAN_FAIL 0x2000
#define MDL_ALLOCATED_MUST_SUCCEED 0x4000
#define MDL_MAPPING_FLAGS (MDL_MAPPED_TO_SYSTEM_VA | \
MDL_PAGES_LOCKED | \
MDL_SOURCE_IS_NONPAGED_POOL | \
MDL_PARTIAL_HAS_BEEN_MAPPED | \
MDL_PARENT_MAPPED_SYSTEM_VA | \
MDL_SYSTEM_VA | \
MDL_IO_SPACE )
//
// switch to DBG when appropriate
//
#if DBG
#define PAGED_CODE() \
{ if (KeGetCurrentIrql() > APC_LEVEL) { \
KdPrint(( "EX: Pageable code called at IRQL %d\n", KeGetCurrentIrql() )); \
ASSERT(FALSE); \
} \
}
#else
#define PAGED_CODE() NOP_FUNCTION;
#endif
#define NTKERNELAPI DECLSPEC_IMPORT
#define NTHALAPI DECLSPEC_IMPORT
//
// Common dispatcher object header
//
// N.B. The size field contains the number of dwords in the structure.
//
typedef struct _DISPATCHER_HEADER {
UCHAR Type;
UCHAR Absolute;
UCHAR Size;
UCHAR Inserted;
LONG SignalState;
LIST_ENTRY WaitListHead;
} DISPATCHER_HEADER;
//
// Event object
//
typedef struct _KEVENT {
DISPATCHER_HEADER Header;
} KEVENT, *PKEVENT, *RESTRICTED_POINTER PRKEVENT;
//
// Timer object
//
typedef struct _KTIMER {
DISPATCHER_HEADER Header;
ULARGE_INTEGER DueTime;
LIST_ENTRY TimerListEntry;
struct _KDPC *Dpc;
LONG Period;
} KTIMER, *PKTIMER, *RESTRICTED_POINTER PRKTIMER;
#ifdef _X86_
//
// Disable these two pragmas that evaluate to "sti" "cli" on x86 so that driver
// writers to not leave them inadvertantly in their code.
//
#if !defined(MIDL_PASS)
#if !defined(RC_INVOKED)
#if _MSC_VER >= 1200
#pragma warning(push)
#endif
#pragma warning(disable:4164) // disable C4164 warning so that apps that
// build with /Od don't get weird errors !
#ifdef _M_IX86
#pragma function(_enable)
#pragma function(_disable)
#endif
#if _MSC_VER >= 1200
#pragma warning(pop)
#else
#pragma warning(default:4164) // reenable C4164 warning
#endif
#endif
#endif
#endif // _X86_
#if defined(_AMD64_)
#if defined(_M_AMD64) && !defined(RC_INVOKED) && !defined(MIDL_PASS)
//
// Define function to get the caller's EFLAGs value.
//
#define GetCallersEflags() __getcallerseflags()
unsigned __int32
__getcallerseflags (
VOID
);
#pragma intrinsic(__getcallerseflags)
//
// Define function to read the value of the time stamp counter
//
#define ReadTimeStampCounter() __rdtsc()
ULONG64
__rdtsc (
VOID
);
#pragma intrinsic(__rdtsc)
//
// Define functions to move strings or bytes, words, dwords, and qwords.
//
VOID
__movsb (
IN PUCHAR Destination,
IN PUCHAR Source,
IN ULONG Count
);
VOID
__movsw (
IN PUSHORT Destination,
IN PUSHORT Source,
IN ULONG Count
);
VOID
__movsd (
IN PULONG Destination,
IN PULONG Source,
IN ULONG Count
);
VOID
__movsq (
IN PULONGLONG Destination,
IN PULONGLONG Source,
IN ULONG Count
);
#pragma intrinsic(__movsb)
#pragma intrinsic(__movsw)
#pragma intrinsic(__movsd)
#pragma intrinsic(__movsq)
//
// Define functions to capture the high 64-bits of a 128-bit multiply.
//
#define MultiplyHigh __mulh
#define UnsignedMultiplyHigh __umulh
LONGLONG
MultiplyHigh (
IN LONGLONG Multiplier,
IN LONGLONG Multiplicand
);
ULONGLONG
UnsignedMultiplyHigh (
IN ULONGLONG Multiplier,
IN ULONGLONG Multiplicand
);
#pragma intrinsic(__mulh)
#pragma intrinsic(__umulh)
//
// Define functions to read and write the uer TEB and the system PCR/PRCB.
//
UCHAR
__readgsbyte (
IN ULONG Offset
);
USHORT
__readgsword (
IN ULONG Offset
);
ULONG
__readgsdword (
IN ULONG Offset
);
ULONG64
__readgsqword (
IN ULONG Offset
);
VOID
__writegsbyte (
IN ULONG Offset,
IN UCHAR Data
);
VOID
__writegsword (
IN ULONG Offset,
IN USHORT Data
);
VOID
__writegsdword (
IN ULONG Offset,
IN ULONG Data
);
VOID
__writegsqword (
IN ULONG Offset,
IN ULONG64 Data
);
#pragma intrinsic(__readgsbyte)
#pragma intrinsic(__readgsword)
#pragma intrinsic(__readgsdword)
#pragma intrinsic(__readgsqword)
#pragma intrinsic(__writegsbyte)
#pragma intrinsic(__writegsword)
#pragma intrinsic(__writegsdword)
#pragma intrinsic(__writegsqword)
#endif // defined(_M_AMD64) && !defined(RC_INVOKED) && !defined(MIDL_PASS)
#endif // _AMD64_
#ifdef _IA64_
#endif // _IA64_
//
// Define an access token from a programmer's viewpoint. The structure is
// completely opaque and the programer is only allowed to have pointers
// to tokens.
//
typedef PVOID PACCESS_TOKEN;
//
// Pointer to a SECURITY_DESCRIPTOR opaque data type.
//
typedef PVOID PSECURITY_DESCRIPTOR;
//
// Define a pointer to the Security ID data type (an opaque data type)
//
typedef PVOID PSID;
typedef ULONG ACCESS_MASK;
typedef ACCESS_MASK *PACCESS_MASK;
//
// The following are masks for the predefined standard access types
//
#define DELETE (0x00010000L)
#define READ_CONTROL (0x00020000L)
#define WRITE_DAC (0x00040000L)
#define WRITE_OWNER (0x00080000L)
#define SYNCHRONIZE (0x00100000L)
#define STANDARD_RIGHTS_REQUIRED (0x000F0000L)
#define STANDARD_RIGHTS_READ (READ_CONTROL)
#define STANDARD_RIGHTS_WRITE (READ_CONTROL)
#define STANDARD_RIGHTS_EXECUTE (READ_CONTROL)
#define STANDARD_RIGHTS_ALL (0x001F0000L)
#define SPECIFIC_RIGHTS_ALL (0x0000FFFFL)
//
// AccessSystemAcl access type
//
#define ACCESS_SYSTEM_SECURITY (0x01000000L)
//
// MaximumAllowed access type
//
#define MAXIMUM_ALLOWED (0x02000000L)
//
// These are the generic rights.
//
#define GENERIC_READ (0x80000000L)
#define GENERIC_WRITE (0x40000000L)
#define GENERIC_EXECUTE (0x20000000L)
#define GENERIC_ALL (0x10000000L)
//
// Define the generic mapping array. This is used to denote the
// mapping of each generic access right to a specific access mask.
//
typedef struct _GENERIC_MAPPING {
ACCESS_MASK GenericRead;
ACCESS_MASK GenericWrite;
ACCESS_MASK GenericExecute;
ACCESS_MASK GenericAll;
} GENERIC_MAPPING;
typedef GENERIC_MAPPING *PGENERIC_MAPPING;
////////////////////////////////////////////////////////////////////////
// //
// LUID_AND_ATTRIBUTES //
// //
////////////////////////////////////////////////////////////////////////
//
//
#include <pshpack4.h>
typedef struct _LUID_AND_ATTRIBUTES {
LUID Luid;
ULONG Attributes;
} LUID_AND_ATTRIBUTES, * PLUID_AND_ATTRIBUTES;
typedef LUID_AND_ATTRIBUTES LUID_AND_ATTRIBUTES_ARRAY[ANYSIZE_ARRAY];
typedef LUID_AND_ATTRIBUTES_ARRAY *PLUID_AND_ATTRIBUTES_ARRAY;
#include <poppack.h>
// This is the *current* ACL revision
#define ACL_REVISION (2)
#define ACL_REVISION_DS (4)
// This is the history of ACL revisions. Add a new one whenever
// ACL_REVISION is updated
#define ACL_REVISION1 (1)
#define MIN_ACL_REVISION ACL_REVISION2
#define ACL_REVISION2 (2)
#define ACL_REVISION3 (3)
#define ACL_REVISION4 (4)
#define MAX_ACL_REVISION ACL_REVISION4
typedef struct _ACL {
UCHAR AclRevision;
UCHAR Sbz1;
USHORT AclSize;
USHORT AceCount;
USHORT Sbz2;
} ACL;
typedef ACL *PACL;
//
// Current security descriptor revision value
//
#define SECURITY_DESCRIPTOR_REVISION (1)
#define SECURITY_DESCRIPTOR_REVISION1 (1)
//
// Privilege attributes
//
#define SE_PRIVILEGE_ENABLED_BY_DEFAULT (0x00000001L)
#define SE_PRIVILEGE_ENABLED (0x00000002L)
#define SE_PRIVILEGE_USED_FOR_ACCESS (0x80000000L)
//
// Privilege Set Control flags
//
#define PRIVILEGE_SET_ALL_NECESSARY (1)
//
// Privilege Set - This is defined for a privilege set of one.
// If more than one privilege is needed, then this structure
// will need to be allocated with more space.
//
// Note: don't change this structure without fixing the INITIAL_PRIVILEGE_SET
// structure (defined in se.h)
//
typedef struct _PRIVILEGE_SET {
ULONG PrivilegeCount;
ULONG Control;
LUID_AND_ATTRIBUTES Privilege[ANYSIZE_ARRAY];
} PRIVILEGE_SET, * PPRIVILEGE_SET;
//
// These must be converted to LUIDs before use.
//
#define SE_MIN_WELL_KNOWN_PRIVILEGE (2L)
#define SE_CREATE_TOKEN_PRIVILEGE (2L)
#define SE_ASSIGNPRIMARYTOKEN_PRIVILEGE (3L)
#define SE_LOCK_MEMORY_PRIVILEGE (4L)
#define SE_INCREASE_QUOTA_PRIVILEGE (5L)
#define SE_MACHINE_ACCOUNT_PRIVILEGE (6L)
#define SE_TCB_PRIVILEGE (7L)
#define SE_SECURITY_PRIVILEGE (8L)
#define SE_TAKE_OWNERSHIP_PRIVILEGE (9L)
#define SE_LOAD_DRIVER_PRIVILEGE (10L)
#define SE_SYSTEM_PROFILE_PRIVILEGE (11L)
#define SE_SYSTEMTIME_PRIVILEGE (12L)
#define SE_PROF_SINGLE_PROCESS_PRIVILEGE (13L)
#define SE_INC_BASE_PRIORITY_PRIVILEGE (14L)
#define SE_CREATE_PAGEFILE_PRIVILEGE (15L)
#define SE_CREATE_PERMANENT_PRIVILEGE (16L)
#define SE_BACKUP_PRIVILEGE (17L)
#define SE_RESTORE_PRIVILEGE (18L)
#define SE_SHUTDOWN_PRIVILEGE (19L)
#define SE_DEBUG_PRIVILEGE (20L)
#define SE_AUDIT_PRIVILEGE (21L)
#define SE_SYSTEM_ENVIRONMENT_PRIVILEGE (22L)
#define SE_CHANGE_NOTIFY_PRIVILEGE (23L)
#define SE_REMOTE_SHUTDOWN_PRIVILEGE (24L)
#define SE_UNDOCK_PRIVILEGE (25L)
#define SE_SYNC_AGENT_PRIVILEGE (26L)
#define SE_ENABLE_DELEGATION_PRIVILEGE (27L)
#define SE_MANAGE_VOLUME_PRIVILEGE (28L)
#define SE_MAX_WELL_KNOWN_PRIVILEGE (SE_MANAGE_VOLUME_PRIVILEGE)
//
// Impersonation Level
//
// Impersonation level is represented by a pair of bits in Windows.
// If a new impersonation level is added or lowest value is changed from
// 0 to something else, fix the Windows CreateFile call.
//
typedef enum _SECURITY_IMPERSONATION_LEVEL {
SecurityAnonymous,
SecurityIdentification,
SecurityImpersonation,
SecurityDelegation
} SECURITY_IMPERSONATION_LEVEL, * PSECURITY_IMPERSONATION_LEVEL;
#define SECURITY_MAX_IMPERSONATION_LEVEL SecurityDelegation
#define SECURITY_MIN_IMPERSONATION_LEVEL SecurityAnonymous
#define DEFAULT_IMPERSONATION_LEVEL SecurityImpersonation
#define VALID_IMPERSONATION_LEVEL(L) (((L) >= SECURITY_MIN_IMPERSONATION_LEVEL) && ((L) <= SECURITY_MAX_IMPERSONATION_LEVEL))
//
// Security Tracking Mode
//
#define SECURITY_DYNAMIC_TRACKING (TRUE)
#define SECURITY_STATIC_TRACKING (FALSE)
typedef BOOLEAN SECURITY_CONTEXT_TRACKING_MODE,
* PSECURITY_CONTEXT_TRACKING_MODE;
//
// Quality Of Service
//
typedef struct _SECURITY_QUALITY_OF_SERVICE {
ULONG Length;
SECURITY_IMPERSONATION_LEVEL ImpersonationLevel;
SECURITY_CONTEXT_TRACKING_MODE ContextTrackingMode;
BOOLEAN EffectiveOnly;
} SECURITY_QUALITY_OF_SERVICE, * PSECURITY_QUALITY_OF_SERVICE;
//
// Used to represent information related to a thread impersonation
//
typedef struct _SE_IMPERSONATION_STATE {
PACCESS_TOKEN Token;
BOOLEAN CopyOnOpen;
BOOLEAN EffectiveOnly;
SECURITY_IMPERSONATION_LEVEL Level;
} SE_IMPERSONATION_STATE, *PSE_IMPERSONATION_STATE;
typedef ULONG SECURITY_INFORMATION, *PSECURITY_INFORMATION;
#define OWNER_SECURITY_INFORMATION (0x00000001L)
#define GROUP_SECURITY_INFORMATION (0x00000002L)
#define DACL_SECURITY_INFORMATION (0x00000004L)
#define SACL_SECURITY_INFORMATION (0x00000008L)
#define PROTECTED_DACL_SECURITY_INFORMATION (0x80000000L)
#define PROTECTED_SACL_SECURITY_INFORMATION (0x40000000L)
#define UNPROTECTED_DACL_SECURITY_INFORMATION (0x20000000L)
#define UNPROTECTED_SACL_SECURITY_INFORMATION (0x10000000L)
#define LOW_PRIORITY 0 // Lowest thread priority level
#define LOW_REALTIME_PRIORITY 16 // Lowest realtime priority level
#define HIGH_PRIORITY 31 // Highest thread priority level
#define MAXIMUM_PRIORITY 32 // Number of thread priority levels
#define MAXIMUM_WAIT_OBJECTS 64 // Maximum number of wait objects
#define MAXIMUM_SUSPEND_COUNT MAXCHAR // Maximum times thread can be suspended
//
// Define system time structure.
//
typedef struct _KSYSTEM_TIME {
ULONG LowPart;
LONG High1Time;
LONG High2Time;
} KSYSTEM_TIME, *PKSYSTEM_TIME;
//
// Thread priority
//
typedef LONG KPRIORITY;
//
// Spin Lock
//
typedef ULONG_PTR KSPIN_LOCK;
typedef KSPIN_LOCK *PKSPIN_LOCK;
//
// Interrupt routine (first level dispatch)
//
typedef
VOID
(*PKINTERRUPT_ROUTINE) (
VOID
);
//
// Profile source types
//
typedef enum _KPROFILE_SOURCE {
ProfileTime,
ProfileAlignmentFixup,
ProfileTotalIssues,
ProfilePipelineDry,
ProfileLoadInstructions,
ProfilePipelineFrozen,
ProfileBranchInstructions,
ProfileTotalNonissues,
ProfileDcacheMisses,
ProfileIcacheMisses,
ProfileCacheMisses,
ProfileBranchMispredictions,
ProfileStoreInstructions,
ProfileFpInstructions,
ProfileIntegerInstructions,
Profile2Issue,
Profile3Issue,
Profile4Issue,
ProfileSpecialInstructions,
ProfileTotalCycles,
ProfileIcacheIssues,
ProfileDcacheAccesses,
ProfileMemoryBarrierCycles,
ProfileLoadLinkedIssues,
ProfileMaximum
} KPROFILE_SOURCE;
//
// for move macros
//
#ifdef _MAC
#ifndef _INC_STRING
#include <string.h>
#endif /* _INC_STRING */
#else
#include <string.h>
#endif // _MAC
#ifndef _SLIST_HEADER_
#define _SLIST_HEADER_
#define SLIST_ENTRY SINGLE_LIST_ENTRY
#define _SLIST_ENTRY _SINGLE_LIST_ENTRY
#define PSLIST_ENTRY PSINGLE_LIST_ENTRY
#if defined(_WIN64)
typedef struct DECLSPEC_ALIGN(16) _SLIST_HEADER {
ULONGLONG Alignment;
ULONGLONG Region;
} SLIST_HEADER;
typedef struct _SLIST_HEADER *PSLIST_HEADER;
#else
typedef union _SLIST_HEADER {
ULONGLONG Alignment;
struct {
SLIST_ENTRY Next;
USHORT Depth;
USHORT Sequence;
};
} SLIST_HEADER, *PSLIST_HEADER;
#endif
#endif
//
// If debugging support enabled, define an ASSERT macro that works. Otherwise
// define the ASSERT macro to expand to an empty expression.
//
// The ASSERT macro has been updated to be an expression instead of a statement.
//
#if DBG
NTSYSAPI
VOID
NTAPI
RtlAssert(
PVOID FailedAssertion,
PVOID FileName,
ULONG LineNumber,
PCHAR Message
);
#define ASSERT( exp ) \
((!(exp)) ? \
(RtlAssert( #exp, __FILE__, __LINE__, NULL ),FALSE) : \
TRUE)
#define ASSERTMSG( msg, exp ) \
((!(exp)) ? \
(RtlAssert( #exp, __FILE__, __LINE__, msg ),FALSE) : \
TRUE)
#define RTL_SOFT_ASSERT(_exp) \
((!(_exp)) ? \
(DbgPrint("%s(%d): Soft assertion failed\n Expression: %s\n", __FILE__, __LINE__, #_exp),FALSE) : \
TRUE)
#define RTL_SOFT_ASSERTMSG(_msg, _exp) \
((!(_exp)) ? \
(DbgPrint("%s(%d): Soft assertion failed\n Expression: %s\n Message: %s\n", __FILE__, __LINE__, #_exp, (_msg)),FALSE) : \
TRUE)
#define RTL_VERIFY( exp ) ASSERT(exp)
#define RTL_VERIFYMSG( msg, exp ) ASSERT(msg, exp)
#define RTL_SOFT_VERIFY(_exp) RTL_SOFT_ASSERT(_exp)
#define RTL_SOFT_VERIFYMSG(_msg, _exp) RTL_SOFT_ASSERTMSG(_msg, _exp)
#else
#define ASSERT( exp ) ((void) 0)
#define ASSERTMSG( msg, exp ) ((void) 0)
#define RTL_SOFT_ASSERT(_exp) ((void) 0)
#define RTL_SOFT_ASSERTMSG(_msg, _exp) ((void) 0)
#define RTL_VERIFY( exp ) ((exp) ? TRUE : FALSE)
#define RTL_VERIFYMSG( msg, exp ) ((exp) ? TRUE : FALSE)
#define RTL_SOFT_VERIFY(_exp) ((_exp) ? TRUE : FALSE)
#define RTL_SOFT_VERIFYMSG(msg, _exp) ((_exp) ? TRUE : FALSE)
#endif // DBG
//
// Doubly-linked list manipulation routines.
//
//
// VOID
// InitializeListHead32(
// PLIST_ENTRY32 ListHead
// );
//
#define InitializeListHead32(ListHead) (\
(ListHead)->Flink = (ListHead)->Blink = PtrToUlong((ListHead)))
#if !defined(MIDL_PASS) && !defined(SORTPP_PASS)
VOID
FORCEINLINE
InitializeListHead(
IN PLIST_ENTRY ListHead
)
{
ListHead->Flink = ListHead->Blink = ListHead;
}
//
// BOOLEAN
// IsListEmpty(
// PLIST_ENTRY ListHead
// );
//
#define IsListEmpty(ListHead) \
((ListHead)->Flink == (ListHead))
VOID
FORCEINLINE
RemoveEntryList(
IN PLIST_ENTRY Entry
)
{
PLIST_ENTRY Blink;
PLIST_ENTRY Flink;
Flink = Entry->Flink;
Blink = Entry->Blink;
Blink->Flink = Flink;
Flink->Blink = Blink;
}
PLIST_ENTRY
FORCEINLINE
RemoveHeadList(
IN PLIST_ENTRY ListHead
)
{
PLIST_ENTRY Flink;
PLIST_ENTRY Entry;
Entry = ListHead->Flink;
Flink = Entry->Flink;
ListHead->Flink = Flink;
Flink->Blink = ListHead;
return Entry;
}
PLIST_ENTRY
FORCEINLINE
RemoveTailList(
IN PLIST_ENTRY ListHead
)
{
PLIST_ENTRY Blink;
PLIST_ENTRY Entry;
Entry = ListHead->Blink;
Blink = Entry->Blink;
ListHead->Blink = Blink;
Blink->Flink = ListHead;
return Entry;
}
VOID
FORCEINLINE
InsertTailList(
IN PLIST_ENTRY ListHead,
IN PLIST_ENTRY Entry
)
{
PLIST_ENTRY Blink;
Blink = ListHead->Blink;
Entry->Flink = ListHead;
Entry->Blink = Blink;
Blink->Flink = Entry;
ListHead->Blink = Entry;
}
VOID
FORCEINLINE
InsertHeadList(
IN PLIST_ENTRY ListHead,
IN PLIST_ENTRY Entry
)
{
PLIST_ENTRY Flink;
Flink = ListHead->Flink;
Entry->Flink = Flink;
Entry->Blink = ListHead;
Flink->Blink = Entry;
ListHead->Flink = Entry;
}
//
//
// PSINGLE_LIST_ENTRY
// PopEntryList(
// PSINGLE_LIST_ENTRY ListHead
// );
//
#define PopEntryList(ListHead) \
(ListHead)->Next;\
{\
PSINGLE_LIST_ENTRY FirstEntry;\
FirstEntry = (ListHead)->Next;\
if (FirstEntry != NULL) { \
(ListHead)->Next = FirstEntry->Next;\
} \
}
//
// VOID
// PushEntryList(
// PSINGLE_LIST_ENTRY ListHead,
// PSINGLE_LIST_ENTRY Entry
// );
//
#define PushEntryList(ListHead,Entry) \
(Entry)->Next = (ListHead)->Next; \
(ListHead)->Next = (Entry)
#endif // !MIDL_PASS
//
// Subroutines for dealing with the Registry
//
typedef NTSTATUS (NTAPI * PRTL_QUERY_REGISTRY_ROUTINE)(
IN PWSTR ValueName,
IN ULONG ValueType,
IN PVOID ValueData,
IN ULONG ValueLength,
IN PVOID Context,
IN PVOID EntryContext
);
typedef struct _RTL_QUERY_REGISTRY_TABLE {
PRTL_QUERY_REGISTRY_ROUTINE QueryRoutine;
ULONG Flags;
PWSTR Name;
PVOID EntryContext;
ULONG DefaultType;
PVOID DefaultData;
ULONG DefaultLength;
} RTL_QUERY_REGISTRY_TABLE, *PRTL_QUERY_REGISTRY_TABLE;
//
// The following flags specify how the Name field of a RTL_QUERY_REGISTRY_TABLE
// entry is interpreted. A NULL name indicates the end of the table.
//
#define RTL_QUERY_REGISTRY_SUBKEY 0x00000001 // Name is a subkey and remainder of
// table or until next subkey are value
// names for that subkey to look at.
#define RTL_QUERY_REGISTRY_TOPKEY 0x00000002 // Reset current key to original key for
// this and all following table entries.
#define RTL_QUERY_REGISTRY_REQUIRED 0x00000004 // Fail if no match found for this table
// entry.
#define RTL_QUERY_REGISTRY_NOVALUE 0x00000008 // Used to mark a table entry that has no
// value name, just wants a call out, not
// an enumeration of all values.
#define RTL_QUERY_REGISTRY_NOEXPAND 0x00000010 // Used to suppress the expansion of
// REG_MULTI_SZ into multiple callouts or
// to prevent the expansion of environment
// variable values in REG_EXPAND_SZ
#define RTL_QUERY_REGISTRY_DIRECT 0x00000020 // QueryRoutine field ignored. EntryContext
// field points to location to store value.
// For null terminated strings, EntryContext
// points to UNICODE_STRING structure that
// that describes maximum size of buffer.
// If .Buffer field is NULL then a buffer is
// allocated.
//
#define RTL_QUERY_REGISTRY_DELETE 0x00000040 // Used to delete value keys after they
// are queried.
NTSYSAPI
NTSTATUS
NTAPI
RtlQueryRegistryValues(
IN ULONG RelativeTo,
IN PCWSTR Path,
IN PRTL_QUERY_REGISTRY_TABLE QueryTable,
IN PVOID Context,
IN PVOID Environment OPTIONAL
);
NTSYSAPI
NTSTATUS
NTAPI
RtlWriteRegistryValue(
IN ULONG RelativeTo,
IN PCWSTR Path,
IN PCWSTR ValueName,
IN ULONG ValueType,
IN PVOID ValueData,
IN ULONG ValueLength
);
NTSYSAPI
NTSTATUS
NTAPI
RtlDeleteRegistryValue(
IN ULONG RelativeTo,
IN PCWSTR Path,
IN PCWSTR ValueName
);
//
// The following values for the RelativeTo parameter determine what the
// Path parameter to RtlQueryRegistryValues is relative to.
//
#define RTL_REGISTRY_ABSOLUTE 0 // Path is a full path
#define RTL_REGISTRY_SERVICES 1 // \Registry\Machine\System\CurrentControlSet\Services
#define RTL_REGISTRY_CONTROL 2 // \Registry\Machine\System\CurrentControlSet\Control
#define RTL_REGISTRY_WINDOWS_NT 3 // \Registry\Machine\Software\Microsoft\Windows NT\CurrentVersion
#define RTL_REGISTRY_DEVICEMAP 4 // \Registry\Machine\Hardware\DeviceMap
#define RTL_REGISTRY_USER 5 // \Registry\User\CurrentUser
#define RTL_REGISTRY_MAXIMUM 6
#define RTL_REGISTRY_HANDLE 0x40000000 // Low order bits are registry handle
#define RTL_REGISTRY_OPTIONAL 0x80000000 // Indicates the key node is optional
NTSYSAPI
NTSTATUS
NTAPI
RtlIntegerToUnicodeString (
ULONG Value,
ULONG Base,
PUNICODE_STRING String
);
NTSYSAPI
NTSTATUS
NTAPI
RtlInt64ToUnicodeString (
IN ULONGLONG Value,
IN ULONG Base OPTIONAL,
IN OUT PUNICODE_STRING String
);
#ifdef _WIN64
#define RtlIntPtrToUnicodeString(Value, Base, String) RtlInt64ToUnicodeString(Value, Base, String)
#else
#define RtlIntPtrToUnicodeString(Value, Base, String) RtlIntegerToUnicodeString(Value, Base, String)
#endif
NTSYSAPI
NTSTATUS
NTAPI
RtlUnicodeStringToInteger (
PCUNICODE_STRING String,
ULONG Base,
PULONG Value
);
//
// String manipulation routines
//
#ifdef _NTSYSTEM_
#define NLS_MB_CODE_PAGE_TAG NlsMbCodePageTag
#define NLS_MB_OEM_CODE_PAGE_TAG NlsMbOemCodePageTag
#else
#define NLS_MB_CODE_PAGE_TAG (*NlsMbCodePageTag)
#define NLS_MB_OEM_CODE_PAGE_TAG (*NlsMbOemCodePageTag)
#endif // _NTSYSTEM_
extern BOOLEAN NLS_MB_CODE_PAGE_TAG; // TRUE -> Multibyte CP, FALSE -> Singlebyte
extern BOOLEAN NLS_MB_OEM_CODE_PAGE_TAG; // TRUE -> Multibyte CP, FALSE -> Singlebyte
NTSYSAPI
VOID
NTAPI
RtlInitString(
PSTRING DestinationString,
PCSZ SourceString
);
NTSYSAPI
VOID
NTAPI
RtlInitAnsiString(
PANSI_STRING DestinationString,
PCSZ SourceString
);
NTSYSAPI
VOID
NTAPI
RtlInitUnicodeString(
PUNICODE_STRING DestinationString,
PCWSTR SourceString
);
#define RtlInitEmptyUnicodeString(_ucStr,_buf,_bufSize) \
((_ucStr)->Buffer = (_buf), \
(_ucStr)->Length = 0, \
(_ucStr)->MaximumLength = (USHORT)(_bufSize))
//
// NLS String functions
//
NTSYSAPI
NTSTATUS
NTAPI
RtlAnsiStringToUnicodeString(
PUNICODE_STRING DestinationString,
PCANSI_STRING SourceString,
BOOLEAN AllocateDestinationString
);
NTSYSAPI
NTSTATUS
NTAPI
RtlUnicodeStringToAnsiString(
PANSI_STRING DestinationString,
PCUNICODE_STRING SourceString,
BOOLEAN AllocateDestinationString
);
NTSYSAPI
LONG
NTAPI
RtlCompareUnicodeString(
PCUNICODE_STRING String1,
PCUNICODE_STRING String2,
BOOLEAN CaseInSensitive
);
NTSYSAPI
BOOLEAN
NTAPI
RtlEqualUnicodeString(
const UNICODE_STRING *String1,
const UNICODE_STRING *String2,
BOOLEAN CaseInSensitive
);
#define HASH_STRING_ALGORITHM_DEFAULT (0)
#define HASH_STRING_ALGORITHM_X65599 (1)
#define HASH_STRING_ALGORITHM_INVALID (0xffffffff)
NTSYSAPI
NTSTATUS
NTAPI
RtlHashUnicodeString(
IN const UNICODE_STRING *String,
IN BOOLEAN CaseInSensitive,
IN ULONG HashAlgorithm,
OUT PULONG HashValue
);
NTSYSAPI
VOID
NTAPI
RtlCopyUnicodeString(
PUNICODE_STRING DestinationString,
PCUNICODE_STRING SourceString
);
NTSYSAPI
NTSTATUS
NTAPI
RtlAppendUnicodeStringToString (
PUNICODE_STRING Destination,
PCUNICODE_STRING Source
);
NTSYSAPI
NTSTATUS
NTAPI
RtlAppendUnicodeToString (
PUNICODE_STRING Destination,
PCWSTR Source
);
NTSYSAPI
VOID
NTAPI
RtlFreeUnicodeString(
PUNICODE_STRING UnicodeString
);
NTSYSAPI
VOID
NTAPI
RtlFreeAnsiString(
PANSI_STRING AnsiString
);
NTSYSAPI
ULONG
NTAPI
RtlxUnicodeStringToAnsiSize(
PCUNICODE_STRING UnicodeString
);
//
// NTSYSAPI
// ULONG
// NTAPI
// RtlUnicodeStringToAnsiSize(
// PUNICODE_STRING UnicodeString
// );
//
#define RtlUnicodeStringToAnsiSize(STRING) ( \
NLS_MB_CODE_PAGE_TAG ? \
RtlxUnicodeStringToAnsiSize(STRING) : \
((STRING)->Length + sizeof(UNICODE_NULL)) / sizeof(WCHAR) \
)
NTSYSAPI
ULONG
NTAPI
RtlxAnsiStringToUnicodeSize(
PCANSI_STRING AnsiString
);
//
// NTSYSAPI
// ULONG
// NTAPI
// RtlAnsiStringToUnicodeSize(
// PANSI_STRING AnsiString
// );
//
#define RtlAnsiStringToUnicodeSize(STRING) ( \
NLS_MB_CODE_PAGE_TAG ? \
RtlxAnsiStringToUnicodeSize(STRING) : \
((STRING)->Length + sizeof(ANSI_NULL)) * sizeof(WCHAR) \
)
#include <guiddef.h>
#ifndef DEFINE_GUIDEX
#define DEFINE_GUIDEX(name) EXTERN_C const CDECL GUID name
#endif // !defined(DEFINE_GUIDEX)
#ifndef STATICGUIDOF
#define STATICGUIDOF(guid) STATIC_##guid
#endif // !defined(STATICGUIDOF)
#ifndef __IID_ALIGNED__
#define __IID_ALIGNED__
#ifdef __cplusplus
inline int IsEqualGUIDAligned(REFGUID guid1, REFGUID guid2)
{
return ((*(PLONGLONG)(&guid1) == *(PLONGLONG)(&guid2)) && (*((PLONGLONG)(&guid1) + 1) == *((PLONGLONG)(&guid2) + 1)));
}
#else // !__cplusplus
#define IsEqualGUIDAligned(guid1, guid2) \
((*(PLONGLONG)(guid1) == *(PLONGLONG)(guid2)) && (*((PLONGLONG)(guid1) + 1) == *((PLONGLONG)(guid2) + 1)))
#endif // !__cplusplus
#endif // !__IID_ALIGNED__
NTSYSAPI
NTSTATUS
NTAPI
RtlStringFromGUID(
IN REFGUID Guid,
OUT PUNICODE_STRING GuidString
);
NTSYSAPI
NTSTATUS
NTAPI
RtlGUIDFromString(
IN PUNICODE_STRING GuidString,
OUT GUID* Guid
);
//
// Fast primitives to compare, move, and zero memory
//
NTSYSAPI
SIZE_T
NTAPI
RtlCompareMemory (
const VOID *Source1,
const VOID *Source2,
SIZE_T Length
);
#if defined(_M_AMD64) || defined(_M_IA64)
#define RtlEqualMemory(Source1, Source2, Length) \
((Length) == RtlCompareMemory(Source1, Source2, Length))
NTSYSAPI
VOID
NTAPI
RtlCopyMemory (
VOID UNALIGNED *Destination,
CONST VOID UNALIGNED *Source,
SIZE_T Length
);
#if !defined(_M_AMD64)
NTSYSAPI
VOID
NTAPI
RtlCopyMemory32 (
VOID UNALIGNED *Destination,
CONST VOID UNALIGNED *Source,
ULONG Length
);
#endif
NTSYSAPI
VOID
NTAPI
RtlMoveMemory (
VOID UNALIGNED *Destination,
CONST VOID UNALIGNED *Source,
SIZE_T Length
);
NTSYSAPI
VOID
NTAPI
RtlFillMemory (
VOID UNALIGNED *Destination,
SIZE_T Length,
UCHAR Fill
);
NTSYSAPI
VOID
NTAPI
RtlZeroMemory (
VOID UNALIGNED *Destination,
SIZE_T Length
);
#else
#define RtlEqualMemory(Destination,Source,Length) (!memcmp((Destination),(Source),(Length)))
#define RtlMoveMemory(Destination,Source,Length) memmove((Destination),(Source),(Length))
#define RtlCopyMemory(Destination,Source,Length) memcpy((Destination),(Source),(Length))
#define RtlFillMemory(Destination,Length,Fill) memset((Destination),(Fill),(Length))
#define RtlZeroMemory(Destination,Length) memset((Destination),0,(Length))
#endif
#if !defined(MIDL_PASS)
FORCEINLINE
PVOID
RtlSecureZeroMemory(
IN PVOID ptr,
IN SIZE_T cnt
)
{
volatile char *vptr = (volatile char *)ptr;
while (cnt) {
*vptr = 0;
vptr++;
cnt--;
}
return ptr;
}
#endif
#define RtlCopyBytes RtlCopyMemory
#define RtlZeroBytes RtlZeroMemory
#define RtlFillBytes RtlFillMemory
#if defined(_M_AMD64)
NTSYSAPI
VOID
NTAPI
RtlCopyMemoryNonTemporal (
VOID UNALIGNED *Destination,
CONST VOID UNALIGNED *Source,
SIZE_T Length
);
#else
#define RtlCopyMemoryNonTemporal RtlCopyMemory
#endif
NTSYSAPI
VOID
FASTCALL
RtlPrefetchMemoryNonTemporal(
IN PVOID Source,
IN SIZE_T Length
);
//
// Define kernel debugger print prototypes and macros.
//
// N.B. The following function cannot be directly imported because there are
// a few places in the source tree where this function is redefined.
//
VOID
NTAPI
DbgBreakPoint(
VOID
);
#define DBG_STATUS_CONTROL_C 1
#define DBG_STATUS_SYSRQ 2
#define DBG_STATUS_BUGCHECK_FIRST 3
#define DBG_STATUS_BUGCHECK_SECOND 4
#define DBG_STATUS_FATAL 5
#define DBG_STATUS_DEBUG_CONTROL 6
#define DBG_STATUS_WORKER 7
#if DBG
#define KdPrint(_x_) DbgPrint _x_
#define KdBreakPoint() DbgBreakPoint()
#else
#define KdPrint(_x_)
#define KdBreakPoint()
#endif
#ifndef _DBGNT_
ULONG
__cdecl
DbgPrint(
PCH Format,
...
);
#endif // _DBGNT_
//
// Large integer arithmetic routines.
//
//
// Large integer add - 64-bits + 64-bits -> 64-bits
//
#if !defined(MIDL_PASS)
DECLSPEC_DEPRECATED_DDK // Use native __int64 math
__inline
LARGE_INTEGER
NTAPI
RtlLargeIntegerAdd (
LARGE_INTEGER Addend1,
LARGE_INTEGER Addend2
)
{
LARGE_INTEGER Sum;
Sum.QuadPart = Addend1.QuadPart + Addend2.QuadPart;
return Sum;
}
//
// Enlarged integer multiply - 32-bits * 32-bits -> 64-bits
//
DECLSPEC_DEPRECATED_DDK // Use native __int64 math
__inline
LARGE_INTEGER
NTAPI
RtlEnlargedIntegerMultiply (
LONG Multiplicand,
LONG Multiplier
)
{
LARGE_INTEGER Product;
Product.QuadPart = (LONGLONG)Multiplicand * (ULONGLONG)Multiplier;
return Product;
}
//
// Unsigned enlarged integer multiply - 32-bits * 32-bits -> 64-bits
//
DECLSPEC_DEPRECATED_DDK // Use native __int64 math
__inline
LARGE_INTEGER
NTAPI
RtlEnlargedUnsignedMultiply (
ULONG Multiplicand,
ULONG Multiplier
)
{
LARGE_INTEGER Product;
Product.QuadPart = (ULONGLONG)Multiplicand * (ULONGLONG)Multiplier;
return Product;
}
//
// Enlarged integer divide - 64-bits / 32-bits > 32-bits
//
DECLSPEC_DEPRECATED_DDK // Use native __int64 math
__inline
ULONG
NTAPI
RtlEnlargedUnsignedDivide (
IN ULARGE_INTEGER Dividend,
IN ULONG Divisor,
IN PULONG Remainder OPTIONAL
)
{
ULONG Quotient;
Quotient = (ULONG)(Dividend.QuadPart / Divisor);
if (ARGUMENT_PRESENT(Remainder)) {
*Remainder = (ULONG)(Dividend.QuadPart % Divisor);
}
return Quotient;
}
//
// Large integer negation - -(64-bits)
//
DECLSPEC_DEPRECATED_DDK // Use native __int64 math
__inline
LARGE_INTEGER
NTAPI
RtlLargeIntegerNegate (
LARGE_INTEGER Subtrahend
)
{
LARGE_INTEGER Difference;
Difference.QuadPart = -Subtrahend.QuadPart;
return Difference;
}
//
// Large integer subtract - 64-bits - 64-bits -> 64-bits.
//
DECLSPEC_DEPRECATED_DDK // Use native __int64 math
__inline
LARGE_INTEGER
NTAPI
RtlLargeIntegerSubtract (
LARGE_INTEGER Minuend,
LARGE_INTEGER Subtrahend
)
{
LARGE_INTEGER Difference;
Difference.QuadPart = Minuend.QuadPart - Subtrahend.QuadPart;
return Difference;
}
//
// Extended large integer magic divide - 64-bits / 32-bits -> 64-bits
//
#if defined(_AMD64_)
DECLSPEC_DEPRECATED_DDK // Use native __int64 math
__inline
LARGE_INTEGER
NTAPI
RtlExtendedMagicDivide (
LARGE_INTEGER Dividend,
LARGE_INTEGER MagicDivisor,
CCHAR ShiftCount
)
{
LARGE_INTEGER Quotient;
Quotient.QuadPart = UnsignedMultiplyHigh((ULONG64)Dividend.QuadPart,
(ULONG64)MagicDivisor.QuadPart);
Quotient.QuadPart = (ULONG64)Quotient.QuadPart >> ShiftCount;
return Quotient;
}
#endif // defined(_AMD64_)
#if defined(_X86_) || defined(_IA64_)
DECLSPEC_DEPRECATED_DDK // Use native __int64 math
NTSYSAPI
LARGE_INTEGER
NTAPI
RtlExtendedMagicDivide (
LARGE_INTEGER Dividend,
LARGE_INTEGER MagicDivisor,
CCHAR ShiftCount
);
#endif // defined(_X86_) || defined(_IA64_)
#if defined(_AMD64_) || defined(_IA64_)
//
// Large Integer divide - 64-bits / 32-bits -> 64-bits
//
DECLSPEC_DEPRECATED_DDK // Use native __int64 math
__inline
LARGE_INTEGER
NTAPI
RtlExtendedLargeIntegerDivide (
LARGE_INTEGER Dividend,
ULONG Divisor,
PULONG Remainder OPTIONAL
)
{
LARGE_INTEGER Quotient;
Quotient.QuadPart = (ULONG64)Dividend.QuadPart / Divisor;
if (ARGUMENT_PRESENT(Remainder)) {
*Remainder = (ULONG)(Dividend.QuadPart % Divisor);
}
return Quotient;
}
//
// Extended integer multiply - 32-bits * 64-bits -> 64-bits
//
DECLSPEC_DEPRECATED_DDK // Use native __int64 math
__inline
LARGE_INTEGER
NTAPI
RtlExtendedIntegerMultiply (
LARGE_INTEGER Multiplicand,
LONG Multiplier
)
{
LARGE_INTEGER Product;
Product.QuadPart = Multiplicand.QuadPart * Multiplier;
return Product;
}
#else
//
// Large Integer divide - 64-bits / 32-bits -> 64-bits
//
DECLSPEC_DEPRECATED_DDK // Use native __int64 math
NTSYSAPI
LARGE_INTEGER
NTAPI
RtlExtendedLargeIntegerDivide (
LARGE_INTEGER Dividend,
ULONG Divisor,
PULONG Remainder
);
//
// Extended integer multiply - 32-bits * 64-bits -> 64-bits
//
DECLSPEC_DEPRECATED_DDK // Use native __int64 math
NTSYSAPI
LARGE_INTEGER
NTAPI
RtlExtendedIntegerMultiply (
LARGE_INTEGER Multiplicand,
LONG Multiplier
);
#endif // defined(_AMD64_) || defined(_IA64_)
//
// Large integer and - 64-bite & 64-bits -> 64-bits.
//
#if PRAGMA_DEPRECATED_DDK
#pragma deprecated(RtlLargeIntegerAnd) // Use native __int64 math
#endif
#define RtlLargeIntegerAnd(Result, Source, Mask) \
Result.QuadPart = Source.QuadPart & Mask.QuadPart
//
// Convert signed integer to large integer.
//
DECLSPEC_DEPRECATED_DDK // Use native __int64 math
__inline
LARGE_INTEGER
NTAPI
RtlConvertLongToLargeInteger (
LONG SignedInteger
)
{
LARGE_INTEGER Result;
Result.QuadPart = SignedInteger;
return Result;
}
//
// Convert unsigned integer to large integer.
//
DECLSPEC_DEPRECATED_DDK // Use native __int64 math
__inline
LARGE_INTEGER
NTAPI
RtlConvertUlongToLargeInteger (
ULONG UnsignedInteger
)
{
LARGE_INTEGER Result;
Result.QuadPart = UnsignedInteger;
return Result;
}
//
// Large integer shift routines.
//
DECLSPEC_DEPRECATED_DDK // Use native __int64 math
__inline
LARGE_INTEGER
NTAPI
RtlLargeIntegerShiftLeft (
LARGE_INTEGER LargeInteger,
CCHAR ShiftCount
)
{
LARGE_INTEGER Result;
Result.QuadPart = LargeInteger.QuadPart << ShiftCount;
return Result;
}
DECLSPEC_DEPRECATED_DDK // Use native __int64 math
__inline
LARGE_INTEGER
NTAPI
RtlLargeIntegerShiftRight (
LARGE_INTEGER LargeInteger,
CCHAR ShiftCount
)
{
LARGE_INTEGER Result;
Result.QuadPart = (ULONG64)LargeInteger.QuadPart >> ShiftCount;
return Result;
}
DECLSPEC_DEPRECATED_DDK // Use native __int64 math
__inline
LARGE_INTEGER
NTAPI
RtlLargeIntegerArithmeticShift (
LARGE_INTEGER LargeInteger,
CCHAR ShiftCount
)
{
LARGE_INTEGER Result;
Result.QuadPart = LargeInteger.QuadPart >> ShiftCount;
return Result;
}
//
// Large integer comparison routines.
//
#if PRAGMA_DEPRECATED_DDK
#pragma deprecated(RtlLargeIntegerGreaterThan) // Use native __int64 math
#pragma deprecated(RtlLargeIntegerGreaterThanOrEqualTo) // Use native __int64 math
#pragma deprecated(RtlLargeIntegerEqualTo) // Use native __int64 math
#pragma deprecated(RtlLargeIntegerNotEqualTo) // Use native __int64 math
#pragma deprecated(RtlLargeIntegerLessThan) // Use native __int64 math
#pragma deprecated(RtlLargeIntegerLessThanOrEqualTo) // Use native __int64 math
#pragma deprecated(RtlLargeIntegerGreaterThanZero) // Use native __int64 math
#pragma deprecated(RtlLargeIntegerGreaterOrEqualToZero) // Use native __int64 math
#pragma deprecated(RtlLargeIntegerEqualToZero) // Use native __int64 math
#pragma deprecated(RtlLargeIntegerNotEqualToZero) // Use native __int64 math
#pragma deprecated(RtlLargeIntegerLessThanZero) // Use native __int64 math
#pragma deprecated(RtlLargeIntegerLessOrEqualToZero) // Use native __int64 math
#endif
#define RtlLargeIntegerGreaterThan(X,Y) ( \
(((X).HighPart == (Y).HighPart) && ((X).LowPart > (Y).LowPart)) || \
((X).HighPart > (Y).HighPart) \
)
#define RtlLargeIntegerGreaterThanOrEqualTo(X,Y) ( \
(((X).HighPart == (Y).HighPart) && ((X).LowPart >= (Y).LowPart)) || \
((X).HighPart > (Y).HighPart) \
)
#define RtlLargeIntegerEqualTo(X,Y) ( \
!(((X).LowPart ^ (Y).LowPart) | ((X).HighPart ^ (Y).HighPart)) \
)
#define RtlLargeIntegerNotEqualTo(X,Y) ( \
(((X).LowPart ^ (Y).LowPart) | ((X).HighPart ^ (Y).HighPart)) \
)
#define RtlLargeIntegerLessThan(X,Y) ( \
(((X).HighPart == (Y).HighPart) && ((X).LowPart < (Y).LowPart)) || \
((X).HighPart < (Y).HighPart) \
)
#define RtlLargeIntegerLessThanOrEqualTo(X,Y) ( \
(((X).HighPart == (Y).HighPart) && ((X).LowPart <= (Y).LowPart)) || \
((X).HighPart < (Y).HighPart) \
)
#define RtlLargeIntegerGreaterThanZero(X) ( \
(((X).HighPart == 0) && ((X).LowPart > 0)) || \
((X).HighPart > 0 ) \
)
#define RtlLargeIntegerGreaterOrEqualToZero(X) ( \
(X).HighPart >= 0 \
)
#define RtlLargeIntegerEqualToZero(X) ( \
!((X).LowPart | (X).HighPart) \
)
#define RtlLargeIntegerNotEqualToZero(X) ( \
((X).LowPart | (X).HighPart) \
)
#define RtlLargeIntegerLessThanZero(X) ( \
((X).HighPart < 0) \
)
#define RtlLargeIntegerLessOrEqualToZero(X) ( \
((X).HighPart < 0) || !((X).LowPart | (X).HighPart) \
)
#endif // !defined(MIDL_PASS)
//
// Time conversion routines
//
typedef struct _TIME_FIELDS {
CSHORT Year; // range [1601...]
CSHORT Month; // range [1..12]
CSHORT Day; // range [1..31]
CSHORT Hour; // range [0..23]
CSHORT Minute; // range [0..59]
CSHORT Second; // range [0..59]
CSHORT Milliseconds;// range [0..999]
CSHORT Weekday; // range [0..6] == [Sunday..Saturday]
} TIME_FIELDS;
typedef TIME_FIELDS *PTIME_FIELDS;
NTSYSAPI
VOID
NTAPI
RtlTimeToTimeFields (
PLARGE_INTEGER Time,
PTIME_FIELDS TimeFields
);
//
// A time field record (Weekday ignored) -> 64 bit Time value
//
NTSYSAPI
BOOLEAN
NTAPI
RtlTimeFieldsToTime (
PTIME_FIELDS TimeFields,
PLARGE_INTEGER Time
);
//
// The following macros store and retrieve USHORTS and ULONGS from potentially
// unaligned addresses, avoiding alignment faults. they should probably be
// rewritten in assembler
//
#define SHORT_SIZE (sizeof(USHORT))
#define SHORT_MASK (SHORT_SIZE - 1)
#define LONG_SIZE (sizeof(LONG))
#define LONGLONG_SIZE (sizeof(LONGLONG))
#define LONG_MASK (LONG_SIZE - 1)
#define LONGLONG_MASK (LONGLONG_SIZE - 1)
#define LOWBYTE_MASK 0x00FF
#define FIRSTBYTE(VALUE) ((VALUE) & LOWBYTE_MASK)
#define SECONDBYTE(VALUE) (((VALUE) >> 8) & LOWBYTE_MASK)
#define THIRDBYTE(VALUE) (((VALUE) >> 16) & LOWBYTE_MASK)
#define FOURTHBYTE(VALUE) (((VALUE) >> 24) & LOWBYTE_MASK)
//
// if MIPS Big Endian, order of bytes is reversed.
//
#define SHORT_LEAST_SIGNIFICANT_BIT 0
#define SHORT_MOST_SIGNIFICANT_BIT 1
#define LONG_LEAST_SIGNIFICANT_BIT 0
#define LONG_3RD_MOST_SIGNIFICANT_BIT 1
#define LONG_2ND_MOST_SIGNIFICANT_BIT 2
#define LONG_MOST_SIGNIFICANT_BIT 3
//++
//
// VOID
// RtlStoreUshort (
// PUSHORT ADDRESS
// USHORT VALUE
// )
//
// Routine Description:
//
// This macro stores a USHORT value in at a particular address, avoiding
// alignment faults.
//
// Arguments:
//
// ADDRESS - where to store USHORT value
// VALUE - USHORT to store
//
// Return Value:
//
// none.
//
//--
#define RtlStoreUshort(ADDRESS,VALUE) \
if ((ULONG_PTR)(ADDRESS) & SHORT_MASK) { \
((PUCHAR) (ADDRESS))[SHORT_LEAST_SIGNIFICANT_BIT] = (UCHAR)(FIRSTBYTE(VALUE)); \
((PUCHAR) (ADDRESS))[SHORT_MOST_SIGNIFICANT_BIT ] = (UCHAR)(SECONDBYTE(VALUE)); \
} \
else { \
*((PUSHORT) (ADDRESS)) = (USHORT) VALUE; \
}
//++
//
// VOID
// RtlStoreUlong (
// PULONG ADDRESS
// ULONG VALUE
// )
//
// Routine Description:
//
// This macro stores a ULONG value in at a particular address, avoiding
// alignment faults.
//
// Arguments:
//
// ADDRESS - where to store ULONG value
// VALUE - ULONG to store
//
// Return Value:
//
// none.
//
// Note:
// Depending on the machine, we might want to call storeushort in the
// unaligned case.
//
//--
#define RtlStoreUlong(ADDRESS,VALUE) \
if ((ULONG_PTR)(ADDRESS) & LONG_MASK) { \
((PUCHAR) (ADDRESS))[LONG_LEAST_SIGNIFICANT_BIT ] = (UCHAR)(FIRSTBYTE(VALUE)); \
((PUCHAR) (ADDRESS))[LONG_3RD_MOST_SIGNIFICANT_BIT ] = (UCHAR)(SECONDBYTE(VALUE)); \
((PUCHAR) (ADDRESS))[LONG_2ND_MOST_SIGNIFICANT_BIT ] = (UCHAR)(THIRDBYTE(VALUE)); \
((PUCHAR) (ADDRESS))[LONG_MOST_SIGNIFICANT_BIT ] = (UCHAR)(FOURTHBYTE(VALUE)); \
} \
else { \
*((PULONG) (ADDRESS)) = (ULONG) (VALUE); \
}
//++
//
// VOID
// RtlStoreUlonglong (
// PULONGLONG ADDRESS
// ULONG VALUE
// )
//
// Routine Description:
//
// This macro stores a ULONGLONG value in at a particular address, avoiding
// alignment faults.
//
// Arguments:
//
// ADDRESS - where to store ULONGLONG value
// VALUE - ULONGLONG to store
//
// Return Value:
//
// none.
//
//--
#define RtlStoreUlonglong(ADDRESS,VALUE) \
if ((ULONG_PTR)(ADDRESS) & LONGLONG_MASK) { \
RtlStoreUlong((ULONG_PTR)(ADDRESS), \
(ULONGLONG)(VALUE) & 0xFFFFFFFF); \
RtlStoreUlong((ULONG_PTR)(ADDRESS)+sizeof(ULONG), \
(ULONGLONG)(VALUE) >> 32); \
} else { \
*((PULONGLONG)(ADDRESS)) = (ULONGLONG)(VALUE); \
}
//++
//
// VOID
// RtlStoreUlongPtr (
// PULONG_PTR ADDRESS
// ULONG_PTR VALUE
// )
//
// Routine Description:
//
// This macro stores a ULONG_PTR value in at a particular address, avoiding
// alignment faults.
//
// Arguments:
//
// ADDRESS - where to store ULONG_PTR value
// VALUE - ULONG_PTR to store
//
// Return Value:
//
// none.
//
//--
#ifdef _WIN64
#define RtlStoreUlongPtr(ADDRESS,VALUE) \
RtlStoreUlonglong(ADDRESS,VALUE)
#else
#define RtlStoreUlongPtr(ADDRESS,VALUE) \
RtlStoreUlong(ADDRESS,VALUE)
#endif
//++
//
// VOID
// RtlRetrieveUshort (
// PUSHORT DESTINATION_ADDRESS
// PUSHORT SOURCE_ADDRESS
// )
//
// Routine Description:
//
// This macro retrieves a USHORT value from the SOURCE address, avoiding
// alignment faults. The DESTINATION address is assumed to be aligned.
//
// Arguments:
//
// DESTINATION_ADDRESS - where to store USHORT value
// SOURCE_ADDRESS - where to retrieve USHORT value from
//
// Return Value:
//
// none.
//
//--
#define RtlRetrieveUshort(DEST_ADDRESS,SRC_ADDRESS) \
if ((ULONG_PTR)SRC_ADDRESS & SHORT_MASK) { \
((PUCHAR) DEST_ADDRESS)[0] = ((PUCHAR) SRC_ADDRESS)[0]; \
((PUCHAR) DEST_ADDRESS)[1] = ((PUCHAR) SRC_ADDRESS)[1]; \
} \
else { \
*((PUSHORT) DEST_ADDRESS) = *((PUSHORT) SRC_ADDRESS); \
} \
//++
//
// VOID
// RtlRetrieveUlong (
// PULONG DESTINATION_ADDRESS
// PULONG SOURCE_ADDRESS
// )
//
// Routine Description:
//
// This macro retrieves a ULONG value from the SOURCE address, avoiding
// alignment faults. The DESTINATION address is assumed to be aligned.
//
// Arguments:
//
// DESTINATION_ADDRESS - where to store ULONG value
// SOURCE_ADDRESS - where to retrieve ULONG value from
//
// Return Value:
//
// none.
//
// Note:
// Depending on the machine, we might want to call retrieveushort in the
// unaligned case.
//
//--
#define RtlRetrieveUlong(DEST_ADDRESS,SRC_ADDRESS) \
if ((ULONG_PTR)SRC_ADDRESS & LONG_MASK) { \
((PUCHAR) DEST_ADDRESS)[0] = ((PUCHAR) SRC_ADDRESS)[0]; \
((PUCHAR) DEST_ADDRESS)[1] = ((PUCHAR) SRC_ADDRESS)[1]; \
((PUCHAR) DEST_ADDRESS)[2] = ((PUCHAR) SRC_ADDRESS)[2]; \
((PUCHAR) DEST_ADDRESS)[3] = ((PUCHAR) SRC_ADDRESS)[3]; \
} \
else { \
*((PULONG) DEST_ADDRESS) = *((PULONG) SRC_ADDRESS); \
}
//
// BitMap routines. The following structure, routines, and macros are
// for manipulating bitmaps. The user is responsible for allocating a bitmap
// structure (which is really a header) and a buffer (which must be longword
// aligned and multiple longwords in size).
//
typedef struct _RTL_BITMAP {
ULONG SizeOfBitMap; // Number of bits in bit map
PULONG Buffer; // Pointer to the bit map itself
} RTL_BITMAP;
typedef RTL_BITMAP *PRTL_BITMAP;
//
// The following routine initializes a new bitmap. It does not alter the
// data currently in the bitmap. This routine must be called before
// any other bitmap routine/macro.
//
NTSYSAPI
VOID
NTAPI
RtlInitializeBitMap (
PRTL_BITMAP BitMapHeader,
PULONG BitMapBuffer,
ULONG SizeOfBitMap
);
//
// The following three routines clear, set, and test the state of a
// single bit in a bitmap.
//
NTSYSAPI
VOID
NTAPI
RtlClearBit (
PRTL_BITMAP BitMapHeader,
ULONG BitNumber
);
NTSYSAPI
VOID
NTAPI
RtlSetBit (
PRTL_BITMAP BitMapHeader,
ULONG BitNumber
);
NTSYSAPI
BOOLEAN
NTAPI
RtlTestBit (
PRTL_BITMAP BitMapHeader,
ULONG BitNumber
);
//
// The following two routines either clear or set all of the bits
// in a bitmap.
//
NTSYSAPI
VOID
NTAPI
RtlClearAllBits (
PRTL_BITMAP BitMapHeader
);
NTSYSAPI
VOID
NTAPI
RtlSetAllBits (
PRTL_BITMAP BitMapHeader
);
//
// The following two routines locate a contiguous region of either
// clear or set bits within the bitmap. The region will be at least
// as large as the number specified, and the search of the bitmap will
// begin at the specified hint index (which is a bit index within the
// bitmap, zero based). The return value is the bit index of the located
// region (zero based) or -1 (i.e., 0xffffffff) if such a region cannot
// be located
//
NTSYSAPI
ULONG
NTAPI
RtlFindClearBits (
PRTL_BITMAP BitMapHeader,
ULONG NumberToFind,
ULONG HintIndex
);
NTSYSAPI
ULONG
NTAPI
RtlFindSetBits (
PRTL_BITMAP BitMapHeader,
ULONG NumberToFind,
ULONG HintIndex
);
//
// The following two routines locate a contiguous region of either
// clear or set bits within the bitmap and either set or clear the bits
// within the located region. The region will be as large as the number
// specified, and the search for the region will begin at the specified
// hint index (which is a bit index within the bitmap, zero based). The
// return value is the bit index of the located region (zero based) or
// -1 (i.e., 0xffffffff) if such a region cannot be located. If a region
// cannot be located then the setting/clearing of the bitmap is not performed.
//
NTSYSAPI
ULONG
NTAPI
RtlFindClearBitsAndSet (
PRTL_BITMAP BitMapHeader,
ULONG NumberToFind,
ULONG HintIndex
);
NTSYSAPI
ULONG
NTAPI
RtlFindSetBitsAndClear (
PRTL_BITMAP BitMapHeader,
ULONG NumberToFind,
ULONG HintIndex
);
//
// The following two routines clear or set bits within a specified region
// of the bitmap. The starting index is zero based.
//
NTSYSAPI
VOID
NTAPI
RtlClearBits (
PRTL_BITMAP BitMapHeader,
ULONG StartingIndex,
ULONG NumberToClear
);
NTSYSAPI
VOID
NTAPI
RtlSetBits (
PRTL_BITMAP BitMapHeader,
ULONG StartingIndex,
ULONG NumberToSet
);
//
// The following routine locates a set of contiguous regions of clear
// bits within the bitmap. The caller specifies whether to return the
// longest runs or just the first found lcoated. The following structure is
// used to denote a contiguous run of bits. The two routines return an array
// of this structure, one for each run located.
//
typedef struct _RTL_BITMAP_RUN {
ULONG StartingIndex;
ULONG NumberOfBits;
} RTL_BITMAP_RUN;
typedef RTL_BITMAP_RUN *PRTL_BITMAP_RUN;
NTSYSAPI
ULONG
NTAPI
RtlFindClearRuns (
PRTL_BITMAP BitMapHeader,
PRTL_BITMAP_RUN RunArray,
ULONG SizeOfRunArray,
BOOLEAN LocateLongestRuns
);
//
// The following routine locates the longest contiguous region of
// clear bits within the bitmap. The returned starting index value
// denotes the first contiguous region located satisfying our requirements
// The return value is the length (in bits) of the longest region found.
//
NTSYSAPI
ULONG
NTAPI
RtlFindLongestRunClear (
PRTL_BITMAP BitMapHeader,
PULONG StartingIndex
);
//
// The following routine locates the first contiguous region of
// clear bits within the bitmap. The returned starting index value
// denotes the first contiguous region located satisfying our requirements
// The return value is the length (in bits) of the region found.
//
NTSYSAPI
ULONG
NTAPI
RtlFindFirstRunClear (
PRTL_BITMAP BitMapHeader,
PULONG StartingIndex
);
//
// The following macro returns the value of the bit stored within the
// bitmap at the specified location. If the bit is set a value of 1 is
// returned otherwise a value of 0 is returned.
//
// ULONG
// RtlCheckBit (
// PRTL_BITMAP BitMapHeader,
// ULONG BitPosition
// );
//
//
// To implement CheckBit the macro retrieves the longword containing the
// bit in question, shifts the longword to get the bit in question into the
// low order bit position and masks out all other bits.
//
#define RtlCheckBit(BMH,BP) ((((BMH)->Buffer[(BP) / 32]) >> ((BP) % 32)) & 0x1)
//
// The following two procedures return to the caller the total number of
// clear or set bits within the specified bitmap.
//
NTSYSAPI
ULONG
NTAPI
RtlNumberOfClearBits (
PRTL_BITMAP BitMapHeader
);
NTSYSAPI
ULONG
NTAPI
RtlNumberOfSetBits (
PRTL_BITMAP BitMapHeader
);
//
// The following two procedures return to the caller a boolean value
// indicating if the specified range of bits are all clear or set.
//
NTSYSAPI
BOOLEAN
NTAPI
RtlAreBitsClear (
PRTL_BITMAP BitMapHeader,
ULONG StartingIndex,
ULONG Length
);
NTSYSAPI
BOOLEAN
NTAPI
RtlAreBitsSet (
PRTL_BITMAP BitMapHeader,
ULONG StartingIndex,
ULONG Length
);
NTSYSAPI
ULONG
NTAPI
RtlFindNextForwardRunClear (
IN PRTL_BITMAP BitMapHeader,
IN ULONG FromIndex,
IN PULONG StartingRunIndex
);
NTSYSAPI
ULONG
NTAPI
RtlFindLastBackwardRunClear (
IN PRTL_BITMAP BitMapHeader,
IN ULONG FromIndex,
IN PULONG StartingRunIndex
);
//
// The following two procedures return to the caller a value indicating
// the position within a ULONGLONG of the most or least significant non-zero
// bit. A value of zero results in a return value of -1.
//
NTSYSAPI
CCHAR
NTAPI
RtlFindLeastSignificantBit (
IN ULONGLONG Set
);
NTSYSAPI
CCHAR
NTAPI
RtlFindMostSignificantBit (
IN ULONGLONG Set
);
//
// SecurityDescriptor RTL routine definitions
//
NTSYSAPI
NTSTATUS
NTAPI
RtlCreateSecurityDescriptor (
PSECURITY_DESCRIPTOR SecurityDescriptor,
ULONG Revision
);
NTSYSAPI
BOOLEAN
NTAPI
RtlValidSecurityDescriptor (
PSECURITY_DESCRIPTOR SecurityDescriptor
);
NTSYSAPI
ULONG
NTAPI
RtlLengthSecurityDescriptor (
PSECURITY_DESCRIPTOR SecurityDescriptor
);
NTSYSAPI
BOOLEAN
NTAPI
RtlValidRelativeSecurityDescriptor (
IN PSECURITY_DESCRIPTOR SecurityDescriptorInput,
IN ULONG SecurityDescriptorLength,
IN SECURITY_INFORMATION RequiredInformation
);
NTSYSAPI
NTSTATUS
NTAPI
RtlSetDaclSecurityDescriptor (
PSECURITY_DESCRIPTOR SecurityDescriptor,
BOOLEAN DaclPresent,
PACL Dacl,
BOOLEAN DaclDefaulted
);
//
// Byte swap routines. These are used to convert from little-endian to
// big-endian and vice-versa.
//
#if (defined(_M_IX86) && (_MSC_FULL_VER > 13009037)) || ((defined(_M_AMD64) || defined(_M_IA64)) && (_MSC_FULL_VER > 13009175))
#ifdef __cplusplus
extern "C" {
#endif
unsigned short __cdecl _byteswap_ushort(unsigned short);
unsigned long __cdecl _byteswap_ulong (unsigned long);
unsigned __int64 __cdecl _byteswap_uint64(unsigned __int64);
#ifdef __cplusplus
}
#endif
#pragma intrinsic(_byteswap_ushort)
#pragma intrinsic(_byteswap_ulong)
#pragma intrinsic(_byteswap_uint64)
#define RtlUshortByteSwap(_x) _byteswap_ushort((USHORT)(_x))
#define RtlUlongByteSwap(_x) _byteswap_ulong((_x))
#define RtlUlonglongByteSwap(_x) _byteswap_uint64((_x))
#else
USHORT
FASTCALL
RtlUshortByteSwap(
IN USHORT Source
);
ULONG
FASTCALL
RtlUlongByteSwap(
IN ULONG Source
);
ULONGLONG
FASTCALL
RtlUlonglongByteSwap(
IN ULONGLONG Source
);
#endif
//
// Interlocked bit manipulation interfaces
//
NTSYSAPI
ULONG
FASTCALL
RtlInterlockedSetBits (
IN OUT PULONG Flags,
IN ULONG Flag
);
NTSYSAPI
ULONG
FASTCALL
RtlInterlockedClearBits (
IN OUT PULONG Flags,
IN ULONG Flag
);
NTSYSAPI
ULONG
FASTCALL
RtlInterlockedSetClearBits (
IN OUT PULONG Flags,
IN ULONG sFlag,
IN ULONG cFlag
);
//
// These are for when the compiler has fixes in for these intrinsics
//
#if (_MSC_FULL_VER > 13009037) || !defined (_M_IX86)
#define RtlInterlockedSetBits(Flags, Flag) \
InterlockedOr ((PLONG) (Flags), Flag)
#define RtlInterlockedAndBits(Flags, Flag) \
InterlockedAnd ((PLONG) (Flags), Flag)
#define RtlInterlockedClearBits(Flags, Flag) \
RtlInterlockedAndBits (Flags, ~(Flag))
#define RtlInterlockedXorBits(Flags, Flag) \
InterlockedXor (Flags, Flag)
#define RtlInterlockedSetBitsDiscardReturn(Flags, Flag) \
(VOID) RtlInterlockedSetBits (Flags, Flag)
#define RtlInterlockedAndBitsDiscardReturn(Flags, Flag) \
(VOID) RtlInterlockedAndBits (Flags, Flag)
#define RtlInterlockedClearBitsDiscardReturn(Flags, Flag) \
RtlInterlockedAndBitsDiscardReturn (Flags, ~(Flag))
#else
#if defined (_X86_) && !defined(MIDL_PASS)
FORCEINLINE
VOID
RtlInterlockedSetBitsDiscardReturn(
IN OUT PULONG Flags,
IN ULONG Flag
)
{
__asm {
mov ecx, Flags
mov eax, Flag
#if defined (NT_UP)
or [ecx], eax
#else
lock or [ecx], eax
#endif
}
}
FORCEINLINE
VOID
RtlInterlockedAndBitsDiscardReturn(
IN OUT PULONG Flags,
IN ULONG Flag
)
{
__asm {
mov ecx, Flags
mov eax, Flag
#if defined (NT_UP)
and [ecx], eax
#else
lock and [ecx], eax
#endif
}
}
#define RtlInterlockedClearBitsDiscardReturn(Flags, Flag) \
(VOID) RtlInterlockedAndBitsDiscardReturn ((Flags), ~(Flag))
#else
#define RtlInterlockedSetBitsDiscardReturn(Flags, Flag) \
(VOID) RtlInterlockedSetBits ((Flags), (Flag))
#define RtlInterlockedClearBitsDiscardReturn(Flags, Flag) \
(VOID) RtlInterlockedClearBits ((Flags), (Flag))
#endif /* #if defined(_X86_) && !defined(MIDL_PASS) */
#endif
//
// Component name filter id enumeration and levels.
//
#define DPFLTR_ERROR_LEVEL 0
#define DPFLTR_WARNING_LEVEL 1
#define DPFLTR_TRACE_LEVEL 2
#define DPFLTR_INFO_LEVEL 3
#define DPFLTR_MASK 0x80000000
typedef enum _DPFLTR_TYPE {
DPFLTR_SYSTEM_ID = 0,
DPFLTR_SMSS_ID = 1,
DPFLTR_SETUP_ID = 2,
DPFLTR_NTFS_ID = 3,
DPFLTR_FSTUB_ID = 4,
DPFLTR_CRASHDUMP_ID = 5,
DPFLTR_CDAUDIO_ID = 6,
DPFLTR_CDROM_ID = 7,
DPFLTR_CLASSPNP_ID = 8,
DPFLTR_DISK_ID = 9,
DPFLTR_REDBOOK_ID = 10,
DPFLTR_STORPROP_ID = 11,
DPFLTR_SCSIPORT_ID = 12,
DPFLTR_SCSIMINIPORT_ID = 13,
DPFLTR_CONFIG_ID = 14,
DPFLTR_I8042PRT_ID = 15,
DPFLTR_SERMOUSE_ID = 16,
DPFLTR_LSERMOUS_ID = 17,
DPFLTR_KBDHID_ID = 18,
DPFLTR_MOUHID_ID = 19,
DPFLTR_KBDCLASS_ID = 20,
DPFLTR_MOUCLASS_ID = 21,
DPFLTR_TWOTRACK_ID = 22,
DPFLTR_WMILIB_ID = 23,
DPFLTR_ACPI_ID = 24,
DPFLTR_AMLI_ID = 25,
DPFLTR_HALIA64_ID = 26,
DPFLTR_VIDEO_ID = 27,
DPFLTR_SVCHOST_ID = 28,
DPFLTR_VIDEOPRT_ID = 29,
DPFLTR_TCPIP_ID = 30,
DPFLTR_DMSYNTH_ID = 31,
DPFLTR_NTOSPNP_ID = 32,
DPFLTR_FASTFAT_ID = 33,
DPFLTR_SAMSS_ID = 34,
DPFLTR_PNPMGR_ID = 35,
DPFLTR_NETAPI_ID = 36,
DPFLTR_SCSERVER_ID = 37,
DPFLTR_SCCLIENT_ID = 38,
DPFLTR_SERIAL_ID = 39,
DPFLTR_SERENUM_ID = 40,
DPFLTR_UHCD_ID = 41,
DPFLTR_BOOTOK_ID = 42,
DPFLTR_BOOTVRFY_ID = 43,
DPFLTR_RPCPROXY_ID = 44,
DPFLTR_AUTOCHK_ID = 45,
DPFLTR_DCOMSS_ID = 46,
DPFLTR_UNIMODEM_ID = 47,
DPFLTR_SIS_ID = 48,
DPFLTR_FLTMGR_ID = 49,
DPFLTR_WMICORE_ID = 50,
DPFLTR_BURNENG_ID = 51,
DPFLTR_IMAPI_ID = 52,
DPFLTR_SXS_ID = 53,
DPFLTR_FUSION_ID = 54,
DPFLTR_IDLETASK_ID = 55,
DPFLTR_SOFTPCI_ID = 56,
DPFLTR_TAPE_ID = 57,
DPFLTR_MCHGR_ID = 58,
DPFLTR_IDEP_ID = 59,
DPFLTR_PCIIDE_ID = 60,
DPFLTR_FLOPPY_ID = 61,
DPFLTR_FDC_ID = 62,
DPFLTR_TERMSRV_ID = 63,
DPFLTR_W32TIME_ID = 64,
DPFLTR_PREFETCHER_ID = 65,
DPFLTR_RSFILTER_ID = 66,
DPFLTR_FCPORT_ID = 67,
DPFLTR_PCI_ID = 68,
DPFLTR_DMIO_ID = 69,
DPFLTR_DMCONFIG_ID = 70,
DPFLTR_DMADMIN_ID = 71,
DPFLTR_WSOCKTRANSPORT_ID = 72,
DPFLTR_VSS_ID = 73,
DPFLTR_PNPMEM_ID = 74,
DPFLTR_PROCESSOR_ID = 75,
DPFLTR_DMSERVER_ID = 76,
DPFLTR_SR_ID = 77,
DPFLTR_INFINIBAND_ID = 78,
DPFLTR_IHVDRIVER_ID = 79,
DPFLTR_IHVVIDEO_ID = 80,
DPFLTR_IHVAUDIO_ID = 81,
DPFLTR_IHVNETWORK_ID = 82,
DPFLTR_IHVSTREAMING_ID = 83,
DPFLTR_IHVBUS_ID = 84,
DPFLTR_HPS_ID = 85,
DPFLTR_RTLTHREADPOOL_ID = 86,
DPFLTR_LDR_ID = 87,
DPFLTR_TCPIP6_ID = 88,
DPFLTR_ISAPNP_ID = 89,
DPFLTR_SHPC_ID = 90,
DPFLTR_STORPORT_ID = 91,
DPFLTR_STORMINIPORT_ID = 92,
DPFLTR_PRINTSPOOLER_ID = 93,
DPFLTR_ENDOFTABLE_ID
} DPFLTR_TYPE;
//
// Define the various device type values. Note that values used by Microsoft
// Corporation are in the range 0-32767, and 32768-65535 are reserved for use
// by customers.
//
#define DEVICE_TYPE ULONG
#define FILE_DEVICE_BEEP 0x00000001
#define FILE_DEVICE_CD_ROM 0x00000002
#define FILE_DEVICE_CD_ROM_FILE_SYSTEM 0x00000003
#define FILE_DEVICE_CONTROLLER 0x00000004
#define FILE_DEVICE_DATALINK 0x00000005
#define FILE_DEVICE_DFS 0x00000006
#define FILE_DEVICE_DISK 0x00000007
#define FILE_DEVICE_DISK_FILE_SYSTEM 0x00000008
#define FILE_DEVICE_FILE_SYSTEM 0x00000009
#define FILE_DEVICE_INPORT_PORT 0x0000000a
#define FILE_DEVICE_KEYBOARD 0x0000000b
#define FILE_DEVICE_MAILSLOT 0x0000000c
#define FILE_DEVICE_MIDI_IN 0x0000000d
#define FILE_DEVICE_MIDI_OUT 0x0000000e
#define FILE_DEVICE_MOUSE 0x0000000f
#define FILE_DEVICE_MULTI_UNC_PROVIDER 0x00000010
#define FILE_DEVICE_NAMED_PIPE 0x00000011
#define FILE_DEVICE_NETWORK 0x00000012
#define FILE_DEVICE_NETWORK_BROWSER 0x00000013
#define FILE_DEVICE_NETWORK_FILE_SYSTEM 0x00000014
#define FILE_DEVICE_NULL 0x00000015
#define FILE_DEVICE_PARALLEL_PORT 0x00000016
#define FILE_DEVICE_PHYSICAL_NETCARD 0x00000017
#define FILE_DEVICE_PRINTER 0x00000018
#define FILE_DEVICE_SCANNER 0x00000019
#define FILE_DEVICE_SERIAL_MOUSE_PORT 0x0000001a
#define FILE_DEVICE_SERIAL_PORT 0x0000001b
#define FILE_DEVICE_SCREEN 0x0000001c
#define FILE_DEVICE_SOUND 0x0000001d
#define FILE_DEVICE_STREAMS 0x0000001e
#define FILE_DEVICE_TAPE 0x0000001f
#define FILE_DEVICE_TAPE_FILE_SYSTEM 0x00000020
#define FILE_DEVICE_TRANSPORT 0x00000021
#define FILE_DEVICE_UNKNOWN 0x00000022
#define FILE_DEVICE_VIDEO 0x00000023
#define FILE_DEVICE_VIRTUAL_DISK 0x00000024
#define FILE_DEVICE_WAVE_IN 0x00000025
#define FILE_DEVICE_WAVE_OUT 0x00000026
#define FILE_DEVICE_8042_PORT 0x00000027
#define FILE_DEVICE_NETWORK_REDIRECTOR 0x00000028
#define FILE_DEVICE_BATTERY 0x00000029
#define FILE_DEVICE_BUS_EXTENDER 0x0000002a
#define FILE_DEVICE_MODEM 0x0000002b
#define FILE_DEVICE_VDM 0x0000002c
#define FILE_DEVICE_MASS_STORAGE 0x0000002d
#define FILE_DEVICE_SMB 0x0000002e
#define FILE_DEVICE_KS 0x0000002f
#define FILE_DEVICE_CHANGER 0x00000030
#define FILE_DEVICE_SMARTCARD 0x00000031
#define FILE_DEVICE_ACPI 0x00000032
#define FILE_DEVICE_DVD 0x00000033
#define FILE_DEVICE_FULLSCREEN_VIDEO 0x00000034
#define FILE_DEVICE_DFS_FILE_SYSTEM 0x00000035
#define FILE_DEVICE_DFS_VOLUME 0x00000036
#define FILE_DEVICE_SERENUM 0x00000037
#define FILE_DEVICE_TERMSRV 0x00000038
#define FILE_DEVICE_KSEC 0x00000039
#define FILE_DEVICE_FIPS 0x0000003A
//
// Macro definition for defining IOCTL and FSCTL function control codes. Note
// that function codes 0-2047 are reserved for Microsoft Corporation, and
// 2048-4095 are reserved for customers.
//
#define CTL_CODE( DeviceType, Function, Method, Access ) ( \
((DeviceType) << 16) | ((Access) << 14) | ((Function) << 2) | (Method) \
)
//
// Macro to extract device type out of the device io control code
//
#define DEVICE_TYPE_FROM_CTL_CODE(ctrlCode) (((ULONG)(ctrlCode & 0xffff0000)) >> 16)
//
// Define the method codes for how buffers are passed for I/O and FS controls
//
#define METHOD_BUFFERED 0
#define METHOD_IN_DIRECT 1
#define METHOD_OUT_DIRECT 2
#define METHOD_NEITHER 3
//
// Define the access check value for any access
//
//
// The FILE_READ_ACCESS and FILE_WRITE_ACCESS constants are also defined in
// ntioapi.h as FILE_READ_DATA and FILE_WRITE_DATA. The values for these
// constants *MUST* always be in sync.
//
//
// FILE_SPECIAL_ACCESS is checked by the NT I/O system the same as FILE_ANY_ACCESS.
// The file systems, however, may add additional access checks for I/O and FS controls
// that use this value.
//
#define FILE_ANY_ACCESS 0
#define FILE_SPECIAL_ACCESS (FILE_ANY_ACCESS)
#define FILE_READ_ACCESS ( 0x0001 ) // file & pipe
#define FILE_WRITE_ACCESS ( 0x0002 ) // file & pipe
//
// Define access rights to files and directories
//
//
// The FILE_READ_DATA and FILE_WRITE_DATA constants are also defined in
// devioctl.h as FILE_READ_ACCESS and FILE_WRITE_ACCESS. The values for these
// constants *MUST* always be in sync.
// The values are redefined in devioctl.h because they must be available to
// both DOS and NT.
//
#define FILE_READ_DATA ( 0x0001 ) // file & pipe
#define FILE_LIST_DIRECTORY ( 0x0001 ) // directory
#define FILE_WRITE_DATA ( 0x0002 ) // file & pipe
#define FILE_ADD_FILE ( 0x0002 ) // directory
#define FILE_APPEND_DATA ( 0x0004 ) // file
#define FILE_ADD_SUBDIRECTORY ( 0x0004 ) // directory
#define FILE_CREATE_PIPE_INSTANCE ( 0x0004 ) // named pipe
#define FILE_READ_EA ( 0x0008 ) // file & directory
#define FILE_WRITE_EA ( 0x0010 ) // file & directory
#define FILE_EXECUTE ( 0x0020 ) // file
#define FILE_TRAVERSE ( 0x0020 ) // directory
#define FILE_DELETE_CHILD ( 0x0040 ) // directory
#define FILE_READ_ATTRIBUTES ( 0x0080 ) // all
#define FILE_WRITE_ATTRIBUTES ( 0x0100 ) // all
#define FILE_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED | SYNCHRONIZE | 0x1FF)
#define FILE_GENERIC_READ (STANDARD_RIGHTS_READ |\
FILE_READ_DATA |\
FILE_READ_ATTRIBUTES |\
FILE_READ_EA |\
SYNCHRONIZE)
#define FILE_GENERIC_WRITE (STANDARD_RIGHTS_WRITE |\
FILE_WRITE_DATA |\
FILE_WRITE_ATTRIBUTES |\
FILE_WRITE_EA |\
FILE_APPEND_DATA |\
SYNCHRONIZE)
#define FILE_GENERIC_EXECUTE (STANDARD_RIGHTS_EXECUTE |\
FILE_READ_ATTRIBUTES |\
FILE_EXECUTE |\
SYNCHRONIZE)
//
// Define share access rights to files and directories
//
#define FILE_SHARE_READ 0x00000001
#define FILE_SHARE_WRITE 0x00000002
#define FILE_SHARE_DELETE 0x00000004
#define FILE_SHARE_VALID_FLAGS 0x00000007
//
// Define the file attributes values
//
// Note: 0x00000008 is reserved for use for the old DOS VOLID (volume ID)
// and is therefore not considered valid in NT.
//
// Note: 0x00000010 is reserved for use for the old DOS SUBDIRECTORY flag
// and is therefore not considered valid in NT. This flag has
// been disassociated with file attributes since the other flags are
// protected with READ_ and WRITE_ATTRIBUTES access to the file.
//
// Note: Note also that the order of these flags is set to allow both the
// FAT and the Pinball File Systems to directly set the attributes
// flags in attributes words without having to pick each flag out
// individually. The order of these flags should not be changed!
//
#define FILE_ATTRIBUTE_READONLY 0x00000001
#define FILE_ATTRIBUTE_HIDDEN 0x00000002
#define FILE_ATTRIBUTE_SYSTEM 0x00000004
//OLD DOS VOLID 0x00000008
#define FILE_ATTRIBUTE_DIRECTORY 0x00000010
#define FILE_ATTRIBUTE_ARCHIVE 0x00000020
#define FILE_ATTRIBUTE_DEVICE 0x00000040
#define FILE_ATTRIBUTE_NORMAL 0x00000080
#define FILE_ATTRIBUTE_TEMPORARY 0x00000100
#define FILE_ATTRIBUTE_SPARSE_FILE 0x00000200
#define FILE_ATTRIBUTE_REPARSE_POINT 0x00000400
#define FILE_ATTRIBUTE_COMPRESSED 0x00000800
#define FILE_ATTRIBUTE_OFFLINE 0x00001000
#define FILE_ATTRIBUTE_NOT_CONTENT_INDEXED 0x00002000
#define FILE_ATTRIBUTE_ENCRYPTED 0x00004000
#define FILE_ATTRIBUTE_VALID_FLAGS 0x00007fb7
#define FILE_ATTRIBUTE_VALID_SET_FLAGS 0x000031a7
//
// Define the create disposition values
//
#define FILE_SUPERSEDE 0x00000000
#define FILE_OPEN 0x00000001
#define FILE_CREATE 0x00000002
#define FILE_OPEN_IF 0x00000003
#define FILE_OVERWRITE 0x00000004
#define FILE_OVERWRITE_IF 0x00000005
#define FILE_MAXIMUM_DISPOSITION 0x00000005
//
// Define the create/open option flags
//
#define FILE_DIRECTORY_FILE 0x00000001
#define FILE_WRITE_THROUGH 0x00000002
#define FILE_SEQUENTIAL_ONLY 0x00000004
#define FILE_NO_INTERMEDIATE_BUFFERING 0x00000008
#define FILE_SYNCHRONOUS_IO_ALERT 0x00000010
#define FILE_SYNCHRONOUS_IO_NONALERT 0x00000020
#define FILE_NON_DIRECTORY_FILE 0x00000040
#define FILE_CREATE_TREE_CONNECTION 0x00000080
#define FILE_COMPLETE_IF_OPLOCKED 0x00000100
#define FILE_NO_EA_KNOWLEDGE 0x00000200
#define FILE_OPEN_FOR_RECOVERY 0x00000400
#define FILE_RANDOM_ACCESS 0x00000800
#define FILE_DELETE_ON_CLOSE 0x00001000
#define FILE_OPEN_BY_FILE_ID 0x00002000
#define FILE_OPEN_FOR_BACKUP_INTENT 0x00004000
#define FILE_NO_COMPRESSION 0x00008000
#define FILE_RESERVE_OPFILTER 0x00100000
#define FILE_OPEN_REPARSE_POINT 0x00200000
#define FILE_OPEN_NO_RECALL 0x00400000
#define FILE_OPEN_FOR_FREE_SPACE_QUERY 0x00800000
#define FILE_COPY_STRUCTURED_STORAGE 0x00000041
#define FILE_STRUCTURED_STORAGE 0x00000441
#define FILE_VALID_OPTION_FLAGS 0x00ffffff
#define FILE_VALID_PIPE_OPTION_FLAGS 0x00000032
#define FILE_VALID_MAILSLOT_OPTION_FLAGS 0x00000032
#define FILE_VALID_SET_FLAGS 0x00000036
//
// Define the I/O status information return values for NtCreateFile/NtOpenFile
//
#define FILE_SUPERSEDED 0x00000000
#define FILE_OPENED 0x00000001
#define FILE_CREATED 0x00000002
#define FILE_OVERWRITTEN 0x00000003
#define FILE_EXISTS 0x00000004
#define FILE_DOES_NOT_EXIST 0x00000005
//
// Define special ByteOffset parameters for read and write operations
//
#define FILE_WRITE_TO_END_OF_FILE 0xffffffff
#define FILE_USE_FILE_POINTER_POSITION 0xfffffffe
//
// Define alignment requirement values
//
#define FILE_BYTE_ALIGNMENT 0x00000000
#define FILE_WORD_ALIGNMENT 0x00000001
#define FILE_LONG_ALIGNMENT 0x00000003
#define FILE_QUAD_ALIGNMENT 0x00000007
#define FILE_OCTA_ALIGNMENT 0x0000000f
#define FILE_32_BYTE_ALIGNMENT 0x0000001f
#define FILE_64_BYTE_ALIGNMENT 0x0000003f
#define FILE_128_BYTE_ALIGNMENT 0x0000007f
#define FILE_256_BYTE_ALIGNMENT 0x000000ff
#define FILE_512_BYTE_ALIGNMENT 0x000001ff
//
// Define the maximum length of a filename string
//
#define MAXIMUM_FILENAME_LENGTH 256
//
// Define the various device characteristics flags
//
#define FILE_REMOVABLE_MEDIA 0x00000001
#define FILE_READ_ONLY_DEVICE 0x00000002
#define FILE_FLOPPY_DISKETTE 0x00000004
#define FILE_WRITE_ONCE_MEDIA 0x00000008
#define FILE_REMOTE_DEVICE 0x00000010
#define FILE_DEVICE_IS_MOUNTED 0x00000020
#define FILE_VIRTUAL_VOLUME 0x00000040
#define FILE_AUTOGENERATED_DEVICE_NAME 0x00000080
#define FILE_DEVICE_SECURE_OPEN 0x00000100
#define FILE_CHARACTERISTIC_PNP_DEVICE 0x00000800
//
// Define the base asynchronous I/O argument types
//
typedef struct _IO_STATUS_BLOCK {
union {
NTSTATUS Status;
PVOID Pointer;
};
ULONG_PTR Information;
} IO_STATUS_BLOCK, *PIO_STATUS_BLOCK;
#if defined(_WIN64)
typedef struct _IO_STATUS_BLOCK32 {
NTSTATUS Status;
ULONG Information;
} IO_STATUS_BLOCK32, *PIO_STATUS_BLOCK32;
#endif
//
// Define an Asynchronous Procedure Call from I/O viewpoint
//
typedef
VOID
(NTAPI *PIO_APC_ROUTINE) (
IN PVOID ApcContext,
IN PIO_STATUS_BLOCK IoStatusBlock,
IN ULONG Reserved
);
#define PIO_APC_ROUTINE_DEFINED
//
// Define the file information class values
//
// WARNING: The order of the following values are assumed by the I/O system.
// Any changes made here should be reflected there as well.
//
typedef enum _FILE_INFORMATION_CLASS {
FileBasicInformation = 4,
FileStandardInformation = 5,
FilePositionInformation = 14,
FileEndOfFileInformation = 20,
} FILE_INFORMATION_CLASS, *PFILE_INFORMATION_CLASS;
//
// Define the various structures which are returned on query operations
//
typedef struct _FILE_BASIC_INFORMATION {
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
ULONG FileAttributes;
} FILE_BASIC_INFORMATION, *PFILE_BASIC_INFORMATION;
typedef struct _FILE_STANDARD_INFORMATION {
LARGE_INTEGER AllocationSize;
LARGE_INTEGER EndOfFile;
ULONG NumberOfLinks;
BOOLEAN DeletePending;
BOOLEAN Directory;
} FILE_STANDARD_INFORMATION, *PFILE_STANDARD_INFORMATION;
typedef struct _FILE_POSITION_INFORMATION {
LARGE_INTEGER CurrentByteOffset;
} FILE_POSITION_INFORMATION, *PFILE_POSITION_INFORMATION;
typedef struct _FILE_NETWORK_OPEN_INFORMATION {
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER AllocationSize;
LARGE_INTEGER EndOfFile;
ULONG FileAttributes;
} FILE_NETWORK_OPEN_INFORMATION, *PFILE_NETWORK_OPEN_INFORMATION;
typedef struct _FILE_FULL_EA_INFORMATION {
ULONG NextEntryOffset;
UCHAR Flags;
UCHAR EaNameLength;
USHORT EaValueLength;
CHAR EaName[1];
} FILE_FULL_EA_INFORMATION, *PFILE_FULL_EA_INFORMATION;
//
// Define the file system information class values
//
// WARNING: The order of the following values are assumed by the I/O system.
// Any changes made here should be reflected there as well.
typedef enum _FSINFOCLASS {
FileFsVolumeInformation = 1,
FileFsLabelInformation, // 2
FileFsSizeInformation, // 3
FileFsDeviceInformation, // 4
FileFsAttributeInformation, // 5
FileFsControlInformation, // 6
FileFsFullSizeInformation, // 7
FileFsObjectIdInformation, // 8
FileFsDriverPathInformation, // 9
FileFsMaximumInformation
} FS_INFORMATION_CLASS, *PFS_INFORMATION_CLASS;
typedef struct _FILE_FS_DEVICE_INFORMATION {
DEVICE_TYPE DeviceType;
ULONG Characteristics;
} FILE_FS_DEVICE_INFORMATION, *PFILE_FS_DEVICE_INFORMATION;
//
// Define the I/O bus interface types.
//
typedef enum _INTERFACE_TYPE {
InterfaceTypeUndefined = -1,
Internal,
Isa,
Eisa,
MicroChannel,
TurboChannel,
PCIBus,
VMEBus,
NuBus,
PCMCIABus,
CBus,
MPIBus,
MPSABus,
ProcessorInternal,
InternalPowerBus,
PNPISABus,
PNPBus,
MaximumInterfaceType
}INTERFACE_TYPE, *PINTERFACE_TYPE;
//
// Define the DMA transfer widths.
//
typedef enum _DMA_WIDTH {
Width8Bits,
Width16Bits,
Width32Bits,
MaximumDmaWidth
}DMA_WIDTH, *PDMA_WIDTH;
//
// Define DMA transfer speeds.
//
typedef enum _DMA_SPEED {
Compatible,
TypeA,
TypeB,
TypeC,
TypeF,
MaximumDmaSpeed
}DMA_SPEED, *PDMA_SPEED;
//
// Define Interface reference/dereference routines for
// Interfaces exported by IRP_MN_QUERY_INTERFACE
//
typedef VOID (*PINTERFACE_REFERENCE)(PVOID Context);
typedef VOID (*PINTERFACE_DEREFERENCE)(PVOID Context);
//
// Define I/O Driver error log packet structure. This structure is filled in
// by the driver.
//
typedef struct _IO_ERROR_LOG_PACKET {
UCHAR MajorFunctionCode;
UCHAR RetryCount;
USHORT DumpDataSize;
USHORT NumberOfStrings;
USHORT StringOffset;
USHORT EventCategory;
NTSTATUS ErrorCode;
ULONG UniqueErrorValue;
NTSTATUS FinalStatus;
ULONG SequenceNumber;
ULONG IoControlCode;
LARGE_INTEGER DeviceOffset;
ULONG DumpData[1];
}IO_ERROR_LOG_PACKET, *PIO_ERROR_LOG_PACKET;
//
// Define the I/O error log message. This message is sent by the error log
// thread over the lpc port.
//
typedef struct _IO_ERROR_LOG_MESSAGE {
USHORT Type;
USHORT Size;
USHORT DriverNameLength;
LARGE_INTEGER TimeStamp;
ULONG DriverNameOffset;
IO_ERROR_LOG_PACKET EntryData;
}IO_ERROR_LOG_MESSAGE, *PIO_ERROR_LOG_MESSAGE;
//
// Define the maximum message size that will be sent over the LPC to the
// application reading the error log entries.
//
//
// Regardless of LPC size restrictions, ERROR_LOG_MAXIMUM_SIZE must remain
// a value that can fit in a UCHAR.
//
#define ERROR_LOG_LIMIT_SIZE (256-16)
//
// This limit, exclusive of IO_ERROR_LOG_MESSAGE_HEADER_LENGTH, also applies
// to IO_ERROR_LOG_MESSAGE_LENGTH
//
#define IO_ERROR_LOG_MESSAGE_HEADER_LENGTH (sizeof(IO_ERROR_LOG_MESSAGE) - \
sizeof(IO_ERROR_LOG_PACKET) + \
(sizeof(WCHAR) * 40))
#define ERROR_LOG_MESSAGE_LIMIT_SIZE \
(ERROR_LOG_LIMIT_SIZE + IO_ERROR_LOG_MESSAGE_HEADER_LENGTH)
//
// IO_ERROR_LOG_MESSAGE_LENGTH is
// min(PORT_MAXIMUM_MESSAGE_LENGTH, ERROR_LOG_MESSAGE_LIMIT_SIZE)
//
#define IO_ERROR_LOG_MESSAGE_LENGTH \
((PORT_MAXIMUM_MESSAGE_LENGTH > ERROR_LOG_MESSAGE_LIMIT_SIZE) ? \
ERROR_LOG_MESSAGE_LIMIT_SIZE : \
PORT_MAXIMUM_MESSAGE_LENGTH)
//
// Define the maximum packet size a driver can allocate.
//
#define ERROR_LOG_MAXIMUM_SIZE (IO_ERROR_LOG_MESSAGE_LENGTH - \
IO_ERROR_LOG_MESSAGE_HEADER_LENGTH)
#ifdef _WIN64
#define PORT_MAXIMUM_MESSAGE_LENGTH 512
#else
#define PORT_MAXIMUM_MESSAGE_LENGTH 256
#endif
//
// Registry Specific Access Rights.
//
#define KEY_QUERY_VALUE (0x0001)
#define KEY_SET_VALUE (0x0002)
#define KEY_CREATE_SUB_KEY (0x0004)
#define KEY_ENUMERATE_SUB_KEYS (0x0008)
#define KEY_NOTIFY (0x0010)
#define KEY_CREATE_LINK (0x0020)
#define KEY_WOW64_32KEY (0x0200)
#define KEY_WOW64_64KEY (0x0100)
#define KEY_WOW64_RES (0x0300)
#define KEY_READ ((STANDARD_RIGHTS_READ |\
KEY_QUERY_VALUE |\
KEY_ENUMERATE_SUB_KEYS |\
KEY_NOTIFY) \
& \
(~SYNCHRONIZE))
#define KEY_WRITE ((STANDARD_RIGHTS_WRITE |\
KEY_SET_VALUE |\
KEY_CREATE_SUB_KEY) \
& \
(~SYNCHRONIZE))
#define KEY_EXECUTE ((KEY_READ) \
& \
(~SYNCHRONIZE))
#define KEY_ALL_ACCESS ((STANDARD_RIGHTS_ALL |\
KEY_QUERY_VALUE |\
KEY_SET_VALUE |\
KEY_CREATE_SUB_KEY |\
KEY_ENUMERATE_SUB_KEYS |\
KEY_NOTIFY |\
KEY_CREATE_LINK) \
& \
(~SYNCHRONIZE))
//
// Open/Create Options
//
#define REG_OPTION_RESERVED (0x00000000L) // Parameter is reserved
#define REG_OPTION_NON_VOLATILE (0x00000000L) // Key is preserved
// when system is rebooted
#define REG_OPTION_VOLATILE (0x00000001L) // Key is not preserved
// when system is rebooted
#define REG_OPTION_CREATE_LINK (0x00000002L) // Created key is a
// symbolic link
#define REG_OPTION_BACKUP_RESTORE (0x00000004L) // open for backup or restore
// special access rules
// privilege required
#define REG_OPTION_OPEN_LINK (0x00000008L) // Open symbolic link
#define REG_LEGAL_OPTION \
(REG_OPTION_RESERVED |\
REG_OPTION_NON_VOLATILE |\
REG_OPTION_VOLATILE |\
REG_OPTION_CREATE_LINK |\
REG_OPTION_BACKUP_RESTORE |\
REG_OPTION_OPEN_LINK)
//
// Key creation/open disposition
//
#define REG_CREATED_NEW_KEY (0x00000001L) // New Registry Key created
#define REG_OPENED_EXISTING_KEY (0x00000002L) // Existing Key opened
//
// hive format to be used by Reg(Nt)SaveKeyEx
//
#define REG_STANDARD_FORMAT 1
#define REG_LATEST_FORMAT 2
#define REG_NO_COMPRESSION 4
//
// Key restore flags
//
#define REG_WHOLE_HIVE_VOLATILE (0x00000001L) // Restore whole hive volatile
#define REG_REFRESH_HIVE (0x00000002L) // Unwind changes to last flush
#define REG_NO_LAZY_FLUSH (0x00000004L) // Never lazy flush this hive
#define REG_FORCE_RESTORE (0x00000008L) // Force the restore process even when we have open handles on subkeys
//
// Key query structures
//
typedef struct _KEY_BASIC_INFORMATION {
LARGE_INTEGER LastWriteTime;
ULONG TitleIndex;
ULONG NameLength;
WCHAR Name[1]; // Variable length string
} KEY_BASIC_INFORMATION, *PKEY_BASIC_INFORMATION;
typedef struct _KEY_NODE_INFORMATION {
LARGE_INTEGER LastWriteTime;
ULONG TitleIndex;
ULONG ClassOffset;
ULONG ClassLength;
ULONG NameLength;
WCHAR Name[1]; // Variable length string
// Class[1]; // Variable length string not declared
} KEY_NODE_INFORMATION, *PKEY_NODE_INFORMATION;
typedef struct _KEY_FULL_INFORMATION {
LARGE_INTEGER LastWriteTime;
ULONG TitleIndex;
ULONG ClassOffset;
ULONG ClassLength;
ULONG SubKeys;
ULONG MaxNameLen;
ULONG MaxClassLen;
ULONG Values;
ULONG MaxValueNameLen;
ULONG MaxValueDataLen;
WCHAR Class[1]; // Variable length
} KEY_FULL_INFORMATION, *PKEY_FULL_INFORMATION;
typedef enum _KEY_INFORMATION_CLASS {
KeyBasicInformation,
KeyNodeInformation,
KeyFullInformation
} KEY_INFORMATION_CLASS;
typedef struct _KEY_WRITE_TIME_INFORMATION {
LARGE_INTEGER LastWriteTime;
} KEY_WRITE_TIME_INFORMATION, *PKEY_WRITE_TIME_INFORMATION;
typedef struct _KEY_USER_FLAGS_INFORMATION {
ULONG UserFlags;
} KEY_USER_FLAGS_INFORMATION, *PKEY_USER_FLAGS_INFORMATION;
typedef enum _KEY_SET_INFORMATION_CLASS {
KeyWriteTimeInformation,
KeyUserFlagsInformation
} KEY_SET_INFORMATION_CLASS;
//
// Value entry query structures
//
typedef struct _KEY_VALUE_BASIC_INFORMATION {
ULONG TitleIndex;
ULONG Type;
ULONG NameLength;
WCHAR Name[1]; // Variable size
} KEY_VALUE_BASIC_INFORMATION, *PKEY_VALUE_BASIC_INFORMATION;
typedef struct _KEY_VALUE_FULL_INFORMATION {
ULONG TitleIndex;
ULONG Type;
ULONG DataOffset;
ULONG DataLength;
ULONG NameLength;
WCHAR Name[1]; // Variable size
// Data[1]; // Variable size data not declared
} KEY_VALUE_FULL_INFORMATION, *PKEY_VALUE_FULL_INFORMATION;
typedef struct _KEY_VALUE_PARTIAL_INFORMATION {
ULONG TitleIndex;
ULONG Type;
ULONG DataLength;
UCHAR Data[1]; // Variable size
} KEY_VALUE_PARTIAL_INFORMATION, *PKEY_VALUE_PARTIAL_INFORMATION;
typedef struct _KEY_VALUE_PARTIAL_INFORMATION_ALIGN64 {
ULONG Type;
ULONG DataLength;
UCHAR Data[1]; // Variable size
} KEY_VALUE_PARTIAL_INFORMATION_ALIGN64, *PKEY_VALUE_PARTIAL_INFORMATION_ALIGN64;
typedef struct _KEY_VALUE_ENTRY {
PUNICODE_STRING ValueName;
ULONG DataLength;
ULONG DataOffset;
ULONG Type;
} KEY_VALUE_ENTRY, *PKEY_VALUE_ENTRY;
typedef enum _KEY_VALUE_INFORMATION_CLASS {
KeyValueBasicInformation,
KeyValueFullInformation,
KeyValuePartialInformation,
KeyValueFullInformationAlign64,
KeyValuePartialInformationAlign64
} KEY_VALUE_INFORMATION_CLASS;
#define OBJ_NAME_PATH_SEPARATOR ((WCHAR)L'\\')
//
// Object Manager Object Type Specific Access Rights.
//
#define OBJECT_TYPE_CREATE (0x0001)
#define OBJECT_TYPE_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED | 0x1)
//
// Object Manager Directory Specific Access Rights.
//
#define DIRECTORY_QUERY (0x0001)
#define DIRECTORY_TRAVERSE (0x0002)
#define DIRECTORY_CREATE_OBJECT (0x0004)
#define DIRECTORY_CREATE_SUBDIRECTORY (0x0008)
#define DIRECTORY_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED | 0xF)
//
// Object Manager Symbolic Link Specific Access Rights.
//
#define SYMBOLIC_LINK_QUERY (0x0001)
#define SYMBOLIC_LINK_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED | 0x1)
typedef struct _OBJECT_NAME_INFORMATION {
UNICODE_STRING Name;
} OBJECT_NAME_INFORMATION, *POBJECT_NAME_INFORMATION;
#define DUPLICATE_CLOSE_SOURCE 0x00000001
#define DUPLICATE_SAME_ACCESS 0x00000002
#define DUPLICATE_SAME_ATTRIBUTES 0x00000004
//
// Section Information Structures.
//
typedef enum _SECTION_INHERIT {
ViewShare = 1,
ViewUnmap = 2
} SECTION_INHERIT;
//
// Section Access Rights.
//
#define SECTION_QUERY 0x0001
#define SECTION_MAP_WRITE 0x0002
#define SECTION_MAP_READ 0x0004
#define SECTION_MAP_EXECUTE 0x0008
#define SECTION_EXTEND_SIZE 0x0010
#define SECTION_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED|SECTION_QUERY|\
SECTION_MAP_WRITE | \
SECTION_MAP_READ | \
SECTION_MAP_EXECUTE | \
SECTION_EXTEND_SIZE)
#define SEGMENT_ALL_ACCESS SECTION_ALL_ACCESS
#define PAGE_NOACCESS 0x01
#define PAGE_READONLY 0x02
#define PAGE_READWRITE 0x04
#define PAGE_WRITECOPY 0x08
#define PAGE_EXECUTE 0x10
#define PAGE_EXECUTE_READ 0x20
#define PAGE_EXECUTE_READWRITE 0x40
#define PAGE_EXECUTE_WRITECOPY 0x80
#define PAGE_GUARD 0x100
#define PAGE_NOCACHE 0x200
#define PAGE_WRITECOMBINE 0x400
#define MEM_COMMIT 0x1000
#define MEM_RESERVE 0x2000
#define MEM_DECOMMIT 0x4000
#define MEM_RELEASE 0x8000
#define MEM_FREE 0x10000
#define MEM_PRIVATE 0x20000
#define MEM_MAPPED 0x40000
#define MEM_RESET 0x80000
#define MEM_TOP_DOWN 0x100000
#define MEM_LARGE_PAGES 0x20000000
#define MEM_4MB_PAGES 0x80000000
#define SEC_RESERVE 0x4000000
#define PROCESS_DUP_HANDLE (0x0040)
#define PROCESS_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED | SYNCHRONIZE | \
0xFFF)
#if defined(_WIN64)
#define MAXIMUM_PROCESSORS 64
#else
#define MAXIMUM_PROCESSORS 32
#endif
//
// Thread Specific Access Rights
//
#define THREAD_TERMINATE (0x0001)
#define THREAD_SET_INFORMATION (0x0020)
#define THREAD_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED | SYNCHRONIZE | \
0x3FF)
//
// ClientId
//
typedef struct _CLIENT_ID {
HANDLE UniqueProcess;
HANDLE UniqueThread;
} CLIENT_ID;
typedef CLIENT_ID *PCLIENT_ID;
#define NtCurrentProcess() ( (HANDLE)(LONG_PTR) -1 )
#define NtCurrentThread() ( (HANDLE)(LONG_PTR) -2 )
#ifndef _PO_DDK_
#define _PO_DDK_
typedef enum _SYSTEM_POWER_STATE {
PowerSystemUnspecified = 0,
PowerSystemWorking = 1,
PowerSystemSleeping1 = 2,
PowerSystemSleeping2 = 3,
PowerSystemSleeping3 = 4,
PowerSystemHibernate = 5,
PowerSystemShutdown = 6,
PowerSystemMaximum = 7
} SYSTEM_POWER_STATE, *PSYSTEM_POWER_STATE;
#define POWER_SYSTEM_MAXIMUM 7
typedef enum {
PowerActionNone = 0,
PowerActionReserved,
PowerActionSleep,
PowerActionHibernate,
PowerActionShutdown,
PowerActionShutdownReset,
PowerActionShutdownOff,
PowerActionWarmEject
} POWER_ACTION, *PPOWER_ACTION;
typedef enum _DEVICE_POWER_STATE {
PowerDeviceUnspecified = 0,
PowerDeviceD0,
PowerDeviceD1,
PowerDeviceD2,
PowerDeviceD3,
PowerDeviceMaximum
} DEVICE_POWER_STATE, *PDEVICE_POWER_STATE;
typedef union _POWER_STATE {
SYSTEM_POWER_STATE SystemState;
DEVICE_POWER_STATE DeviceState;
} POWER_STATE, *PPOWER_STATE;
typedef enum _POWER_STATE_TYPE {
SystemPowerState = 0,
DevicePowerState
} POWER_STATE_TYPE, *PPOWER_STATE_TYPE;
//
// Generic power related IOCTLs
//
#define IOCTL_QUERY_DEVICE_POWER_STATE \
CTL_CODE(FILE_DEVICE_BATTERY, 0x0, METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_SET_DEVICE_WAKE \
CTL_CODE(FILE_DEVICE_BATTERY, 0x1, METHOD_BUFFERED, FILE_WRITE_ACCESS)
#define IOCTL_CANCEL_DEVICE_WAKE \
CTL_CODE(FILE_DEVICE_BATTERY, 0x2, METHOD_BUFFERED, FILE_WRITE_ACCESS)
//
// Defines for W32 interfaces
//
#define ES_SYSTEM_REQUIRED ((ULONG)0x00000001)
#define ES_DISPLAY_REQUIRED ((ULONG)0x00000002)
#define ES_USER_PRESENT ((ULONG)0x00000004)
#define ES_CONTINUOUS ((ULONG)0x80000000)
typedef ULONG EXECUTION_STATE;
typedef enum {
LT_DONT_CARE,
LT_LOWEST_LATENCY
} LATENCY_TIME;
//
// System power manager capabilities
//
typedef struct {
ULONG Granularity;
ULONG Capacity;
} BATTERY_REPORTING_SCALE, *PBATTERY_REPORTING_SCALE;
#endif // !_PO_DDK_
#if defined(_X86_)
//
// Types to use to contain PFNs and their counts.
//
typedef ULONG PFN_COUNT;
typedef LONG SPFN_NUMBER, *PSPFN_NUMBER;
typedef ULONG PFN_NUMBER, *PPFN_NUMBER;
//
// Define maximum size of flush multiple TB request.
//
#define FLUSH_MULTIPLE_MAXIMUM 16
//
// Indicate that the i386 compiler supports the pragma textout construct.
//
#define ALLOC_PRAGMA 1
//
// Indicate that the i386 compiler supports the DATA_SEG("INIT") and
// DATA_SEG("PAGE") pragmas
//
#define ALLOC_DATA_PRAGMA 1
#define NORMAL_DISPATCH_LENGTH 106
#define DISPATCH_LENGTH NORMAL_DISPATCH_LENGTH
//
// Interrupt Request Level definitions
//
#define PASSIVE_LEVEL 0 // Passive release level
#define LOW_LEVEL 0 // Lowest interrupt level
#define APC_LEVEL 1 // APC interrupt level
#define DISPATCH_LEVEL 2 // Dispatcher level
#define PROFILE_LEVEL 27 // timer used for profiling.
#define CLOCK1_LEVEL 28 // Interval clock 1 level - Not used on x86
#define CLOCK2_LEVEL 28 // Interval clock 2 level
#define IPI_LEVEL 29 // Interprocessor interrupt level
#define POWER_LEVEL 30 // Power failure level
#define HIGH_LEVEL 31 // Highest interrupt level
#if defined(NT_UP)
#define SYNCH_LEVEL DISPATCH_LEVEL // synchronization level - UP system
#else
#define SYNCH_LEVEL (IPI_LEVEL-1) // synchronization level - MP system
#endif
//
// I/O space read and write macros.
//
// These have to be actual functions on the 386, because we need
// to use assembler, but cannot return a value if we inline it.
//
// The READ/WRITE_REGISTER_* calls manipulate I/O registers in MEMORY space.
// (Use x86 move instructions, with LOCK prefix to force correct behavior
// w.r.t. caches and write buffers.)
//
// The READ/WRITE_PORT_* calls manipulate I/O registers in PORT space.
// (Use x86 in/out instructions.)
//
NTKERNELAPI
UCHAR
NTAPI
READ_REGISTER_UCHAR(
PUCHAR Register
);
NTKERNELAPI
USHORT
NTAPI
READ_REGISTER_USHORT(
PUSHORT Register
);
NTKERNELAPI
ULONG
NTAPI
READ_REGISTER_ULONG(
PULONG Register
);
NTKERNELAPI
VOID
NTAPI
READ_REGISTER_BUFFER_UCHAR(
PUCHAR Register,
PUCHAR Buffer,
ULONG Count
);
NTKERNELAPI
VOID
NTAPI
READ_REGISTER_BUFFER_USHORT(
PUSHORT Register,
PUSHORT Buffer,
ULONG Count
);
NTKERNELAPI
VOID
NTAPI
READ_REGISTER_BUFFER_ULONG(
PULONG Register,
PULONG Buffer,
ULONG Count
);
NTKERNELAPI
VOID
NTAPI
WRITE_REGISTER_UCHAR(
PUCHAR Register,
UCHAR Value
);
NTKERNELAPI
VOID
NTAPI
WRITE_REGISTER_USHORT(
PUSHORT Register,
USHORT Value
);
NTKERNELAPI
VOID
NTAPI
WRITE_REGISTER_ULONG(
PULONG Register,
ULONG Value
);
NTKERNELAPI
VOID
NTAPI
WRITE_REGISTER_BUFFER_UCHAR(
PUCHAR Register,
PUCHAR Buffer,
ULONG Count
);
NTKERNELAPI
VOID
NTAPI
WRITE_REGISTER_BUFFER_USHORT(
PUSHORT Register,
PUSHORT Buffer,
ULONG Count
);
NTKERNELAPI
VOID
NTAPI
WRITE_REGISTER_BUFFER_ULONG(
PULONG Register,
PULONG Buffer,
ULONG Count
);
NTHALAPI
UCHAR
NTAPI
READ_PORT_UCHAR(
PUCHAR Port
);
NTHALAPI
USHORT
NTAPI
READ_PORT_USHORT(
PUSHORT Port
);
NTHALAPI
ULONG
NTAPI
READ_PORT_ULONG(
PULONG Port
);
NTHALAPI
VOID
NTAPI
READ_PORT_BUFFER_UCHAR(
PUCHAR Port,
PUCHAR Buffer,
ULONG Count
);
NTHALAPI
VOID
NTAPI
READ_PORT_BUFFER_USHORT(
PUSHORT Port,
PUSHORT Buffer,
ULONG Count
);
NTHALAPI
VOID
NTAPI
READ_PORT_BUFFER_ULONG(
PULONG Port,
PULONG Buffer,
ULONG Count
);
NTHALAPI
VOID
NTAPI
WRITE_PORT_UCHAR(
PUCHAR Port,
UCHAR Value
);
NTHALAPI
VOID
NTAPI
WRITE_PORT_USHORT(
PUSHORT Port,
USHORT Value
);
NTHALAPI
VOID
NTAPI
WRITE_PORT_ULONG(
PULONG Port,
ULONG Value
);
NTHALAPI
VOID
NTAPI
WRITE_PORT_BUFFER_UCHAR(
PUCHAR Port,
PUCHAR Buffer,
ULONG Count
);
NTHALAPI
VOID
NTAPI
WRITE_PORT_BUFFER_USHORT(
PUSHORT Port,
PUSHORT Buffer,
ULONG Count
);
NTHALAPI
VOID
NTAPI
WRITE_PORT_BUFFER_ULONG(
PULONG Port,
PULONG Buffer,
ULONG Count
);
//
// Get data cache fill size.
//
#if PRAGMA_DEPRECATED_DDK
#pragma deprecated(KeGetDcacheFillSize) // Use GetDmaAlignment
#endif
#define KeGetDcacheFillSize() 1L
#define KeFlushIoBuffers(Mdl, ReadOperation, DmaOperation)
#define ExAcquireSpinLock(Lock, OldIrql) KeAcquireSpinLock((Lock), (OldIrql))
#define ExReleaseSpinLock(Lock, OldIrql) KeReleaseSpinLock((Lock), (OldIrql))
#define ExAcquireSpinLockAtDpcLevel(Lock) KeAcquireSpinLockAtDpcLevel(Lock)
#define ExReleaseSpinLockFromDpcLevel(Lock) KeReleaseSpinLockFromDpcLevel(Lock)
#define KeQueryTickCount(CurrentCount ) { \
volatile PKSYSTEM_TIME _TickCount = *((PKSYSTEM_TIME *)(&KeTickCount)); \
while (TRUE) { \
(CurrentCount)->HighPart = _TickCount->High1Time; \
(CurrentCount)->LowPart = _TickCount->LowPart; \
if ((CurrentCount)->HighPart == _TickCount->High2Time) break; \
_asm { rep nop } \
} \
}
//
// The non-volatile 387 state
//
typedef struct _KFLOATING_SAVE {
ULONG DoNotUse1;
ULONG DoNotUse2;
ULONG DoNotUse3;
ULONG DoNotUse4;
ULONG DoNotUse5;
ULONG DoNotUse6;
ULONG DoNotUse7;
ULONG DoNotUse8;
} KFLOATING_SAVE, *PKFLOATING_SAVE;
//
// i386 Specific portions of mm component
//
//
// Define the page size for the Intel 386 as 4096 (0x1000).
//
#define PAGE_SIZE 0x1000
//
// Define the number of trailing zeroes in a page aligned virtual address.
// This is used as the shift count when shifting virtual addresses to
// virtual page numbers.
//
#define PAGE_SHIFT 12L
#define MmGetProcedureAddress(Address) (Address)
#define MmLockPagableCodeSection(Address) MmLockPagableDataSection(Address)
#define KIP0PCRADDRESS 0xffdff000
#define ExInterlockedAddUlong ExfInterlockedAddUlong
#define ExInterlockedInsertHeadList ExfInterlockedInsertHeadList
#define ExInterlockedInsertTailList ExfInterlockedInsertTailList
#define ExInterlockedRemoveHeadList ExfInterlockedRemoveHeadList
#define ExInterlockedPopEntryList ExfInterlockedPopEntryList
#define ExInterlockedPushEntryList ExfInterlockedPushEntryList
#pragma warning(disable:4035)
#if !defined(MIDL_PASS)
NTKERNELAPI
LONG
FASTCALL
InterlockedIncrement(
IN LONG volatile *Addend
);
NTKERNELAPI
LONG
FASTCALL
InterlockedDecrement(
IN LONG volatile *Addend
);
NTKERNELAPI
LONG
FASTCALL
InterlockedExchange(
IN OUT LONG volatile *Target,
IN LONG Value
);
#define InterlockedExchangePointer(Target, Value) \
(PVOID)InterlockedExchange((PLONG)(Target), (LONG)(Value))
LONG
FASTCALL
InterlockedExchangeAdd(
IN OUT LONG volatile *Addend,
IN LONG Increment
);
NTKERNELAPI
LONG
FASTCALL
InterlockedCompareExchange(
IN OUT LONG volatile *Destination,
IN LONG ExChange,
IN LONG Comperand
);
#define InterlockedCompareExchangePointer(Destination, ExChange, Comperand) \
(PVOID)InterlockedCompareExchange((PLONG)Destination, (LONG)ExChange, (LONG)Comperand)
#define InterlockedCompareExchange64(Destination, ExChange, Comperand) \
ExfInterlockedCompareExchange64(Destination, &(ExChange), &(Comperand))
NTKERNELAPI
LONGLONG
FASTCALL
ExfInterlockedCompareExchange64(
IN OUT LONGLONG volatile *Destination,
IN PLONGLONG ExChange,
IN PLONGLONG Comperand
);
FORCEINLINE
LONG
FASTCALL
InterlockedExchangeAdd(
IN OUT LONG volatile *Addend,
IN LONG Increment
)
{
__asm {
mov eax, Increment
mov ecx, Addend
lock xadd [ecx], eax
}
}
#endif // MIDL_PASS
// end_ntosp end_ntddk end_nthal
#pragma warning(default:4035)
#if !defined(MIDL_PASS) && defined(_M_IX86)
//
// i386 function definitions
//
#pragma warning(disable:4035) // re-enable below
//
// Get current IRQL.
//
// On x86 this function resides in the HAL
//
NTHALAPI
KIRQL
NTAPI
KeGetCurrentIrql();
#endif // !defined(MIDL_PASS) && defined(_M_IX86)
NTKERNELAPI
NTSTATUS
NTAPI
KeSaveFloatingPointState (
OUT PKFLOATING_SAVE FloatSave
);
NTKERNELAPI
NTSTATUS
NTAPI
KeRestoreFloatingPointState (
IN PKFLOATING_SAVE FloatSave
);
#endif // defined(_X86_)
#if defined(_M_AMD64) && !defined(RC_INVOKED) && !defined(MIDL_PASS)
//
// Define intrinsic function to do in's and out's.
//
#ifdef __cplusplus
extern "C" {
#endif
UCHAR
__inbyte (
IN USHORT Port
);
USHORT
__inword (
IN USHORT Port
);
ULONG
__indword (
IN USHORT Port
);
VOID
__outbyte (
IN USHORT Port,
IN UCHAR Data
);
VOID
__outword (
IN USHORT Port,
IN USHORT Data
);
VOID
__outdword (
IN USHORT Port,
IN ULONG Data
);
VOID
__inbytestring (
IN USHORT Port,
IN PUCHAR Buffer,
IN ULONG Count
);
VOID
__inwordstring (
IN USHORT Port,
IN PUSHORT Buffer,
IN ULONG Count
);
VOID
__indwordstring (
IN USHORT Port,
IN PULONG Buffer,
IN ULONG Count
);
VOID
__outbytestring (
IN USHORT Port,
IN PUCHAR Buffer,
IN ULONG Count
);
VOID
__outwordstring (
IN USHORT Port,
IN PUSHORT Buffer,
IN ULONG Count
);
VOID
__outdwordstring (
IN USHORT Port,
IN PULONG Buffer,
IN ULONG Count
);
#ifdef __cplusplus
}
#endif
#pragma intrinsic(__inbyte)
#pragma intrinsic(__inword)
#pragma intrinsic(__indword)
#pragma intrinsic(__outbyte)
#pragma intrinsic(__outword)
#pragma intrinsic(__outdword)
#pragma intrinsic(__inbytestring)
#pragma intrinsic(__inwordstring)
#pragma intrinsic(__indwordstring)
#pragma intrinsic(__outbytestring)
#pragma intrinsic(__outwordstring)
#pragma intrinsic(__outdwordstring)
//
// Interlocked intrinsic functions.
//
#define InterlockedAnd _InterlockedAnd
#define InterlockedOr _InterlockedOr
#define InterlockedXor _InterlockedXor
#define InterlockedIncrement _InterlockedIncrement
#define InterlockedDecrement _InterlockedDecrement
#define InterlockedAdd _InterlockedAdd
#define InterlockedExchange _InterlockedExchange
#define InterlockedExchangeAdd _InterlockedExchangeAdd
#define InterlockedCompareExchange _InterlockedCompareExchange
#define InterlockedAnd64 _InterlockedAnd64
#define InterlockedOr64 _InterlockedOr64
#define InterlockedXor64 _InterlockedXor64
#define InterlockedIncrement64 _InterlockedIncrement64
#define InterlockedDecrement64 _InterlockedDecrement64
#define InterlockedAdd64 _InterlockedAdd64
#define InterlockedExchange64 _InterlockedExchange64
#define InterlockedExchangeAdd64 _InterlockedExchangeAdd64
#define InterlockedCompareExchange64 _InterlockedCompareExchange64
#define InterlockedExchangePointer _InterlockedExchangePointer
#define InterlockedCompareExchangePointer _InterlockedCompareExchangePointer
#ifdef __cplusplus
extern "C" {
#endif
LONG
InterlockedAnd (
IN OUT LONG volatile *Destination,
IN LONG Value
);
LONG
InterlockedOr (
IN OUT LONG volatile *Destination,
IN LONG Value
);
LONG
InterlockedXor (
IN OUT LONG volatile *Destination,
IN LONG Value
);
LONG64
InterlockedAnd64 (
IN OUT LONG64 volatile *Destination,
IN LONG64 Value
);
LONG64
InterlockedOr64 (
IN OUT LONG64 volatile *Destination,
IN LONG64 Value
);
LONG64
InterlockedXor64 (
IN OUT LONG64 volatile *Destination,
IN LONG64 Value
);
LONG
InterlockedIncrement(
IN OUT LONG volatile *Addend
);
LONG
InterlockedDecrement(
IN OUT LONG volatile *Addend
);
LONG
InterlockedExchange(
IN OUT LONG volatile *Target,
IN LONG Value
);
LONG
InterlockedExchangeAdd(
IN OUT LONG volatile *Addend,
IN LONG Value
);
#if !defined(_X86AMD64_)
__forceinline
LONG
InterlockedAdd(
IN OUT LONG volatile *Addend,
IN LONG Value
)
{
return InterlockedExchangeAdd(Addend, Value) + Value;
}
#endif
LONG
InterlockedCompareExchange (
IN OUT LONG volatile *Destination,
IN LONG ExChange,
IN LONG Comperand
);
LONG64
InterlockedIncrement64(
IN OUT LONG64 volatile *Addend
);
LONG64
InterlockedDecrement64(
IN OUT LONG64 volatile *Addend
);
LONG64
InterlockedExchange64(
IN OUT LONG64 volatile *Target,
IN LONG64 Value
);
LONG64
InterlockedExchangeAdd64(
IN OUT LONG64 volatile *Addend,
IN LONG64 Value
);
#if !defined(_X86AMD64_)
__forceinline
LONG64
InterlockedAdd64(
IN OUT LONG64 volatile *Addend,
IN LONG64 Value
)
{
return InterlockedExchangeAdd64(Addend, Value) + Value;
}
#endif
LONG64
InterlockedCompareExchange64 (
IN OUT LONG64 volatile *Destination,
IN LONG64 ExChange,
IN LONG64 Comperand
);
PVOID
InterlockedCompareExchangePointer (
IN OUT PVOID volatile *Destination,
IN PVOID Exchange,
IN PVOID Comperand
);
PVOID
InterlockedExchangePointer(
IN OUT PVOID volatile *Target,
IN PVOID Value
);
#pragma intrinsic(_InterlockedAnd)
#pragma intrinsic(_InterlockedOr)
#pragma intrinsic(_InterlockedXor)
#pragma intrinsic(_InterlockedIncrement)
#pragma intrinsic(_InterlockedDecrement)
#pragma intrinsic(_InterlockedExchange)
#pragma intrinsic(_InterlockedExchangeAdd)
#pragma intrinsic(_InterlockedCompareExchange)
#pragma intrinsic(_InterlockedAnd64)
#pragma intrinsic(_InterlockedOr64)
#pragma intrinsic(_InterlockedXor64)
#pragma intrinsic(_InterlockedIncrement64)
#pragma intrinsic(_InterlockedDecrement64)
#pragma intrinsic(_InterlockedExchange64)
#pragma intrinsic(_InterlockedExchangeAdd64)
#pragma intrinsic(_InterlockedCompareExchange64)
#pragma intrinsic(_InterlockedExchangePointer)
#pragma intrinsic(_InterlockedCompareExchangePointer)
#ifdef __cplusplus
}
#endif
#endif // defined(_M_AMD64) && !defined(RC_INVOKED) && !defined(MIDL_PASS)
#if defined(_AMD64_)
//
// Types to use to contain PFNs and their counts.
//
typedef ULONG PFN_COUNT;
typedef LONG64 SPFN_NUMBER, *PSPFN_NUMBER;
typedef ULONG64 PFN_NUMBER, *PPFN_NUMBER;
//
// Define maximum size of flush multiple TB request.
//
#define FLUSH_MULTIPLE_MAXIMUM 16
//
// Indicate that the AMD64 compiler supports the allocate pragmas.
//
#define ALLOC_PRAGMA 1
#define ALLOC_DATA_PRAGMA 1
#define NORMAL_DISPATCH_LENGTH 106
#define DISPATCH_LENGTH NORMAL_DISPATCH_LENGTH
//
// Interrupt Request Level definitions
//
#define PASSIVE_LEVEL 0 // Passive release level
#define LOW_LEVEL 0 // Lowest interrupt level
#define APC_LEVEL 1 // APC interrupt level
#define DISPATCH_LEVEL 2 // Dispatcher level
#define CLOCK_LEVEL 13 // Interval clock level
#define IPI_LEVEL 14 // Interprocessor interrupt level
#define POWER_LEVEL 14 // Power failure level
#define PROFILE_LEVEL 15 // timer used for profiling.
#define HIGH_LEVEL 15 // Highest interrupt level
#if defined(NT_UP)
#define SYNCH_LEVEL DISPATCH_LEVEL // synchronization level
#else
#define SYNCH_LEVEL (IPI_LEVEL - 1) // synchronization level
#endif
#define IRQL_VECTOR_OFFSET 2 // offset from IRQL to vector / 16
//
// I/O space read and write macros.
//
// The READ/WRITE_REGISTER_* calls manipulate I/O registers in MEMORY space.
// (Use move instructions, with LOCK prefix to force correct behavior
// w.r.t. caches and write buffers.)
//
// The READ/WRITE_PORT_* calls manipulate I/O registers in PORT space.
// (Use in/out instructions.)
//
__forceinline
UCHAR
READ_REGISTER_UCHAR (
volatile UCHAR *Register
)
{
return *Register;
}
__forceinline
USHORT
READ_REGISTER_USHORT (
volatile USHORT *Register
)
{
return *Register;
}
__forceinline
ULONG
READ_REGISTER_ULONG (
volatile ULONG *Register
)
{
return *Register;
}
__forceinline
VOID
READ_REGISTER_BUFFER_UCHAR (
PUCHAR Register,
PUCHAR Buffer,
ULONG Count
)
{
__movsb(Register, Buffer, Count);
return;
}
__forceinline
VOID
READ_REGISTER_BUFFER_USHORT (
PUSHORT Register,
PUSHORT Buffer,
ULONG Count
)
{
__movsw(Register, Buffer, Count);
return;
}
__forceinline
VOID
READ_REGISTER_BUFFER_ULONG (
PULONG Register,
PULONG Buffer,
ULONG Count
)
{
__movsd(Register, Buffer, Count);
return;
}
__forceinline
VOID
WRITE_REGISTER_UCHAR (
PUCHAR Register,
UCHAR Value
)
{
LONG Synch;
*Register = Value;
InterlockedOr(&Synch, 1);
return;
}
__forceinline
VOID
WRITE_REGISTER_USHORT (
PUSHORT Register,
USHORT Value
)
{
LONG Synch;
*Register = Value;
InterlockedOr(&Synch, 1);
return;
}
__forceinline
VOID
WRITE_REGISTER_ULONG (
PULONG Register,
ULONG Value
)
{
LONG Synch;
*Register = Value;
InterlockedOr(&Synch, 1);
return;
}
__forceinline
VOID
WRITE_REGISTER_BUFFER_UCHAR (
PUCHAR Register,
PUCHAR Buffer,
ULONG Count
)
{
LONG Synch;
__movsb(Register, Buffer, Count);
InterlockedOr(&Synch, 1);
return;
}
__forceinline
VOID
WRITE_REGISTER_BUFFER_USHORT (
PUSHORT Register,
PUSHORT Buffer,
ULONG Count
)
{
LONG Synch;
__movsw(Register, Buffer, Count);
InterlockedOr(&Synch, 1);
return;
}
__forceinline
VOID
WRITE_REGISTER_BUFFER_ULONG (
PULONG Register,
PULONG Buffer,
ULONG Count
)
{
LONG Synch;
__movsd(Register, Buffer, Count);
InterlockedOr(&Synch, 1);
return;
}
__forceinline
UCHAR
READ_PORT_UCHAR (
PUCHAR Port
)
{
return __inbyte((USHORT)((ULONG64)Port));
}
__forceinline
USHORT
READ_PORT_USHORT (
PUSHORT Port
)
{
return __inword((USHORT)((ULONG64)Port));
}
__forceinline
ULONG
READ_PORT_ULONG (
PULONG Port
)
{
return __indword((USHORT)((ULONG64)Port));
}
__forceinline
VOID
READ_PORT_BUFFER_UCHAR (
PUCHAR Port,
PUCHAR Buffer,
ULONG Count
)
{
__inbytestring((USHORT)((ULONG64)Port), Buffer, Count);
return;
}
__forceinline
VOID
READ_PORT_BUFFER_USHORT (
PUSHORT Port,
PUSHORT Buffer,
ULONG Count
)
{
__inwordstring((USHORT)((ULONG64)Port), Buffer, Count);
return;
}
__forceinline
VOID
READ_PORT_BUFFER_ULONG (
PULONG Port,
PULONG Buffer,
ULONG Count
)
{
__indwordstring((USHORT)((ULONG64)Port), Buffer, Count);
return;
}
__forceinline
VOID
WRITE_PORT_UCHAR (
PUCHAR Port,
UCHAR Value
)
{
__outbyte((USHORT)((ULONG64)Port), Value);
return;
}
__forceinline
VOID
WRITE_PORT_USHORT (
PUSHORT Port,
USHORT Value
)
{
__outword((USHORT)((ULONG64)Port), Value);
return;
}
__forceinline
VOID
WRITE_PORT_ULONG (
PULONG Port,
ULONG Value
)
{
__outdword((USHORT)((ULONG64)Port), Value);
return;
}
__forceinline
VOID
WRITE_PORT_BUFFER_UCHAR (
PUCHAR Port,
PUCHAR Buffer,
ULONG Count
)
{
__outbytestring((USHORT)((ULONG64)Port), Buffer, Count);
return;
}
__forceinline
VOID
WRITE_PORT_BUFFER_USHORT (
PUSHORT Port,
PUSHORT Buffer,
ULONG Count
)
{
__outwordstring((USHORT)((ULONG64)Port), Buffer, Count);
return;
}
__forceinline
VOID
WRITE_PORT_BUFFER_ULONG (
PULONG Port,
PULONG Buffer,
ULONG Count
)
{
__outdwordstring((USHORT)((ULONG64)Port), Buffer, Count);
return;
}
//
// Get data cache fill size.
//
#if PRAGMA_DEPRECATED_DDK
#pragma deprecated(KeGetDcacheFillSize) // Use GetDmaAlignment
#endif
#define KeGetDcacheFillSize() 1L
#define KeFlushIoBuffers(Mdl, ReadOperation, DmaOperation)
#define ExAcquireSpinLock(Lock, OldIrql) KeAcquireSpinLock((Lock), (OldIrql))
#define ExReleaseSpinLock(Lock, OldIrql) KeReleaseSpinLock((Lock), (OldIrql))
#define ExAcquireSpinLockAtDpcLevel(Lock) KeAcquireSpinLockAtDpcLevel(Lock)
#define ExReleaseSpinLockFromDpcLevel(Lock) KeReleaseSpinLockFromDpcLevel(Lock)
#define KeQueryTickCount(CurrentCount ) \
*(PULONG64)(CurrentCount) = **((volatile ULONG64 **)(&KeTickCount));
//
// The nonvolatile floating state
//
typedef struct _KFLOATING_SAVE {
ULONG MxCsr;
} KFLOATING_SAVE, *PKFLOATING_SAVE;
//
// AMD64 Specific portions of mm component.
//
// Define the page size for the AMD64 as 4096 (0x1000).
//
#define PAGE_SIZE 0x1000
//
// Define the number of trailing zeroes in a page aligned virtual address.
// This is used as the shift count when shifting virtual addresses to
// virtual page numbers.
//
#define PAGE_SHIFT 12L
#define MmGetProcedureAddress(Address) (Address)
#define MmLockPagableCodeSection(Address) MmLockPagableDataSection(Address)
#if defined(_M_AMD64) && !defined(RC_INVOKED) && !defined(MIDL_PASS)
#endif // defined(_M_AMD64) && !defined(RC_INVOKED) && !defined(MIDL_PASS)
#if !defined(MIDL_PASS) && defined(_M_AMD64)
//
// AMD646 function prototype definitions
//
#endif // !defined(MIDL_PASS) && defined(_M_AMD64)
NTKERNELAPI
NTSTATUS
KeSaveFloatingPointState (
OUT PKFLOATING_SAVE SaveArea
);
NTKERNELAPI
NTSTATUS
KeRestoreFloatingPointState (
IN PKFLOATING_SAVE SaveArea
);
#endif // defined(_AMD64_)
#if defined(_AMD64_)
NTKERNELAPI
KIRQL
KeGetCurrentIrql (
VOID
);
NTKERNELAPI
VOID
KeLowerIrql (
IN KIRQL NewIrql
);
#define KeRaiseIrql(a,b) *(b) = KfRaiseIrql(a)
NTKERNELAPI
KIRQL
KfRaiseIrql (
IN KIRQL NewIrql
);
#endif // defined(_AMD64_)
#if defined(_IA64_)
//
// Types to use to contain PFNs and their counts.
//
typedef ULONG PFN_COUNT;
typedef LONG_PTR SPFN_NUMBER, *PSPFN_NUMBER;
typedef ULONG_PTR PFN_NUMBER, *PPFN_NUMBER;
//
// Define maximum size of flush multiple TB request.
//
#define FLUSH_MULTIPLE_MAXIMUM 100
//
// Indicate that the IA64 compiler supports the pragma textout construct.
//
#define ALLOC_PRAGMA 1
//
// Define intrinsic calls and their prototypes
//
#include "ia64reg.h"
#ifdef __cplusplus
extern "C" {
#endif
unsigned __int64 __getReg (int);
void __setReg (int, unsigned __int64);
void __isrlz (void);
void __dsrlz (void);
void __fwb (void);
void __mf (void);
void __mfa (void);
void __synci (void);
__int64 __thash (__int64);
__int64 __ttag (__int64);
void __ptcl (__int64, __int64);
void __ptcg (__int64, __int64);
void __ptcga (__int64, __int64);
void __ptri (__int64, __int64);
void __ptrd (__int64, __int64);
void __invalat (void);
void __break (int);
void __fc (__int64);
void __sum (int);
void __rsm (int);
void _ReleaseSpinLock( unsigned __int64 *);
#ifdef _M_IA64
#pragma intrinsic (__getReg)
#pragma intrinsic (__setReg)
#pragma intrinsic (__isrlz)
#pragma intrinsic (__dsrlz)
#pragma intrinsic (__fwb)
#pragma intrinsic (__mf)
#pragma intrinsic (__mfa)
#pragma intrinsic (__synci)
#pragma intrinsic (__thash)
#pragma intrinsic (__ttag)
#pragma intrinsic (__ptcl)
#pragma intrinsic (__ptcg)
#pragma intrinsic (__ptcga)
#pragma intrinsic (__ptri)
#pragma intrinsic (__ptrd)
#pragma intrinsic (__invalat)
#pragma intrinsic (__break)
#pragma intrinsic (__fc)
#pragma intrinsic (__sum)
#pragma intrinsic (__rsm)
#pragma intrinsic (_ReleaseSpinLock)
#endif // _M_IA64
#ifdef __cplusplus
}
#endif
//
// Define length of interrupt vector table.
//
#define MAXIMUM_VECTOR 256
//
// IA64 Interrupt Definitions.
//
// Define length of interrupt object dispatch code in longwords.
//
#define DISPATCH_LENGTH 2*2 // Length of dispatch code template in 32-bit words
//
// Begin of a block of definitions that must be synchronized with kxia64.h.
//
//
// Define Interrupt Request Levels.
//
#define PASSIVE_LEVEL 0 // Passive release level
#define LOW_LEVEL 0 // Lowest interrupt level
#define APC_LEVEL 1 // APC interrupt level
#define DISPATCH_LEVEL 2 // Dispatcher level
#define CMC_LEVEL 3 // Correctable machine check level
#define DEVICE_LEVEL_BASE 4 // 4 - 11 - Device IRQLs
#define PC_LEVEL 12 // Performance Counter IRQL
#define IPI_LEVEL 14 // IPI IRQL
#define CLOCK_LEVEL 13 // Clock Timer IRQL
#define POWER_LEVEL 15 // Power failure level
#define PROFILE_LEVEL 15 // Profiling level
#define HIGH_LEVEL 15 // Highest interrupt level
#if defined(NT_UP)
#define SYNCH_LEVEL DISPATCH_LEVEL // Synchronization level - UP
#else
#define SYNCH_LEVEL (IPI_LEVEL-1) // Synchronization level - MP
#endif
//
// The current IRQL is maintained in the TPR.mic field. The
// shift count is the number of bits to shift right to extract the
// IRQL from the TPR. See the GET/SET_IRQL macros.
//
#define TPR_MIC 4
#define TPR_IRQL_SHIFT TPR_MIC
// To go from vector number <-> IRQL we just do a shift
#define VECTOR_IRQL_SHIFT TPR_IRQL_SHIFT
//
// Interrupt Vector Definitions
//
#define APC_VECTOR APC_LEVEL << VECTOR_IRQL_SHIFT
#define DISPATCH_VECTOR DISPATCH_LEVEL << VECTOR_IRQL_SHIFT
//
// End of a block of definitions that must be synchronized with kxia64.h.
//
//
// Define profile intervals.
//
#define DEFAULT_PROFILE_COUNT 0x40000000 // ~= 20 seconds @50mhz
#define DEFAULT_PROFILE_INTERVAL (10 * 500) // 500 microseconds
#define MAXIMUM_PROFILE_INTERVAL (10 * 1000 * 1000) // 1 second
#define MINIMUM_PROFILE_INTERVAL (10 * 40) // 40 microseconds
#if defined(_M_IA64) && !defined(RC_INVOKED)
#define InterlockedAdd _InterlockedAdd
#define InterlockedIncrement _InterlockedIncrement
#define InterlockedDecrement _InterlockedDecrement
#define InterlockedExchange _InterlockedExchange
#define InterlockedExchangeAdd _InterlockedExchangeAdd
#define InterlockedAdd64 _InterlockedAdd64
#define InterlockedIncrement64 _InterlockedIncrement64
#define InterlockedDecrement64 _InterlockedDecrement64
#define InterlockedExchange64 _InterlockedExchange64
#define InterlockedExchangeAdd64 _InterlockedExchangeAdd64
#define InterlockedCompareExchange64 _InterlockedCompareExchange64
#define InterlockedCompareExchange _InterlockedCompareExchange
#define InterlockedExchangePointer _InterlockedExchangePointer
#define InterlockedCompareExchangePointer _InterlockedCompareExchangePointer
#ifdef __cplusplus
extern "C" {
#endif
LONG
__cdecl
InterlockedAdd (
LONG volatile *Addend,
LONG Value
);
LONGLONG
__cdecl
InterlockedAdd64 (
LONGLONG volatile *Addend,
LONGLONG Value
);
LONG
__cdecl
InterlockedIncrement(
IN OUT LONG volatile *Addend
);
LONG
__cdecl
InterlockedDecrement(
IN OUT LONG volatile *Addend
);
LONG
__cdecl
InterlockedExchange(
IN OUT LONG volatile *Target,
IN LONG Value
);
LONG
__cdecl
InterlockedExchangeAdd(
IN OUT LONG volatile *Addend,
IN LONG Value
);
LONG
__cdecl
InterlockedCompareExchange (
IN OUT LONG volatile *Destination,
IN LONG ExChange,
IN LONG Comperand
);
LONGLONG
__cdecl
InterlockedIncrement64(
IN OUT LONGLONG volatile *Addend
);
LONGLONG
__cdecl
InterlockedDecrement64(
IN OUT LONGLONG volatile *Addend
);
LONGLONG
__cdecl
InterlockedExchange64(
IN OUT LONGLONG volatile *Target,
IN LONGLONG Value
);
LONGLONG
__cdecl
InterlockedExchangeAdd64(
IN OUT LONGLONG volatile *Addend,
IN LONGLONG Value
);
LONGLONG
__cdecl
InterlockedCompareExchange64 (
IN OUT LONGLONG volatile *Destination,
IN LONGLONG ExChange,
IN LONGLONG Comperand
);
PVOID
__cdecl
InterlockedCompareExchangePointer (
IN OUT PVOID volatile *Destination,
IN PVOID Exchange,
IN PVOID Comperand
);
PVOID
__cdecl
InterlockedExchangePointer(
IN OUT PVOID volatile *Target,
IN PVOID Value
);
#pragma intrinsic(_InterlockedAdd)
#pragma intrinsic(_InterlockedIncrement)
#pragma intrinsic(_InterlockedDecrement)
#pragma intrinsic(_InterlockedExchange)
#pragma intrinsic(_InterlockedCompareExchange)
#pragma intrinsic(_InterlockedExchangeAdd)
#pragma intrinsic(_InterlockedAdd64)
#pragma intrinsic(_InterlockedIncrement64)
#pragma intrinsic(_InterlockedDecrement64)
#pragma intrinsic(_InterlockedExchange64)
#pragma intrinsic(_InterlockedCompareExchange64)
#pragma intrinsic(_InterlockedExchangeAdd64)
#pragma intrinsic(_InterlockedExchangePointer)
#pragma intrinsic(_InterlockedCompareExchangePointer)
#ifdef __cplusplus
}
#endif
#endif // defined(_M_IA64) && !defined(RC_INVOKED)
#define KI_USER_SHARED_DATA ((ULONG_PTR)(KADDRESS_BASE + 0xFFFE0000))
#define SharedUserData ((KUSER_SHARED_DATA * const)KI_USER_SHARED_DATA)
//
// Prototype for get current IRQL. **** TBD (read TPR)
//
NTKERNELAPI
KIRQL
KeGetCurrentIrql();
#define KeSaveFloatingPointState(a) STATUS_SUCCESS
#define KeRestoreFloatingPointState(a) STATUS_SUCCESS
//
// Define the page size
//
#define PAGE_SIZE 0x2000
//
// Define the number of trailing zeroes in a page aligned virtual address.
// This is used as the shift count when shifting virtual addresses to
// virtual page numbers.
//
#define PAGE_SHIFT 13L
//
// Cache and write buffer flush functions.
//
NTKERNELAPI
VOID
KeFlushIoBuffers (
IN PMDL Mdl,
IN BOOLEAN ReadOperation,
IN BOOLEAN DmaOperation
);
//
// Kernel breakin breakpoint
//
VOID
KeBreakinBreakpoint (
VOID
);
#define ExAcquireSpinLock(Lock, OldIrql) KeAcquireSpinLock((Lock), (OldIrql))
#define ExReleaseSpinLock(Lock, OldIrql) KeReleaseSpinLock((Lock), (OldIrql))
#define ExAcquireSpinLockAtDpcLevel(Lock) KeAcquireSpinLockAtDpcLevel(Lock)
#define ExReleaseSpinLockFromDpcLevel(Lock) KeReleaseSpinLockFromDpcLevel(Lock)
#define KeQueryTickCount(CurrentCount ) \
*(PULONGLONG)(CurrentCount) = **((volatile ULONGLONG **)(&KeTickCount));
//
// I/O space read and write macros.
//
NTHALAPI
UCHAR
READ_PORT_UCHAR (
PUCHAR RegisterAddress
);
NTHALAPI
USHORT
READ_PORT_USHORT (
PUSHORT RegisterAddress
);
NTHALAPI
ULONG
READ_PORT_ULONG (
PULONG RegisterAddress
);
NTHALAPI
VOID
READ_PORT_BUFFER_UCHAR (
PUCHAR portAddress,
PUCHAR readBuffer,
ULONG readCount
);
NTHALAPI
VOID
READ_PORT_BUFFER_USHORT (
PUSHORT portAddress,
PUSHORT readBuffer,
ULONG readCount
);
NTHALAPI
VOID
READ_PORT_BUFFER_ULONG (
PULONG portAddress,
PULONG readBuffer,
ULONG readCount
);
NTHALAPI
VOID
WRITE_PORT_UCHAR (
PUCHAR portAddress,
UCHAR Data
);
NTHALAPI
VOID
WRITE_PORT_USHORT (
PUSHORT portAddress,
USHORT Data
);
NTHALAPI
VOID
WRITE_PORT_ULONG (
PULONG portAddress,
ULONG Data
);
NTHALAPI
VOID
WRITE_PORT_BUFFER_UCHAR (
PUCHAR portAddress,
PUCHAR writeBuffer,
ULONG writeCount
);
NTHALAPI
VOID
WRITE_PORT_BUFFER_USHORT (
PUSHORT portAddress,
PUSHORT writeBuffer,
ULONG writeCount
);
NTHALAPI
VOID
WRITE_PORT_BUFFER_ULONG (
PULONG portAddress,
PULONG writeBuffer,
ULONG writeCount
);
#define READ_REGISTER_UCHAR(x) \
(__mf(), *(volatile UCHAR * const)(x))
#define READ_REGISTER_USHORT(x) \
(__mf(), *(volatile USHORT * const)(x))
#define READ_REGISTER_ULONG(x) \
(__mf(), *(volatile ULONG * const)(x))
#define READ_REGISTER_BUFFER_UCHAR(x, y, z) { \
PUCHAR registerBuffer = x; \
PUCHAR readBuffer = y; \
ULONG readCount; \
__mf(); \
for (readCount = z; readCount--; readBuffer++, registerBuffer++) { \
*readBuffer = *(volatile UCHAR * const)(registerBuffer); \
} \
}
#define READ_REGISTER_BUFFER_USHORT(x, y, z) { \
PUSHORT registerBuffer = x; \
PUSHORT readBuffer = y; \
ULONG readCount; \
__mf(); \
for (readCount = z; readCount--; readBuffer++, registerBuffer++) { \
*readBuffer = *(volatile USHORT * const)(registerBuffer); \
} \
}
#define READ_REGISTER_BUFFER_ULONG(x, y, z) { \
PULONG registerBuffer = x; \
PULONG readBuffer = y; \
ULONG readCount; \
__mf(); \
for (readCount = z; readCount--; readBuffer++, registerBuffer++) { \
*readBuffer = *(volatile ULONG * const)(registerBuffer); \
} \
}
#define WRITE_REGISTER_UCHAR(x, y) { \
*(volatile UCHAR * const)(x) = y; \
KeFlushWriteBuffer(); \
}
#define WRITE_REGISTER_USHORT(x, y) { \
*(volatile USHORT * const)(x) = y; \
KeFlushWriteBuffer(); \
}
#define WRITE_REGISTER_ULONG(x, y) { \
*(volatile ULONG * const)(x) = y; \
KeFlushWriteBuffer(); \
}
#define WRITE_REGISTER_BUFFER_UCHAR(x, y, z) { \
PUCHAR registerBuffer = x; \
PUCHAR writeBuffer = y; \
ULONG writeCount; \
for (writeCount = z; writeCount--; writeBuffer++, registerBuffer++) { \
*(volatile UCHAR * const)(registerBuffer) = *writeBuffer; \
} \
KeFlushWriteBuffer(); \
}
#define WRITE_REGISTER_BUFFER_USHORT(x, y, z) { \
PUSHORT registerBuffer = x; \
PUSHORT writeBuffer = y; \
ULONG writeCount; \
for (writeCount = z; writeCount--; writeBuffer++, registerBuffer++) { \
*(volatile USHORT * const)(registerBuffer) = *writeBuffer; \
} \
KeFlushWriteBuffer(); \
}
#define WRITE_REGISTER_BUFFER_ULONG(x, y, z) { \
PULONG registerBuffer = x; \
PULONG writeBuffer = y; \
ULONG writeCount; \
for (writeCount = z; writeCount--; writeBuffer++, registerBuffer++) { \
*(volatile ULONG * const)(registerBuffer) = *writeBuffer; \
} \
KeFlushWriteBuffer(); \
}
//
// Non-volatile floating point state
//
typedef struct _KFLOATING_SAVE {
ULONG Reserved;
} KFLOATING_SAVE, *PKFLOATING_SAVE;
#define MmGetProcedureAddress(Address) (Address)
#define MmLockPagableCodeSection(PLabelAddress) \
MmLockPagableDataSection((PVOID)(*((PULONGLONG)PLabelAddress)))
#define VRN_MASK 0xE000000000000000UI64 // Virtual Region Number mask
//
// The lowest address for system space.
//
#define MM_LOWEST_SYSTEM_ADDRESS ((PVOID)((ULONG_PTR)(KADDRESS_BASE + 0xC0C00000)))
#endif // defined(_IA64_)
//
// Event Specific Access Rights.
//
#define EVENT_QUERY_STATE 0x0001
#define EVENT_MODIFY_STATE 0x0002
#define EVENT_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED|SYNCHRONIZE|0x3)
//
// Semaphore Specific Access Rights.
//
#define SEMAPHORE_QUERY_STATE 0x0001
#define SEMAPHORE_MODIFY_STATE 0x0002
#define SEMAPHORE_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED|SYNCHRONIZE|0x3)
//
// Defined processor features
//
#define PF_FLOATING_POINT_PRECISION_ERRATA 0
#define PF_FLOATING_POINT_EMULATED 1
#define PF_COMPARE_EXCHANGE_DOUBLE 2
#define PF_MMX_INSTRUCTIONS_AVAILABLE 3
#define PF_PPC_MOVEMEM_64BIT_OK 4
#define PF_ALPHA_BYTE_INSTRUCTIONS 5
#define PF_XMMI_INSTRUCTIONS_AVAILABLE 6
#define PF_3DNOW_INSTRUCTIONS_AVAILABLE 7
#define PF_RDTSC_INSTRUCTION_AVAILABLE 8
#define PF_PAE_ENABLED 9
#define PF_XMMI64_INSTRUCTIONS_AVAILABLE 10
typedef enum _ALTERNATIVE_ARCHITECTURE_TYPE {
StandardDesign, // None == 0 == standard design
NEC98x86, // NEC PC98xx series on X86
EndAlternatives // past end of known alternatives
} ALTERNATIVE_ARCHITECTURE_TYPE;
// correctly define these run-time definitions for non X86 machines
#ifndef _X86_
#ifndef IsNEC_98
#define IsNEC_98 (FALSE)
#endif
#ifndef IsNotNEC_98
#define IsNotNEC_98 (TRUE)
#endif
#ifndef SetNEC_98
#define SetNEC_98
#endif
#ifndef SetNotNEC_98
#define SetNotNEC_98
#endif
#endif
#define PROCESSOR_FEATURE_MAX 64
//
// Predefined Value Types.
//
#define REG_NONE ( 0 ) // No value type
#define REG_SZ ( 1 ) // Unicode nul terminated string
#define REG_EXPAND_SZ ( 2 ) // Unicode nul terminated string
// (with environment variable references)
#define REG_BINARY ( 3 ) // Free form binary
#define REG_DWORD ( 4 ) // 32-bit number
#define REG_DWORD_LITTLE_ENDIAN ( 4 ) // 32-bit number (same as REG_DWORD)
#define REG_DWORD_BIG_ENDIAN ( 5 ) // 32-bit number
#define REG_LINK ( 6 ) // Symbolic Link (unicode)
#define REG_MULTI_SZ ( 7 ) // Multiple Unicode strings
#define REG_RESOURCE_LIST ( 8 ) // Resource list in the resource map
#define REG_FULL_RESOURCE_DESCRIPTOR ( 9 ) // Resource list in the hardware description
#define REG_RESOURCE_REQUIREMENTS_LIST ( 10 )
#define REG_QWORD ( 11 ) // 64-bit number
#define REG_QWORD_LITTLE_ENDIAN ( 11 ) // 64-bit number (same as REG_QWORD)
//
// Service Types (Bit Mask)
//
#define SERVICE_KERNEL_DRIVER 0x00000001
#define SERVICE_FILE_SYSTEM_DRIVER 0x00000002
#define SERVICE_ADAPTER 0x00000004
#define SERVICE_RECOGNIZER_DRIVER 0x00000008
#define SERVICE_DRIVER (SERVICE_KERNEL_DRIVER | \
SERVICE_FILE_SYSTEM_DRIVER | \
SERVICE_RECOGNIZER_DRIVER)
#define SERVICE_WIN32_OWN_PROCESS 0x00000010
#define SERVICE_WIN32_SHARE_PROCESS 0x00000020
#define SERVICE_WIN32 (SERVICE_WIN32_OWN_PROCESS | \
SERVICE_WIN32_SHARE_PROCESS)
#define SERVICE_INTERACTIVE_PROCESS 0x00000100
#define SERVICE_TYPE_ALL (SERVICE_WIN32 | \
SERVICE_ADAPTER | \
SERVICE_DRIVER | \
SERVICE_INTERACTIVE_PROCESS)
//
// Start Type
//
#define SERVICE_BOOT_START 0x00000000
#define SERVICE_SYSTEM_START 0x00000001
#define SERVICE_AUTO_START 0x00000002
#define SERVICE_DEMAND_START 0x00000003
#define SERVICE_DISABLED 0x00000004
//
// Error control type
//
#define SERVICE_ERROR_IGNORE 0x00000000
#define SERVICE_ERROR_NORMAL 0x00000001
#define SERVICE_ERROR_SEVERE 0x00000002
#define SERVICE_ERROR_CRITICAL 0x00000003
//
//
// Define the registry driver node enumerations
//
typedef enum _CM_SERVICE_NODE_TYPE {
DriverType = SERVICE_KERNEL_DRIVER,
FileSystemType = SERVICE_FILE_SYSTEM_DRIVER,
Win32ServiceOwnProcess = SERVICE_WIN32_OWN_PROCESS,
Win32ServiceShareProcess = SERVICE_WIN32_SHARE_PROCESS,
AdapterType = SERVICE_ADAPTER,
RecognizerType = SERVICE_RECOGNIZER_DRIVER
} SERVICE_NODE_TYPE;
typedef enum _CM_SERVICE_LOAD_TYPE {
BootLoad = SERVICE_BOOT_START,
SystemLoad = SERVICE_SYSTEM_START,
AutoLoad = SERVICE_AUTO_START,
DemandLoad = SERVICE_DEMAND_START,
DisableLoad = SERVICE_DISABLED
} SERVICE_LOAD_TYPE;
typedef enum _CM_ERROR_CONTROL_TYPE {
IgnoreError = SERVICE_ERROR_IGNORE,
NormalError = SERVICE_ERROR_NORMAL,
SevereError = SERVICE_ERROR_SEVERE,
CriticalError = SERVICE_ERROR_CRITICAL
} SERVICE_ERROR_TYPE;
//
// Resource List definitions
//
//
// Defines the Type in the RESOURCE_DESCRIPTOR
//
// NOTE: For all CM_RESOURCE_TYPE values, there must be a
// corresponding ResType value in the 32-bit ConfigMgr headerfile
// (cfgmgr32.h). Values in the range [0x6,0x80) use the same values
// as their ConfigMgr counterparts. CM_RESOURCE_TYPE values with
// the high bit set (i.e., in the range [0x80,0xFF]), are
// non-arbitrated resources. These correspond to the same values
// in cfgmgr32.h that have their high bit set (however, since
// cfgmgr32.h uses 16 bits for ResType values, these values are in
// the range [0x8000,0x807F). Note that ConfigMgr ResType values
// cannot be in the range [0x8080,0xFFFF), because they would not
// be able to map into CM_RESOURCE_TYPE values. (0xFFFF itself is
// a special value, because it maps to CmResourceTypeDeviceSpecific.)
//
typedef int CM_RESOURCE_TYPE;
// CmResourceTypeNull is reserved
#define CmResourceTypeNull 0 // ResType_All or ResType_None (0x0000)
#define CmResourceTypePort 1 // ResType_IO (0x0002)
#define CmResourceTypeInterrupt 2 // ResType_IRQ (0x0004)
#define CmResourceTypeMemory 3 // ResType_Mem (0x0001)
#define CmResourceTypeDma 4 // ResType_DMA (0x0003)
#define CmResourceTypeDeviceSpecific 5 // ResType_ClassSpecific (0xFFFF)
#define CmResourceTypeBusNumber 6 // ResType_BusNumber (0x0006)
#define CmResourceTypeNonArbitrated 128 // Not arbitrated if 0x80 bit set
#define CmResourceTypeConfigData 128 // ResType_Reserved (0x8000)
#define CmResourceTypeDevicePrivate 129 // ResType_DevicePrivate (0x8001)
#define CmResourceTypePcCardConfig 130 // ResType_PcCardConfig (0x8002)
#define CmResourceTypeMfCardConfig 131 // ResType_MfCardConfig (0x8003)
//
// Defines the ShareDisposition in the RESOURCE_DESCRIPTOR
//
typedef enum _CM_SHARE_DISPOSITION {
CmResourceShareUndetermined = 0, // Reserved
CmResourceShareDeviceExclusive,
CmResourceShareDriverExclusive,
CmResourceShareShared
} CM_SHARE_DISPOSITION;
//
// Define the bit masks for Flags when type is CmResourceTypeInterrupt
//
#define CM_RESOURCE_INTERRUPT_LEVEL_SENSITIVE 0
#define CM_RESOURCE_INTERRUPT_LATCHED 1
//
// Define the bit masks for Flags when type is CmResourceTypeMemory
//
#define CM_RESOURCE_MEMORY_READ_WRITE 0x0000
#define CM_RESOURCE_MEMORY_READ_ONLY 0x0001
#define CM_RESOURCE_MEMORY_WRITE_ONLY 0x0002
#define CM_RESOURCE_MEMORY_PREFETCHABLE 0x0004
#define CM_RESOURCE_MEMORY_COMBINEDWRITE 0x0008
#define CM_RESOURCE_MEMORY_24 0x0010
#define CM_RESOURCE_MEMORY_CACHEABLE 0x0020
//
// Define the bit masks for Flags when type is CmResourceTypePort
//
#define CM_RESOURCE_PORT_MEMORY 0x0000
#define CM_RESOURCE_PORT_IO 0x0001
#define CM_RESOURCE_PORT_10_BIT_DECODE 0x0004
#define CM_RESOURCE_PORT_12_BIT_DECODE 0x0008
#define CM_RESOURCE_PORT_16_BIT_DECODE 0x0010
#define CM_RESOURCE_PORT_POSITIVE_DECODE 0x0020
#define CM_RESOURCE_PORT_PASSIVE_DECODE 0x0040
#define CM_RESOURCE_PORT_WINDOW_DECODE 0x0080
//
// Define the bit masks for Flags when type is CmResourceTypeDma
//
#define CM_RESOURCE_DMA_8 0x0000
#define CM_RESOURCE_DMA_16 0x0001
#define CM_RESOURCE_DMA_32 0x0002
#define CM_RESOURCE_DMA_8_AND_16 0x0004
#define CM_RESOURCE_DMA_BUS_MASTER 0x0008
#define CM_RESOURCE_DMA_TYPE_A 0x0010
#define CM_RESOURCE_DMA_TYPE_B 0x0020
#define CM_RESOURCE_DMA_TYPE_F 0x0040
//
// This structure defines one type of resource used by a driver.
//
// There can only be *1* DeviceSpecificData block. It must be located at
// the end of all resource descriptors in a full descriptor block.
//
//
// Make sure alignment is made properly by compiler; otherwise move
// flags back to the top of the structure (common to all members of the
// union).
//
#include "pshpack4.h"
typedef struct _CM_PARTIAL_RESOURCE_DESCRIPTOR {
UCHAR Type;
UCHAR ShareDisposition;
USHORT Flags;
union {
//
// Range of resources, inclusive. These are physical, bus relative.
// It is known that Port and Memory below have the exact same layout
// as Generic.
//
struct {
PHYSICAL_ADDRESS Start;
ULONG Length;
} Generic;
//
//
struct {
PHYSICAL_ADDRESS Start;
ULONG Length;
} Port;
//
//
struct {
ULONG Level;
ULONG Vector;
KAFFINITY Affinity;
} Interrupt;
//
// Range of memory addresses, inclusive. These are physical, bus
// relative. The value should be the same as the one passed to
// HalTranslateBusAddress().
//
struct {
PHYSICAL_ADDRESS Start; // 64 bit physical addresses.
ULONG Length;
} Memory;
//
// Physical DMA channel.
//
struct {
ULONG Channel;
ULONG Port;
ULONG Reserved1;
} Dma;
//
// Device driver private data, usually used to help it figure
// what the resource assignments decisions that were made.
//
struct {
ULONG Data[3];
} DevicePrivate;
//
// Bus Number information.
//
struct {
ULONG Start;
ULONG Length;
ULONG Reserved;
} BusNumber;
//
// Device Specific information defined by the driver.
// The DataSize field indicates the size of the data in bytes. The
// data is located immediately after the DeviceSpecificData field in
// the structure.
//
struct {
ULONG DataSize;
ULONG Reserved1;
ULONG Reserved2;
} DeviceSpecificData;
} u;
} CM_PARTIAL_RESOURCE_DESCRIPTOR, *PCM_PARTIAL_RESOURCE_DESCRIPTOR;
#include "poppack.h"
//
// A Partial Resource List is what can be found in the ARC firmware
// or will be generated by ntdetect.com.
// The configuration manager will transform this structure into a Full
// resource descriptor when it is about to store it in the regsitry.
//
// Note: There must a be a convention to the order of fields of same type,
// (defined on a device by device basis) so that the fields can make sense
// to a driver (i.e. when multiple memory ranges are necessary).
//
typedef struct _CM_PARTIAL_RESOURCE_LIST {
USHORT Version;
USHORT Revision;
ULONG Count;
CM_PARTIAL_RESOURCE_DESCRIPTOR PartialDescriptors[1];
} CM_PARTIAL_RESOURCE_LIST, *PCM_PARTIAL_RESOURCE_LIST;
//
// A Full Resource Descriptor is what can be found in the registry.
// This is what will be returned to a driver when it queries the registry
// to get device information; it will be stored under a key in the hardware
// description tree.
//
// Note: There must a be a convention to the order of fields of same type,
// (defined on a device by device basis) so that the fields can make sense
// to a driver (i.e. when multiple memory ranges are necessary).
//
typedef struct _CM_FULL_RESOURCE_DESCRIPTOR {
INTERFACE_TYPE DoNotUse1;
ULONG DoNotUse2;
CM_PARTIAL_RESOURCE_LIST PartialResourceList;
} CM_FULL_RESOURCE_DESCRIPTOR, *PCM_FULL_RESOURCE_DESCRIPTOR;
//
// The Resource list is what will be stored by the drivers into the
// resource map via the IO API.
//
typedef struct _CM_RESOURCE_LIST {
ULONG Count;
CM_FULL_RESOURCE_DESCRIPTOR List[1];
} CM_RESOURCE_LIST, *PCM_RESOURCE_LIST;
//
// Define the structures used to interpret configuration data of
// \\Registry\machine\hardware\description tree.
// Basically, these structures are used to interpret component
// sepcific data.
//
//
// Define DEVICE_FLAGS
//
typedef struct _DEVICE_FLAGS {
ULONG Failed : 1;
ULONG ReadOnly : 1;
ULONG Removable : 1;
ULONG ConsoleIn : 1;
ULONG ConsoleOut : 1;
ULONG Input : 1;
ULONG Output : 1;
} DEVICE_FLAGS, *PDEVICE_FLAGS;
//
// Define Component Information structure
//
typedef struct _CM_COMPONENT_INFORMATION {
DEVICE_FLAGS Flags;
ULONG Version;
ULONG Key;
KAFFINITY AffinityMask;
} CM_COMPONENT_INFORMATION, *PCM_COMPONENT_INFORMATION;
//
// The following structures are used to interpret x86
// DeviceSpecificData of CM_PARTIAL_RESOURCE_DESCRIPTOR.
// (Most of the structures are defined by BIOS. They are
// not aligned on word (or dword) boundary.
//
//
// Define the Rom Block structure
//
typedef struct _CM_ROM_BLOCK {
ULONG Address;
ULONG Size;
} CM_ROM_BLOCK, *PCM_ROM_BLOCK;
#include "pshpack1.h"
//
// Define INT13 driver parameter block
//
typedef struct _CM_INT13_DRIVE_PARAMETER {
USHORT DriveSelect;
ULONG MaxCylinders;
USHORT SectorsPerTrack;
USHORT MaxHeads;
USHORT NumberDrives;
} CM_INT13_DRIVE_PARAMETER, *PCM_INT13_DRIVE_PARAMETER;
//
// Define Mca POS data block for slot
//
typedef struct _CM_MCA_POS_DATA {
USHORT AdapterId;
UCHAR PosData1;
UCHAR PosData2;
UCHAR PosData3;
UCHAR PosData4;
} CM_MCA_POS_DATA, *PCM_MCA_POS_DATA;
//
// Memory configuration of eisa data block structure
//
typedef struct _EISA_MEMORY_TYPE {
UCHAR ReadWrite: 1;
UCHAR Cached : 1;
UCHAR Reserved0 :1;
UCHAR Type:2;
UCHAR Shared:1;
UCHAR Reserved1 :1;
UCHAR MoreEntries : 1;
} EISA_MEMORY_TYPE, *PEISA_MEMORY_TYPE;
typedef struct _EISA_MEMORY_CONFIGURATION {
EISA_MEMORY_TYPE ConfigurationByte;
UCHAR DataSize;
USHORT AddressLowWord;
UCHAR AddressHighByte;
USHORT MemorySize;
} EISA_MEMORY_CONFIGURATION, *PEISA_MEMORY_CONFIGURATION;
//
// Interrupt configurationn of eisa data block structure
//
typedef struct _EISA_IRQ_DESCRIPTOR {
UCHAR Interrupt : 4;
UCHAR Reserved :1;
UCHAR LevelTriggered :1;
UCHAR Shared : 1;
UCHAR MoreEntries : 1;
} EISA_IRQ_DESCRIPTOR, *PEISA_IRQ_DESCRIPTOR;
typedef struct _EISA_IRQ_CONFIGURATION {
EISA_IRQ_DESCRIPTOR ConfigurationByte;
UCHAR Reserved;
} EISA_IRQ_CONFIGURATION, *PEISA_IRQ_CONFIGURATION;
//
// DMA description of eisa data block structure
//
typedef struct _DMA_CONFIGURATION_BYTE0 {
UCHAR Channel : 3;
UCHAR Reserved : 3;
UCHAR Shared :1;
UCHAR MoreEntries :1;
} DMA_CONFIGURATION_BYTE0;
typedef struct _DMA_CONFIGURATION_BYTE1 {
UCHAR Reserved0 : 2;
UCHAR TransferSize : 2;
UCHAR Timing : 2;
UCHAR Reserved1 : 2;
} DMA_CONFIGURATION_BYTE1;
typedef struct _EISA_DMA_CONFIGURATION {
DMA_CONFIGURATION_BYTE0 ConfigurationByte0;
DMA_CONFIGURATION_BYTE1 ConfigurationByte1;
} EISA_DMA_CONFIGURATION, *PEISA_DMA_CONFIGURATION;
//
// Port description of eisa data block structure
//
typedef struct _EISA_PORT_DESCRIPTOR {
UCHAR NumberPorts : 5;
UCHAR Reserved :1;
UCHAR Shared :1;
UCHAR MoreEntries : 1;
} EISA_PORT_DESCRIPTOR, *PEISA_PORT_DESCRIPTOR;
typedef struct _EISA_PORT_CONFIGURATION {
EISA_PORT_DESCRIPTOR Configuration;
USHORT PortAddress;
} EISA_PORT_CONFIGURATION, *PEISA_PORT_CONFIGURATION;
//
// Eisa slot information definition
// N.B. This structure is different from the one defined
// in ARC eisa addendum.
//
typedef struct _CM_EISA_SLOT_INFORMATION {
UCHAR ReturnCode;
UCHAR ReturnFlags;
UCHAR MajorRevision;
UCHAR MinorRevision;
USHORT Checksum;
UCHAR NumberFunctions;
UCHAR FunctionInformation;
ULONG CompressedId;
} CM_EISA_SLOT_INFORMATION, *PCM_EISA_SLOT_INFORMATION;
//
// Eisa function information definition
//
typedef struct _CM_EISA_FUNCTION_INFORMATION {
ULONG CompressedId;
UCHAR IdSlotFlags1;
UCHAR IdSlotFlags2;
UCHAR MinorRevision;
UCHAR MajorRevision;
UCHAR Selections[26];
UCHAR FunctionFlags;
UCHAR TypeString[80];
EISA_MEMORY_CONFIGURATION EisaMemory[9];
EISA_IRQ_CONFIGURATION EisaIrq[7];
EISA_DMA_CONFIGURATION EisaDma[4];
EISA_PORT_CONFIGURATION EisaPort[20];
UCHAR InitializationData[60];
} CM_EISA_FUNCTION_INFORMATION, *PCM_EISA_FUNCTION_INFORMATION;
//
// The following defines the way pnp bios information is stored in
// the registry \\HKEY_LOCAL_MACHINE\HARDWARE\Description\System\MultifunctionAdapter\x
// key, where x is an integer number indicating adapter instance. The
// "Identifier" of the key must equal to "PNP BIOS" and the
// "ConfigurationData" is organized as follow:
//
// CM_PNP_BIOS_INSTALLATION_CHECK +
// CM_PNP_BIOS_DEVICE_NODE for device 1 +
// CM_PNP_BIOS_DEVICE_NODE for device 2 +
// ...
// CM_PNP_BIOS_DEVICE_NODE for device n
//
//
// Pnp BIOS device node structure
//
typedef struct _CM_PNP_BIOS_DEVICE_NODE {
USHORT Size;
UCHAR Node;
ULONG ProductId;
UCHAR DeviceType[3];
USHORT DeviceAttributes;
// followed by AllocatedResourceBlock, PossibleResourceBlock
// and CompatibleDeviceId
} CM_PNP_BIOS_DEVICE_NODE,*PCM_PNP_BIOS_DEVICE_NODE;
//
// Pnp BIOS Installation check
//
typedef struct _CM_PNP_BIOS_INSTALLATION_CHECK {
UCHAR Signature[4]; // $PnP (ascii)
UCHAR Revision;
UCHAR Length;
USHORT ControlField;
UCHAR Checksum;
ULONG EventFlagAddress; // Physical address
USHORT RealModeEntryOffset;
USHORT RealModeEntrySegment;
USHORT ProtectedModeEntryOffset;
ULONG ProtectedModeCodeBaseAddress;
ULONG OemDeviceId;
USHORT RealModeDataBaseAddress;
ULONG ProtectedModeDataBaseAddress;
} CM_PNP_BIOS_INSTALLATION_CHECK, *PCM_PNP_BIOS_INSTALLATION_CHECK;
#include "poppack.h"
//
// Masks for EISA function information
//
#define EISA_FUNCTION_ENABLED 0x80
#define EISA_FREE_FORM_DATA 0x40
#define EISA_HAS_PORT_INIT_ENTRY 0x20
#define EISA_HAS_PORT_RANGE 0x10
#define EISA_HAS_DMA_ENTRY 0x08
#define EISA_HAS_IRQ_ENTRY 0x04
#define EISA_HAS_MEMORY_ENTRY 0x02
#define EISA_HAS_TYPE_ENTRY 0x01
#define EISA_HAS_INFORMATION EISA_HAS_PORT_RANGE + \
EISA_HAS_DMA_ENTRY + \
EISA_HAS_IRQ_ENTRY + \
EISA_HAS_MEMORY_ENTRY + \
EISA_HAS_TYPE_ENTRY
//
// Masks for EISA memory configuration
//
#define EISA_MORE_ENTRIES 0x80
#define EISA_SYSTEM_MEMORY 0x00
#define EISA_MEMORY_TYPE_RAM 0x01
//
// Returned error code for EISA bios call
//
#define EISA_INVALID_SLOT 0x80
#define EISA_INVALID_FUNCTION 0x81
#define EISA_INVALID_CONFIGURATION 0x82
#define EISA_EMPTY_SLOT 0x83
#define EISA_INVALID_BIOS_CALL 0x86
//
// The following structures are used to interpret mips
// DeviceSpecificData of CM_PARTIAL_RESOURCE_DESCRIPTOR.
//
//
// Device data records for adapters.
//
//
// The device data record for the Emulex SCSI controller.
//
typedef struct _CM_SCSI_DEVICE_DATA {
USHORT Version;
USHORT Revision;
UCHAR HostIdentifier;
} CM_SCSI_DEVICE_DATA, *PCM_SCSI_DEVICE_DATA;
//
// Device data records for controllers.
//
//
// The device data record for the Video controller.
//
typedef struct _CM_VIDEO_DEVICE_DATA {
USHORT Version;
USHORT Revision;
ULONG VideoClock;
} CM_VIDEO_DEVICE_DATA, *PCM_VIDEO_DEVICE_DATA;
//
// The device data record for the SONIC network controller.
//
typedef struct _CM_SONIC_DEVICE_DATA {
USHORT Version;
USHORT Revision;
USHORT DataConfigurationRegister;
UCHAR EthernetAddress[8];
} CM_SONIC_DEVICE_DATA, *PCM_SONIC_DEVICE_DATA;
//
// The device data record for the serial controller.
//
typedef struct _CM_SERIAL_DEVICE_DATA {
USHORT Version;
USHORT Revision;
ULONG BaudClock;
} CM_SERIAL_DEVICE_DATA, *PCM_SERIAL_DEVICE_DATA;
//
// Device data records for peripherals.
//
//
// The device data record for the Monitor peripheral.
//
typedef struct _CM_MONITOR_DEVICE_DATA {
USHORT Version;
USHORT Revision;
USHORT HorizontalScreenSize;
USHORT VerticalScreenSize;
USHORT HorizontalResolution;
USHORT VerticalResolution;
USHORT HorizontalDisplayTimeLow;
USHORT HorizontalDisplayTime;
USHORT HorizontalDisplayTimeHigh;
USHORT HorizontalBackPorchLow;
USHORT HorizontalBackPorch;
USHORT HorizontalBackPorchHigh;
USHORT HorizontalFrontPorchLow;
USHORT HorizontalFrontPorch;
USHORT HorizontalFrontPorchHigh;
USHORT HorizontalSyncLow;
USHORT HorizontalSync;
USHORT HorizontalSyncHigh;
USHORT VerticalBackPorchLow;
USHORT VerticalBackPorch;
USHORT VerticalBackPorchHigh;
USHORT VerticalFrontPorchLow;
USHORT VerticalFrontPorch;
USHORT VerticalFrontPorchHigh;
USHORT VerticalSyncLow;
USHORT VerticalSync;
USHORT VerticalSyncHigh;
} CM_MONITOR_DEVICE_DATA, *PCM_MONITOR_DEVICE_DATA;
//
// The device data record for the Floppy peripheral.
//
typedef struct _CM_FLOPPY_DEVICE_DATA {
USHORT Version;
USHORT Revision;
CHAR Size[8];
ULONG MaxDensity;
ULONG MountDensity;
//
// New data fields for version >= 2.0
//
UCHAR StepRateHeadUnloadTime;
UCHAR HeadLoadTime;
UCHAR MotorOffTime;
UCHAR SectorLengthCode;
UCHAR SectorPerTrack;
UCHAR ReadWriteGapLength;
UCHAR DataTransferLength;
UCHAR FormatGapLength;
UCHAR FormatFillCharacter;
UCHAR HeadSettleTime;
UCHAR MotorSettleTime;
UCHAR MaximumTrackValue;
UCHAR DataTransferRate;
} CM_FLOPPY_DEVICE_DATA, *PCM_FLOPPY_DEVICE_DATA;
//
// The device data record for the Keyboard peripheral.
// The KeyboardFlags is defined (by x86 BIOS INT 16h, function 02) as:
// bit 7 : Insert on
// bit 6 : Caps Lock on
// bit 5 : Num Lock on
// bit 4 : Scroll Lock on
// bit 3 : Alt Key is down
// bit 2 : Ctrl Key is down
// bit 1 : Left shift key is down
// bit 0 : Right shift key is down
//
typedef struct _CM_KEYBOARD_DEVICE_DATA {
USHORT Version;
USHORT Revision;
UCHAR Type;
UCHAR Subtype;
USHORT KeyboardFlags;
} CM_KEYBOARD_DEVICE_DATA, *PCM_KEYBOARD_DEVICE_DATA;
//
// Declaration of the structure for disk geometries
//
typedef struct _CM_DISK_GEOMETRY_DEVICE_DATA {
ULONG BytesPerSector;
ULONG NumberOfCylinders;
ULONG SectorsPerTrack;
ULONG NumberOfHeads;
} CM_DISK_GEOMETRY_DEVICE_DATA, *PCM_DISK_GEOMETRY_DEVICE_DATA;
//
// Defines Resource Options
//
#define IO_RESOURCE_PREFERRED 0x01
#define IO_RESOURCE_DEFAULT 0x02
#define IO_RESOURCE_ALTERNATIVE 0x08
//
// This structure defines one type of resource requested by the driver
//
typedef struct _IO_RESOURCE_DESCRIPTOR {
UCHAR Option;
UCHAR Type; // use CM_RESOURCE_TYPE
UCHAR ShareDisposition; // use CM_SHARE_DISPOSITION
UCHAR Spare1;
USHORT Flags; // use CM resource flag defines
USHORT Spare2; // align
union {
struct {
ULONG Length;
ULONG Alignment;
PHYSICAL_ADDRESS MinimumAddress;
PHYSICAL_ADDRESS MaximumAddress;
} Port;
struct {
ULONG Length;
ULONG Alignment;
PHYSICAL_ADDRESS MinimumAddress;
PHYSICAL_ADDRESS MaximumAddress;
} Memory;
struct {
ULONG MinimumVector;
ULONG MaximumVector;
} Interrupt;
struct {
ULONG MinimumChannel;
ULONG MaximumChannel;
} Dma;
struct {
ULONG Length;
ULONG Alignment;
PHYSICAL_ADDRESS MinimumAddress;
PHYSICAL_ADDRESS MaximumAddress;
} Generic;
struct {
ULONG Data[3];
} DevicePrivate;
//
// Bus Number information.
//
struct {
ULONG Length;
ULONG MinBusNumber;
ULONG MaxBusNumber;
ULONG Reserved;
} BusNumber;
struct {
ULONG Priority; // use LCPRI_Xxx values in cfg.h
ULONG Reserved1;
ULONG Reserved2;
} ConfigData;
} u;
} IO_RESOURCE_DESCRIPTOR, *PIO_RESOURCE_DESCRIPTOR;
typedef struct _IO_RESOURCE_LIST {
USHORT Version;
USHORT Revision;
ULONG Count;
IO_RESOURCE_DESCRIPTOR Descriptors[1];
} IO_RESOURCE_LIST, *PIO_RESOURCE_LIST;
typedef struct _IO_RESOURCE_REQUIREMENTS_LIST {
ULONG ListSize;
INTERFACE_TYPE DoNotUse1;
ULONG DoNotUse2;
ULONG DoNotUse3;
ULONG Reserved[3];
ULONG AlternativeLists;
IO_RESOURCE_LIST List[1];
} IO_RESOURCE_REQUIREMENTS_LIST, *PIO_RESOURCE_REQUIREMENTS_LIST;
//
// Exception flag definitions.
//
#define EXCEPTION_NONCONTINUABLE 0x1 // Noncontinuable exception
//
// Define maximum number of exception parameters.
//
#define EXCEPTION_MAXIMUM_PARAMETERS 15 // maximum number of exception parameters
//
// Exception record definition.
//
typedef struct _EXCEPTION_RECORD {
NTSTATUS ExceptionCode;
ULONG ExceptionFlags;
struct _EXCEPTION_RECORD *ExceptionRecord;
PVOID ExceptionAddress;
ULONG NumberParameters;
ULONG_PTR ExceptionInformation[EXCEPTION_MAXIMUM_PARAMETERS];
} EXCEPTION_RECORD;
typedef EXCEPTION_RECORD *PEXCEPTION_RECORD;
typedef struct _EXCEPTION_RECORD32 {
NTSTATUS ExceptionCode;
ULONG ExceptionFlags;
ULONG ExceptionRecord;
ULONG ExceptionAddress;
ULONG NumberParameters;
ULONG ExceptionInformation[EXCEPTION_MAXIMUM_PARAMETERS];
} EXCEPTION_RECORD32, *PEXCEPTION_RECORD32;
typedef struct _EXCEPTION_RECORD64 {
NTSTATUS ExceptionCode;
ULONG ExceptionFlags;
ULONG64 ExceptionRecord;
ULONG64 ExceptionAddress;
ULONG NumberParameters;
ULONG __unusedAlignment;
ULONG64 ExceptionInformation[EXCEPTION_MAXIMUM_PARAMETERS];
} EXCEPTION_RECORD64, *PEXCEPTION_RECORD64;
//
// Typedef for pointer returned by exception_info()
//
typedef struct _EXCEPTION_POINTERS {
PEXCEPTION_RECORD ExceptionRecord;
PVOID ContextRecord;
} EXCEPTION_POINTERS, *PEXCEPTION_POINTERS;
#define THREAD_WAIT_OBJECTS 3 // Builtin usable wait blocks
//
// Interrupt modes.
//
typedef enum _KINTERRUPT_MODE {
LevelSensitive,
Latched
} KINTERRUPT_MODE;
//
// Wait reasons
//
typedef enum _KWAIT_REASON {
Executive,
FreePage,
PageIn,
PoolAllocation,
DelayExecution,
Suspended,
UserRequest,
WrExecutive,
WrFreePage,
WrPageIn,
WrPoolAllocation,
WrDelayExecution,
WrSuspended,
WrUserRequest,
WrEventPair,
WrQueue,
WrLpcReceive,
WrLpcReply,
WrVirtualMemory,
WrPageOut,
WrRendezvous,
Spare2,
Spare3,
Spare4,
Spare5,
Spare6,
WrKernel,
MaximumWaitReason
} KWAIT_REASON;
typedef struct _KWAIT_BLOCK {
LIST_ENTRY WaitListEntry;
struct _KTHREAD *RESTRICTED_POINTER Thread;
PVOID Object;
struct _KWAIT_BLOCK *RESTRICTED_POINTER NextWaitBlock;
USHORT WaitKey;
USHORT WaitType;
} KWAIT_BLOCK, *PKWAIT_BLOCK, *RESTRICTED_POINTER PRKWAIT_BLOCK;
//
// Thread start function
//
typedef
VOID
(*PKSTART_ROUTINE) (
IN PVOID StartContext
);
//
// Kernel object structure definitions
//
//
// Device Queue object and entry
//
typedef struct _KDEVICE_QUEUE {
CSHORT Type;
CSHORT Size;
LIST_ENTRY DeviceListHead;
KSPIN_LOCK Lock;
BOOLEAN Busy;
} KDEVICE_QUEUE, *PKDEVICE_QUEUE, *RESTRICTED_POINTER PRKDEVICE_QUEUE;
typedef struct _KDEVICE_QUEUE_ENTRY {
LIST_ENTRY DeviceListEntry;
ULONG SortKey;
BOOLEAN Inserted;
} KDEVICE_QUEUE_ENTRY, *PKDEVICE_QUEUE_ENTRY, *RESTRICTED_POINTER PRKDEVICE_QUEUE_ENTRY;
//
// Define the interrupt service function type and the empty struct
// type.
//
typedef
BOOLEAN
(*PKSERVICE_ROUTINE) (
IN struct _KINTERRUPT *Interrupt,
IN PVOID ServiceContext
);
//
// Mutant object
//
typedef struct _KMUTANT {
DISPATCHER_HEADER Header;
LIST_ENTRY MutantListEntry;
struct _KTHREAD *RESTRICTED_POINTER OwnerThread;
BOOLEAN Abandoned;
UCHAR ApcDisable;
} KMUTANT, *PKMUTANT, *RESTRICTED_POINTER PRKMUTANT, KMUTEX, *PKMUTEX, *RESTRICTED_POINTER PRKMUTEX;
//
//
// Semaphore object
//
typedef struct _KSEMAPHORE {
DISPATCHER_HEADER Header;
LONG Limit;
} KSEMAPHORE, *PKSEMAPHORE, *RESTRICTED_POINTER PRKSEMAPHORE;
//
// DPC object
//
NTKERNELAPI
VOID
KeInitializeDpc (
IN PRKDPC Dpc,
IN PKDEFERRED_ROUTINE DeferredRoutine,
IN PVOID DeferredContext
);
NTKERNELAPI
BOOLEAN
KeInsertQueueDpc (
IN PRKDPC Dpc,
IN PVOID SystemArgument1,
IN PVOID SystemArgument2
);
NTKERNELAPI
BOOLEAN
KeRemoveQueueDpc (
IN PRKDPC Dpc
);
NTKERNELAPI
VOID
KeFlushQueuedDpcs (
VOID
);
//
// Device queue object
//
NTKERNELAPI
VOID
KeInitializeDeviceQueue (
IN PKDEVICE_QUEUE DeviceQueue
);
NTKERNELAPI
BOOLEAN
KeInsertDeviceQueue (
IN PKDEVICE_QUEUE DeviceQueue,
IN PKDEVICE_QUEUE_ENTRY DeviceQueueEntry
);
NTKERNELAPI
BOOLEAN
KeInsertByKeyDeviceQueue (
IN PKDEVICE_QUEUE DeviceQueue,
IN PKDEVICE_QUEUE_ENTRY DeviceQueueEntry,
IN ULONG SortKey
);
NTKERNELAPI
PKDEVICE_QUEUE_ENTRY
KeRemoveDeviceQueue (
IN PKDEVICE_QUEUE DeviceQueue
);
NTKERNELAPI
PKDEVICE_QUEUE_ENTRY
KeRemoveByKeyDeviceQueue (
IN PKDEVICE_QUEUE DeviceQueue,
IN ULONG SortKey
);
NTKERNELAPI
PKDEVICE_QUEUE_ENTRY
KeRemoveByKeyDeviceQueueIfBusy (
IN PKDEVICE_QUEUE DeviceQueue,
IN ULONG SortKey
);
NTKERNELAPI
BOOLEAN
KeRemoveEntryDeviceQueue (
IN PKDEVICE_QUEUE DeviceQueue,
IN PKDEVICE_QUEUE_ENTRY DeviceQueueEntry
);
NTKERNELAPI
BOOLEAN
KeSynchronizeExecution (
IN PKINTERRUPT Interrupt,
IN PKSYNCHRONIZE_ROUTINE SynchronizeRoutine,
IN PVOID SynchronizeContext
);
NTKERNELAPI
KIRQL
KeAcquireInterruptSpinLock (
IN PKINTERRUPT Interrupt
);
NTKERNELAPI
VOID
KeReleaseInterruptSpinLock (
IN PKINTERRUPT Interrupt,
IN KIRQL OldIrql
);
//
// Kernel dispatcher object functions
//
// Event Object
//
NTKERNELAPI
VOID
KeInitializeEvent (
IN PRKEVENT Event,
IN EVENT_TYPE Type,
IN BOOLEAN State
);
NTKERNELAPI
VOID
KeClearEvent (
IN PRKEVENT Event
);
NTKERNELAPI
LONG
KeReadStateEvent (
IN PRKEVENT Event
);
NTKERNELAPI
LONG
KeResetEvent (
IN PRKEVENT Event
);
NTKERNELAPI
LONG
KeSetEvent (
IN PRKEVENT Event,
IN KPRIORITY Increment,
IN BOOLEAN Wait
);
//
// Mutex object
//
NTKERNELAPI
VOID
KeInitializeMutex (
IN PRKMUTEX Mutex,
IN ULONG Level
);
NTKERNELAPI
LONG
KeReadStateMutex (
IN PRKMUTEX Mutex
);
NTKERNELAPI
LONG
KeReleaseMutex (
IN PRKMUTEX Mutex,
IN BOOLEAN Wait
);
//
// Semaphore object
//
NTKERNELAPI
VOID
KeInitializeSemaphore (
IN PRKSEMAPHORE Semaphore,
IN LONG Count,
IN LONG Limit
);
NTKERNELAPI
LONG
KeReadStateSemaphore (
IN PRKSEMAPHORE Semaphore
);
NTKERNELAPI
LONG
KeReleaseSemaphore (
IN PRKSEMAPHORE Semaphore,
IN KPRIORITY Increment,
IN LONG Adjustment,
IN BOOLEAN Wait
);
NTKERNELAPI
NTSTATUS
KeDelayExecutionThread (
IN KPROCESSOR_MODE WaitMode,
IN BOOLEAN Alertable,
IN PLARGE_INTEGER Interval
);
NTKERNELAPI
KPRIORITY
KeQueryPriorityThread (
IN PKTHREAD Thread
);
NTKERNELAPI
ULONG
KeQueryRuntimeThread (
IN PKTHREAD Thread,
OUT PULONG UserTime
);
NTKERNELAPI
KPRIORITY
KeSetPriorityThread (
IN PKTHREAD Thread,
IN KPRIORITY Priority
);
NTKERNELAPI
VOID
KeEnterCriticalRegion (
VOID
);
NTKERNELAPI
VOID
KeLeaveCriticalRegion (
VOID
);
NTKERNELAPI
BOOLEAN
KeAreApcsDisabled(
VOID
);
//
// Timer object
//
NTKERNELAPI
VOID
KeInitializeTimer (
IN PKTIMER Timer
);
NTKERNELAPI
VOID
KeInitializeTimerEx (
IN PKTIMER Timer,
IN TIMER_TYPE Type
);
NTKERNELAPI
BOOLEAN
KeCancelTimer (
IN PKTIMER
);
NTKERNELAPI
BOOLEAN
KeReadStateTimer (
PKTIMER Timer
);
NTKERNELAPI
BOOLEAN
KeSetTimer (
IN PKTIMER Timer,
IN LARGE_INTEGER DueTime,
IN PKDPC Dpc OPTIONAL
);
NTKERNELAPI
BOOLEAN
KeSetTimerEx (
IN PKTIMER Timer,
IN LARGE_INTEGER DueTime,
IN LONG Period OPTIONAL,
IN PKDPC Dpc OPTIONAL
);
#define KeWaitForMutexObject KeWaitForSingleObject
NTKERNELAPI
NTSTATUS
KeWaitForMultipleObjects (
IN ULONG Count,
IN PVOID Object[],
IN WAIT_TYPE WaitType,
IN KWAIT_REASON WaitReason,
IN KPROCESSOR_MODE WaitMode,
IN BOOLEAN Alertable,
IN PLARGE_INTEGER Timeout OPTIONAL,
IN PKWAIT_BLOCK WaitBlockArray OPTIONAL
);
NTKERNELAPI
NTSTATUS
KeWaitForSingleObject (
IN PVOID Object,
IN KWAIT_REASON WaitReason,
IN KPROCESSOR_MODE WaitMode,
IN BOOLEAN Alertable,
IN PLARGE_INTEGER Timeout OPTIONAL
);
//
// On X86 the following routines are defined in the HAL and imported by
// all other modules.
//
#if defined(_X86_) && !defined(_NTHAL_)
#define _DECL_HAL_KE_IMPORT __declspec(dllimport)
#else
#define _DECL_HAL_KE_IMPORT
#endif
//
// spin lock functions
//
NTKERNELAPI
VOID
NTAPI
KeInitializeSpinLock (
IN PKSPIN_LOCK SpinLock
);
#if defined(_X86_)
NTKERNELAPI
VOID
FASTCALL
KefAcquireSpinLockAtDpcLevel (
IN PKSPIN_LOCK SpinLock
);
NTKERNELAPI
VOID
FASTCALL
KefReleaseSpinLockFromDpcLevel (
IN PKSPIN_LOCK SpinLock
);
#define KeAcquireSpinLockAtDpcLevel(a) KefAcquireSpinLockAtDpcLevel(a)
#define KeReleaseSpinLockFromDpcLevel(a) KefReleaseSpinLockFromDpcLevel(a)
_DECL_HAL_KE_IMPORT
KIRQL
FASTCALL
KfAcquireSpinLock (
IN PKSPIN_LOCK SpinLock
);
_DECL_HAL_KE_IMPORT
VOID
FASTCALL
KfReleaseSpinLock (
IN PKSPIN_LOCK SpinLock,
IN KIRQL NewIrql
);
#define KeAcquireSpinLock(a,b) *(b) = KfAcquireSpinLock(a)
#define KeReleaseSpinLock(a,b) KfReleaseSpinLock(a,b)
#else
NTKERNELAPI
KIRQL
FASTCALL
KeAcquireSpinLockRaiseToSynch (
IN PKSPIN_LOCK SpinLock
);
NTKERNELAPI
VOID
KeAcquireSpinLockAtDpcLevel (
IN PKSPIN_LOCK SpinLock
);
NTKERNELAPI
VOID
KeReleaseSpinLockFromDpcLevel (
IN PKSPIN_LOCK SpinLock
);
NTKERNELAPI
KIRQL
KeAcquireSpinLockRaiseToDpc (
IN PKSPIN_LOCK SpinLock
);
#define KeAcquireSpinLock(SpinLock, OldIrql) \
*(OldIrql) = KeAcquireSpinLockRaiseToDpc(SpinLock)
NTKERNELAPI
VOID
KeReleaseSpinLock (
IN PKSPIN_LOCK SpinLock,
IN KIRQL NewIrql
);
#endif
NTKERNELAPI
BOOLEAN
FASTCALL
KeTryToAcquireSpinLockAtDpcLevel (
IN PKSPIN_LOCK SpinLock
);
#if defined(_X86_)
_DECL_HAL_KE_IMPORT
VOID
FASTCALL
KfLowerIrql (
IN KIRQL NewIrql
);
_DECL_HAL_KE_IMPORT
KIRQL
FASTCALL
KfRaiseIrql (
IN KIRQL NewIrql
);
#define KeLowerIrql(a) KfLowerIrql(a)
#define KeRaiseIrql(a,b) *(b) = KfRaiseIrql(a)
#elif defined(_ALPHA_)
#define KeLowerIrql(a) __swpirql(a)
#define KeRaiseIrql(a,b) *(b) = __swpirql(a)
#elif defined(_IA64_)
VOID
KeLowerIrql (
IN KIRQL NewIrql
);
VOID
KeRaiseIrql (
IN KIRQL NewIrql,
OUT PKIRQL OldIrql
);
#elif defined(_AMD64_)
//
// These function are defined in amd64.h for the AMD64 platform.
//
#else
#error "no target architecture"
#endif
//
// Miscellaneous kernel functions
//
typedef enum _KBUGCHECK_BUFFER_DUMP_STATE {
BufferEmpty,
BufferInserted,
BufferStarted,
BufferFinished,
BufferIncomplete
} KBUGCHECK_BUFFER_DUMP_STATE;
typedef
VOID
(*PKBUGCHECK_CALLBACK_ROUTINE) (
IN PVOID Buffer,
IN ULONG Length
);
typedef struct _KBUGCHECK_CALLBACK_RECORD {
LIST_ENTRY Entry;
PKBUGCHECK_CALLBACK_ROUTINE CallbackRoutine;
PVOID Buffer;
ULONG Length;
PUCHAR Component;
ULONG_PTR Checksum;
UCHAR State;
} KBUGCHECK_CALLBACK_RECORD, *PKBUGCHECK_CALLBACK_RECORD;
#define KeInitializeCallbackRecord(CallbackRecord) \
(CallbackRecord)->State = BufferEmpty
NTKERNELAPI
BOOLEAN
KeDeregisterBugCheckCallback (
IN PKBUGCHECK_CALLBACK_RECORD CallbackRecord
);
NTKERNELAPI
BOOLEAN
KeRegisterBugCheckCallback (
IN PKBUGCHECK_CALLBACK_RECORD CallbackRecord,
IN PKBUGCHECK_CALLBACK_ROUTINE CallbackRoutine,
IN PVOID Buffer,
IN ULONG Length,
IN PUCHAR Component
);
typedef enum _KBUGCHECK_CALLBACK_REASON {
KbCallbackInvalid,
KbCallbackReserved1,
KbCallbackSecondaryDumpData,
KbCallbackDumpIo,
} KBUGCHECK_CALLBACK_REASON;
typedef
VOID
(*PKBUGCHECK_REASON_CALLBACK_ROUTINE) (
IN KBUGCHECK_CALLBACK_REASON Reason,
IN struct _KBUGCHECK_REASON_CALLBACK_RECORD* Record,
IN OUT PVOID ReasonSpecificData,
IN ULONG ReasonSpecificDataLength
);
typedef struct _KBUGCHECK_REASON_CALLBACK_RECORD {
LIST_ENTRY Entry;
PKBUGCHECK_REASON_CALLBACK_ROUTINE CallbackRoutine;
PUCHAR Component;
ULONG_PTR Checksum;
KBUGCHECK_CALLBACK_REASON Reason;
UCHAR State;
} KBUGCHECK_REASON_CALLBACK_RECORD, *PKBUGCHECK_REASON_CALLBACK_RECORD;
typedef struct _KBUGCHECK_SECONDARY_DUMP_DATA {
IN PVOID InBuffer;
IN ULONG InBufferLength;
IN ULONG MaximumAllowed;
OUT GUID Guid;
OUT PVOID OutBuffer;
OUT ULONG OutBufferLength;
} KBUGCHECK_SECONDARY_DUMP_DATA, *PKBUGCHECK_SECONDARY_DUMP_DATA;
typedef enum _KBUGCHECK_DUMP_IO_TYPE
{
KbDumpIoInvalid,
KbDumpIoHeader,
KbDumpIoBody,
KbDumpIoSecondaryData,
KbDumpIoComplete
} KBUGCHECK_DUMP_IO_TYPE;
typedef struct _KBUGCHECK_DUMP_IO {
IN ULONG64 Offset;
IN PVOID Buffer;
IN ULONG BufferLength;
IN KBUGCHECK_DUMP_IO_TYPE Type;
} KBUGCHECK_DUMP_IO, *PKBUGCHECK_DUMP_IO;
NTKERNELAPI
BOOLEAN
KeDeregisterBugCheckReasonCallback (
IN PKBUGCHECK_REASON_CALLBACK_RECORD CallbackRecord
);
NTKERNELAPI
BOOLEAN
KeRegisterBugCheckReasonCallback (
IN PKBUGCHECK_REASON_CALLBACK_RECORD CallbackRecord,
IN PKBUGCHECK_REASON_CALLBACK_ROUTINE CallbackRoutine,
IN KBUGCHECK_CALLBACK_REASON Reason,
IN PUCHAR Component
);
NTKERNELAPI
DECLSPEC_NORETURN
VOID
KeBugCheckEx(
IN ULONG BugCheckCode,
IN ULONG_PTR BugCheckParameter1,
IN ULONG_PTR BugCheckParameter2,
IN ULONG_PTR BugCheckParameter3,
IN ULONG_PTR BugCheckParameter4
);
NTKERNELAPI
ULONGLONG
KeQueryInterruptTime (
VOID
);
NTKERNELAPI
VOID
KeQuerySystemTime (
OUT PLARGE_INTEGER CurrentTime
);
NTKERNELAPI
ULONG
KeQueryTimeIncrement (
VOID
);
NTKERNELAPI
ULONG
KeGetRecommendedSharedDataAlignment (
VOID
);
#if defined(_AMD64_) || defined(_ALPHA_) || defined(_IA64_)
extern volatile LARGE_INTEGER KeTickCount;
#else
extern volatile KSYSTEM_TIME KeTickCount;
#endif
typedef enum _MEMORY_CACHING_TYPE_ORIG {
MmFrameBufferCached = 2
} MEMORY_CACHING_TYPE_ORIG;
typedef enum _MEMORY_CACHING_TYPE {
MmNonCached = FALSE,
MmCached = TRUE,
MmWriteCombined = MmFrameBufferCached,
MmHardwareCoherentCached,
MmCachingTypeDoNotUse1,
MmCachingTypeDoNotUse2,
MmMaximumCacheType
} MEMORY_CACHING_TYPE;
//
// Define external data.
// because of indirection for all drivers external to ntoskrnl these are actually ptrs
//
#if defined(_NTDDK_) || defined(_NTIFS_) || defined(_NTHAL_) || defined(_WDMDDK_) || defined(_NTOSP_)
extern PBOOLEAN KdDebuggerNotPresent;
extern PBOOLEAN KdDebuggerEnabled;
#define KD_DEBUGGER_ENABLED *KdDebuggerEnabled
#define KD_DEBUGGER_NOT_PRESENT *KdDebuggerNotPresent
#else
extern BOOLEAN KdDebuggerNotPresent;
extern BOOLEAN KdDebuggerEnabled;
#define KD_DEBUGGER_ENABLED KdDebuggerEnabled
#define KD_DEBUGGER_NOT_PRESENT KdDebuggerNotPresent
#endif
VOID
KdDisableDebugger(
VOID
);
VOID
KdEnableDebugger(
VOID
);
//
// Pool Allocation routines (in pool.c)
//
typedef enum _POOL_TYPE {
NonPagedPool,
PagedPool,
NonPagedPoolMustSucceed,
DontUseThisType,
NonPagedPoolCacheAligned,
PagedPoolCacheAligned,
NonPagedPoolCacheAlignedMustS,
MaxPoolType
} POOL_TYPE;
#define POOL_COLD_ALLOCATION 256 // Note this cannot encode into the header.
NTKERNELAPI
PVOID
ExAllocatePool(
IN POOL_TYPE PoolType,
IN SIZE_T NumberOfBytes
);
NTKERNELAPI
PVOID
ExAllocatePoolWithQuota(
IN POOL_TYPE PoolType,
IN SIZE_T NumberOfBytes
);
NTKERNELAPI
PVOID
NTAPI
ExAllocatePoolWithTag(
IN POOL_TYPE PoolType,
IN SIZE_T NumberOfBytes,
IN ULONG Tag
);
//
// _EX_POOL_PRIORITY_ provides a method for the system to handle requests
// intelligently in low resource conditions.
//
// LowPoolPriority should be used when it is acceptable to the driver for the
// mapping request to fail if the system is low on resources. An example of
// this could be for a non-critical network connection where the driver can
// handle the failure case when system resources are close to being depleted.
//
// NormalPoolPriority should be used when it is acceptable to the driver for the
// mapping request to fail if the system is very low on resources. An example
// of this could be for a non-critical local filesystem request.
//
// HighPoolPriority should be used when it is unacceptable to the driver for the
// mapping request to fail unless the system is completely out of resources.
// An example of this would be the paging file path in a driver.
//
// SpecialPool can be specified to bound the allocation at a page end (or
// beginning). This should only be done on systems being debugged as the
// memory cost is expensive.
//
// N.B. These values are very carefully chosen so that the pool allocation
// code can quickly crack the priority request.
//
typedef enum _EX_POOL_PRIORITY {
LowPoolPriority,
LowPoolPrioritySpecialPoolOverrun = 8,
LowPoolPrioritySpecialPoolUnderrun = 9,
NormalPoolPriority = 16,
NormalPoolPrioritySpecialPoolOverrun = 24,
NormalPoolPrioritySpecialPoolUnderrun = 25,
HighPoolPriority = 32,
HighPoolPrioritySpecialPoolOverrun = 40,
HighPoolPrioritySpecialPoolUnderrun = 41
} EX_POOL_PRIORITY;
NTKERNELAPI
PVOID
NTAPI
ExAllocatePoolWithTagPriority(
IN POOL_TYPE PoolType,
IN SIZE_T NumberOfBytes,
IN ULONG Tag,
IN EX_POOL_PRIORITY Priority
);
#ifndef POOL_TAGGING
#define ExAllocatePoolWithTag(a,b,c) ExAllocatePool(a,b)
#endif //POOL_TAGGING
NTKERNELAPI
PVOID
ExAllocatePoolWithQuotaTag(
IN POOL_TYPE PoolType,
IN SIZE_T NumberOfBytes,
IN ULONG Tag
);
#ifndef POOL_TAGGING
#define ExAllocatePoolWithQuotaTag(a,b,c) ExAllocatePoolWithQuota(a,b)
#endif //POOL_TAGGING
NTKERNELAPI
VOID
NTAPI
ExFreePool(
IN PVOID P
);
NTKERNELAPI
VOID
ExFreePoolWithTag(
IN PVOID P,
IN ULONG Tag
);
//
// Routines to support fast mutexes.
//
typedef struct _FAST_MUTEX {
LONG Count;
PKTHREAD Owner;
ULONG Contention;
KEVENT Event;
ULONG OldIrql;
} FAST_MUTEX, *PFAST_MUTEX;
#define ExInitializeFastMutex(_FastMutex) \
(_FastMutex)->Count = 1; \
(_FastMutex)->Owner = NULL; \
(_FastMutex)->Contention = 0; \
KeInitializeEvent(&(_FastMutex)->Event, \
SynchronizationEvent, \
FALSE);
NTKERNELAPI
VOID
FASTCALL
ExAcquireFastMutexUnsafe (
IN PFAST_MUTEX FastMutex
);
NTKERNELAPI
VOID
FASTCALL
ExReleaseFastMutexUnsafe (
IN PFAST_MUTEX FastMutex
);
#if defined(_ALPHA_) || defined(_IA64_) || defined(_AMD64_)
NTKERNELAPI
VOID
FASTCALL
ExAcquireFastMutex (
IN PFAST_MUTEX FastMutex
);
NTKERNELAPI
VOID
FASTCALL
ExReleaseFastMutex (
IN PFAST_MUTEX FastMutex
);
NTKERNELAPI
BOOLEAN
FASTCALL
ExTryToAcquireFastMutex (
IN PFAST_MUTEX FastMutex
);
#elif defined(_X86_)
NTHALAPI
VOID
FASTCALL
ExAcquireFastMutex (
IN PFAST_MUTEX FastMutex
);
NTHALAPI
VOID
FASTCALL
ExReleaseFastMutex (
IN PFAST_MUTEX FastMutex
);
NTHALAPI
BOOLEAN
FASTCALL
ExTryToAcquireFastMutex (
IN PFAST_MUTEX FastMutex
);
#else
#error "Target architecture not defined"
#endif
//
NTKERNELAPI
VOID
FASTCALL
ExInterlockedAddLargeStatistic (
IN PLARGE_INTEGER Addend,
IN ULONG Increment
);
NTKERNELAPI
LARGE_INTEGER
ExInterlockedAddLargeInteger (
IN PLARGE_INTEGER Addend,
IN LARGE_INTEGER Increment,
IN PKSPIN_LOCK Lock
);
NTKERNELAPI
ULONG
FASTCALL
ExInterlockedAddUlong (
IN PULONG Addend,
IN ULONG Increment,
IN PKSPIN_LOCK Lock
);
#if defined(_AMD64_) || defined(_AXP64_) || defined(_IA64_)
#define ExInterlockedCompareExchange64(Destination, Exchange, Comperand, Lock) \
InterlockedCompareExchange64(Destination, *(Exchange), *(Comperand))
#elif defined(_ALPHA_)
#define ExInterlockedCompareExchange64(Destination, Exchange, Comperand, Lock) \
ExpInterlockedCompareExchange64(Destination, Exchange, Comperand)
#else
#define ExInterlockedCompareExchange64(Destination, Exchange, Comperand, Lock) \
ExfInterlockedCompareExchange64(Destination, Exchange, Comperand)
#endif
NTKERNELAPI
PLIST_ENTRY
FASTCALL
ExInterlockedInsertHeadList (
IN PLIST_ENTRY ListHead,
IN PLIST_ENTRY ListEntry,
IN PKSPIN_LOCK Lock
);
NTKERNELAPI
PLIST_ENTRY
FASTCALL
ExInterlockedInsertTailList (
IN PLIST_ENTRY ListHead,
IN PLIST_ENTRY ListEntry,
IN PKSPIN_LOCK Lock
);
NTKERNELAPI
PLIST_ENTRY
FASTCALL
ExInterlockedRemoveHeadList (
IN PLIST_ENTRY ListHead,
IN PKSPIN_LOCK Lock
);
NTKERNELAPI
PSINGLE_LIST_ENTRY
FASTCALL
ExInterlockedPopEntryList (
IN PSINGLE_LIST_ENTRY ListHead,
IN PKSPIN_LOCK Lock
);
NTKERNELAPI
PSINGLE_LIST_ENTRY
FASTCALL
ExInterlockedPushEntryList (
IN PSINGLE_LIST_ENTRY ListHead,
IN PSINGLE_LIST_ENTRY ListEntry,
IN PKSPIN_LOCK Lock
);
//
// Define interlocked sequenced listhead functions.
//
// A sequenced interlocked list is a singly linked list with a header that
// contains the current depth and a sequence number. Each time an entry is
// inserted or removed from the list the depth is updated and the sequence
// number is incremented. This enables AMD64, IA64, and Pentium and later
// machines to insert and remove from the list without the use of spinlocks.
//
#if !defined(_WINBASE_)
/*++
Routine Description:
This function initializes a sequenced singly linked listhead.
Arguments:
SListHead - Supplies a pointer to a sequenced singly linked listhead.
Return Value:
None.
--*/
#if defined(_WIN64) && (defined(_NTDRIVER_) || defined(_NTDDK_) || defined(_NTIFS_) || defined(_NTHAL_) || defined(_NTOSP_))
NTKERNELAPI
VOID
InitializeSListHead (
IN PSLIST_HEADER SListHead
);
#else
__inline
VOID
InitializeSListHead (
IN PSLIST_HEADER SListHead
)
{
#ifdef _WIN64
//
// Slist headers must be 16 byte aligned.
//
if ((ULONG_PTR) SListHead & 0x0f) {
DbgPrint( "InitializeSListHead unaligned Slist header. Address = %p, Caller = %p\n", SListHead, _ReturnAddress());
RtlRaiseStatus(STATUS_DATATYPE_MISALIGNMENT);
}
#endif
SListHead->Alignment = 0;
//
// For IA-64 we save the region number of the elements of the list in a
// separate field. This imposes the requirement that all elements stored
// in the list are from the same region.
#if defined(_IA64_)
SListHead->Region = (ULONG_PTR)SListHead & VRN_MASK;
#elif defined(_AMD64_)
SListHead->Region = 0;
#endif
return;
}
#endif
#endif // !defined(_WINBASE_)
#define ExInitializeSListHead InitializeSListHead
PSLIST_ENTRY
FirstEntrySList (
IN const SLIST_HEADER *SListHead
);
/*++
Routine Description:
This function queries the current number of entries contained in a
sequenced single linked list.
Arguments:
SListHead - Supplies a pointer to the sequenced listhead which is
be queried.
Return Value:
The current number of entries in the sequenced singly linked list is
returned as the function value.
--*/
#if defined(_WIN64)
#if (defined(_NTDRIVER_) || defined(_NTDDK_) || defined(_NTIFS_) || defined(_NTHAL_) || defined(_NTOSP_))
NTKERNELAPI
USHORT
ExQueryDepthSList (
IN PSLIST_HEADER SListHead
);
#else
__inline
USHORT
ExQueryDepthSList (
IN PSLIST_HEADER SListHead
)
{
return (USHORT)(SListHead->Alignment & 0xffff);
}
#endif
#else
#define ExQueryDepthSList(_listhead_) (_listhead_)->Depth
#endif
#if defined(_WIN64)
#define ExInterlockedPopEntrySList(Head, Lock) \
ExpInterlockedPopEntrySList(Head)
#define ExInterlockedPushEntrySList(Head, Entry, Lock) \
ExpInterlockedPushEntrySList(Head, Entry)
#define ExInterlockedFlushSList(Head) \
ExpInterlockedFlushSList(Head)
#if !defined(_WINBASE_)
#define InterlockedPopEntrySList(Head) \
ExpInterlockedPopEntrySList(Head)
#define InterlockedPushEntrySList(Head, Entry) \
ExpInterlockedPushEntrySList(Head, Entry)
#define InterlockedFlushSList(Head) \
ExpInterlockedFlushSList(Head)
#define QueryDepthSList(Head) \
ExQueryDepthSList(Head)
#endif // !defined(_WINBASE_)
NTKERNELAPI
PSLIST_ENTRY
ExpInterlockedPopEntrySList (
IN PSLIST_HEADER ListHead
);
NTKERNELAPI
PSLIST_ENTRY
ExpInterlockedPushEntrySList (
IN PSLIST_HEADER ListHead,
IN PSLIST_ENTRY ListEntry
);
NTKERNELAPI
PSLIST_ENTRY
ExpInterlockedFlushSList (
IN PSLIST_HEADER ListHead
);
#else
#if defined(_WIN2K_COMPAT_SLIST_USAGE) && defined(_X86_)
NTKERNELAPI
PSLIST_ENTRY
FASTCALL
ExInterlockedPopEntrySList (
IN PSLIST_HEADER ListHead,
IN PKSPIN_LOCK Lock
);
NTKERNELAPI
PSLIST_ENTRY
FASTCALL
ExInterlockedPushEntrySList (
IN PSLIST_HEADER ListHead,
IN PSLIST_ENTRY ListEntry,
IN PKSPIN_LOCK Lock
);
#else
#define ExInterlockedPopEntrySList(ListHead, Lock) \
InterlockedPopEntrySList(ListHead)
#define ExInterlockedPushEntrySList(ListHead, ListEntry, Lock) \
InterlockedPushEntrySList(ListHead, ListEntry)
#endif
NTKERNELAPI
PSLIST_ENTRY
FASTCALL
ExInterlockedFlushSList (
IN PSLIST_HEADER ListHead
);
#if !defined(_WINBASE_)
NTKERNELAPI
PSLIST_ENTRY
FASTCALL
InterlockedPopEntrySList (
IN PSLIST_HEADER ListHead
);
NTKERNELAPI
PSLIST_ENTRY
FASTCALL
InterlockedPushEntrySList (
IN PSLIST_HEADER ListHead,
IN PSLIST_ENTRY ListEntry
);
#define InterlockedFlushSList(Head) \
ExInterlockedFlushSList(Head)
#define QueryDepthSList(Head) \
ExQueryDepthSList(Head)
#endif // !defined(_WINBASE_)
#endif // defined(_WIN64)
typedef
PVOID
(*PALLOCATE_FUNCTION) (
IN POOL_TYPE PoolType,
IN SIZE_T NumberOfBytes,
IN ULONG Tag
);
typedef
VOID
(*PFREE_FUNCTION) (
IN PVOID Buffer
);
#if !defined(_WIN64) && (defined(_NTDDK_) || defined(_NTIFS_) || defined(_NDIS_))
typedef struct _GENERAL_LOOKASIDE {
#else
typedef struct DECLSPEC_CACHEALIGN _GENERAL_LOOKASIDE {
#endif
SLIST_HEADER ListHead;
USHORT Depth;
USHORT MaximumDepth;
ULONG TotalAllocates;
union {
ULONG AllocateMisses;
ULONG AllocateHits;
};
ULONG TotalFrees;
union {
ULONG FreeMisses;
ULONG FreeHits;
};
POOL_TYPE Type;
ULONG Tag;
ULONG Size;
PALLOCATE_FUNCTION Allocate;
PFREE_FUNCTION Free;
LIST_ENTRY ListEntry;
ULONG LastTotalAllocates;
union {
ULONG LastAllocateMisses;
ULONG LastAllocateHits;
};
ULONG Future[2];
} GENERAL_LOOKASIDE, *PGENERAL_LOOKASIDE;
#if !defined(_WIN64) && (defined(_NTDDK_) || defined(_NTIFS_) || defined(_NDIS_))
typedef struct _NPAGED_LOOKASIDE_LIST {
#else
typedef struct DECLSPEC_CACHEALIGN _NPAGED_LOOKASIDE_LIST {
#endif
GENERAL_LOOKASIDE L;
#if !defined(_AMD64_) && !defined(_IA64_)
KSPIN_LOCK Lock__ObsoleteButDoNotDelete;
#endif
} NPAGED_LOOKASIDE_LIST, *PNPAGED_LOOKASIDE_LIST;
NTKERNELAPI
VOID
ExInitializeNPagedLookasideList (
IN PNPAGED_LOOKASIDE_LIST Lookaside,
IN PALLOCATE_FUNCTION Allocate,
IN PFREE_FUNCTION Free,
IN ULONG Flags,
IN SIZE_T Size,
IN ULONG Tag,
IN USHORT Depth
);
NTKERNELAPI
VOID
ExDeleteNPagedLookasideList (
IN PNPAGED_LOOKASIDE_LIST Lookaside
);
__inline
PVOID
ExAllocateFromNPagedLookasideList(
IN PNPAGED_LOOKASIDE_LIST Lookaside
)
/*++
Routine Description:
This function removes (pops) the first entry from the specified
nonpaged lookaside list.
Arguments:
Lookaside - Supplies a pointer to a nonpaged lookaside list structure.
Return Value:
If an entry is removed from the specified lookaside list, then the
address of the entry is returned as the function value. Otherwise,
NULL is returned.
--*/
{
PVOID Entry;
Lookaside->L.TotalAllocates += 1;
#if defined(_WIN2K_COMPAT_SLIST_USAGE) && defined(_X86_)
Entry = ExInterlockedPopEntrySList(&Lookaside->L.ListHead,
&Lookaside->Lock__ObsoleteButDoNotDelete);
#else
Entry = InterlockedPopEntrySList(&Lookaside->L.ListHead);
#endif
if (Entry == NULL) {
Lookaside->L.AllocateMisses += 1;
Entry = (Lookaside->L.Allocate)(Lookaside->L.Type,
Lookaside->L.Size,
Lookaside->L.Tag);
}
return Entry;
}
__inline
VOID
ExFreeToNPagedLookasideList(
IN PNPAGED_LOOKASIDE_LIST Lookaside,
IN PVOID Entry
)
/*++
Routine Description:
This function inserts (pushes) the specified entry into the specified
nonpaged lookaside list.
Arguments:
Lookaside - Supplies a pointer to a nonpaged lookaside list structure.
Entry - Supples a pointer to the entry that is inserted in the
lookaside list.
Return Value:
None.
--*/
{
Lookaside->L.TotalFrees += 1;
if (ExQueryDepthSList(&Lookaside->L.ListHead) >= Lookaside->L.Depth) {
Lookaside->L.FreeMisses += 1;
(Lookaside->L.Free)(Entry);
} else {
#if defined(_WIN2K_COMPAT_SLIST_USAGE) && defined(_X86_)
ExInterlockedPushEntrySList(&Lookaside->L.ListHead,
(PSLIST_ENTRY)Entry,
&Lookaside->Lock__ObsoleteButDoNotDelete);
#else
InterlockedPushEntrySList(&Lookaside->L.ListHead,
(PSLIST_ENTRY)Entry);
#endif
}
return;
}
#if !defined(_WIN64) && (defined(_NTDDK_) || defined(_NTIFS_) || defined(_NDIS_))
typedef struct _PAGED_LOOKASIDE_LIST {
#else
typedef struct DECLSPEC_CACHEALIGN _PAGED_LOOKASIDE_LIST {
#endif
GENERAL_LOOKASIDE L;
#if !defined(_AMD64_) && !defined(_IA64_)
FAST_MUTEX Lock__ObsoleteButDoNotDelete;
#endif
} PAGED_LOOKASIDE_LIST, *PPAGED_LOOKASIDE_LIST;
NTKERNELAPI
VOID
ExInitializePagedLookasideList (
IN PPAGED_LOOKASIDE_LIST Lookaside,
IN PALLOCATE_FUNCTION Allocate,
IN PFREE_FUNCTION Free,
IN ULONG Flags,
IN SIZE_T Size,
IN ULONG Tag,
IN USHORT Depth
);
NTKERNELAPI
VOID
ExDeletePagedLookasideList (
IN PPAGED_LOOKASIDE_LIST Lookaside
);
#if defined(_WIN2K_COMPAT_SLIST_USAGE) && defined(_X86_)
NTKERNELAPI
PVOID
ExAllocateFromPagedLookasideList(
IN PPAGED_LOOKASIDE_LIST Lookaside
);
#else
__inline
PVOID
ExAllocateFromPagedLookasideList(
IN PPAGED_LOOKASIDE_LIST Lookaside
)
/*++
Routine Description:
This function removes (pops) the first entry from the specified
paged lookaside list.
Arguments:
Lookaside - Supplies a pointer to a paged lookaside list structure.
Return Value:
If an entry is removed from the specified lookaside list, then the
address of the entry is returned as the function value. Otherwise,
NULL is returned.
--*/
{
PVOID Entry;
Lookaside->L.TotalAllocates += 1;
Entry = InterlockedPopEntrySList(&Lookaside->L.ListHead);
if (Entry == NULL) {
Lookaside->L.AllocateMisses += 1;
Entry = (Lookaside->L.Allocate)(Lookaside->L.Type,
Lookaside->L.Size,
Lookaside->L.Tag);
}
return Entry;
}
#endif
#if defined(_WIN2K_COMPAT_SLIST_USAGE) && defined(_X86_)
NTKERNELAPI
VOID
ExFreeToPagedLookasideList(
IN PPAGED_LOOKASIDE_LIST Lookaside,
IN PVOID Entry
);
#else
__inline
VOID
ExFreeToPagedLookasideList(
IN PPAGED_LOOKASIDE_LIST Lookaside,
IN PVOID Entry
)
/*++
Routine Description:
This function inserts (pushes) the specified entry into the specified
paged lookaside list.
Arguments:
Lookaside - Supplies a pointer to a nonpaged lookaside list structure.
Entry - Supples a pointer to the entry that is inserted in the
lookaside list.
Return Value:
None.
--*/
{
Lookaside->L.TotalFrees += 1;
if (ExQueryDepthSList(&Lookaside->L.ListHead) >= Lookaside->L.Depth) {
Lookaside->L.FreeMisses += 1;
(Lookaside->L.Free)(Entry);
} else {
InterlockedPushEntrySList(&Lookaside->L.ListHead,
(PSLIST_ENTRY)Entry);
}
return;
}
#endif
NTKERNELAPI
VOID
NTAPI
ProbeForRead(
IN CONST VOID *Address,
IN SIZE_T Length,
IN ULONG Alignment
);
//
// Common probe for write functions.
//
NTKERNELAPI
VOID
NTAPI
ProbeForWrite (
IN PVOID Address,
IN SIZE_T Length,
IN ULONG Alignment
);
//
// Worker Thread
//
typedef enum _WORK_QUEUE_TYPE {
CriticalWorkQueue,
DelayedWorkQueue,
HyperCriticalWorkQueue,
MaximumWorkQueue
} WORK_QUEUE_TYPE;
typedef
VOID
(*PWORKER_THREAD_ROUTINE)(
IN PVOID Parameter
);
typedef struct _WORK_QUEUE_ITEM {
LIST_ENTRY List;
PWORKER_THREAD_ROUTINE WorkerRoutine;
PVOID Parameter;
} WORK_QUEUE_ITEM, *PWORK_QUEUE_ITEM;
#if PRAGMA_DEPRECATED_DDK
#pragma deprecated(ExInitializeWorkItem) // Use IoAllocateWorkItem
#endif
#define ExInitializeWorkItem(Item, Routine, Context) \
(Item)->WorkerRoutine = (Routine); \
(Item)->Parameter = (Context); \
(Item)->List.Flink = NULL;
DECLSPEC_DEPRECATED_DDK // Use IoQueueWorkItem
NTKERNELAPI
VOID
ExQueueWorkItem(
IN PWORK_QUEUE_ITEM WorkItem,
IN WORK_QUEUE_TYPE QueueType
);
NTKERNELAPI
BOOLEAN
ExIsProcessorFeaturePresent(
ULONG ProcessorFeature
);
//
// Define executive resource data structures.
//
typedef ULONG_PTR ERESOURCE_THREAD;
typedef ERESOURCE_THREAD *PERESOURCE_THREAD;
typedef struct _OWNER_ENTRY {
ERESOURCE_THREAD OwnerThread;
union {
LONG OwnerCount;
ULONG TableSize;
};
} OWNER_ENTRY, *POWNER_ENTRY;
typedef struct _ERESOURCE {
LIST_ENTRY SystemResourcesList;
POWNER_ENTRY OwnerTable;
SHORT ActiveCount;
USHORT Flag;
PKSEMAPHORE SharedWaiters;
PKEVENT ExclusiveWaiters;
OWNER_ENTRY OwnerThreads[2];
ULONG ContentionCount;
USHORT NumberOfSharedWaiters;
USHORT NumberOfExclusiveWaiters;
union {
PVOID Address;
ULONG_PTR CreatorBackTraceIndex;
};
KSPIN_LOCK SpinLock;
} ERESOURCE, *PERESOURCE;
//
// Values for ERESOURCE.Flag
//
#define ResourceNeverExclusive 0x10
#define ResourceReleaseByOtherThread 0x20
#define ResourceOwnedExclusive 0x80
#define RESOURCE_HASH_TABLE_SIZE 64
typedef struct _RESOURCE_HASH_ENTRY {
LIST_ENTRY ListEntry;
PVOID Address;
ULONG ContentionCount;
ULONG Number;
} RESOURCE_HASH_ENTRY, *PRESOURCE_HASH_ENTRY;
typedef struct _RESOURCE_PERFORMANCE_DATA {
ULONG ActiveResourceCount;
ULONG TotalResourceCount;
ULONG ExclusiveAcquire;
ULONG SharedFirstLevel;
ULONG SharedSecondLevel;
ULONG StarveFirstLevel;
ULONG StarveSecondLevel;
ULONG WaitForExclusive;
ULONG OwnerTableExpands;
ULONG MaximumTableExpand;
LIST_ENTRY HashTable[RESOURCE_HASH_TABLE_SIZE];
} RESOURCE_PERFORMANCE_DATA, *PRESOURCE_PERFORMANCE_DATA;
//
// Define executive resource function prototypes.
//
NTKERNELAPI
NTSTATUS
ExInitializeResourceLite(
IN PERESOURCE Resource
);
NTKERNELAPI
NTSTATUS
ExReinitializeResourceLite(
IN PERESOURCE Resource
);
NTKERNELAPI
BOOLEAN
ExAcquireResourceSharedLite(
IN PERESOURCE Resource,
IN BOOLEAN Wait
);
NTKERNELAPI
BOOLEAN
ExAcquireResourceExclusiveLite(
IN PERESOURCE Resource,
IN BOOLEAN Wait
);
NTKERNELAPI
BOOLEAN
ExAcquireSharedStarveExclusive(
IN PERESOURCE Resource,
IN BOOLEAN Wait
);
NTKERNELAPI
BOOLEAN
ExAcquireSharedWaitForExclusive(
IN PERESOURCE Resource,
IN BOOLEAN Wait
);
NTKERNELAPI
BOOLEAN
ExTryToAcquireResourceExclusiveLite(
IN PERESOURCE Resource
);
//
// VOID
// ExReleaseResource(
// IN PERESOURCE Resource
// );
//
#if PRAGMA_DEPRECATED_DDK
#pragma deprecated(ExReleaseResource) // Use ExReleaseResourceLite
#endif
#define ExReleaseResource(R) (ExReleaseResourceLite(R))
NTKERNELAPI
VOID
FASTCALL
ExReleaseResourceLite(
IN PERESOURCE Resource
);
NTKERNELAPI
VOID
ExReleaseResourceForThreadLite(
IN PERESOURCE Resource,
IN ERESOURCE_THREAD ResourceThreadId
);
NTKERNELAPI
VOID
ExSetResourceOwnerPointer(
IN PERESOURCE Resource,
IN PVOID OwnerPointer
);
NTKERNELAPI
VOID
ExConvertExclusiveToSharedLite(
IN PERESOURCE Resource
);
NTKERNELAPI
NTSTATUS
ExDeleteResourceLite (
IN PERESOURCE Resource
);
NTKERNELAPI
ULONG
ExGetExclusiveWaiterCount (
IN PERESOURCE Resource
);
NTKERNELAPI
ULONG
ExGetSharedWaiterCount (
IN PERESOURCE Resource
);
//
// ERESOURCE_THREAD
// ExGetCurrentResourceThread(
// );
//
#define ExGetCurrentResourceThread() ((ULONG_PTR)PsGetCurrentThread())
NTKERNELAPI
BOOLEAN
ExIsResourceAcquiredExclusiveLite (
IN PERESOURCE Resource
);
NTKERNELAPI
ULONG
ExIsResourceAcquiredSharedLite (
IN PERESOURCE Resource
);
//
// An acquired resource is always owned shared, as shared ownership is a subset
// of exclusive ownership.
//
#define ExIsResourceAcquiredLite ExIsResourceAcquiredSharedLite
//
// Get previous mode
//
NTKERNELAPI
KPROCESSOR_MODE
ExGetPreviousMode(
VOID
);
//
// Raise status from kernel mode.
//
NTKERNELAPI
VOID
NTAPI
ExRaiseStatus (
IN NTSTATUS Status
);
//
// Set timer resolution.
//
NTKERNELAPI
ULONG
ExSetTimerResolution (
IN ULONG DesiredTime,
IN BOOLEAN SetResolution
);
//
// Subtract time zone bias from system time to get local time.
//
NTKERNELAPI
VOID
ExSystemTimeToLocalTime (
IN PLARGE_INTEGER SystemTime,
OUT PLARGE_INTEGER LocalTime
);
//
// Add time zone bias to local time to get system time.
//
NTKERNELAPI
VOID
ExLocalTimeToSystemTime (
IN PLARGE_INTEGER LocalTime,
OUT PLARGE_INTEGER SystemTime
);
//
// Define the type for Callback function.
//
typedef struct _CALLBACK_OBJECT *PCALLBACK_OBJECT;
typedef VOID (*PCALLBACK_FUNCTION ) (
IN PVOID CallbackContext,
IN PVOID Argument1,
IN PVOID Argument2
);
NTKERNELAPI
NTSTATUS
ExCreateCallback (
OUT PCALLBACK_OBJECT *CallbackObject,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN BOOLEAN Create,
IN BOOLEAN AllowMultipleCallbacks
);
NTKERNELAPI
PVOID
ExRegisterCallback (
IN PCALLBACK_OBJECT CallbackObject,
IN PCALLBACK_FUNCTION CallbackFunction,
IN PVOID CallbackContext
);
NTKERNELAPI
VOID
ExUnregisterCallback (
IN PVOID CallbackRegistration
);
NTKERNELAPI
VOID
ExNotifyCallback (
IN PVOID CallbackObject,
IN PVOID Argument1,
IN PVOID Argument2
);
//
// suite support
//
NTKERNELAPI
BOOLEAN
ExVerifySuite(
SUITE_TYPE SuiteType
);
//
// Define a block to hold the actual routine registration.
//
typedef NTSTATUS (*PEX_CALLBACK_FUNCTION ) (
IN PVOID CallbackContext,
IN PVOID Argument1,
IN PVOID Argument2
);
//
// Registry kernel mode callbacks
//
//
// Hook selector
//
typedef enum _REG_NOTIFY_CLASS {
RegNtDeleteKey,
RegNtSetValueKey,
RegNtDeleteValueKey,
RegNtSetInformationKey,
RegNtRenameKey,
RegNtEnumerateKey,
RegNtEnumerateValueKey,
RegNtQueryKey,
RegNtQueryValueKey,
RegNtQueryMultipleValueKey,
RegNtPreCreateKey,
RegNtPostCreateKey,
RegNtPreOpenKey,
RegNtPostOpenKey,
RegNtKeyHandleClose
} REG_NOTIFY_CLASS;
//
// Parameter description for each notify class
//
typedef struct _REG_DELETE_KEY_INFORMATION {
PVOID Object; // IN
} REG_DELETE_KEY_INFORMATION, *PREG_DELETE_KEY_INFORMATION;
typedef struct _REG_SET_VALUE_KEY_INFORMATION {
PVOID Object; // IN
PUNICODE_STRING ValueName; // IN
ULONG TitleIndex; // IN
ULONG Type; // IN
PVOID Data; // IN
ULONG DataSize; // IN
} REG_SET_VALUE_KEY_INFORMATION, *PREG_SET_VALUE_KEY_INFORMATION;
typedef struct _REG_DELETE_VALUE_KEY_INFORMATION {
PVOID Object; // IN
PUNICODE_STRING ValueName; // IN
} REG_DELETE_VALUE_KEY_INFORMATION, *PREG_DELETE_VALUE_KEY_INFORMATION;
typedef struct _REG_SET_INFORMATION_KEY_INFORMATION {
PVOID Object; // IN
KEY_SET_INFORMATION_CLASS KeySetInformationClass; // IN
PVOID KeySetInformation; // IN
ULONG KeySetInformationLength;// IN
} REG_SET_INFORMATION_KEY_INFORMATION, *PREG_SET_INFORMATION_KEY_INFORMATION;
typedef struct _REG_ENUMERATE_KEY_INFORMATION {
PVOID Object; // IN
ULONG Index; // IN
KEY_INFORMATION_CLASS KeyInformationClass; // IN
PVOID KeyInformation; // IN
ULONG Length; // IN
PULONG ResultLength; // OUT
} REG_ENUMERATE_KEY_INFORMATION, *PREG_ENUMERATE_KEY_INFORMATION;
typedef struct _REG_ENUMERATE_VALUE_KEY_INFORMATION {
PVOID Object; // IN
ULONG Index; // IN
KEY_VALUE_INFORMATION_CLASS KeyValueInformationClass; // IN
PVOID KeyValueInformation; // IN
ULONG Length; // IN
PULONG ResultLength; // OUT
} REG_ENUMERATE_VALUE_KEY_INFORMATION, *PREG_ENUMERATE_VALUE_KEY_INFORMATION;
typedef struct _REG_QUERY_KEY_INFORMATION {
PVOID Object; // IN
KEY_INFORMATION_CLASS KeyInformationClass; // IN
PVOID KeyInformation; // IN
ULONG Length; // IN
PULONG ResultLength; // OUT
} REG_QUERY_KEY_INFORMATION, *PREG_QUERY_KEY_INFORMATION;
typedef struct _REG_QUERY_VALUE_KEY_INFORMATION {
PVOID Object; // IN
PUNICODE_STRING ValueName; // IN
KEY_VALUE_INFORMATION_CLASS KeyValueInformationClass; // IN
PVOID KeyValueInformation; // IN
ULONG Length; // IN
PULONG ResultLength; // OUT
} REG_QUERY_VALUE_KEY_INFORMATION, *PREG_QUERY_VALUE_KEY_INFORMATION;
typedef struct _REG_QUERY_MULTIPLE_VALUE_KEY_INFORMATION {
PVOID Object; // IN
PKEY_VALUE_ENTRY ValueEntries; // IN
ULONG EntryCount; // IN
PVOID ValueBuffer; // IN
PULONG BufferLength; // IN OUT
PULONG RequiredBufferLength; // OUT
} REG_QUERY_MULTIPLE_VALUE_KEY_INFORMATION, *PREG_QUERY_MULTIPLE_VALUE_KEY_INFORMATION;
typedef struct _REG_RENAME_KEY_INFORMATION {
PVOID Object; // IN
PUNICODE_STRING NewName; // IN
} REG_RENAME_KEY_INFORMATION, *PREG_RENAME_KEY_INFORMATION;
typedef struct _REG_PRE_CREATE_KEY_INFORMATION {
PUNICODE_STRING CompleteName; // IN
} REG_PRE_CREATE_KEY_INFORMATION, REG_PRE_OPEN_KEY_INFORMATION,*PREG_PRE_CREATE_KEY_INFORMATION, *PREG_PRE_OPEN_KEY_INFORMATION;;
typedef struct _REG_POST_CREATE_KEY_INFORMATION {
PUNICODE_STRING CompleteName; // IN
PVOID Object; // IN
NTSTATUS Status; // IN
} REG_POST_CREATE_KEY_INFORMATION,REG_POST_OPEN_KEY_INFORMATION, *PREG_POST_CREATE_KEY_INFORMATION, *PREG_POST_OPEN_KEY_INFORMATION;
typedef struct _REG_KEY_HANDLE_CLOSE_INFORMATION {
PVOID Object; // IN
} REG_KEY_HANDLE_CLOSE_INFORMATION, *PREG_KEY_HANDLE_CLOSE_INFORMATION;
NTSTATUS
CmRegisterCallback(IN PEX_CALLBACK_FUNCTION Function,
IN PVOID Context,
IN OUT PLARGE_INTEGER Cookie
);
NTSTATUS
CmUnRegisterCallback(IN LARGE_INTEGER Cookie);
//
// Priority increment definitions. The comment for each definition gives
// the names of the system services that use the definition when satisfying
// a wait.
//
//
// Priority increment used when satisfying a wait on an executive event
// (NtPulseEvent and NtSetEvent)
//
#define EVENT_INCREMENT 1
//
// Priority increment when no I/O has been done. This is used by device
// and file system drivers when completing an IRP (IoCompleteRequest).
//
#define IO_NO_INCREMENT 0
//
// Priority increment for completing CD-ROM I/O. This is used by CD-ROM device
// and file system drivers when completing an IRP (IoCompleteRequest)
//
#define IO_CD_ROM_INCREMENT 1
//
// Priority increment for completing disk I/O. This is used by disk device
// and file system drivers when completing an IRP (IoCompleteRequest)
//
#define IO_DISK_INCREMENT 1
//
// Priority increment for completing keyboard I/O. This is used by keyboard
// device drivers when completing an IRP (IoCompleteRequest)
//
#define IO_KEYBOARD_INCREMENT 6
//
// Priority increment for completing mailslot I/O. This is used by the mail-
// slot file system driver when completing an IRP (IoCompleteRequest).
//
#define IO_MAILSLOT_INCREMENT 2
//
// Priority increment for completing mouse I/O. This is used by mouse device
// drivers when completing an IRP (IoCompleteRequest)
//
#define IO_MOUSE_INCREMENT 6
//
// Priority increment for completing named pipe I/O. This is used by the
// named pipe file system driver when completing an IRP (IoCompleteRequest).
//
#define IO_NAMED_PIPE_INCREMENT 2
//
// Priority increment for completing network I/O. This is used by network
// device and network file system drivers when completing an IRP
// (IoCompleteRequest).
//
#define IO_NETWORK_INCREMENT 2
//
// Priority increment for completing parallel I/O. This is used by parallel
// device drivers when completing an IRP (IoCompleteRequest)
//
#define IO_PARALLEL_INCREMENT 1
//
// Priority increment for completing serial I/O. This is used by serial device
// drivers when completing an IRP (IoCompleteRequest)
//
#define IO_SERIAL_INCREMENT 2
//
// Priority increment for completing sound I/O. This is used by sound device
// drivers when completing an IRP (IoCompleteRequest)
//
#define IO_SOUND_INCREMENT 8
//
// Priority increment for completing video I/O. This is used by video device
// drivers when completing an IRP (IoCompleteRequest)
//
#define IO_VIDEO_INCREMENT 1
//
// Priority increment used when satisfying a wait on an executive semaphore
// (NtReleaseSemaphore)
//
#define SEMAPHORE_INCREMENT 1
//
// Indicates the system may do I/O to physical addresses above 4 GB.
//
extern PBOOLEAN Mm64BitPhysicalAddress;
//
// Define maximum disk transfer size to be used by MM and Cache Manager,
// so that packet-oriented disk drivers can optimize their packet allocation
// to this size.
//
#define MM_MAXIMUM_DISK_IO_SIZE (0x10000)
//++
//
// ULONG_PTR
// ROUND_TO_PAGES (
// IN ULONG_PTR Size
// )
//
// Routine Description:
//
// The ROUND_TO_PAGES macro takes a size in bytes and rounds it up to a
// multiple of the page size.
//
// NOTE: This macro fails for values 0xFFFFFFFF - (PAGE_SIZE - 1).
//
// Arguments:
//
// Size - Size in bytes to round up to a page multiple.
//
// Return Value:
//
// Returns the size rounded up to a multiple of the page size.
//
//--
#define ROUND_TO_PAGES(Size) (((ULONG_PTR)(Size) + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1))
//++
//
// ULONG
// BYTES_TO_PAGES (
// IN ULONG Size
// )
//
// Routine Description:
//
// The BYTES_TO_PAGES macro takes the size in bytes and calculates the
// number of pages required to contain the bytes.
//
// Arguments:
//
// Size - Size in bytes.
//
// Return Value:
//
// Returns the number of pages required to contain the specified size.
//
//--
#define BYTES_TO_PAGES(Size) ((ULONG)((ULONG_PTR)(Size) >> PAGE_SHIFT) + \
(((ULONG)(Size) & (PAGE_SIZE - 1)) != 0))
//++
//
// ULONG
// BYTE_OFFSET (
// IN PVOID Va
// )
//
// Routine Description:
//
// The BYTE_OFFSET macro takes a virtual address and returns the byte offset
// of that address within the page.
//
// Arguments:
//
// Va - Virtual address.
//
// Return Value:
//
// Returns the byte offset portion of the virtual address.
//
//--
#define BYTE_OFFSET(Va) ((ULONG)((LONG_PTR)(Va) & (PAGE_SIZE - 1)))
//++
//
// PVOID
// PAGE_ALIGN (
// IN PVOID Va
// )
//
// Routine Description:
//
// The PAGE_ALIGN macro takes a virtual address and returns a page-aligned
// virtual address for that page.
//
// Arguments:
//
// Va - Virtual address.
//
// Return Value:
//
// Returns the page aligned virtual address.
//
//--
#define PAGE_ALIGN(Va) ((PVOID)((ULONG_PTR)(Va) & ~(PAGE_SIZE - 1)))
//++
//
// ULONG
// ADDRESS_AND_SIZE_TO_SPAN_PAGES (
// IN PVOID Va,
// IN ULONG Size
// )
//
// Routine Description:
//
// The ADDRESS_AND_SIZE_TO_SPAN_PAGES macro takes a virtual address and
// size and returns the number of pages spanned by the size.
//
// Arguments:
//
// Va - Virtual address.
//
// Size - Size in bytes.
//
// Return Value:
//
// Returns the number of pages spanned by the size.
//
//--
#define ADDRESS_AND_SIZE_TO_SPAN_PAGES(Va,Size) \
((ULONG)((((ULONG_PTR)(Va) & (PAGE_SIZE -1)) + (Size) + (PAGE_SIZE - 1)) >> PAGE_SHIFT))
#if PRAGMA_DEPRECATED_DDK
#pragma deprecated(COMPUTE_PAGES_SPANNED) // Use ADDRESS_AND_SIZE_TO_SPAN_PAGES
#endif
#define COMPUTE_PAGES_SPANNED(Va, Size) ADDRESS_AND_SIZE_TO_SPAN_PAGES(Va,Size)
//++
// PPFN_NUMBER
// MmGetMdlPfnArray (
// IN PMDL Mdl
// )
//
// Routine Description:
//
// The MmGetMdlPfnArray routine returns the virtual address of the
// first element of the array of physical page numbers associated with
// the MDL.
//
// Arguments:
//
// Mdl - Pointer to an MDL.
//
// Return Value:
//
// Returns the virtual address of the first element of the array of
// physical page numbers associated with the MDL.
//
//--
#define MmGetMdlPfnArray(Mdl) ((PPFN_NUMBER)(Mdl + 1))
//++
//
// PVOID
// MmGetMdlVirtualAddress (
// IN PMDL Mdl
// )
//
// Routine Description:
//
// The MmGetMdlVirtualAddress returns the virtual address of the buffer
// described by the Mdl.
//
// Arguments:
//
// Mdl - Pointer to an MDL.
//
// Return Value:
//
// Returns the virtual address of the buffer described by the Mdl
//
//--
#define MmGetMdlVirtualAddress(Mdl) \
((PVOID) ((PCHAR) ((Mdl)->StartVa) + (Mdl)->ByteOffset))
//++
//
// ULONG
// MmGetMdlByteCount (
// IN PMDL Mdl
// )
//
// Routine Description:
//
// The MmGetMdlByteCount returns the length in bytes of the buffer
// described by the Mdl.
//
// Arguments:
//
// Mdl - Pointer to an MDL.
//
// Return Value:
//
// Returns the byte count of the buffer described by the Mdl
//
//--
#define MmGetMdlByteCount(Mdl) ((Mdl)->ByteCount)
//++
//
// ULONG
// MmGetMdlByteOffset (
// IN PMDL Mdl
// )
//
// Routine Description:
//
// The MmGetMdlByteOffset returns the byte offset within the page
// of the buffer described by the Mdl.
//
// Arguments:
//
// Mdl - Pointer to an MDL.
//
// Return Value:
//
// Returns the byte offset within the page of the buffer described by the Mdl
//
//--
#define MmGetMdlByteOffset(Mdl) ((Mdl)->ByteOffset)
//++
//
// PVOID
// MmGetMdlStartVa (
// IN PMDL Mdl
// )
//
// Routine Description:
//
// The MmGetMdlBaseVa returns the virtual address of the buffer
// described by the Mdl rounded down to the nearest page.
//
// Arguments:
//
// Mdl - Pointer to an MDL.
//
// Return Value:
//
// Returns the returns the starting virtual address of the MDL.
//
//
//--
#define MmGetMdlBaseVa(Mdl) ((Mdl)->StartVa)
typedef enum _MM_SYSTEM_SIZE {
MmSmallSystem,
MmMediumSystem,
MmLargeSystem
} MM_SYSTEMSIZE;
NTKERNELAPI
MM_SYSTEMSIZE
MmQuerySystemSize(
VOID
);
typedef enum _LOCK_OPERATION {
IoReadAccess,
IoWriteAccess,
IoModifyAccess
} LOCK_OPERATION;
NTSTATUS
MmIsVerifierEnabled (
OUT PULONG VerifierFlags
);
NTSTATUS
MmAddVerifierThunks (
IN PVOID ThunkBuffer,
IN ULONG ThunkBufferSize
);
NTKERNELAPI
VOID
MmProbeAndLockProcessPages (
IN OUT PMDL MemoryDescriptorList,
IN PEPROCESS Process,
IN KPROCESSOR_MODE AccessMode,
IN LOCK_OPERATION Operation
);
//
// I/O support routines.
//
NTKERNELAPI
VOID
MmProbeAndLockPages (
IN OUT PMDL MemoryDescriptorList,
IN KPROCESSOR_MODE AccessMode,
IN LOCK_OPERATION Operation
);
NTKERNELAPI
VOID
MmUnlockPages (
IN PMDL MemoryDescriptorList
);
NTKERNELAPI
VOID
MmBuildMdlForNonPagedPool (
IN OUT PMDL MemoryDescriptorList
);
NTKERNELAPI
PVOID
MmMapLockedPages (
IN PMDL MemoryDescriptorList,
IN KPROCESSOR_MODE AccessMode
);
NTKERNELAPI
PVOID
MmGetSystemRoutineAddress (
IN PUNICODE_STRING SystemRoutineName
);
NTKERNELAPI
NTSTATUS
MmAdvanceMdl (
IN PMDL Mdl,
IN ULONG NumberOfBytes
);
NTKERNELAPI
NTSTATUS
MmProtectMdlSystemAddress (
IN PMDL MemoryDescriptorList,
IN ULONG NewProtect
);
//
// _MM_PAGE_PRIORITY_ provides a method for the system to handle requests
// intelligently in low resource conditions.
//
// LowPagePriority should be used when it is acceptable to the driver for the
// mapping request to fail if the system is low on resources. An example of
// this could be for a non-critical network connection where the driver can
// handle the failure case when system resources are close to being depleted.
//
// NormalPagePriority should be used when it is acceptable to the driver for the
// mapping request to fail if the system is very low on resources. An example
// of this could be for a non-critical local filesystem request.
//
// HighPagePriority should be used when it is unacceptable to the driver for the
// mapping request to fail unless the system is completely out of resources.
// An example of this would be the paging file path in a driver.
//
typedef enum _MM_PAGE_PRIORITY {
LowPagePriority,
NormalPagePriority = 16,
HighPagePriority = 32
} MM_PAGE_PRIORITY;
//
// Note: This function is not available in WDM 1.0
//
NTKERNELAPI
PVOID
MmMapLockedPagesSpecifyCache (
IN PMDL MemoryDescriptorList,
IN KPROCESSOR_MODE AccessMode,
IN MEMORY_CACHING_TYPE CacheType,
IN PVOID BaseAddress,
IN ULONG BugCheckOnFailure,
IN MM_PAGE_PRIORITY Priority
);
NTKERNELAPI
VOID
MmUnmapLockedPages (
IN PVOID BaseAddress,
IN PMDL MemoryDescriptorList
);
PVOID
MmAllocateMappingAddress (
IN SIZE_T NumberOfBytes,
IN ULONG PoolTag
);
VOID
MmFreeMappingAddress (
IN PVOID BaseAddress,
IN ULONG PoolTag
);
PVOID
MmMapLockedPagesWithReservedMapping (
IN PVOID MappingAddress,
IN ULONG PoolTag,
IN PMDL MemoryDescriptorList,
IN MEMORY_CACHING_TYPE CacheType
);
VOID
MmUnmapReservedMapping (
IN PVOID BaseAddress,
IN ULONG PoolTag,
IN PMDL MemoryDescriptorList
);
NTKERNELAPI
PMDL
MmAllocatePagesForMdl (
IN PHYSICAL_ADDRESS LowAddress,
IN PHYSICAL_ADDRESS HighAddress,
IN PHYSICAL_ADDRESS SkipBytes,
IN SIZE_T TotalBytes
);
NTKERNELAPI
VOID
MmFreePagesFromMdl (
IN PMDL MemoryDescriptorList
);
NTKERNELAPI
PVOID
MmMapIoSpace (
IN PHYSICAL_ADDRESS PhysicalAddress,
IN SIZE_T NumberOfBytes,
IN MEMORY_CACHING_TYPE CacheType
);
NTKERNELAPI
VOID
MmUnmapIoSpace (
IN PVOID BaseAddress,
IN SIZE_T NumberOfBytes
);
NTKERNELAPI
SIZE_T
MmSizeOfMdl(
IN PVOID Base,
IN SIZE_T Length
);
DECLSPEC_DEPRECATED_DDK // Use IoCreateMdl
NTKERNELAPI
PMDL
MmCreateMdl(
IN PMDL MemoryDescriptorList OPTIONAL,
IN PVOID Base,
IN SIZE_T Length
);
NTKERNELAPI
PVOID
MmLockPagableDataSection(
IN PVOID AddressWithinSection
);
NTKERNELAPI
VOID
MmResetDriverPaging (
IN PVOID AddressWithinSection
);
NTKERNELAPI
PVOID
MmPageEntireDriver (
IN PVOID AddressWithinSection
);
NTKERNELAPI
VOID
MmUnlockPagableImageSection(
IN PVOID ImageSectionHandle
);
//++
//
// VOID
// MmInitializeMdl (
// IN PMDL MemoryDescriptorList,
// IN PVOID BaseVa,
// IN SIZE_T Length
// )
//
// Routine Description:
//
// This routine initializes the header of a Memory Descriptor List (MDL).
//
// Arguments:
//
// MemoryDescriptorList - Pointer to the MDL to initialize.
//
// BaseVa - Base virtual address mapped by the MDL.
//
// Length - Length, in bytes, of the buffer mapped by the MDL.
//
// Return Value:
//
// None.
//
//--
#define MmInitializeMdl(MemoryDescriptorList, BaseVa, Length) { \
(MemoryDescriptorList)->Next = (PMDL) NULL; \
(MemoryDescriptorList)->Size = (CSHORT)(sizeof(MDL) + \
(sizeof(PFN_NUMBER) * ADDRESS_AND_SIZE_TO_SPAN_PAGES((BaseVa), (Length)))); \
(MemoryDescriptorList)->MdlFlags = 0; \
(MemoryDescriptorList)->StartVa = (PVOID) PAGE_ALIGN((BaseVa)); \
(MemoryDescriptorList)->ByteOffset = BYTE_OFFSET((BaseVa)); \
(MemoryDescriptorList)->ByteCount = (ULONG)(Length); \
}
//++
//
// PVOID
// MmGetSystemAddressForMdlSafe (
// IN PMDL MDL,
// IN MM_PAGE_PRIORITY PRIORITY
// )
//
// Routine Description:
//
// This routine returns the mapped address of an MDL. If the
// Mdl is not already mapped or a system address, it is mapped.
//
// Arguments:
//
// MemoryDescriptorList - Pointer to the MDL to map.
//
// Priority - Supplies an indication as to how important it is that this
// request succeed under low available PTE conditions.
//
// Return Value:
//
// Returns the base address where the pages are mapped. The base address
// has the same offset as the virtual address in the MDL.
//
// Unlike MmGetSystemAddressForMdl, Safe guarantees that it will always
// return NULL on failure instead of bugchecking the system.
//
// This macro is not usable by WDM 1.0 drivers as 1.0 did not include
// MmMapLockedPagesSpecifyCache. The solution for WDM 1.0 drivers is to
// provide synchronization and set/reset the MDL_MAPPING_CAN_FAIL bit.
//
//--
#define MmGetSystemAddressForMdlSafe(MDL, PRIORITY) \
(((MDL)->MdlFlags & (MDL_MAPPED_TO_SYSTEM_VA | \
MDL_SOURCE_IS_NONPAGED_POOL)) ? \
((MDL)->MappedSystemVa) : \
(MmMapLockedPagesSpecifyCache((MDL), \
KernelMode, \
MmCached, \
NULL, \
FALSE, \
(PRIORITY))))
//++
//
// PVOID
// MmGetSystemAddressForMdl (
// IN PMDL MDL
// )
//
// Routine Description:
//
// This routine returns the mapped address of an MDL, if the
// Mdl is not already mapped or a system address, it is mapped.
//
// Arguments:
//
// MemoryDescriptorList - Pointer to the MDL to map.
//
// Return Value:
//
// Returns the base address where the pages are mapped. The base address
// has the same offset as the virtual address in the MDL.
//
//--
//#define MmGetSystemAddressForMdl(MDL)
// (((MDL)->MdlFlags & (MDL_MAPPED_TO_SYSTEM_VA)) ?
// ((MDL)->MappedSystemVa) :
// ((((MDL)->MdlFlags & (MDL_SOURCE_IS_NONPAGED_POOL)) ?
// ((PVOID)((ULONG)(MDL)->StartVa | (MDL)->ByteOffset)) :
// (MmMapLockedPages((MDL),KernelMode)))))
#if PRAGMA_DEPRECATED_DDK
#pragma deprecated(MmGetSystemAddressForMdl) // Use MmGetSystemAddressForMdlSafe
#endif
#define MmGetSystemAddressForMdl(MDL) \
(((MDL)->MdlFlags & (MDL_MAPPED_TO_SYSTEM_VA | \
MDL_SOURCE_IS_NONPAGED_POOL)) ? \
((MDL)->MappedSystemVa) : \
(MmMapLockedPages((MDL),KernelMode)))
//++
//
// VOID
// MmPrepareMdlForReuse (
// IN PMDL MDL
// )
//
// Routine Description:
//
// This routine will take all of the steps necessary to allow an MDL to be
// re-used.
//
// Arguments:
//
// MemoryDescriptorList - Pointer to the MDL that will be re-used.
//
// Return Value:
//
// None.
//
//--
#define MmPrepareMdlForReuse(MDL) \
if (((MDL)->MdlFlags & MDL_PARTIAL_HAS_BEEN_MAPPED) != 0) { \
ASSERT(((MDL)->MdlFlags & MDL_PARTIAL) != 0); \
MmUnmapLockedPages( (MDL)->MappedSystemVa, (MDL) ); \
} else if (((MDL)->MdlFlags & MDL_PARTIAL) == 0) { \
ASSERT(((MDL)->MdlFlags & MDL_MAPPED_TO_SYSTEM_VA) == 0); \
}
typedef NTSTATUS (*PMM_DLL_INITIALIZE)(
IN PUNICODE_STRING RegistryPath
);
typedef NTSTATUS (*PMM_DLL_UNLOAD)(
VOID
);
//
// Define an empty typedef for the _DRIVER_OBJECT structure so it may be
// referenced by function types before it is actually defined.
//
struct _DRIVER_OBJECT;
NTKERNELAPI
LOGICAL
MmIsDriverVerifying (
IN struct _DRIVER_OBJECT *DriverObject
);
//
// Security operation codes
//
typedef enum _SECURITY_OPERATION_CODE {
SetSecurityDescriptor,
QuerySecurityDescriptor,
DeleteSecurityDescriptor,
AssignSecurityDescriptor
} SECURITY_OPERATION_CODE, *PSECURITY_OPERATION_CODE;
//
// Data structure used to capture subject security context
// for access validations and auditing.
//
// THE FIELDS OF THIS DATA STRUCTURE SHOULD BE CONSIDERED OPAQUE
// BY ALL EXCEPT THE SECURITY ROUTINES.
//
typedef struct _SECURITY_SUBJECT_CONTEXT {
PACCESS_TOKEN ClientToken;
SECURITY_IMPERSONATION_LEVEL ImpersonationLevel;
PACCESS_TOKEN PrimaryToken;
PVOID ProcessAuditId;
} SECURITY_SUBJECT_CONTEXT, *PSECURITY_SUBJECT_CONTEXT;
///////////////////////////////////////////////////////////////////////////////
// //
// ACCESS_STATE and related structures //
// //
///////////////////////////////////////////////////////////////////////////////
//
// Initial Privilege Set - Room for three privileges, which should
// be enough for most applications. This structure exists so that
// it can be imbedded in an ACCESS_STATE structure. Use PRIVILEGE_SET
// for all other references to Privilege sets.
//
#define INITIAL_PRIVILEGE_COUNT 3
typedef struct _INITIAL_PRIVILEGE_SET {
ULONG PrivilegeCount;
ULONG Control;
LUID_AND_ATTRIBUTES Privilege[INITIAL_PRIVILEGE_COUNT];
} INITIAL_PRIVILEGE_SET, * PINITIAL_PRIVILEGE_SET;
//
// Combine the information that describes the state
// of an access-in-progress into a single structure
//
typedef struct _ACCESS_STATE {
LUID OperationID;
BOOLEAN SecurityEvaluated;
BOOLEAN GenerateAudit;
BOOLEAN GenerateOnClose;
BOOLEAN PrivilegesAllocated;
ULONG Flags;
ACCESS_MASK RemainingDesiredAccess;
ACCESS_MASK PreviouslyGrantedAccess;
ACCESS_MASK OriginalDesiredAccess;
SECURITY_SUBJECT_CONTEXT SubjectSecurityContext;
PSECURITY_DESCRIPTOR SecurityDescriptor;
PVOID AuxData;
union {
INITIAL_PRIVILEGE_SET InitialPrivilegeSet;
PRIVILEGE_SET PrivilegeSet;
} Privileges;
BOOLEAN AuditPrivileges;
UNICODE_STRING ObjectName;
UNICODE_STRING ObjectTypeName;
} ACCESS_STATE, *PACCESS_STATE;
NTKERNELAPI
NTSTATUS
SeAssignSecurity (
IN PSECURITY_DESCRIPTOR ParentDescriptor OPTIONAL,
IN PSECURITY_DESCRIPTOR ExplicitDescriptor,
OUT PSECURITY_DESCRIPTOR *NewDescriptor,
IN BOOLEAN IsDirectoryObject,
IN PSECURITY_SUBJECT_CONTEXT SubjectContext,
IN PGENERIC_MAPPING GenericMapping,
IN POOL_TYPE PoolType
);
NTKERNELAPI
NTSTATUS
SeAssignSecurityEx (
IN PSECURITY_DESCRIPTOR ParentDescriptor OPTIONAL,
IN PSECURITY_DESCRIPTOR ExplicitDescriptor OPTIONAL,
OUT PSECURITY_DESCRIPTOR *NewDescriptor,
IN GUID *ObjectType OPTIONAL,
IN BOOLEAN IsDirectoryObject,
IN ULONG AutoInheritFlags,
IN PSECURITY_SUBJECT_CONTEXT SubjectContext,
IN PGENERIC_MAPPING GenericMapping,
IN POOL_TYPE PoolType
);
NTKERNELAPI
NTSTATUS
SeDeassignSecurity (
IN OUT PSECURITY_DESCRIPTOR *SecurityDescriptor
);
NTKERNELAPI
BOOLEAN
SeAccessCheck (
IN PSECURITY_DESCRIPTOR SecurityDescriptor,
IN PSECURITY_SUBJECT_CONTEXT SubjectSecurityContext,
IN BOOLEAN SubjectContextLocked,
IN ACCESS_MASK DesiredAccess,
IN ACCESS_MASK PreviouslyGrantedAccess,
OUT PPRIVILEGE_SET *Privileges OPTIONAL,
IN PGENERIC_MAPPING GenericMapping,
IN KPROCESSOR_MODE AccessMode,
OUT PACCESS_MASK GrantedAccess,
OUT PNTSTATUS AccessStatus
);
#ifdef SE_NTFS_WORLD_CACHE
VOID
SeGetWorldRights (
IN PSECURITY_DESCRIPTOR SecurityDescriptor,
IN PGENERIC_MAPPING GenericMapping,
OUT PACCESS_MASK GrantedAccess
);
#endif
NTKERNELAPI
BOOLEAN
SeValidSecurityDescriptor(
IN ULONG Length,
IN PSECURITY_DESCRIPTOR SecurityDescriptor
);
//
// System Thread and Process Creation and Termination
//
NTKERNELAPI
NTSTATUS
PsCreateSystemThread(
OUT PHANDLE ThreadHandle,
IN ULONG DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
IN HANDLE ProcessHandle OPTIONAL,
OUT PCLIENT_ID ClientId OPTIONAL,
IN PKSTART_ROUTINE StartRoutine,
IN PVOID StartContext
);
NTKERNELAPI
NTSTATUS
PsTerminateSystemThread(
IN NTSTATUS ExitStatus
);
//
// Define I/O system data structure type codes. Each major data structure in
// the I/O system has a type code The type field in each structure is at the
// same offset. The following values can be used to determine which type of
// data structure a pointer refers to.
//
#define IO_TYPE_ADAPTER 0x00000001
#define IO_TYPE_CONTROLLER 0x00000002
#define IO_TYPE_DEVICE 0x00000003
#define IO_TYPE_DRIVER 0x00000004
#define IO_TYPE_FILE 0x00000005
#define IO_TYPE_IRP 0x00000006
#define IO_TYPE_MASTER_ADAPTER 0x00000007
#define IO_TYPE_OPEN_PACKET 0x00000008
#define IO_TYPE_TIMER 0x00000009
#define IO_TYPE_VPB 0x0000000a
#define IO_TYPE_ERROR_LOG 0x0000000b
#define IO_TYPE_ERROR_MESSAGE 0x0000000c
#define IO_TYPE_DEVICE_OBJECT_EXTENSION 0x0000000d
//
// Define the major function codes for IRPs.
//
#define IRP_MJ_CREATE 0x00
#define IRP_MJ_CREATE_NAMED_PIPE 0x01
#define IRP_MJ_CLOSE 0x02
#define IRP_MJ_READ 0x03
#define IRP_MJ_WRITE 0x04
#define IRP_MJ_QUERY_INFORMATION 0x05
#define IRP_MJ_SET_INFORMATION 0x06
#define IRP_MJ_QUERY_EA 0x07
#define IRP_MJ_SET_EA 0x08
#define IRP_MJ_FLUSH_BUFFERS 0x09
#define IRP_MJ_QUERY_VOLUME_INFORMATION 0x0a
#define IRP_MJ_SET_VOLUME_INFORMATION 0x0b
#define IRP_MJ_DIRECTORY_CONTROL 0x0c
#define IRP_MJ_FILE_SYSTEM_CONTROL 0x0d
#define IRP_MJ_DEVICE_CONTROL 0x0e
#define IRP_MJ_INTERNAL_DEVICE_CONTROL 0x0f
#define IRP_MJ_SHUTDOWN 0x10
#define IRP_MJ_LOCK_CONTROL 0x11
#define IRP_MJ_CLEANUP 0x12
#define IRP_MJ_CREATE_MAILSLOT 0x13
#define IRP_MJ_QUERY_SECURITY 0x14
#define IRP_MJ_SET_SECURITY 0x15
#define IRP_MJ_POWER 0x16
#define IRP_MJ_SYSTEM_CONTROL 0x17
#define IRP_MJ_DEVICE_CHANGE 0x18
#define IRP_MJ_QUERY_QUOTA 0x19
#define IRP_MJ_SET_QUOTA 0x1a
#define IRP_MJ_PNP 0x1b
#define IRP_MJ_PNP_POWER IRP_MJ_PNP // Obsolete....
#define IRP_MJ_MAXIMUM_FUNCTION 0x1b
//
// Make the Scsi major code the same as internal device control.
//
#define IRP_MJ_SCSI IRP_MJ_INTERNAL_DEVICE_CONTROL
//
// Define the minor function codes for IRPs. The lower 128 codes, from 0x00 to
// 0x7f are reserved to Microsoft. The upper 128 codes, from 0x80 to 0xff, are
// reserved to customers of Microsoft.
//
//
// Device Control Request minor function codes for SCSI support. Note that
// user requests are assumed to be zero.
//
#define IRP_MN_SCSI_CLASS 0x01
//
// PNP minor function codes.
//
#define IRP_MN_START_DEVICE 0x00
#define IRP_MN_QUERY_REMOVE_DEVICE 0x01
#define IRP_MN_REMOVE_DEVICE 0x02
#define IRP_MN_CANCEL_REMOVE_DEVICE 0x03
#define IRP_MN_STOP_DEVICE 0x04
#define IRP_MN_QUERY_STOP_DEVICE 0x05
#define IRP_MN_CANCEL_STOP_DEVICE 0x06
#define IRP_MN_QUERY_DEVICE_RELATIONS 0x07
#define IRP_MN_QUERY_INTERFACE 0x08
#define IRP_MN_QUERY_CAPABILITIES 0x09
#define IRP_MN_QUERY_RESOURCES 0x0A
#define IRP_MN_QUERY_RESOURCE_REQUIREMENTS 0x0B
#define IRP_MN_QUERY_DEVICE_TEXT 0x0C
#define IRP_MN_FILTER_RESOURCE_REQUIREMENTS 0x0D
#define IRP_MN_READ_CONFIG 0x0F
#define IRP_MN_WRITE_CONFIG 0x10
#define IRP_MN_EJECT 0x11
#define IRP_MN_SET_LOCK 0x12
#define IRP_MN_QUERY_ID 0x13
#define IRP_MN_QUERY_PNP_DEVICE_STATE 0x14
#define IRP_MN_QUERY_BUS_INFORMATION 0x15
#define IRP_MN_DEVICE_USAGE_NOTIFICATION 0x16
#define IRP_MN_SURPRISE_REMOVAL 0x17
//
// POWER minor function codes
//
#define IRP_MN_WAIT_WAKE 0x00
#define IRP_MN_POWER_SEQUENCE 0x01
#define IRP_MN_SET_POWER 0x02
#define IRP_MN_QUERY_POWER 0x03
//
// WMI minor function codes under IRP_MJ_SYSTEM_CONTROL
//
#define IRP_MN_QUERY_ALL_DATA 0x00
#define IRP_MN_QUERY_SINGLE_INSTANCE 0x01
#define IRP_MN_CHANGE_SINGLE_INSTANCE 0x02
#define IRP_MN_CHANGE_SINGLE_ITEM 0x03
#define IRP_MN_ENABLE_EVENTS 0x04
#define IRP_MN_DISABLE_EVENTS 0x05
#define IRP_MN_ENABLE_COLLECTION 0x06
#define IRP_MN_DISABLE_COLLECTION 0x07
#define IRP_MN_REGINFO 0x08
#define IRP_MN_EXECUTE_METHOD 0x09
// Minor code 0x0a is reserved
#define IRP_MN_REGINFO_EX 0x0b
//
// Define option flags for IoCreateFile. Note that these values must be
// exactly the same as the SL_... flags for a create function. Note also
// that there are flags that may be passed to IoCreateFile that are not
// placed in the stack location for the create IRP. These flags start in
// the next byte.
//
#define IO_FORCE_ACCESS_CHECK 0x0001
#define IO_NO_PARAMETER_CHECKING 0x0100
//
// Define Information fields for whether or not a REPARSE or a REMOUNT has
// occurred in the file system.
//
#define IO_REPARSE 0x0
#define IO_REMOUNT 0x1
//
// Define the objects that can be created by IoCreateFile.
//
typedef enum _CREATE_FILE_TYPE {
CreateFileTypeNone,
CreateFileTypeNamedPipe,
CreateFileTypeMailslot
} CREATE_FILE_TYPE;
//
// Define the structures used by the I/O system
//
//
// Define empty typedefs for the _IRP, _DEVICE_OBJECT, and _DRIVER_OBJECT
// structures so they may be referenced by function types before they are
// actually defined.
//
struct _DEVICE_DESCRIPTION;
struct _DEVICE_OBJECT;
struct _DMA_ADAPTER;
struct _DRIVER_OBJECT;
struct _DRIVE_LAYOUT_INFORMATION;
struct _DISK_PARTITION;
struct _FILE_OBJECT;
struct _IRP;
struct _SCSI_REQUEST_BLOCK;
struct _SCATTER_GATHER_LIST;
//
// Define the I/O version of a DPC routine.
//
typedef
VOID
(*PIO_DPC_ROUTINE) (
IN PKDPC Dpc,
IN struct _DEVICE_OBJECT *DeviceObject,
IN struct _IRP *Irp,
IN PVOID Context
);
//
// Define driver timer routine type.
//
typedef
VOID
(*PIO_TIMER_ROUTINE) (
IN struct _DEVICE_OBJECT *DeviceObject,
IN PVOID Context
);
//
// Define driver initialization routine type.
//
typedef
NTSTATUS
(*PDRIVER_INITIALIZE) (
IN struct _DRIVER_OBJECT *DriverObject,
IN PUNICODE_STRING RegistryPath
);
//
// Define driver cancel routine type.
//
typedef
VOID
(*PDRIVER_CANCEL) (
IN struct _DEVICE_OBJECT *DeviceObject,
IN struct _IRP *Irp
);
//
// Define driver dispatch routine type.
//
typedef
NTSTATUS
(*PDRIVER_DISPATCH) (
IN struct _DEVICE_OBJECT *DeviceObject,
IN struct _IRP *Irp
);
//
// Define driver start I/O routine type.
//
typedef
VOID
(*PDRIVER_STARTIO) (
IN struct _DEVICE_OBJECT *DeviceObject,
IN struct _IRP *Irp
);
//
// Define driver unload routine type.
//
typedef
VOID
(*PDRIVER_UNLOAD) (
IN struct _DRIVER_OBJECT *DriverObject
);
//
// Define driver AddDevice routine type.
//
typedef
NTSTATUS
(*PDRIVER_ADD_DEVICE) (
IN struct _DRIVER_OBJECT *DriverObject,
IN struct _DEVICE_OBJECT *PhysicalDeviceObject
);
//
// Define fast I/O procedure prototypes.
//
// Fast I/O read and write procedures.
//
typedef
BOOLEAN
(*PFAST_IO_CHECK_IF_POSSIBLE) (
IN struct _FILE_OBJECT *FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
IN ULONG LockKey,
IN BOOLEAN CheckForReadOperation,
OUT PIO_STATUS_BLOCK IoStatus,
IN struct _DEVICE_OBJECT *DeviceObject
);
typedef
BOOLEAN
(*PFAST_IO_READ) (
IN struct _FILE_OBJECT *FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
IN ULONG LockKey,
OUT PVOID Buffer,
OUT PIO_STATUS_BLOCK IoStatus,
IN struct _DEVICE_OBJECT *DeviceObject
);
typedef
BOOLEAN
(*PFAST_IO_WRITE) (
IN struct _FILE_OBJECT *FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
IN ULONG LockKey,
IN PVOID Buffer,
OUT PIO_STATUS_BLOCK IoStatus,
IN struct _DEVICE_OBJECT *DeviceObject
);
//
// Fast I/O query basic and standard information procedures.
//
typedef
BOOLEAN
(*PFAST_IO_QUERY_BASIC_INFO) (
IN struct _FILE_OBJECT *FileObject,
IN BOOLEAN Wait,
OUT PFILE_BASIC_INFORMATION Buffer,
OUT PIO_STATUS_BLOCK IoStatus,
IN struct _DEVICE_OBJECT *DeviceObject
);
typedef
BOOLEAN
(*PFAST_IO_QUERY_STANDARD_INFO) (
IN struct _FILE_OBJECT *FileObject,
IN BOOLEAN Wait,
OUT PFILE_STANDARD_INFORMATION Buffer,
OUT PIO_STATUS_BLOCK IoStatus,
IN struct _DEVICE_OBJECT *DeviceObject
);
//
// Fast I/O lock and unlock procedures.
//
typedef
BOOLEAN
(*PFAST_IO_LOCK) (
IN struct _FILE_OBJECT *FileObject,
IN PLARGE_INTEGER FileOffset,
IN PLARGE_INTEGER Length,
PEPROCESS ProcessId,
ULONG Key,
BOOLEAN FailImmediately,
BOOLEAN ExclusiveLock,
OUT PIO_STATUS_BLOCK IoStatus,
IN struct _DEVICE_OBJECT *DeviceObject
);
typedef
BOOLEAN
(*PFAST_IO_UNLOCK_SINGLE) (
IN struct _FILE_OBJECT *FileObject,
IN PLARGE_INTEGER FileOffset,
IN PLARGE_INTEGER Length,
PEPROCESS ProcessId,
ULONG Key,
OUT PIO_STATUS_BLOCK IoStatus,
IN struct _DEVICE_OBJECT *DeviceObject
);
typedef
BOOLEAN
(*PFAST_IO_UNLOCK_ALL) (
IN struct _FILE_OBJECT *FileObject,
PEPROCESS ProcessId,
OUT PIO_STATUS_BLOCK IoStatus,
IN struct _DEVICE_OBJECT *DeviceObject
);
typedef
BOOLEAN
(*PFAST_IO_UNLOCK_ALL_BY_KEY) (
IN struct _FILE_OBJECT *FileObject,
PVOID ProcessId,
ULONG Key,
OUT PIO_STATUS_BLOCK IoStatus,
IN struct _DEVICE_OBJECT *DeviceObject
);
//
// Fast I/O device control procedure.
//
typedef
BOOLEAN
(*PFAST_IO_DEVICE_CONTROL) (
IN struct _FILE_OBJECT *FileObject,
IN BOOLEAN Wait,
IN PVOID InputBuffer OPTIONAL,
IN ULONG InputBufferLength,
OUT PVOID OutputBuffer OPTIONAL,
IN ULONG OutputBufferLength,
IN ULONG IoControlCode,
OUT PIO_STATUS_BLOCK IoStatus,
IN struct _DEVICE_OBJECT *DeviceObject
);
//
// Define callbacks for NtCreateSection to synchronize correctly with
// the file system. It pre-acquires the resources that will be needed
// when calling to query and set file/allocation size in the file system.
//
typedef
VOID
(*PFAST_IO_ACQUIRE_FILE) (
IN struct _FILE_OBJECT *FileObject
);
typedef
VOID
(*PFAST_IO_RELEASE_FILE) (
IN struct _FILE_OBJECT *FileObject
);
//
// Define callback for drivers that have device objects attached to lower-
// level drivers' device objects. This callback is made when the lower-level
// driver is deleting its device object.
//
typedef
VOID
(*PFAST_IO_DETACH_DEVICE) (
IN struct _DEVICE_OBJECT *SourceDevice,
IN struct _DEVICE_OBJECT *TargetDevice
);
//
// This structure is used by the server to quickly get the information needed
// to service a server open call. It is takes what would be two fast io calls
// one for basic information and the other for standard information and makes
// it into one call.
//
typedef
BOOLEAN
(*PFAST_IO_QUERY_NETWORK_OPEN_INFO) (
IN struct _FILE_OBJECT *FileObject,
IN BOOLEAN Wait,
OUT struct _FILE_NETWORK_OPEN_INFORMATION *Buffer,
OUT struct _IO_STATUS_BLOCK *IoStatus,
IN struct _DEVICE_OBJECT *DeviceObject
);
//
// Define Mdl-based routines for the server to call
//
typedef
BOOLEAN
(*PFAST_IO_MDL_READ) (
IN struct _FILE_OBJECT *FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN ULONG LockKey,
OUT PMDL *MdlChain,
OUT PIO_STATUS_BLOCK IoStatus,
IN struct _DEVICE_OBJECT *DeviceObject
);
typedef
BOOLEAN
(*PFAST_IO_MDL_READ_COMPLETE) (
IN struct _FILE_OBJECT *FileObject,
IN PMDL MdlChain,
IN struct _DEVICE_OBJECT *DeviceObject
);
typedef
BOOLEAN
(*PFAST_IO_PREPARE_MDL_WRITE) (
IN struct _FILE_OBJECT *FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN ULONG LockKey,
OUT PMDL *MdlChain,
OUT PIO_STATUS_BLOCK IoStatus,
IN struct _DEVICE_OBJECT *DeviceObject
);
typedef
BOOLEAN
(*PFAST_IO_MDL_WRITE_COMPLETE) (
IN struct _FILE_OBJECT *FileObject,
IN PLARGE_INTEGER FileOffset,
IN PMDL MdlChain,
IN struct _DEVICE_OBJECT *DeviceObject
);
//
// If this routine is present, it will be called by FsRtl
// to acquire the file for the mapped page writer.
//
typedef
NTSTATUS
(*PFAST_IO_ACQUIRE_FOR_MOD_WRITE) (
IN struct _FILE_OBJECT *FileObject,
IN PLARGE_INTEGER EndingOffset,
OUT struct _ERESOURCE **ResourceToRelease,
IN struct _DEVICE_OBJECT *DeviceObject
);
typedef
NTSTATUS
(*PFAST_IO_RELEASE_FOR_MOD_WRITE) (
IN struct _FILE_OBJECT *FileObject,
IN struct _ERESOURCE *ResourceToRelease,
IN struct _DEVICE_OBJECT *DeviceObject
);
//
// If this routine is present, it will be called by FsRtl
// to acquire the file for the mapped page writer.
//
typedef
NTSTATUS
(*PFAST_IO_ACQUIRE_FOR_CCFLUSH) (
IN struct _FILE_OBJECT *FileObject,
IN struct _DEVICE_OBJECT *DeviceObject
);
typedef
NTSTATUS
(*PFAST_IO_RELEASE_FOR_CCFLUSH) (
IN struct _FILE_OBJECT *FileObject,
IN struct _DEVICE_OBJECT *DeviceObject
);
typedef
BOOLEAN
(*PFAST_IO_READ_COMPRESSED) (
IN struct _FILE_OBJECT *FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN ULONG LockKey,
OUT PVOID Buffer,
OUT PMDL *MdlChain,
OUT PIO_STATUS_BLOCK IoStatus,
OUT struct _COMPRESSED_DATA_INFO *CompressedDataInfo,
IN ULONG CompressedDataInfoLength,
IN struct _DEVICE_OBJECT *DeviceObject
);
typedef
BOOLEAN
(*PFAST_IO_WRITE_COMPRESSED) (
IN struct _FILE_OBJECT *FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN ULONG LockKey,
IN PVOID Buffer,
OUT PMDL *MdlChain,
OUT PIO_STATUS_BLOCK IoStatus,
IN struct _COMPRESSED_DATA_INFO *CompressedDataInfo,
IN ULONG CompressedDataInfoLength,
IN struct _DEVICE_OBJECT *DeviceObject
);
typedef
BOOLEAN
(*PFAST_IO_MDL_READ_COMPLETE_COMPRESSED) (
IN struct _FILE_OBJECT *FileObject,
IN PMDL MdlChain,
IN struct _DEVICE_OBJECT *DeviceObject
);
typedef
BOOLEAN
(*PFAST_IO_MDL_WRITE_COMPLETE_COMPRESSED) (
IN struct _FILE_OBJECT *FileObject,
IN PLARGE_INTEGER FileOffset,
IN PMDL MdlChain,
IN struct _DEVICE_OBJECT *DeviceObject
);
typedef
BOOLEAN
(*PFAST_IO_QUERY_OPEN) (
IN struct _IRP *Irp,
OUT PFILE_NETWORK_OPEN_INFORMATION NetworkInformation,
IN struct _DEVICE_OBJECT *DeviceObject
);
//
// Define the structure to describe the Fast I/O dispatch routines. Any
// additions made to this structure MUST be added monotonically to the end
// of the structure, and fields CANNOT be removed from the middle.
//
typedef struct _FAST_IO_DISPATCH {
ULONG SizeOfFastIoDispatch;
PFAST_IO_CHECK_IF_POSSIBLE FastIoCheckIfPossible;
PFAST_IO_READ FastIoRead;
PFAST_IO_WRITE FastIoWrite;
PFAST_IO_QUERY_BASIC_INFO FastIoQueryBasicInfo;
PFAST_IO_QUERY_STANDARD_INFO FastIoQueryStandardInfo;
PFAST_IO_LOCK FastIoLock;
PFAST_IO_UNLOCK_SINGLE FastIoUnlockSingle;
PFAST_IO_UNLOCK_ALL FastIoUnlockAll;
PFAST_IO_UNLOCK_ALL_BY_KEY FastIoUnlockAllByKey;
PFAST_IO_DEVICE_CONTROL FastIoDeviceControl;
PFAST_IO_ACQUIRE_FILE AcquireFileForNtCreateSection;
PFAST_IO_RELEASE_FILE ReleaseFileForNtCreateSection;
PFAST_IO_DETACH_DEVICE FastIoDetachDevice;
PFAST_IO_QUERY_NETWORK_OPEN_INFO FastIoQueryNetworkOpenInfo;
PFAST_IO_ACQUIRE_FOR_MOD_WRITE AcquireForModWrite;
PFAST_IO_MDL_READ MdlRead;
PFAST_IO_MDL_READ_COMPLETE MdlReadComplete;
PFAST_IO_PREPARE_MDL_WRITE PrepareMdlWrite;
PFAST_IO_MDL_WRITE_COMPLETE MdlWriteComplete;
PFAST_IO_READ_COMPRESSED FastIoReadCompressed;
PFAST_IO_WRITE_COMPRESSED FastIoWriteCompressed;
PFAST_IO_MDL_READ_COMPLETE_COMPRESSED MdlReadCompleteCompressed;
PFAST_IO_MDL_WRITE_COMPLETE_COMPRESSED MdlWriteCompleteCompressed;
PFAST_IO_QUERY_OPEN FastIoQueryOpen;
PFAST_IO_RELEASE_FOR_MOD_WRITE ReleaseForModWrite;
PFAST_IO_ACQUIRE_FOR_CCFLUSH AcquireForCcFlush;
PFAST_IO_RELEASE_FOR_CCFLUSH ReleaseForCcFlush;
} FAST_IO_DISPATCH, *PFAST_IO_DISPATCH;
//
// Define the actions that a driver execution routine may request of the
// adapter/controller allocation routines upon return.
//
typedef enum _IO_ALLOCATION_ACTION {
KeepObject = 1,
DeallocateObject,
DeallocateObjectKeepRegisters
} IO_ALLOCATION_ACTION, *PIO_ALLOCATION_ACTION;
//
// Define device driver adapter/controller execution routine.
//
typedef
IO_ALLOCATION_ACTION
(*PDRIVER_CONTROL) (
IN struct _DEVICE_OBJECT *DeviceObject,
IN struct _IRP *Irp,
IN PVOID MapRegisterBase,
IN PVOID Context
);
//
// Define the I/O system's security context type for use by file system's
// when checking access to volumes, files, and directories.
//
typedef struct _IO_SECURITY_CONTEXT {
PSECURITY_QUALITY_OF_SERVICE SecurityQos;
PACCESS_STATE AccessState;
ACCESS_MASK DesiredAccess;
ULONG FullCreateOptions;
} IO_SECURITY_CONTEXT, *PIO_SECURITY_CONTEXT;
//
// Define object type specific fields of various objects used by the I/O system
//
typedef struct _DMA_ADAPTER *PADAPTER_OBJECT;
//
// Define Wait Context Block (WCB)
//
typedef struct _WAIT_CONTEXT_BLOCK {
KDEVICE_QUEUE_ENTRY WaitQueueEntry;
PDRIVER_CONTROL DeviceRoutine;
PVOID DeviceContext;
ULONG NumberOfMapRegisters;
PVOID DeviceObject;
PVOID CurrentIrp;
PKDPC BufferChainingDpc;
} WAIT_CONTEXT_BLOCK, *PWAIT_CONTEXT_BLOCK;
//
// Define Device Object (DO) flags
//
#define DO_BUFFERED_IO 0x00000004
#define DO_EXCLUSIVE 0x00000008
#define DO_DIRECT_IO 0x00000010
#define DO_MAP_IO_BUFFER 0x00000020
#define DO_DEVICE_INITIALIZING 0x00000080
#define DO_SHUTDOWN_REGISTERED 0x00000800
#define DO_BUS_ENUMERATED_DEVICE 0x00001000
#define DO_POWER_PAGABLE 0x00002000
#define DO_POWER_INRUSH 0x00004000
//
// Device Object structure definition
//
typedef struct DECLSPEC_ALIGN(MEMORY_ALLOCATION_ALIGNMENT) _DEVICE_OBJECT {
CSHORT Type;
USHORT Size;
LONG ReferenceCount;
struct _DRIVER_OBJECT *DriverObject;
struct _DEVICE_OBJECT *NextDevice;
struct _DEVICE_OBJECT *AttachedDevice;
struct _IRP *CurrentIrp;
PIO_TIMER Timer;
ULONG Flags; // See above: DO_...
ULONG Characteristics; // See ntioapi: FILE_...
PVOID DoNotUse1;
PVOID DeviceExtension;
DEVICE_TYPE DeviceType;
CCHAR StackSize;
union {
LIST_ENTRY ListEntry;
WAIT_CONTEXT_BLOCK Wcb;
} Queue;
ULONG AlignmentRequirement;
KDEVICE_QUEUE DeviceQueue;
KDPC Dpc;
//
// The following field is for exclusive use by the filesystem to keep
// track of the number of Fsp threads currently using the device
//
ULONG ActiveThreadCount;
PSECURITY_DESCRIPTOR SecurityDescriptor;
KEVENT DeviceLock;
USHORT SectorSize;
USHORT Spare1;
struct _DEVOBJ_EXTENSION *DeviceObjectExtension;
PVOID Reserved;
} DEVICE_OBJECT;
typedef struct _DEVICE_OBJECT *PDEVICE_OBJECT;
struct _DEVICE_OBJECT_POWER_EXTENSION;
typedef struct _DEVOBJ_EXTENSION {
CSHORT Type;
USHORT Size;
//
// Public part of the DeviceObjectExtension structure
//
PDEVICE_OBJECT DeviceObject; // owning device object
} DEVOBJ_EXTENSION, *PDEVOBJ_EXTENSION;
//
// Define Driver Object (DRVO) flags
//
#define DRVO_UNLOAD_INVOKED 0x00000001
#define DRVO_LEGACY_DRIVER 0x00000002
#define DRVO_BUILTIN_DRIVER 0x00000004 // Driver objects for Hal, PnP Mgr
typedef struct _DRIVER_EXTENSION {
//
// Back pointer to Driver Object
//
struct _DRIVER_OBJECT *DriverObject;
//
// The AddDevice entry point is called by the Plug & Play manager
// to inform the driver when a new device instance arrives that this
// driver must control.
//
PDRIVER_ADD_DEVICE AddDevice;
//
// The count field is used to count the number of times the driver has
// had its registered reinitialization routine invoked.
//
ULONG Count;
//
// The service name field is used by the pnp manager to determine
// where the driver related info is stored in the registry.
//
UNICODE_STRING ServiceKeyName;
//
// Note: any new shared fields get added here.
//
} DRIVER_EXTENSION, *PDRIVER_EXTENSION;
typedef struct _DRIVER_OBJECT {
CSHORT Type;
CSHORT Size;
//
// The following links all of the devices created by a single driver
// together on a list, and the Flags word provides an extensible flag
// location for driver objects.
//
PDEVICE_OBJECT DeviceObject;
ULONG Flags;
//
// The following section describes where the driver is loaded. The count
// field is used to count the number of times the driver has had its
// registered reinitialization routine invoked.
//
PVOID DriverStart;
ULONG DriverSize;
PVOID DriverSection;
PDRIVER_EXTENSION DriverExtension;
//
// The driver name field is used by the error log thread
// determine the name of the driver that an I/O request is/was bound.
//
UNICODE_STRING DriverName;
//
// The following section is for registry support. Thise is a pointer
// to the path to the hardware information in the registry
//
PUNICODE_STRING HardwareDatabase;
//
// The following section contains the optional pointer to an array of
// alternate entry points to a driver for "fast I/O" support. Fast I/O
// is performed by invoking the driver routine directly with separate
// parameters, rather than using the standard IRP call mechanism. Note
// that these functions may only be used for synchronous I/O, and when
// the file is cached.
//
PFAST_IO_DISPATCH FastIoDispatch;
//
// The following section describes the entry points to this particular
// driver. Note that the major function dispatch table must be the last
// field in the object so that it remains extensible.
//
PDRIVER_INITIALIZE DriverInit;
PDRIVER_STARTIO DriverStartIo;
PDRIVER_UNLOAD DriverUnload;
PDRIVER_DISPATCH MajorFunction[IRP_MJ_MAXIMUM_FUNCTION + 1];
} DRIVER_OBJECT;
typedef struct _DRIVER_OBJECT *PDRIVER_OBJECT;
//
// The following structure is pointed to by the SectionObject pointer field
// of a file object, and is allocated by the various NT file systems.
//
typedef struct _SECTION_OBJECT_POINTERS {
PVOID DataSectionObject;
PVOID SharedCacheMap;
PVOID ImageSectionObject;
} SECTION_OBJECT_POINTERS;
typedef SECTION_OBJECT_POINTERS *PSECTION_OBJECT_POINTERS;
//
// Define the format of a completion message.
//
typedef struct _IO_COMPLETION_CONTEXT {
PVOID Port;
PVOID Key;
} IO_COMPLETION_CONTEXT, *PIO_COMPLETION_CONTEXT;
//
// Define File Object (FO) flags
//
#define FO_FILE_OPEN 0x00000001
#define FO_SYNCHRONOUS_IO 0x00000002
#define FO_ALERTABLE_IO 0x00000004
#define FO_NO_INTERMEDIATE_BUFFERING 0x00000008
#define FO_WRITE_THROUGH 0x00000010
#define FO_SEQUENTIAL_ONLY 0x00000020
#define FO_CACHE_SUPPORTED 0x00000040
#define FO_NAMED_PIPE 0x00000080
#define FO_STREAM_FILE 0x00000100
#define FO_MAILSLOT 0x00000200
#define FO_GENERATE_AUDIT_ON_CLOSE 0x00000400
#define FO_DIRECT_DEVICE_OPEN 0x00000800
#define FO_FILE_MODIFIED 0x00001000
#define FO_FILE_SIZE_CHANGED 0x00002000
#define FO_CLEANUP_COMPLETE 0x00004000
#define FO_TEMPORARY_FILE 0x00008000
#define FO_DELETE_ON_CLOSE 0x00010000
#define FO_OPENED_CASE_SENSITIVE 0x00020000
#define FO_HANDLE_CREATED 0x00040000
#define FO_FILE_FAST_IO_READ 0x00080000
#define FO_RANDOM_ACCESS 0x00100000
#define FO_FILE_OPEN_CANCELLED 0x00200000
#define FO_VOLUME_OPEN 0x00400000
#define FO_FILE_OBJECT_HAS_EXTENSION 0x00800000
#define FO_REMOTE_ORIGIN 0x01000000
typedef struct _FILE_OBJECT {
CSHORT Type;
CSHORT Size;
PDEVICE_OBJECT DeviceObject;
PVOID DoNotUse1;
PVOID FsContext;
PVOID FsContext2;
PSECTION_OBJECT_POINTERS SectionObjectPointer;
PVOID PrivateCacheMap;
NTSTATUS FinalStatus;
struct _FILE_OBJECT *RelatedFileObject;
BOOLEAN LockOperation;
BOOLEAN DeletePending;
BOOLEAN ReadAccess;
BOOLEAN WriteAccess;
BOOLEAN DeleteAccess;
BOOLEAN SharedRead;
BOOLEAN SharedWrite;
BOOLEAN SharedDelete;
ULONG Flags;
UNICODE_STRING FileName;
LARGE_INTEGER CurrentByteOffset;
ULONG Waiters;
ULONG Busy;
PVOID LastLock;
KEVENT Lock;
KEVENT Event;
PIO_COMPLETION_CONTEXT CompletionContext;
} FILE_OBJECT;
typedef struct _FILE_OBJECT *PFILE_OBJECT;
//
// Define I/O Request Packet (IRP) flags
//
#define IRP_NOCACHE 0x00000001
#define IRP_PAGING_IO 0x00000002
#define IRP_MOUNT_COMPLETION 0x00000002
#define IRP_SYNCHRONOUS_API 0x00000004
#define IRP_ASSOCIATED_IRP 0x00000008
#define IRP_BUFFERED_IO 0x00000010
#define IRP_DEALLOCATE_BUFFER 0x00000020
#define IRP_INPUT_OPERATION 0x00000040
#define IRP_SYNCHRONOUS_PAGING_IO 0x00000040
#define IRP_CREATE_OPERATION 0x00000080
#define IRP_READ_OPERATION 0x00000100
#define IRP_WRITE_OPERATION 0x00000200
#define IRP_CLOSE_OPERATION 0x00000400
//
// Define I/O request packet (IRP) alternate flags for allocation control.
//
#define IRP_QUOTA_CHARGED 0x01
#define IRP_ALLOCATED_MUST_SUCCEED 0x02
#define IRP_ALLOCATED_FIXED_SIZE 0x04
#define IRP_LOOKASIDE_ALLOCATION 0x08
//
// I/O Request Packet (IRP) definition
//
typedef struct _IRP {
CSHORT Type;
USHORT Size;
//
// Define the common fields used to control the IRP.
//
//
// Define a pointer to the Memory Descriptor List (MDL) for this I/O
// request. This field is only used if the I/O is "direct I/O".
//
PMDL MdlAddress;
//
// Flags word - used to remember various flags.
//
ULONG Flags;
//
// The following union is used for one of three purposes:
//
// 1. This IRP is an associated IRP. The field is a pointer to a master
// IRP.
//
// 2. This is the master IRP. The field is the count of the number of
// IRPs which must complete (associated IRPs) before the master can
// complete.
//
// 3. This operation is being buffered and the field is the address of
// the system space buffer.
//
union {
struct _IRP *MasterIrp;
LONG IrpCount;
PVOID SystemBuffer;
} AssociatedIrp;
//
// Thread list entry - allows queueing the IRP to the thread pending I/O
// request packet list.
//
LIST_ENTRY ThreadListEntry;
//
// I/O status - final status of operation.
//
IO_STATUS_BLOCK IoStatus;
//
// Requestor mode - mode of the original requestor of this operation.
//
KPROCESSOR_MODE RequestorMode;
//
// Pending returned - TRUE if pending was initially returned as the
// status for this packet.
//
BOOLEAN PendingReturned;
//
// Stack state information.
//
CHAR StackCount;
CHAR CurrentLocation;
//
// Cancel - packet has been canceled.
//
BOOLEAN Cancel;
//
// Cancel Irql - Irql at which the cancel spinlock was acquired.
//
KIRQL CancelIrql;
//
// ApcEnvironment - Used to save the APC environment at the time that the
// packet was initialized.
//
CCHAR ApcEnvironment;
//
// Allocation control flags.
//
UCHAR AllocationFlags;
//
// User parameters.
//
PIO_STATUS_BLOCK UserIosb;
PKEVENT UserEvent;
union {
struct {
PIO_APC_ROUTINE UserApcRoutine;
PVOID UserApcContext;
} AsynchronousParameters;
LARGE_INTEGER AllocationSize;
} Overlay;
//
// CancelRoutine - Used to contain the address of a cancel routine supplied
// by a device driver when the IRP is in a cancelable state.
//
PDRIVER_CANCEL CancelRoutine;
//
// Note that the UserBuffer parameter is outside of the stack so that I/O
// completion can copy data back into the user's address space without
// having to know exactly which service was being invoked. The length
// of the copy is stored in the second half of the I/O status block. If
// the UserBuffer field is NULL, then no copy is performed.
//
PVOID UserBuffer;
//
// Kernel structures
//
// The following section contains kernel structures which the IRP needs
// in order to place various work information in kernel controller system
// queues. Because the size and alignment cannot be controlled, they are
// placed here at the end so they just hang off and do not affect the
// alignment of other fields in the IRP.
//
union {
struct {
union {
//
// DeviceQueueEntry - The device queue entry field is used to
// queue the IRP to the device driver device queue.
//
KDEVICE_QUEUE_ENTRY DeviceQueueEntry;
struct {
//
// The following are available to the driver to use in
// whatever manner is desired, while the driver owns the
// packet.
//
PVOID DriverContext[4];
} ;
} ;
//
// Thread - pointer to caller's Thread Control Block.
//
PETHREAD Thread;
//
// Auxiliary buffer - pointer to any auxiliary buffer that is
// required to pass information to a driver that is not contained
// in a normal buffer.
//
PCHAR AuxiliaryBuffer;
//
// The following unnamed structure must be exactly identical
// to the unnamed structure used in the minipacket header used
// for completion queue entries.
//
struct {
//
// List entry - used to queue the packet to completion queue, among
// others.
//
LIST_ENTRY ListEntry;
union {
//
// Current stack location - contains a pointer to the current
// IO_STACK_LOCATION structure in the IRP stack. This field
// should never be directly accessed by drivers. They should
// use the standard functions.
//
struct _IO_STACK_LOCATION *CurrentStackLocation;
//
// Minipacket type.
//
ULONG PacketType;
};
};
//
// Original file object - pointer to the original file object
// that was used to open the file. This field is owned by the
// I/O system and should not be used by any other drivers.
//
PFILE_OBJECT OriginalFileObject;
} Overlay;
//
// APC - This APC control block is used for the special kernel APC as
// well as for the caller's APC, if one was specified in the original
// argument list. If so, then the APC is reused for the normal APC for
// whatever mode the caller was in and the "special" routine that is
// invoked before the APC gets control simply deallocates the IRP.
//
KAPC Apc;
//
// CompletionKey - This is the key that is used to distinguish
// individual I/O operations initiated on a single file handle.
//
PVOID CompletionKey;
} Tail;
} IRP, *PIRP;
//
// Define completion routine types for use in stack locations in an IRP
//
typedef
NTSTATUS
(*PIO_COMPLETION_ROUTINE) (
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN PVOID Context
);
//
// Define stack location control flags
//
#define SL_PENDING_RETURNED 0x01
#define SL_INVOKE_ON_CANCEL 0x20
#define SL_INVOKE_ON_SUCCESS 0x40
#define SL_INVOKE_ON_ERROR 0x80
//
// Define flags for various functions
//
//
// Create / Create Named Pipe
//
// The following flags must exactly match those in the IoCreateFile call's
// options. The case sensitive flag is added in later, by the parse routine,
// and is not an actual option to open. Rather, it is part of the object
// manager's attributes structure.
//
#define SL_FORCE_ACCESS_CHECK 0x01
#define SL_OPEN_PAGING_FILE 0x02
#define SL_OPEN_TARGET_DIRECTORY 0x04
#define SL_CASE_SENSITIVE 0x80
//
// Read / Write
//
#define SL_KEY_SPECIFIED 0x01
#define SL_OVERRIDE_VERIFY_VOLUME 0x02
#define SL_WRITE_THROUGH 0x04
#define SL_FT_SEQUENTIAL_WRITE 0x08
//
// Device I/O Control
//
//
// Same SL_OVERRIDE_VERIFY_VOLUME as for read/write above.
//
#define SL_READ_ACCESS_GRANTED 0x01
#define SL_WRITE_ACCESS_GRANTED 0x04 // Gap for SL_OVERRIDE_VERIFY_VOLUME
//
// Lock
//
#define SL_FAIL_IMMEDIATELY 0x01
#define SL_EXCLUSIVE_LOCK 0x02
//
// QueryDirectory / QueryEa / QueryQuota
//
#define SL_RESTART_SCAN 0x01
#define SL_RETURN_SINGLE_ENTRY 0x02
#define SL_INDEX_SPECIFIED 0x04
//
// NotifyDirectory
//
#define SL_WATCH_TREE 0x01
//
// FileSystemControl
//
// minor: mount/verify volume
//
#define SL_ALLOW_RAW_MOUNT 0x01
//
// Define PNP/POWER types required by IRP_MJ_PNP/IRP_MJ_POWER.
//
typedef enum _DEVICE_RELATION_TYPE {
BusRelations,
EjectionRelations,
PowerRelations,
RemovalRelations,
TargetDeviceRelation,
SingleBusRelations
} DEVICE_RELATION_TYPE, *PDEVICE_RELATION_TYPE;
typedef struct _DEVICE_RELATIONS {
ULONG Count;
PDEVICE_OBJECT Objects[1]; // variable length
} DEVICE_RELATIONS, *PDEVICE_RELATIONS;
typedef enum _DEVICE_USAGE_NOTIFICATION_TYPE {
DeviceUsageTypeUndefined,
DeviceUsageTypePaging,
DeviceUsageTypeHibernation,
DeviceUsageTypeDumpFile
} DEVICE_USAGE_NOTIFICATION_TYPE;
// workaround overloaded definition (rpc generated headers all define INTERFACE
// to match the class name).
#undef INTERFACE
typedef struct _INTERFACE {
USHORT Size;
USHORT Version;
PVOID Context;
PINTERFACE_REFERENCE InterfaceReference;
PINTERFACE_DEREFERENCE InterfaceDereference;
// interface specific entries go here
} INTERFACE, *PINTERFACE;
typedef struct _DEVICE_CAPABILITIES {
USHORT Size;
USHORT Version; // the version documented here is version 1
ULONG DeviceD1:1;
ULONG DeviceD2:1;
ULONG LockSupported:1;
ULONG EjectSupported:1; // Ejectable in S0
ULONG Removable:1;
ULONG DockDevice:1;
ULONG UniqueID:1;
ULONG SilentInstall:1;
ULONG RawDeviceOK:1;
ULONG SurpriseRemovalOK:1;
ULONG WakeFromD0:1;
ULONG WakeFromD1:1;
ULONG WakeFromD2:1;
ULONG WakeFromD3:1;
ULONG HardwareDisabled:1;
ULONG NonDynamic:1;
ULONG WarmEjectSupported:1;
ULONG NoDisplayInUI:1;
ULONG Reserved:14;
ULONG Address;
ULONG UINumber;
DEVICE_POWER_STATE DeviceState[POWER_SYSTEM_MAXIMUM];
SYSTEM_POWER_STATE SystemWake;
DEVICE_POWER_STATE DeviceWake;
ULONG D1Latency;
ULONG D2Latency;
ULONG D3Latency;
} DEVICE_CAPABILITIES, *PDEVICE_CAPABILITIES;
typedef struct _POWER_SEQUENCE {
ULONG SequenceD1;
ULONG SequenceD2;
ULONG SequenceD3;
} POWER_SEQUENCE, *PPOWER_SEQUENCE;
typedef enum {
BusQueryDeviceID = 0, // <Enumerator>\<Enumerator-specific device id>
BusQueryHardwareIDs = 1, // Hardware ids
BusQueryCompatibleIDs = 2, // compatible device ids
BusQueryInstanceID = 3, // persistent id for this instance of the device
BusQueryDeviceSerialNumber = 4 // serial number for this device
} BUS_QUERY_ID_TYPE, *PBUS_QUERY_ID_TYPE;
typedef ULONG PNP_DEVICE_STATE, *PPNP_DEVICE_STATE;
#define PNP_DEVICE_DISABLED 0x00000001
#define PNP_DEVICE_DONT_DISPLAY_IN_UI 0x00000002
#define PNP_DEVICE_FAILED 0x00000004
#define PNP_DEVICE_REMOVED 0x00000008
#define PNP_DEVICE_RESOURCE_REQUIREMENTS_CHANGED 0x00000010
#define PNP_DEVICE_NOT_DISABLEABLE 0x00000020
typedef enum {
DeviceTextDescription = 0, // DeviceDesc property
DeviceTextLocationInformation = 1 // DeviceLocation property
} DEVICE_TEXT_TYPE, *PDEVICE_TEXT_TYPE;
//
// Define I/O Request Packet (IRP) stack locations
//
#if !defined(_AMD64_) && !defined(_IA64_)
#include "pshpack4.h"
#endif
#if defined(_WIN64)
#define POINTER_ALIGNMENT DECLSPEC_ALIGN(8)
#else
#define POINTER_ALIGNMENT
#endif
typedef struct _IO_STACK_LOCATION {
UCHAR MajorFunction;
UCHAR MinorFunction;
UCHAR Flags;
UCHAR Control;
//
// The following user parameters are based on the service that is being
// invoked. Drivers and file systems can determine which set to use based
// on the above major and minor function codes.
//
union {
//
// System service parameters for: NtCreateFile
//
struct {
PIO_SECURITY_CONTEXT SecurityContext;
ULONG Options;
USHORT POINTER_ALIGNMENT FileAttributes;
USHORT ShareAccess;
ULONG POINTER_ALIGNMENT EaLength;
} Create;
//
// System service parameters for: NtReadFile
//
struct {
ULONG Length;
ULONG POINTER_ALIGNMENT Key;
LARGE_INTEGER ByteOffset;
} Read;
//
// System service parameters for: NtWriteFile
//
struct {
ULONG Length;
ULONG POINTER_ALIGNMENT Key;
LARGE_INTEGER ByteOffset;
} Write;
//
// System service parameters for: NtQueryInformationFile
//
struct {
ULONG Length;
FILE_INFORMATION_CLASS POINTER_ALIGNMENT FileInformationClass;
} QueryFile;
//
// System service parameters for: NtSetInformationFile
//
struct {
ULONG Length;
FILE_INFORMATION_CLASS POINTER_ALIGNMENT FileInformationClass;
PFILE_OBJECT FileObject;
union {
struct {
BOOLEAN ReplaceIfExists;
BOOLEAN AdvanceOnly;
};
ULONG ClusterCount;
HANDLE DeleteHandle;
};
} SetFile;
//
// System service parameters for: NtQueryVolumeInformationFile
//
struct {
ULONG Length;
FS_INFORMATION_CLASS POINTER_ALIGNMENT FsInformationClass;
} QueryVolume;
//
// System service parameters for: NtFlushBuffersFile
//
// No extra user-supplied parameters.
//
//
// System service parameters for: NtDeviceIoControlFile
//
// Note that the user's output buffer is stored in the UserBuffer field
// and the user's input buffer is stored in the SystemBuffer field.
//
struct {
ULONG OutputBufferLength;
ULONG POINTER_ALIGNMENT InputBufferLength;
ULONG POINTER_ALIGNMENT IoControlCode;
PVOID Type3InputBuffer;
} DeviceIoControl;
//
// Non-system service parameters.
//
// Parameters for MountVolume
//
struct {
PVOID DoNotUse1;
PDEVICE_OBJECT DeviceObject;
} MountVolume;
//
// Parameters for VerifyVolume
//
struct {
PVOID DoNotUse1;
PDEVICE_OBJECT DeviceObject;
} VerifyVolume;
//
// Parameters for Scsi with internal device contorl.
//
struct {
struct _SCSI_REQUEST_BLOCK *Srb;
} Scsi;
//
// Parameters for IRP_MN_QUERY_DEVICE_RELATIONS
//
struct {
DEVICE_RELATION_TYPE Type;
} QueryDeviceRelations;
//
// Parameters for IRP_MN_QUERY_INTERFACE
//
struct {
CONST GUID *InterfaceType;
USHORT Size;
USHORT Version;
PINTERFACE Interface;
PVOID InterfaceSpecificData;
} QueryInterface;
//
// Parameters for IRP_MN_QUERY_CAPABILITIES
//
struct {
PDEVICE_CAPABILITIES Capabilities;
} DeviceCapabilities;
//
// Parameters for IRP_MN_FILTER_RESOURCE_REQUIREMENTS
//
struct {
PIO_RESOURCE_REQUIREMENTS_LIST IoResourceRequirementList;
} FilterResourceRequirements;
//
// Parameters for IRP_MN_READ_CONFIG and IRP_MN_WRITE_CONFIG
//
struct {
ULONG WhichSpace;
PVOID Buffer;
ULONG Offset;
ULONG POINTER_ALIGNMENT Length;
} ReadWriteConfig;
//
// Parameters for IRP_MN_SET_LOCK
//
struct {
BOOLEAN Lock;
} SetLock;
//
// Parameters for IRP_MN_QUERY_ID
//
struct {
BUS_QUERY_ID_TYPE IdType;
} QueryId;
//
// Parameters for IRP_MN_QUERY_DEVICE_TEXT
//
struct {
DEVICE_TEXT_TYPE DeviceTextType;
LCID POINTER_ALIGNMENT LocaleId;
} QueryDeviceText;
//
// Parameters for IRP_MN_DEVICE_USAGE_NOTIFICATION
//
struct {
BOOLEAN InPath;
BOOLEAN Reserved[3];
DEVICE_USAGE_NOTIFICATION_TYPE POINTER_ALIGNMENT Type;
} UsageNotification;
//
// Parameters for IRP_MN_WAIT_WAKE
//
struct {
SYSTEM_POWER_STATE PowerState;
} WaitWake;
//
// Parameter for IRP_MN_POWER_SEQUENCE
//
struct {
PPOWER_SEQUENCE PowerSequence;
} PowerSequence;
//
// Parameters for IRP_MN_SET_POWER and IRP_MN_QUERY_POWER
//
struct {
ULONG SystemContext;
POWER_STATE_TYPE POINTER_ALIGNMENT Type;
POWER_STATE POINTER_ALIGNMENT State;
POWER_ACTION POINTER_ALIGNMENT ShutdownType;
} Power;
//
// Parameters for StartDevice
//
struct {
PCM_RESOURCE_LIST AllocatedResources;
PCM_RESOURCE_LIST AllocatedResourcesTranslated;
} StartDevice;
//
// Parameters for Cleanup
//
// No extra parameters supplied
//
//
// WMI Irps
//
struct {
ULONG_PTR ProviderId;
PVOID DataPath;
ULONG BufferSize;
PVOID Buffer;
} WMI;
//
// Others - driver-specific
//
struct {
PVOID Argument1;
PVOID Argument2;
PVOID Argument3;
PVOID Argument4;
} Others;
} Parameters;
//
// Save a pointer to this device driver's device object for this request
// so it can be passed to the completion routine if needed.
//
PDEVICE_OBJECT DeviceObject;
//
// The following location contains a pointer to the file object for this
//
PFILE_OBJECT FileObject;
//
// The following routine is invoked depending on the flags in the above
// flags field.
//
PIO_COMPLETION_ROUTINE CompletionRoutine;
//
// The following is used to store the address of the context parameter
// that should be passed to the CompletionRoutine.
//
PVOID Context;
} IO_STACK_LOCATION, *PIO_STACK_LOCATION;
#if !defined(_AMD64_) && !defined(_IA64_)
#include "poppack.h"
#endif
//
// Define the share access structure used by file systems to determine
// whether or not another accessor may open the file.
//
typedef struct _SHARE_ACCESS {
ULONG OpenCount;
ULONG Readers;
ULONG Writers;
ULONG Deleters;
ULONG SharedRead;
ULONG SharedWrite;
ULONG SharedDelete;
} SHARE_ACCESS, *PSHARE_ACCESS;
//
// Public I/O routine definitions
//
NTKERNELAPI
VOID
IoAcquireCancelSpinLock(
OUT PKIRQL Irql
);
NTKERNELAPI
NTSTATUS
IoAllocateDriverObjectExtension(
IN PDRIVER_OBJECT DriverObject,
IN PVOID ClientIdentificationAddress,
IN ULONG DriverObjectExtensionSize,
OUT PVOID *DriverObjectExtension
);
NTKERNELAPI
PVOID
IoAllocateErrorLogEntry(
IN PVOID IoObject,
IN UCHAR EntrySize
);
NTKERNELAPI
PIRP
IoAllocateIrp(
IN CCHAR StackSize,
IN BOOLEAN ChargeQuota
);
NTKERNELAPI
PMDL
IoAllocateMdl(
IN PVOID VirtualAddress,
IN ULONG Length,
IN BOOLEAN SecondaryBuffer,
IN BOOLEAN ChargeQuota,
IN OUT PIRP Irp OPTIONAL
);
NTKERNELAPI
NTSTATUS
IoAttachDevice(
IN PDEVICE_OBJECT SourceDevice,
IN PUNICODE_STRING TargetDevice,
OUT PDEVICE_OBJECT *AttachedDevice
);
NTKERNELAPI
PDEVICE_OBJECT
IoAttachDeviceToDeviceStack(
IN PDEVICE_OBJECT SourceDevice,
IN PDEVICE_OBJECT TargetDevice
);
NTKERNELAPI
PIRP
IoBuildAsynchronousFsdRequest(
IN ULONG MajorFunction,
IN PDEVICE_OBJECT DeviceObject,
IN OUT PVOID Buffer OPTIONAL,
IN ULONG Length OPTIONAL,
IN PLARGE_INTEGER StartingOffset OPTIONAL,
IN PIO_STATUS_BLOCK IoStatusBlock OPTIONAL
);
NTKERNELAPI
PIRP
IoBuildDeviceIoControlRequest(
IN ULONG IoControlCode,
IN PDEVICE_OBJECT DeviceObject,
IN PVOID InputBuffer OPTIONAL,
IN ULONG InputBufferLength,
OUT PVOID OutputBuffer OPTIONAL,
IN ULONG OutputBufferLength,
IN BOOLEAN InternalDeviceIoControl,
IN PKEVENT Event,
OUT PIO_STATUS_BLOCK IoStatusBlock
);
NTKERNELAPI
VOID
IoBuildPartialMdl(
IN PMDL SourceMdl,
IN OUT PMDL TargetMdl,
IN PVOID VirtualAddress,
IN ULONG Length
);
typedef struct _BOOTDISK_INFORMATION {
LONGLONG BootPartitionOffset;
LONGLONG SystemPartitionOffset;
ULONG BootDeviceSignature;
ULONG SystemDeviceSignature;
} BOOTDISK_INFORMATION, *PBOOTDISK_INFORMATION;
//
// This structure should follow the previous structure field for field.
//
typedef struct _BOOTDISK_INFORMATION_EX {
LONGLONG BootPartitionOffset;
LONGLONG SystemPartitionOffset;
ULONG BootDeviceSignature;
ULONG SystemDeviceSignature;
GUID BootDeviceGuid;
GUID SystemDeviceGuid;
BOOLEAN BootDeviceIsGpt;
BOOLEAN SystemDeviceIsGpt;
} BOOTDISK_INFORMATION_EX, *PBOOTDISK_INFORMATION_EX;
NTKERNELAPI
NTSTATUS
IoGetBootDiskInformation(
IN OUT PBOOTDISK_INFORMATION BootDiskInformation,
IN ULONG Size
);
NTKERNELAPI
PIRP
IoBuildSynchronousFsdRequest(
IN ULONG MajorFunction,
IN PDEVICE_OBJECT DeviceObject,
IN OUT PVOID Buffer OPTIONAL,
IN ULONG Length OPTIONAL,
IN PLARGE_INTEGER StartingOffset OPTIONAL,
IN PKEVENT Event,
OUT PIO_STATUS_BLOCK IoStatusBlock
);
NTKERNELAPI
NTSTATUS
FASTCALL
IofCallDriver(
IN PDEVICE_OBJECT DeviceObject,
IN OUT PIRP Irp
);
#define IoCallDriver(a,b) \
IofCallDriver(a,b)
NTKERNELAPI
BOOLEAN
IoCancelIrp(
IN PIRP Irp
);
NTKERNELAPI
NTSTATUS
IoCheckShareAccess(
IN ACCESS_MASK DesiredAccess,
IN ULONG DesiredShareAccess,
IN OUT PFILE_OBJECT FileObject,
IN OUT PSHARE_ACCESS ShareAccess,
IN BOOLEAN Update
);
//
// This value should be returned from completion routines to continue
// completing the IRP upwards. Otherwise, STATUS_MORE_PROCESSING_REQUIRED
// should be returned.
//
#define STATUS_CONTINUE_COMPLETION STATUS_SUCCESS
//
// Completion routines can also use this enumeration in place of status codes.
//
typedef enum _IO_COMPLETION_ROUTINE_RESULT {
ContinueCompletion = STATUS_CONTINUE_COMPLETION,
StopCompletion = STATUS_MORE_PROCESSING_REQUIRED
} IO_COMPLETION_ROUTINE_RESULT, *PIO_COMPLETION_ROUTINE_RESULT;
NTKERNELAPI
VOID
FASTCALL
IofCompleteRequest(
IN PIRP Irp,
IN CCHAR PriorityBoost
);
#define IoCompleteRequest(a,b) \
IofCompleteRequest(a,b)
NTKERNELAPI
NTSTATUS
IoConnectInterrupt(
OUT PKINTERRUPT *InterruptObject,
IN PKSERVICE_ROUTINE ServiceRoutine,
IN PVOID ServiceContext,
IN PKSPIN_LOCK SpinLock OPTIONAL,
IN ULONG Vector,
IN KIRQL Irql,
IN KIRQL SynchronizeIrql,
IN KINTERRUPT_MODE InterruptMode,
IN BOOLEAN ShareVector,
IN KAFFINITY ProcessorEnableMask,
IN BOOLEAN FloatingSave
);
NTKERNELAPI
NTSTATUS
IoCreateDevice(
IN PDRIVER_OBJECT DriverObject,
IN ULONG DeviceExtensionSize,
IN PUNICODE_STRING DeviceName OPTIONAL,
IN DEVICE_TYPE DeviceType,
IN ULONG DeviceCharacteristics,
IN BOOLEAN Reserved,
OUT PDEVICE_OBJECT *DeviceObject
);
#define WDM_MAJORVERSION 0x01
#define WDM_MINORVERSION 0x20
NTKERNELAPI
BOOLEAN
IoIsWdmVersionAvailable(
IN UCHAR MajorVersion,
IN UCHAR MinorVersion
);
NTKERNELAPI
NTSTATUS
IoCreateFile(
OUT PHANDLE FileHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PLARGE_INTEGER AllocationSize OPTIONAL,
IN ULONG FileAttributes,
IN ULONG ShareAccess,
IN ULONG Disposition,
IN ULONG CreateOptions,
IN PVOID EaBuffer OPTIONAL,
IN ULONG EaLength,
IN CREATE_FILE_TYPE CreateFileType,
IN PVOID ExtraCreateParameters OPTIONAL,
IN ULONG Options
);
NTKERNELAPI
PKEVENT
IoCreateNotificationEvent(
IN PUNICODE_STRING EventName,
OUT PHANDLE EventHandle
);
NTKERNELAPI
NTSTATUS
IoCreateSymbolicLink(
IN PUNICODE_STRING SymbolicLinkName,
IN PUNICODE_STRING DeviceName
);
NTKERNELAPI
PKEVENT
IoCreateSynchronizationEvent(
IN PUNICODE_STRING EventName,
OUT PHANDLE EventHandle
);
NTKERNELAPI
NTSTATUS
IoCreateUnprotectedSymbolicLink(
IN PUNICODE_STRING SymbolicLinkName,
IN PUNICODE_STRING DeviceName
);
NTKERNELAPI
VOID
IoDeleteDevice(
IN PDEVICE_OBJECT DeviceObject
);
NTKERNELAPI
NTSTATUS
IoDeleteSymbolicLink(
IN PUNICODE_STRING SymbolicLinkName
);
NTKERNELAPI
VOID
IoDetachDevice(
IN OUT PDEVICE_OBJECT TargetDevice
);
NTKERNELAPI
VOID
IoDisconnectInterrupt(
IN PKINTERRUPT InterruptObject
);
NTKERNELAPI
VOID
IoFreeIrp(
IN PIRP Irp
);
NTKERNELAPI
VOID
IoFreeMdl(
IN PMDL Mdl
);
NTKERNELAPI
PDEVICE_OBJECT
IoGetAttachedDeviceReference(
IN PDEVICE_OBJECT DeviceObject
);
//++
//
// PIO_STACK_LOCATION
// IoGetCurrentIrpStackLocation(
// IN PIRP Irp
// )
//
// Routine Description:
//
// This routine is invoked to return a pointer to the current stack location
// in an I/O Request Packet (IRP).
//
// Arguments:
//
// Irp - Pointer to the I/O Request Packet.
//
// Return Value:
//
// The function value is a pointer to the current stack location in the
// packet.
//
//--
#define IoGetCurrentIrpStackLocation( Irp ) ( (Irp)->Tail.Overlay.CurrentStackLocation )
NTKERNELAPI
PVOID
IoGetDriverObjectExtension(
IN PDRIVER_OBJECT DriverObject,
IN PVOID ClientIdentificationAddress
);
NTKERNELAPI
PEPROCESS
IoGetCurrentProcess(
VOID
);
NTKERNELAPI
NTSTATUS
IoGetDeviceObjectPointer(
IN PUNICODE_STRING ObjectName,
IN ACCESS_MASK DesiredAccess,
OUT PFILE_OBJECT *FileObject,
OUT PDEVICE_OBJECT *DeviceObject
);
NTKERNELAPI
struct _DMA_ADAPTER *
IoGetDmaAdapter(
IN PDEVICE_OBJECT PhysicalDeviceObject,
IN struct _DEVICE_DESCRIPTION *DeviceDescription,
IN OUT PULONG NumberOfMapRegisters
);
NTKERNELAPI
BOOLEAN
IoForwardIrpSynchronously(
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp
);
#define IoForwardAndCatchIrp IoForwardIrpSynchronously
//++
//
// ULONG
// IoGetFunctionCodeFromCtlCode(
// IN ULONG ControlCode
// )
//
// Routine Description:
//
// This routine extracts the function code from IOCTL and FSCTL function
// control codes.
// This routine should only be used by kernel mode code.
//
// Arguments:
//
// ControlCode - A function control code (IOCTL or FSCTL) from which the
// function code must be extracted.
//
// Return Value:
//
// The extracted function code.
//
// Note:
//
// The CTL_CODE macro, used to create IOCTL and FSCTL function control
// codes, is defined in ntioapi.h
//
//--
#define IoGetFunctionCodeFromCtlCode( ControlCode ) (\
( ControlCode >> 2) & 0x00000FFF )
NTKERNELAPI
PVOID
IoGetInitialStack(
VOID
);
NTKERNELAPI
VOID
IoGetStackLimits (
OUT PULONG_PTR LowLimit,
OUT PULONG_PTR HighLimit
);
//
// The following function is used to tell the caller how much stack is available
//
FORCEINLINE
ULONG_PTR
IoGetRemainingStackSize (
VOID
)
{
ULONG_PTR Top;
ULONG_PTR Bottom;
IoGetStackLimits( &Bottom, &Top );
return((ULONG_PTR)(&Top) - Bottom );
}
//++
//
// PIO_STACK_LOCATION
// IoGetNextIrpStackLocation(
// IN PIRP Irp
// )
//
// Routine Description:
//
// This routine is invoked to return a pointer to the next stack location
// in an I/O Request Packet (IRP).
//
// Arguments:
//
// Irp - Pointer to the I/O Request Packet.
//
// Return Value:
//
// The function value is a pointer to the next stack location in the packet.
//
//--
#define IoGetNextIrpStackLocation( Irp ) (\
(Irp)->Tail.Overlay.CurrentStackLocation - 1 )
NTKERNELAPI
PDEVICE_OBJECT
IoGetRelatedDeviceObject(
IN PFILE_OBJECT FileObject
);
//++
//
// VOID
// IoInitializeDpcRequest(
// IN PDEVICE_OBJECT DeviceObject,
// IN PIO_DPC_ROUTINE DpcRoutine
// )
//
// Routine Description:
//
// This routine is invoked to initialize the DPC in a device object for a
// device driver during its initialization routine. The DPC is used later
// when the driver interrupt service routine requests that a DPC routine
// be queued for later execution.
//
// Arguments:
//
// DeviceObject - Pointer to the device object that the request is for.
//
// DpcRoutine - Address of the driver's DPC routine to be executed when
// the DPC is dequeued for processing.
//
// Return Value:
//
// None.
//
//--
#define IoInitializeDpcRequest( DeviceObject, DpcRoutine ) (\
KeInitializeDpc( &(DeviceObject)->Dpc, \
(PKDEFERRED_ROUTINE) (DpcRoutine), \
(DeviceObject) ) )
NTKERNELAPI
VOID
IoInitializeIrp(
IN OUT PIRP Irp,
IN USHORT PacketSize,
IN CCHAR StackSize
);
NTKERNELAPI
NTSTATUS
IoInitializeTimer(
IN PDEVICE_OBJECT DeviceObject,
IN PIO_TIMER_ROUTINE TimerRoutine,
IN PVOID Context
);
NTKERNELAPI
VOID
IoReuseIrp(
IN OUT PIRP Irp,
IN NTSTATUS Iostatus
);
//++
//
// BOOLEAN
// IoIsErrorUserInduced(
// IN NTSTATUS Status
// )
//
// Routine Description:
//
// This routine is invoked to determine if an error was as a
// result of user actions. Typically these error are related
// to removable media and will result in a pop-up.
//
// Arguments:
//
// Status - The status value to check.
//
// Return Value:
// The function value is TRUE if the user induced the error,
// otherwise FALSE is returned.
//
//--
#define IoIsErrorUserInduced( Status ) ((BOOLEAN) \
(((Status) == STATUS_DEVICE_NOT_READY) || \
((Status) == STATUS_IO_TIMEOUT) || \
((Status) == STATUS_MEDIA_WRITE_PROTECTED) || \
((Status) == STATUS_NO_MEDIA_IN_DEVICE) || \
((Status) == STATUS_VERIFY_REQUIRED) || \
((Status) == STATUS_UNRECOGNIZED_MEDIA) || \
((Status) == STATUS_WRONG_VOLUME)))
//++
//
// VOID
// IoMarkIrpPending(
// IN OUT PIRP Irp
// )
//
// Routine Description:
//
// This routine marks the specified I/O Request Packet (IRP) to indicate
// that an initial status of STATUS_PENDING was returned to the caller.
// This is used so that I/O completion can determine whether or not to
// fully complete the I/O operation requested by the packet.
//
// Arguments:
//
// Irp - Pointer to the I/O Request Packet to be marked pending.
//
// Return Value:
//
// None.
//
//--
#define IoMarkIrpPending( Irp ) ( \
IoGetCurrentIrpStackLocation( (Irp) )->Control |= SL_PENDING_RETURNED )
NTKERNELAPI
VOID
IoReleaseCancelSpinLock(
IN KIRQL Irql
);
//++
//
// VOID
// IoRequestDpc(
// IN PDEVICE_OBJECT DeviceObject,
// IN PIRP Irp,
// IN PVOID Context
// )
//
// Routine Description:
//
// This routine is invoked by the device driver's interrupt service routine
// to request that a DPC routine be queued for later execution at a lower
// IRQL.
//
// Arguments:
//
// DeviceObject - Device object for which the request is being processed.
//
// Irp - Pointer to the current I/O Request Packet (IRP) for the specified
// device.
//
// Context - Provides a general context parameter to be passed to the
// DPC routine.
//
// Return Value:
//
// None.
//
//--
#define IoRequestDpc( DeviceObject, Irp, Context ) ( \
KeInsertQueueDpc( &(DeviceObject)->Dpc, (Irp), (Context) ) )
//++
//
// PDRIVER_CANCEL
// IoSetCancelRoutine(
// IN PIRP Irp,
// IN PDRIVER_CANCEL CancelRoutine
// )
//
// Routine Description:
//
// This routine is invoked to set the address of a cancel routine which
// is to be invoked when an I/O packet has been canceled.
//
// Arguments:
//
// Irp - Pointer to the I/O Request Packet itself.
//
// CancelRoutine - Address of the cancel routine that is to be invoked
// if the IRP is cancelled.
//
// Return Value:
//
// Previous value of CancelRoutine field in the IRP.
//
//--
#define IoSetCancelRoutine( Irp, NewCancelRoutine ) ( \
(PDRIVER_CANCEL) InterlockedExchangePointer( (PVOID *) &(Irp)->CancelRoutine, (PVOID) (NewCancelRoutine) ) )
//++
//
// VOID
// IoSetCompletionRoutine(
// IN PIRP Irp,
// IN PIO_COMPLETION_ROUTINE CompletionRoutine,
// IN PVOID Context,
// IN BOOLEAN InvokeOnSuccess,
// IN BOOLEAN InvokeOnError,
// IN BOOLEAN InvokeOnCancel
// )
//
// Routine Description:
//
// This routine is invoked to set the address of a completion routine which
// is to be invoked when an I/O packet has been completed by a lower-level
// driver.
//
// Arguments:
//
// Irp - Pointer to the I/O Request Packet itself.
//
// CompletionRoutine - Address of the completion routine that is to be
// invoked once the next level driver completes the packet.
//
// Context - Specifies a context parameter to be passed to the completion
// routine.
//
// InvokeOnSuccess - Specifies that the completion routine is invoked when the
// operation is successfully completed.
//
// InvokeOnError - Specifies that the completion routine is invoked when the
// operation completes with an error status.
//
// InvokeOnCancel - Specifies that the completion routine is invoked when the
// operation is being canceled.
//
// Return Value:
//
// None.
//
//--
#define IoSetCompletionRoutine( Irp, Routine, CompletionContext, Success, Error, Cancel ) { \
PIO_STACK_LOCATION __irpSp; \
ASSERT( (Success) | (Error) | (Cancel) ? (Routine) != NULL : TRUE ); \
__irpSp = IoGetNextIrpStackLocation( (Irp) ); \
__irpSp->CompletionRoutine = (Routine); \
__irpSp->Context = (CompletionContext); \
__irpSp->Control = 0; \
if ((Success)) { __irpSp->Control = SL_INVOKE_ON_SUCCESS; } \
if ((Error)) { __irpSp->Control |= SL_INVOKE_ON_ERROR; } \
if ((Cancel)) { __irpSp->Control |= SL_INVOKE_ON_CANCEL; } }
NTSTATUS
IoSetCompletionRoutineEx(
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN PIO_COMPLETION_ROUTINE CompletionRoutine,
IN PVOID Context,
IN BOOLEAN InvokeOnSuccess,
IN BOOLEAN InvokeOnError,
IN BOOLEAN InvokeOnCancel
);
//++
//
// VOID
// IoSetNextIrpStackLocation (
// IN OUT PIRP Irp
// )
//
// Routine Description:
//
// This routine is invoked to set the current IRP stack location to
// the next stack location, i.e. it "pushes" the stack.
//
// Arguments:
//
// Irp - Pointer to the I/O Request Packet (IRP).
//
// Return Value:
//
// None.
//
//--
#define IoSetNextIrpStackLocation( Irp ) { \
(Irp)->CurrentLocation--; \
(Irp)->Tail.Overlay.CurrentStackLocation--; }
//++
//
// VOID
// IoCopyCurrentIrpStackLocationToNext(
// IN PIRP Irp
// )
//
// Routine Description:
//
// This routine is invoked to copy the IRP stack arguments and file
// pointer from the current IrpStackLocation to the next
// in an I/O Request Packet (IRP).
//
// If the caller wants to call IoCallDriver with a completion routine
// but does not wish to change the arguments otherwise,
// the caller first calls IoCopyCurrentIrpStackLocationToNext,
// then IoSetCompletionRoutine, then IoCallDriver.
//
// Arguments:
//
// Irp - Pointer to the I/O Request Packet.
//
// Return Value:
//
// None.
//
//--
#define IoCopyCurrentIrpStackLocationToNext( Irp ) { \
PIO_STACK_LOCATION __irpSp; \
PIO_STACK_LOCATION __nextIrpSp; \
__irpSp = IoGetCurrentIrpStackLocation( (Irp) ); \
__nextIrpSp = IoGetNextIrpStackLocation( (Irp) ); \
RtlCopyMemory( __nextIrpSp, __irpSp, FIELD_OFFSET(IO_STACK_LOCATION, CompletionRoutine)); \
__nextIrpSp->Control = 0; }
//++
//
// VOID
// IoSkipCurrentIrpStackLocation (
// IN PIRP Irp
// )
//
// Routine Description:
//
// This routine is invoked to increment the current stack location of
// a given IRP.
//
// If the caller wishes to call the next driver in a stack, and does not
// wish to change the arguments, nor does he wish to set a completion
// routine, then the caller first calls IoSkipCurrentIrpStackLocation
// and the calls IoCallDriver.
//
// Arguments:
//
// Irp - Pointer to the I/O Request Packet.
//
// Return Value:
//
// None
//
//--
#define IoSkipCurrentIrpStackLocation( Irp ) { \
(Irp)->CurrentLocation++; \
(Irp)->Tail.Overlay.CurrentStackLocation++; }
NTKERNELAPI
VOID
IoSetShareAccess(
IN ACCESS_MASK DesiredAccess,
IN ULONG DesiredShareAccess,
IN OUT PFILE_OBJECT FileObject,
OUT PSHARE_ACCESS ShareAccess
);
typedef struct _IO_REMOVE_LOCK_TRACKING_BLOCK * PIO_REMOVE_LOCK_TRACKING_BLOCK;
typedef struct _IO_REMOVE_LOCK_COMMON_BLOCK {
BOOLEAN Removed;
BOOLEAN Reserved [3];
LONG IoCount;
KEVENT RemoveEvent;
} IO_REMOVE_LOCK_COMMON_BLOCK;
typedef struct _IO_REMOVE_LOCK_DBG_BLOCK {
LONG Signature;
LONG HighWatermark;
LONGLONG MaxLockedTicks;
LONG AllocateTag;
LIST_ENTRY LockList;
KSPIN_LOCK Spin;
LONG LowMemoryCount;
ULONG Reserved1[4];
PVOID Reserved2;
PIO_REMOVE_LOCK_TRACKING_BLOCK Blocks;
} IO_REMOVE_LOCK_DBG_BLOCK;
typedef struct _IO_REMOVE_LOCK {
IO_REMOVE_LOCK_COMMON_BLOCK Common;
#if DBG
IO_REMOVE_LOCK_DBG_BLOCK Dbg;
#endif
} IO_REMOVE_LOCK, *PIO_REMOVE_LOCK;
#define IoInitializeRemoveLock(Lock, Tag, Maxmin, HighWater) \
IoInitializeRemoveLockEx (Lock, Tag, Maxmin, HighWater, sizeof (IO_REMOVE_LOCK))
NTSYSAPI
VOID
NTAPI
IoInitializeRemoveLockEx(
IN PIO_REMOVE_LOCK Lock,
IN ULONG AllocateTag, // Used only on checked kernels
IN ULONG MaxLockedMinutes, // Used only on checked kernels
IN ULONG HighWatermark, // Used only on checked kernels
IN ULONG RemlockSize // are we checked or free
);
//
// Initialize a remove lock.
//
// Note: Allocation for remove locks needs to be within the device extension,
// so that the memory for this structure stays allocated until such time as the
// device object itself is deallocated.
//
#define IoAcquireRemoveLock(RemoveLock, Tag) \
IoAcquireRemoveLockEx(RemoveLock, Tag, __FILE__, __LINE__, sizeof (IO_REMOVE_LOCK))
NTSYSAPI
NTSTATUS
NTAPI
IoAcquireRemoveLockEx (
IN PIO_REMOVE_LOCK RemoveLock,
IN OPTIONAL PVOID Tag, // Optional
IN PCSTR File,
IN ULONG Line,
IN ULONG RemlockSize // are we checked or free
);
//
// Routine Description:
//
// This routine is called to acquire the remove lock for a device object.
// While the lock is held, the caller can assume that no pending pnp REMOVE
// requests will be completed.
//
// The lock should be acquired immediately upon entering a dispatch routine.
// It should also be acquired before creating any new reference to the
// device object if there's a chance of releasing the reference before the
// new one is done, in addition to references to the driver code itself,
// which is removed from memory when the last device object goes.
//
// Arguments:
//
// RemoveLock - A pointer to an initialized REMOVE_LOCK structure.
//
// Tag - Used for tracking lock allocation and release. The same tag
// specified when acquiring the lock must be used to release the lock.
// Tags are only checked in checked versions of the driver.
//
// File - set to __FILE__ as the location in the code where the lock was taken.
//
// Line - set to __LINE__.
//
// Return Value:
//
// Returns whether or not the remove lock was obtained.
// If successful the caller should continue with work calling
// IoReleaseRemoveLock when finished.
//
// If not successful the lock was not obtained. The caller should abort the
// work but not call IoReleaseRemoveLock.
//
#define IoReleaseRemoveLock(RemoveLock, Tag) \
IoReleaseRemoveLockEx(RemoveLock, Tag, sizeof (IO_REMOVE_LOCK))
NTSYSAPI
VOID
NTAPI
IoReleaseRemoveLockEx(
IN PIO_REMOVE_LOCK RemoveLock,
IN PVOID Tag, // Optional
IN ULONG RemlockSize // are we checked or free
);
//
//
// Routine Description:
//
// This routine is called to release the remove lock on the device object. It
// must be called when finished using a previously locked reference to the
// device object. If an Tag was specified when acquiring the lock then the
// same Tag must be specified when releasing the lock.
//
// When the lock count reduces to zero, this routine will signal the waiting
// event to release the waiting thread deleting the device object protected
// by this lock.
//
// Arguments:
//
// DeviceObject - the device object to lock
//
// Tag - The TAG (if any) specified when acquiring the lock. This is used
// for lock tracking purposes
//
// Return Value:
//
// none
//
#define IoReleaseRemoveLockAndWait(RemoveLock, Tag) \
IoReleaseRemoveLockAndWaitEx(RemoveLock, Tag, sizeof (IO_REMOVE_LOCK))
NTSYSAPI
VOID
NTAPI
IoReleaseRemoveLockAndWaitEx(
IN PIO_REMOVE_LOCK RemoveLock,
IN PVOID Tag,
IN ULONG RemlockSize // are we checked or free
);
//
//
// Routine Description:
//
// This routine is called when the client would like to delete the
// remove-locked resource. This routine will block until all the remove
// locks have released.
//
// This routine MUST be called after acquiring the lock.
//
// Arguments:
//
// RemoveLock
//
// Return Value:
//
// none
//
//++
//
// USHORT
// IoSizeOfIrp(
// IN CCHAR StackSize
// )
//
// Routine Description:
//
// Determines the size of an IRP given the number of stack locations
// the IRP will have.
//
// Arguments:
//
// StackSize - Number of stack locations for the IRP.
//
// Return Value:
//
// Size in bytes of the IRP.
//
//--
#define IoSizeOfIrp( StackSize ) \
((USHORT) (sizeof( IRP ) + ((StackSize) * (sizeof( IO_STACK_LOCATION )))))
NTKERNELAPI
VOID
IoStartNextPacket(
IN PDEVICE_OBJECT DeviceObject,
IN BOOLEAN Cancelable
);
NTKERNELAPI
VOID
IoStartNextPacketByKey(
IN PDEVICE_OBJECT DeviceObject,
IN BOOLEAN Cancelable,
IN ULONG Key
);
NTKERNELAPI
VOID
IoStartPacket(
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN PULONG Key OPTIONAL,
IN PDRIVER_CANCEL CancelFunction OPTIONAL
);
VOID
IoSetStartIoAttributes(
IN PDEVICE_OBJECT DeviceObject,
IN BOOLEAN DeferredStartIo,
IN BOOLEAN NonCancelable
);
NTKERNELAPI
VOID
IoStartTimer(
IN PDEVICE_OBJECT DeviceObject
);
NTKERNELAPI
VOID
IoStopTimer(
IN PDEVICE_OBJECT DeviceObject
);
NTKERNELAPI
VOID
IoUnregisterShutdownNotification(
IN PDEVICE_OBJECT DeviceObject
);
NTKERNELAPI
VOID
IoWriteErrorLogEntry(
IN PVOID ElEntry
);
typedef struct _IO_WORKITEM *PIO_WORKITEM;
typedef
VOID
(*PIO_WORKITEM_ROUTINE) (
IN PDEVICE_OBJECT DeviceObject,
IN PVOID Context
);
PIO_WORKITEM
IoAllocateWorkItem(
PDEVICE_OBJECT DeviceObject
);
VOID
IoFreeWorkItem(
PIO_WORKITEM IoWorkItem
);
VOID
IoQueueWorkItem(
IN PIO_WORKITEM IoWorkItem,
IN PIO_WORKITEM_ROUTINE WorkerRoutine,
IN WORK_QUEUE_TYPE QueueType,
IN PVOID Context
);
NTKERNELAPI
NTSTATUS
IoWMIRegistrationControl(
IN PDEVICE_OBJECT DeviceObject,
IN ULONG Action
);
//
// Action code for IoWMIRegistrationControl api
//
#define WMIREG_ACTION_REGISTER 1
#define WMIREG_ACTION_DEREGISTER 2
#define WMIREG_ACTION_REREGISTER 3
#define WMIREG_ACTION_UPDATE_GUIDS 4
#define WMIREG_ACTION_BLOCK_IRPS 5
//
// Code passed in IRP_MN_REGINFO WMI irp
//
#define WMIREGISTER 0
#define WMIUPDATE 1
NTKERNELAPI
NTSTATUS
IoWMIAllocateInstanceIds(
IN GUID *Guid,
IN ULONG InstanceCount,
OUT ULONG *FirstInstanceId
);
NTKERNELAPI
NTSTATUS
IoWMISuggestInstanceName(
IN PDEVICE_OBJECT PhysicalDeviceObject OPTIONAL,
IN PUNICODE_STRING SymbolicLinkName OPTIONAL,
IN BOOLEAN CombineNames,
OUT PUNICODE_STRING SuggestedInstanceName
);
NTKERNELAPI
NTSTATUS
IoWMIWriteEvent(
IN PVOID WnodeEventItem
);
#if defined(_WIN64)
NTKERNELAPI
ULONG IoWMIDeviceObjectToProviderId(
PDEVICE_OBJECT DeviceObject
);
#else
#define IoWMIDeviceObjectToProviderId(DeviceObject) ((ULONG)(DeviceObject))
#endif
NTKERNELAPI
NTSTATUS IoWMIOpenBlock(
IN GUID *DataBlockGuid,
IN ULONG DesiredAccess,
OUT PVOID *DataBlockObject
);
NTKERNELAPI
NTSTATUS IoWMIQueryAllData(
IN PVOID DataBlockObject,
IN OUT ULONG *InOutBufferSize,
OUT /* non paged */ PVOID OutBuffer
);
NTKERNELAPI
NTSTATUS
IoWMIQueryAllDataMultiple(
IN PVOID *DataBlockObjectList,
IN ULONG ObjectCount,
IN OUT ULONG *InOutBufferSize,
OUT /* non paged */ PVOID OutBuffer
);
NTKERNELAPI
NTSTATUS
IoWMIQuerySingleInstance(
IN PVOID DataBlockObject,
IN PUNICODE_STRING InstanceName,
IN OUT ULONG *InOutBufferSize,
OUT /* non paged */ PVOID OutBuffer
);
NTKERNELAPI
NTSTATUS
IoWMIQuerySingleInstanceMultiple(
IN PVOID *DataBlockObjectList,
IN PUNICODE_STRING InstanceNames,
IN ULONG ObjectCount,
IN OUT ULONG *InOutBufferSize,
OUT /* non paged */ PVOID OutBuffer
);
NTKERNELAPI
NTSTATUS
IoWMISetSingleInstance(
IN PVOID DataBlockObject,
IN PUNICODE_STRING InstanceName,
IN ULONG Version,
IN ULONG ValueBufferSize,
IN PVOID ValueBuffer
);
NTKERNELAPI
NTSTATUS
IoWMISetSingleItem(
IN PVOID DataBlockObject,
IN PUNICODE_STRING InstanceName,
IN ULONG DataItemId,
IN ULONG Version,
IN ULONG ValueBufferSize,
IN PVOID ValueBuffer
);
NTKERNELAPI
NTSTATUS
IoWMIExecuteMethod(
IN PVOID DataBlockObject,
IN PUNICODE_STRING InstanceName,
IN ULONG MethodId,
IN ULONG InBufferSize,
IN OUT PULONG OutBufferSize,
IN OUT PUCHAR InOutBuffer
);
typedef VOID (*WMI_NOTIFICATION_CALLBACK)(
PVOID Wnode,
PVOID Context
);
NTKERNELAPI
NTSTATUS
IoWMISetNotificationCallback(
IN PVOID Object,
IN WMI_NOTIFICATION_CALLBACK Callback,
IN PVOID Context
);
NTKERNELAPI
NTSTATUS
IoWMIHandleToInstanceName(
IN PVOID DataBlockObject,
IN HANDLE FileHandle,
OUT PUNICODE_STRING InstanceName
);
NTKERNELAPI
NTSTATUS
IoWMIDeviceObjectToInstanceName(
IN PVOID DataBlockObject,
IN PDEVICE_OBJECT DeviceObject,
OUT PUNICODE_STRING InstanceName
);
#if defined(_WIN64)
BOOLEAN
IoIs32bitProcess(
IN PIRP Irp
);
#endif
VOID
IoFreeErrorLogEntry(
PVOID ElEntry
);
// Cancel SAFE API set start
//
// The following APIs are to help ease the pain of writing queue packages that
// handle the cancellation race well. The idea of this set of APIs is to not
// force a single queue data structure but allow the cancel logic to be hidden
// from the drivers. A driver implements a queue and as part of its header
// includes the IO_CSQ structure. In its initialization routine it calls
// IoInitializeCsq. Then in the dispatch routine when the driver wants to
// insert an IRP into the queue it calls IoCsqInsertIrp. When the driver wants
// to remove something from the queue it calls IoCsqRemoveIrp. Note that Insert
// can fail if the IRP was cancelled in the meantime. Remove can also fail if
// the IRP was already cancelled.
//
// There are typically two modes where drivers queue IRPs. These two modes are
// covered by the cancel safe queue API set.
//
// Mode 1:
// One is where the driver queues the IRP and at some later
// point in time dequeues an IRP and issues the IO request.
// For this mode the driver should use IoCsqInsertIrp and IoCsqRemoveNextIrp.
// The driver in this case is expected to pass NULL to the irp context
// parameter in IoInsertIrp.
//
// Mode 2:
// In this the driver queues theIRP, issues the IO request (like issuing a DMA
// request or writing to a register) and when the IO request completes (either
// using a DPC or timer) the driver dequeues the IRP and completes it. For this
// mode the driver should use IoCsqInsertIrp and IoCsqRemoveIrp. In this case
// the driver should allocate an IRP context and pass it in to IoCsqInsertIrp.
// The cancel API code creates an association between the IRP and the context
// and thus ensures that when the time comes to remove the IRP it can ascertain
// correctly.
//
// Note that the cancel API set assumes that the field DriverContext[3] is
// always available for use and that the driver does not use it.
//
//
// Bookkeeping structure. This should be opaque to drivers.
// Drivers typically include this as part of their queue headers.
// Given a CSQ pointer the driver should be able to get its
// queue header using CONTAINING_RECORD macro
//
typedef struct _IO_CSQ IO_CSQ, *PIO_CSQ;
#define IO_TYPE_CSQ_IRP_CONTEXT 1
#define IO_TYPE_CSQ 2
//
// IRP context structure. This structure is necessary if the driver is using
// the second mode.
//
typedef struct _IO_CSQ_IRP_CONTEXT {
ULONG Type;
PIRP Irp;
PIO_CSQ Csq;
} IO_CSQ_IRP_CONTEXT, *PIO_CSQ_IRP_CONTEXT;
//
// Routines that insert/remove IRP
//
typedef VOID
(*PIO_CSQ_INSERT_IRP)(
IN struct _IO_CSQ *Csq,
IN PIRP Irp
);
typedef VOID
(*PIO_CSQ_REMOVE_IRP)(
IN PIO_CSQ Csq,
IN PIRP Irp
);
//
// Retrieves next entry after Irp from the queue.
// Returns NULL if there are no entries in the queue.
// If Irp is NUL, returns the entry in the head of the queue.
// This routine does not remove the IRP from the queue.
//
typedef PIRP
(*PIO_CSQ_PEEK_NEXT_IRP)(
IN PIO_CSQ Csq,
IN PIRP Irp,
IN PVOID PeekContext
);
//
// Lock routine that protects the cancel safe queue.
//
typedef VOID
(*PIO_CSQ_ACQUIRE_LOCK)(
IN PIO_CSQ Csq,
OUT PKIRQL Irql
);
typedef VOID
(*PIO_CSQ_RELEASE_LOCK)(
IN PIO_CSQ Csq,
IN KIRQL Irql
);
//
// Completes the IRP with STATUS_CANCELLED. IRP is guaranteed to be valid
// In most cases this routine just calls IoCompleteRequest(Irp, STATUS_CANCELLED);
//
typedef VOID
(*PIO_CSQ_COMPLETE_CANCELED_IRP)(
IN PIO_CSQ Csq,
IN PIRP Irp
);
//
// Bookkeeping structure. This should be opaque to drivers.
// Drivers typically include this as part of their queue headers.
// Given a CSQ pointer the driver should be able to get its
// queue header using CONTAINING_RECORD macro
//
typedef struct _IO_CSQ {
ULONG Type;
PIO_CSQ_INSERT_IRP CsqInsertIrp;
PIO_CSQ_REMOVE_IRP CsqRemoveIrp;
PIO_CSQ_PEEK_NEXT_IRP CsqPeekNextIrp;
PIO_CSQ_ACQUIRE_LOCK CsqAcquireLock;
PIO_CSQ_RELEASE_LOCK CsqReleaseLock;
PIO_CSQ_COMPLETE_CANCELED_IRP CsqCompleteCanceledIrp;
PVOID ReservePointer; // Future expansion
} IO_CSQ, *PIO_CSQ;
//
// Initializes the cancel queue structure.
//
NTSTATUS
IoCsqInitialize(
IN PIO_CSQ Csq,
IN PIO_CSQ_INSERT_IRP CsqInsertIrp,
IN PIO_CSQ_REMOVE_IRP CsqRemoveIrp,
IN PIO_CSQ_PEEK_NEXT_IRP CsqPeekNextIrp,
IN PIO_CSQ_ACQUIRE_LOCK CsqAcquireLock,
IN PIO_CSQ_RELEASE_LOCK CsqReleaseLock,
IN PIO_CSQ_COMPLETE_CANCELED_IRP CsqCompleteCanceledIrp
);
//
// The caller calls this routine to insert the IRP and return STATUS_PENDING.
//
VOID
IoCsqInsertIrp(
IN PIO_CSQ Csq,
IN PIRP Irp,
IN PIO_CSQ_IRP_CONTEXT Context
);
//
// Returns an IRP if one can be found. NULL otherwise.
//
PIRP
IoCsqRemoveNextIrp(
IN PIO_CSQ Csq,
IN PVOID PeekContext
);
//
// This routine is called from timeout or DPCs.
// The context is presumably part of the DPC or timer context.
// If succesfull returns the IRP associated with context.
//
PIRP
IoCsqRemoveIrp(
IN PIO_CSQ Csq,
IN PIO_CSQ_IRP_CONTEXT Context
);
// Cancel SAFE API set end
#ifdef RUN_WPP
#include <evntrace.h>
#include <stdarg.h>
#endif // #ifdef RUN_WPP
#ifdef RUN_WPP
NTKERNELAPI
NTSTATUS
WmiTraceMessage(
IN TRACEHANDLE LoggerHandle,
IN ULONG MessageFlags,
IN LPGUID MessageGuid,
IN USHORT MessageNumber,
IN ...
);
NTKERNELAPI
NTSTATUS
WmiTraceMessageVa(
IN TRACEHANDLE LoggerHandle,
IN ULONG MessageFlags,
IN LPGUID MessageGuid,
IN USHORT MessageNumber,
IN va_list MessageArgList
);
#endif // #ifdef RUN_WPP
#ifndef TRACE_INFORMATION_CLASS_DEFINE
typedef enum _TRACE_INFORMATION_CLASS {
TraceIdClass,
TraceHandleClass,
TraceEnableFlagsClass,
TraceEnableLevelClass,
GlobalLoggerHandleClass,
EventLoggerHandleClass,
AllLoggerHandlesClass,
TraceHandleByNameClass
} TRACE_INFORMATION_CLASS;
NTKERNELAPI
NTSTATUS
WmiQueryTraceInformation(
IN TRACE_INFORMATION_CLASS TraceInformationClass,
OUT PVOID TraceInformation,
IN ULONG TraceInformationLength,
OUT PULONG RequiredLength OPTIONAL,
IN PVOID Buffer OPTIONAL
);
#define TRACE_INFORMATION_CLASS_DEFINE
#endif // TRACE_INFOPRMATION_CLASS_DEFINE
//
// Define PnP Device Property for IoGetDeviceProperty
//
typedef enum {
DevicePropertyDeviceDescription,
DevicePropertyHardwareID,
DevicePropertyCompatibleIDs,
DevicePropertyBootConfiguration,
DevicePropertyBootConfigurationTranslated,
DevicePropertyClassName,
DevicePropertyClassGuid,
DevicePropertyDriverKeyName,
DevicePropertyManufacturer,
DevicePropertyFriendlyName,
DevicePropertyLocationInformation,
DevicePropertyPhysicalDeviceObjectName,
DevicePropertyBusTypeGuid,
DevicePropertyLegacyBusType,
DevicePropertyBusNumber,
DevicePropertyEnumeratorName,
DevicePropertyAddress,
DevicePropertyUINumber,
DevicePropertyInstallState,
DevicePropertyRemovalPolicy
} DEVICE_REGISTRY_PROPERTY;
typedef BOOLEAN (*PTRANSLATE_BUS_ADDRESS)(
IN PVOID Context,
IN PHYSICAL_ADDRESS BusAddress,
IN ULONG Length,
IN OUT PULONG AddressSpace,
OUT PPHYSICAL_ADDRESS TranslatedAddress
);
typedef struct _DMA_ADAPTER *(*PGET_DMA_ADAPTER)(
IN PVOID Context,
IN struct _DEVICE_DESCRIPTION *DeviceDescriptor,
OUT PULONG NumberOfMapRegisters
);
typedef ULONG (*PGET_SET_DEVICE_DATA)(
IN PVOID Context,
IN ULONG DataType,
IN PVOID Buffer,
IN ULONG Offset,
IN ULONG Length
);
typedef enum _DEVICE_INSTALL_STATE {
InstallStateInstalled,
InstallStateNeedsReinstall,
InstallStateFailedInstall,
InstallStateFinishInstall
} DEVICE_INSTALL_STATE, *PDEVICE_INSTALL_STATE;
//
// Define structure returned in response to IRP_MN_QUERY_BUS_INFORMATION by a
// PDO indicating the type of bus the device exists on.
//
typedef struct _PNP_BUS_INFORMATION {
GUID BusTypeGuid;
INTERFACE_TYPE LegacyBusType;
ULONG BusNumber;
} PNP_BUS_INFORMATION, *PPNP_BUS_INFORMATION;
//
// Define structure returned in response to IRP_MN_QUERY_LEGACY_BUS_INFORMATION
// by an FDO indicating the type of bus it is. This is normally the same bus
// type as the device's children (i.e., as retrieved from the child PDO's via
// IRP_MN_QUERY_BUS_INFORMATION) except for cases like CardBus, which can
// support both 16-bit (PCMCIABus) and 32-bit (PCIBus) cards.
//
typedef struct _LEGACY_BUS_INFORMATION {
GUID BusTypeGuid;
INTERFACE_TYPE LegacyBusType;
ULONG BusNumber;
} LEGACY_BUS_INFORMATION, *PLEGACY_BUS_INFORMATION;
//
// Defines for IoGetDeviceProperty(DevicePropertyRemovalPolicy).
//
typedef enum _DEVICE_REMOVAL_POLICY {
RemovalPolicyExpectNoRemoval = 1,
RemovalPolicyExpectOrderlyRemoval = 2,
RemovalPolicyExpectSurpriseRemoval = 3
} DEVICE_REMOVAL_POLICY, *PDEVICE_REMOVAL_POLICY;
typedef struct _BUS_INTERFACE_STANDARD {
//
// generic interface header
//
USHORT Size;
USHORT Version;
PVOID Context;
PINTERFACE_REFERENCE InterfaceReference;
PINTERFACE_DEREFERENCE InterfaceDereference;
//
// standard bus interfaces
//
PTRANSLATE_BUS_ADDRESS TranslateBusAddress;
PGET_DMA_ADAPTER GetDmaAdapter;
PGET_SET_DEVICE_DATA SetBusData;
PGET_SET_DEVICE_DATA GetBusData;
} BUS_INTERFACE_STANDARD, *PBUS_INTERFACE_STANDARD;
//
// The following definitions are used in ACPI QueryInterface
//
typedef BOOLEAN (* PGPE_SERVICE_ROUTINE) (
PVOID,
PVOID);
typedef NTSTATUS (* PGPE_CONNECT_VECTOR) (
PDEVICE_OBJECT,
ULONG,
KINTERRUPT_MODE,
BOOLEAN,
PGPE_SERVICE_ROUTINE,
PVOID,
PVOID);
typedef NTSTATUS (* PGPE_DISCONNECT_VECTOR) (
PVOID);
typedef NTSTATUS (* PGPE_ENABLE_EVENT) (
PDEVICE_OBJECT,
PVOID);
typedef NTSTATUS (* PGPE_DISABLE_EVENT) (
PDEVICE_OBJECT,
PVOID);
typedef NTSTATUS (* PGPE_CLEAR_STATUS) (
PDEVICE_OBJECT,
PVOID);
typedef VOID (* PDEVICE_NOTIFY_CALLBACK) (
PVOID,
ULONG);
typedef NTSTATUS (* PREGISTER_FOR_DEVICE_NOTIFICATIONS) (
PDEVICE_OBJECT,
PDEVICE_NOTIFY_CALLBACK,
PVOID);
typedef void (* PUNREGISTER_FOR_DEVICE_NOTIFICATIONS) (
PDEVICE_OBJECT,
PDEVICE_NOTIFY_CALLBACK);
typedef struct _ACPI_INTERFACE_STANDARD {
//
// Generic interface header
//
USHORT Size;
USHORT Version;
PVOID Context;
PINTERFACE_REFERENCE InterfaceReference;
PINTERFACE_DEREFERENCE InterfaceDereference;
//
// ACPI interfaces
//
PGPE_CONNECT_VECTOR GpeConnectVector;
PGPE_DISCONNECT_VECTOR GpeDisconnectVector;
PGPE_ENABLE_EVENT GpeEnableEvent;
PGPE_DISABLE_EVENT GpeDisableEvent;
PGPE_CLEAR_STATUS GpeClearStatus;
PREGISTER_FOR_DEVICE_NOTIFICATIONS RegisterForDeviceNotifications;
PUNREGISTER_FOR_DEVICE_NOTIFICATIONS UnregisterForDeviceNotifications;
} ACPI_INTERFACE_STANDARD, *PACPI_INTERFACE_STANDARD;
NTKERNELAPI
VOID
IoInvalidateDeviceRelations(
IN PDEVICE_OBJECT DeviceObject,
IN DEVICE_RELATION_TYPE Type
);
NTKERNELAPI
VOID
IoRequestDeviceEject(
IN PDEVICE_OBJECT PhysicalDeviceObject
);
NTKERNELAPI
NTSTATUS
IoGetDeviceProperty(
IN PDEVICE_OBJECT DeviceObject,
IN DEVICE_REGISTRY_PROPERTY DeviceProperty,
IN ULONG BufferLength,
OUT PVOID PropertyBuffer,
OUT PULONG ResultLength
);
//
// The following definitions are used in IoOpenDeviceRegistryKey
//
#define PLUGPLAY_REGKEY_DEVICE 1
#define PLUGPLAY_REGKEY_DRIVER 2
#define PLUGPLAY_REGKEY_CURRENT_HWPROFILE 4
NTKERNELAPI
NTSTATUS
IoOpenDeviceRegistryKey(
IN PDEVICE_OBJECT DeviceObject,
IN ULONG DevInstKeyType,
IN ACCESS_MASK DesiredAccess,
OUT PHANDLE DevInstRegKey
);
NTKERNELAPI
NTSTATUS
NTAPI
IoRegisterDeviceInterface(
IN PDEVICE_OBJECT PhysicalDeviceObject,
IN CONST GUID *InterfaceClassGuid,
IN PUNICODE_STRING ReferenceString, OPTIONAL
OUT PUNICODE_STRING SymbolicLinkName
);
NTKERNELAPI
NTSTATUS
IoOpenDeviceInterfaceRegistryKey(
IN PUNICODE_STRING SymbolicLinkName,
IN ACCESS_MASK DesiredAccess,
OUT PHANDLE DeviceInterfaceKey
);
NTKERNELAPI
NTSTATUS
IoSetDeviceInterfaceState(
IN PUNICODE_STRING SymbolicLinkName,
IN BOOLEAN Enable
);
NTKERNELAPI
NTSTATUS
NTAPI
IoGetDeviceInterfaces(
IN CONST GUID *InterfaceClassGuid,
IN PDEVICE_OBJECT PhysicalDeviceObject OPTIONAL,
IN ULONG Flags,
OUT PWSTR *SymbolicLinkList
);
#define DEVICE_INTERFACE_INCLUDE_NONACTIVE 0x00000001
NTKERNELAPI
NTSTATUS
NTAPI
IoGetDeviceInterfaceAlias(
IN PUNICODE_STRING SymbolicLinkName,
IN CONST GUID *AliasInterfaceClassGuid,
OUT PUNICODE_STRING AliasSymbolicLinkName
);
//
// Define PnP notification event categories
//
typedef enum _IO_NOTIFICATION_EVENT_CATEGORY {
EventCategoryReserved,
EventCategoryHardwareProfileChange,
EventCategoryDeviceInterfaceChange,
EventCategoryTargetDeviceChange
} IO_NOTIFICATION_EVENT_CATEGORY;
//
// Define flags that modify the behavior of IoRegisterPlugPlayNotification
// for the various event categories...
//
#define PNPNOTIFY_DEVICE_INTERFACE_INCLUDE_EXISTING_INTERFACES 0x00000001
typedef
NTSTATUS
(*PDRIVER_NOTIFICATION_CALLBACK_ROUTINE) (
IN PVOID NotificationStructure,
IN PVOID Context
);
NTKERNELAPI
NTSTATUS
IoRegisterPlugPlayNotification(
IN IO_NOTIFICATION_EVENT_CATEGORY EventCategory,
IN ULONG EventCategoryFlags,
IN PVOID EventCategoryData OPTIONAL,
IN PDRIVER_OBJECT DriverObject,
IN PDRIVER_NOTIFICATION_CALLBACK_ROUTINE CallbackRoutine,
IN PVOID Context,
OUT PVOID *NotificationEntry
);
NTKERNELAPI
NTSTATUS
IoUnregisterPlugPlayNotification(
IN PVOID NotificationEntry
);
NTKERNELAPI
NTSTATUS
IoReportTargetDeviceChange(
IN PDEVICE_OBJECT PhysicalDeviceObject,
IN PVOID NotificationStructure // always begins with a PLUGPLAY_NOTIFICATION_HEADER
);
typedef
VOID
(*PDEVICE_CHANGE_COMPLETE_CALLBACK)(
IN PVOID Context
);
NTKERNELAPI
VOID
IoInvalidateDeviceState(
IN PDEVICE_OBJECT PhysicalDeviceObject
);
#define IoAdjustPagingPathCount(_count_,_paging_) { \
if (_paging_) { \
InterlockedIncrement(_count_); \
} else { \
InterlockedDecrement(_count_); \
} \
}
NTKERNELAPI
NTSTATUS
IoReportTargetDeviceChangeAsynchronous(
IN PDEVICE_OBJECT PhysicalDeviceObject,
IN PVOID NotificationStructure, // always begins with a PLUGPLAY_NOTIFICATION_HEADER
IN PDEVICE_CHANGE_COMPLETE_CALLBACK Callback, OPTIONAL
IN PVOID Context OPTIONAL
);
//
// Header structure for all Plug&Play notification events...
//
typedef struct _PLUGPLAY_NOTIFICATION_HEADER {
USHORT Version; // presently at version 1.
USHORT Size; // size (in bytes) of header + event-specific data.
GUID Event;
//
// Event-specific stuff starts here.
//
} PLUGPLAY_NOTIFICATION_HEADER, *PPLUGPLAY_NOTIFICATION_HEADER;
//
// Notification structure for all EventCategoryHardwareProfileChange events...
//
typedef struct _HWPROFILE_CHANGE_NOTIFICATION {
USHORT Version;
USHORT Size;
GUID Event;
//
// (No event-specific data)
//
} HWPROFILE_CHANGE_NOTIFICATION, *PHWPROFILE_CHANGE_NOTIFICATION;
//
// Notification structure for all EventCategoryDeviceInterfaceChange events...
//
typedef struct _DEVICE_INTERFACE_CHANGE_NOTIFICATION {
USHORT Version;
USHORT Size;
GUID Event;
//
// Event-specific data
//
GUID InterfaceClassGuid;
PUNICODE_STRING SymbolicLinkName;
} DEVICE_INTERFACE_CHANGE_NOTIFICATION, *PDEVICE_INTERFACE_CHANGE_NOTIFICATION;
//
// Notification structures for EventCategoryTargetDeviceChange...
//
//
// The following structure is used for TargetDeviceQueryRemove,
// TargetDeviceRemoveCancelled, and TargetDeviceRemoveComplete:
//
typedef struct _TARGET_DEVICE_REMOVAL_NOTIFICATION {
USHORT Version;
USHORT Size;
GUID Event;
//
// Event-specific data
//
PFILE_OBJECT FileObject;
} TARGET_DEVICE_REMOVAL_NOTIFICATION, *PTARGET_DEVICE_REMOVAL_NOTIFICATION;
//
// The following structure header is used for all other (i.e., 3rd-party)
// target device change events. The structure accommodates both a
// variable-length binary data buffer, and a variable-length unicode text
// buffer. The header must indicate where the text buffer begins, so that
// the data can be delivered in the appropriate format (ANSI or Unicode)
// to user-mode recipients (i.e., that have registered for handle-based
// notification via RegisterDeviceNotification).
//
typedef struct _TARGET_DEVICE_CUSTOM_NOTIFICATION {
USHORT Version;
USHORT Size;
GUID Event;
//
// Event-specific data
//
PFILE_OBJECT FileObject; // This field must be set to NULL by callers of
// IoReportTargetDeviceChange. Clients that
// have registered for target device change
// notification on the affected PDO will be
// called with this field set to the file object
// they specified during registration.
//
LONG NameBufferOffset; // offset (in bytes) from beginning of
// CustomDataBuffer where text begins (-1 if none)
//
UCHAR CustomDataBuffer[1]; // variable-length buffer, containing (optionally)
// a binary data at the start of the buffer,
// followed by an optional unicode text buffer
// (word-aligned).
//
} TARGET_DEVICE_CUSTOM_NOTIFICATION, *PTARGET_DEVICE_CUSTOM_NOTIFICATION;
//
// Define the device description structure.
//
typedef struct _DEVICE_DESCRIPTION {
ULONG Version;
BOOLEAN Master;
BOOLEAN ScatterGather;
BOOLEAN DemandMode;
BOOLEAN AutoInitialize;
BOOLEAN Dma32BitAddresses;
BOOLEAN IgnoreCount;
BOOLEAN Reserved1; // must be false
BOOLEAN Dma64BitAddresses;
ULONG DoNotUse2;
ULONG DmaChannel;
INTERFACE_TYPE InterfaceType;
DMA_WIDTH DmaWidth;
DMA_SPEED DmaSpeed;
ULONG MaximumLength;
ULONG DmaPort;
} DEVICE_DESCRIPTION, *PDEVICE_DESCRIPTION;
//
// Define the supported version numbers for the device description structure.
//
#define DEVICE_DESCRIPTION_VERSION 0
#define DEVICE_DESCRIPTION_VERSION1 1
#define DEVICE_DESCRIPTION_VERSION2 2
NTHALAPI
VOID
KeFlushWriteBuffer (
VOID
);
//
// Performance counter function.
//
NTHALAPI
LARGE_INTEGER
KeQueryPerformanceCounter (
OUT PLARGE_INTEGER PerformanceFrequency OPTIONAL
);
//
// Stall processor execution function.
//
NTHALAPI
VOID
KeStallExecutionProcessor (
IN ULONG MicroSeconds
);
typedef struct _SCATTER_GATHER_ELEMENT {
PHYSICAL_ADDRESS Address;
ULONG Length;
ULONG_PTR Reserved;
} SCATTER_GATHER_ELEMENT, *PSCATTER_GATHER_ELEMENT;
#pragma warning(disable:4200)
typedef struct _SCATTER_GATHER_LIST {
ULONG NumberOfElements;
ULONG_PTR Reserved;
SCATTER_GATHER_ELEMENT Elements[];
} SCATTER_GATHER_LIST, *PSCATTER_GATHER_LIST;
#pragma warning(default:4200)
typedef struct _DMA_OPERATIONS *PDMA_OPERATIONS;
typedef struct _DMA_ADAPTER {
USHORT Version;
USHORT Size;
PDMA_OPERATIONS DmaOperations;
// Private Bus Device Driver data follows,
} DMA_ADAPTER, *PDMA_ADAPTER;
typedef VOID (*PPUT_DMA_ADAPTER)(
PDMA_ADAPTER DmaAdapter
);
typedef PVOID (*PALLOCATE_COMMON_BUFFER)(
IN PDMA_ADAPTER DmaAdapter,
IN ULONG Length,
OUT PPHYSICAL_ADDRESS LogicalAddress,
IN BOOLEAN CacheEnabled
);
typedef VOID (*PFREE_COMMON_BUFFER)(
IN PDMA_ADAPTER DmaAdapter,
IN ULONG Length,
IN PHYSICAL_ADDRESS LogicalAddress,
IN PVOID VirtualAddress,
IN BOOLEAN CacheEnabled
);
typedef NTSTATUS (*PALLOCATE_ADAPTER_CHANNEL)(
IN PDMA_ADAPTER DmaAdapter,
IN PDEVICE_OBJECT DeviceObject,
IN ULONG NumberOfMapRegisters,
IN PDRIVER_CONTROL ExecutionRoutine,
IN PVOID Context
);
typedef BOOLEAN (*PFLUSH_ADAPTER_BUFFERS)(
IN PDMA_ADAPTER DmaAdapter,
IN PMDL Mdl,
IN PVOID MapRegisterBase,
IN PVOID CurrentVa,
IN ULONG Length,
IN BOOLEAN WriteToDevice
);
typedef VOID (*PFREE_ADAPTER_CHANNEL)(
IN PDMA_ADAPTER DmaAdapter
);
typedef VOID (*PFREE_MAP_REGISTERS)(
IN PDMA_ADAPTER DmaAdapter,
PVOID MapRegisterBase,
ULONG NumberOfMapRegisters
);
typedef PHYSICAL_ADDRESS (*PMAP_TRANSFER)(
IN PDMA_ADAPTER DmaAdapter,
IN PMDL Mdl,
IN PVOID MapRegisterBase,
IN PVOID CurrentVa,
IN OUT PULONG Length,
IN BOOLEAN WriteToDevice
);
typedef ULONG (*PGET_DMA_ALIGNMENT)(
IN PDMA_ADAPTER DmaAdapter
);
typedef ULONG (*PREAD_DMA_COUNTER)(
IN PDMA_ADAPTER DmaAdapter
);
typedef VOID
(*PDRIVER_LIST_CONTROL)(
IN struct _DEVICE_OBJECT *DeviceObject,
IN struct _IRP *Irp,
IN PSCATTER_GATHER_LIST ScatterGather,
IN PVOID Context
);
typedef NTSTATUS
(*PGET_SCATTER_GATHER_LIST)(
IN PDMA_ADAPTER DmaAdapter,
IN PDEVICE_OBJECT DeviceObject,
IN PMDL Mdl,
IN PVOID CurrentVa,
IN ULONG Length,
IN PDRIVER_LIST_CONTROL ExecutionRoutine,
IN PVOID Context,
IN BOOLEAN WriteToDevice
);
typedef VOID
(*PPUT_SCATTER_GATHER_LIST)(
IN PDMA_ADAPTER DmaAdapter,
IN PSCATTER_GATHER_LIST ScatterGather,
IN BOOLEAN WriteToDevice
);
typedef NTSTATUS
(*PCALCULATE_SCATTER_GATHER_LIST_SIZE)(
IN PDMA_ADAPTER DmaAdapter,
IN OPTIONAL PMDL Mdl,
IN PVOID CurrentVa,
IN ULONG Length,
OUT PULONG ScatterGatherListSize,
OUT OPTIONAL PULONG pNumberOfMapRegisters
);
typedef NTSTATUS
(*PBUILD_SCATTER_GATHER_LIST)(
IN PDMA_ADAPTER DmaAdapter,
IN PDEVICE_OBJECT DeviceObject,
IN PMDL Mdl,
IN PVOID CurrentVa,
IN ULONG Length,
IN PDRIVER_LIST_CONTROL ExecutionRoutine,
IN PVOID Context,
IN BOOLEAN WriteToDevice,
IN PVOID ScatterGatherBuffer,
IN ULONG ScatterGatherLength
);
typedef NTSTATUS
(*PBUILD_MDL_FROM_SCATTER_GATHER_LIST)(
IN PDMA_ADAPTER DmaAdapter,
IN PSCATTER_GATHER_LIST ScatterGather,
IN PMDL OriginalMdl,
OUT PMDL *TargetMdl
);
typedef struct _DMA_OPERATIONS {
ULONG Size;
PPUT_DMA_ADAPTER PutDmaAdapter;
PALLOCATE_COMMON_BUFFER AllocateCommonBuffer;
PFREE_COMMON_BUFFER FreeCommonBuffer;
PALLOCATE_ADAPTER_CHANNEL AllocateAdapterChannel;
PFLUSH_ADAPTER_BUFFERS FlushAdapterBuffers;
PFREE_ADAPTER_CHANNEL FreeAdapterChannel;
PFREE_MAP_REGISTERS FreeMapRegisters;
PMAP_TRANSFER MapTransfer;
PGET_DMA_ALIGNMENT GetDmaAlignment;
PREAD_DMA_COUNTER ReadDmaCounter;
PGET_SCATTER_GATHER_LIST GetScatterGatherList;
PPUT_SCATTER_GATHER_LIST PutScatterGatherList;
PCALCULATE_SCATTER_GATHER_LIST_SIZE CalculateScatterGatherList;
PBUILD_SCATTER_GATHER_LIST BuildScatterGatherList;
PBUILD_MDL_FROM_SCATTER_GATHER_LIST BuildMdlFromScatterGatherList;
} DMA_OPERATIONS;
DECLSPEC_DEPRECATED_DDK // Use AllocateCommonBuffer
FORCEINLINE
PVOID
HalAllocateCommonBuffer(
IN PDMA_ADAPTER DmaAdapter,
IN ULONG Length,
OUT PPHYSICAL_ADDRESS LogicalAddress,
IN BOOLEAN CacheEnabled
){
PALLOCATE_COMMON_BUFFER allocateCommonBuffer;
PVOID commonBuffer;
allocateCommonBuffer = *(DmaAdapter)->DmaOperations->AllocateCommonBuffer;
ASSERT( allocateCommonBuffer != NULL );
commonBuffer = allocateCommonBuffer( DmaAdapter,
Length,
LogicalAddress,
CacheEnabled );
return commonBuffer;
}
DECLSPEC_DEPRECATED_DDK // Use FreeCommonBuffer
FORCEINLINE
VOID
HalFreeCommonBuffer(
IN PDMA_ADAPTER DmaAdapter,
IN ULONG Length,
IN PHYSICAL_ADDRESS LogicalAddress,
IN PVOID VirtualAddress,
IN BOOLEAN CacheEnabled
){
PFREE_COMMON_BUFFER freeCommonBuffer;
freeCommonBuffer = *(DmaAdapter)->DmaOperations->FreeCommonBuffer;
ASSERT( freeCommonBuffer != NULL );
freeCommonBuffer( DmaAdapter,
Length,
LogicalAddress,
VirtualAddress,
CacheEnabled );
}
DECLSPEC_DEPRECATED_DDK // Use AllocateAdapterChannel
FORCEINLINE
NTSTATUS
IoAllocateAdapterChannel(
IN PDMA_ADAPTER DmaAdapter,
IN PDEVICE_OBJECT DeviceObject,
IN ULONG NumberOfMapRegisters,
IN PDRIVER_CONTROL ExecutionRoutine,
IN PVOID Context
){
PALLOCATE_ADAPTER_CHANNEL allocateAdapterChannel;
NTSTATUS status;
allocateAdapterChannel =
*(DmaAdapter)->DmaOperations->AllocateAdapterChannel;
ASSERT( allocateAdapterChannel != NULL );
status = allocateAdapterChannel( DmaAdapter,
DeviceObject,
NumberOfMapRegisters,
ExecutionRoutine,
Context );
return status;
}
DECLSPEC_DEPRECATED_DDK // Use FlushAdapterBuffers
FORCEINLINE
BOOLEAN
IoFlushAdapterBuffers(
IN PDMA_ADAPTER DmaAdapter,
IN PMDL Mdl,
IN PVOID MapRegisterBase,
IN PVOID CurrentVa,
IN ULONG Length,
IN BOOLEAN WriteToDevice
){
PFLUSH_ADAPTER_BUFFERS flushAdapterBuffers;
BOOLEAN result;
flushAdapterBuffers = *(DmaAdapter)->DmaOperations->FlushAdapterBuffers;
ASSERT( flushAdapterBuffers != NULL );
result = flushAdapterBuffers( DmaAdapter,
Mdl,
MapRegisterBase,
CurrentVa,
Length,
WriteToDevice );
return result;
}
DECLSPEC_DEPRECATED_DDK // Use FreeAdapterChannel
FORCEINLINE
VOID
IoFreeAdapterChannel(
IN PDMA_ADAPTER DmaAdapter
){
PFREE_ADAPTER_CHANNEL freeAdapterChannel;
freeAdapterChannel = *(DmaAdapter)->DmaOperations->FreeAdapterChannel;
ASSERT( freeAdapterChannel != NULL );
freeAdapterChannel( DmaAdapter );
}
DECLSPEC_DEPRECATED_DDK // Use FreeMapRegisters
FORCEINLINE
VOID
IoFreeMapRegisters(
IN PDMA_ADAPTER DmaAdapter,
IN PVOID MapRegisterBase,
IN ULONG NumberOfMapRegisters
){
PFREE_MAP_REGISTERS freeMapRegisters;
freeMapRegisters = *(DmaAdapter)->DmaOperations->FreeMapRegisters;
ASSERT( freeMapRegisters != NULL );
freeMapRegisters( DmaAdapter,
MapRegisterBase,
NumberOfMapRegisters );
}
DECLSPEC_DEPRECATED_DDK // Use MapTransfer
FORCEINLINE
PHYSICAL_ADDRESS
IoMapTransfer(
IN PDMA_ADAPTER DmaAdapter,
IN PMDL Mdl,
IN PVOID MapRegisterBase,
IN PVOID CurrentVa,
IN OUT PULONG Length,
IN BOOLEAN WriteToDevice
){
PHYSICAL_ADDRESS physicalAddress;
PMAP_TRANSFER mapTransfer;
mapTransfer = *(DmaAdapter)->DmaOperations->MapTransfer;
ASSERT( mapTransfer != NULL );
physicalAddress = mapTransfer( DmaAdapter,
Mdl,
MapRegisterBase,
CurrentVa,
Length,
WriteToDevice );
return physicalAddress;
}
DECLSPEC_DEPRECATED_DDK // Use GetDmaAlignment
FORCEINLINE
ULONG
HalGetDmaAlignment(
IN PDMA_ADAPTER DmaAdapter
)
{
PGET_DMA_ALIGNMENT getDmaAlignment;
ULONG alignment;
getDmaAlignment = *(DmaAdapter)->DmaOperations->GetDmaAlignment;
ASSERT( getDmaAlignment != NULL );
alignment = getDmaAlignment( DmaAdapter );
return alignment;
}
DECLSPEC_DEPRECATED_DDK // Use ReadDmaCounter
FORCEINLINE
ULONG
HalReadDmaCounter(
IN PDMA_ADAPTER DmaAdapter
)
{
PREAD_DMA_COUNTER readDmaCounter;
ULONG counter;
readDmaCounter = *(DmaAdapter)->DmaOperations->ReadDmaCounter;
ASSERT( readDmaCounter != NULL );
counter = readDmaCounter( DmaAdapter );
return counter;
}
NTKERNELAPI
VOID
PoSetSystemState (
IN EXECUTION_STATE Flags
);
NTKERNELAPI
PVOID
PoRegisterSystemState (
IN PVOID StateHandle,
IN EXECUTION_STATE Flags
);
typedef
VOID
(*PREQUEST_POWER_COMPLETE) (
IN PDEVICE_OBJECT DeviceObject,
IN UCHAR MinorFunction,
IN POWER_STATE PowerState,
IN PVOID Context,
IN PIO_STATUS_BLOCK IoStatus
);
NTKERNELAPI
NTSTATUS
PoRequestPowerIrp (
IN PDEVICE_OBJECT DeviceObject,
IN UCHAR MinorFunction,
IN POWER_STATE PowerState,
IN PREQUEST_POWER_COMPLETE CompletionFunction,
IN PVOID Context,
OUT PIRP *Irp OPTIONAL
);
NTKERNELAPI
NTSTATUS
PoRequestShutdownEvent (
OUT PVOID *Event
);
NTKERNELAPI
NTSTATUS
PoRequestShutdownWait (
IN PETHREAD Thread
);
NTKERNELAPI
VOID
PoUnregisterSystemState (
IN PVOID StateHandle
);
NTKERNELAPI
POWER_STATE
PoSetPowerState (
IN PDEVICE_OBJECT DeviceObject,
IN POWER_STATE_TYPE Type,
IN POWER_STATE State
);
NTKERNELAPI
NTSTATUS
PoCallDriver (
IN PDEVICE_OBJECT DeviceObject,
IN OUT PIRP Irp
);
NTKERNELAPI
VOID
PoStartNextPowerIrp(
IN PIRP Irp
);
NTKERNELAPI
PULONG
PoRegisterDeviceForIdleDetection (
IN PDEVICE_OBJECT DeviceObject,
IN ULONG ConservationIdleTime,
IN ULONG PerformanceIdleTime,
IN DEVICE_POWER_STATE State
);
#define PoSetDeviceBusy(IdlePointer) \
*IdlePointer = 0
//
// \Callback\PowerState values
//
#define PO_CB_SYSTEM_POWER_POLICY 0
#define PO_CB_AC_STATUS 1
#define PO_CB_BUTTON_COLLISION 2
#define PO_CB_SYSTEM_STATE_LOCK 3
#define PO_CB_LID_SWITCH_STATE 4
#define PO_CB_PROCESSOR_POWER_POLICY 5
//
// Object Manager types
//
typedef struct _OBJECT_HANDLE_INFORMATION {
ULONG HandleAttributes;
ACCESS_MASK GrantedAccess;
} OBJECT_HANDLE_INFORMATION, *POBJECT_HANDLE_INFORMATION;
NTKERNELAPI
NTSTATUS
ObReferenceObjectByHandle(
IN HANDLE Handle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_TYPE ObjectType OPTIONAL,
IN KPROCESSOR_MODE AccessMode,
OUT PVOID *Object,
OUT POBJECT_HANDLE_INFORMATION HandleInformation OPTIONAL
);
#define ObDereferenceObject(a) \
ObfDereferenceObject(a)
#define ObReferenceObject(Object) ObfReferenceObject(Object)
NTKERNELAPI
LONG
FASTCALL
ObfReferenceObject(
IN PVOID Object
);
NTKERNELAPI
NTSTATUS
ObReferenceObjectByPointer(
IN PVOID Object,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_TYPE ObjectType,
IN KPROCESSOR_MODE AccessMode
);
NTKERNELAPI
LONG
FASTCALL
ObfDereferenceObject(
IN PVOID Object
);
NTSTATUS
ObGetObjectSecurity(
IN PVOID Object,
OUT PSECURITY_DESCRIPTOR *SecurityDescriptor,
OUT PBOOLEAN MemoryAllocated
);
VOID
ObReleaseObjectSecurity(
IN PSECURITY_DESCRIPTOR SecurityDescriptor,
IN BOOLEAN MemoryAllocated
);
typedef struct _PCI_SLOT_NUMBER {
union {
struct {
ULONG DeviceNumber:5;
ULONG FunctionNumber:3;
ULONG Reserved:24;
} bits;
ULONG AsULONG;
} u;
} PCI_SLOT_NUMBER, *PPCI_SLOT_NUMBER;
#define PCI_TYPE0_ADDRESSES 6
#define PCI_TYPE1_ADDRESSES 2
#define PCI_TYPE2_ADDRESSES 5
typedef struct _PCI_COMMON_CONFIG {
USHORT VendorID; // (ro)
USHORT DeviceID; // (ro)
USHORT Command; // Device control
USHORT Status;
UCHAR RevisionID; // (ro)
UCHAR ProgIf; // (ro)
UCHAR SubClass; // (ro)
UCHAR BaseClass; // (ro)
UCHAR CacheLineSize; // (ro+)
UCHAR LatencyTimer; // (ro+)
UCHAR HeaderType; // (ro)
UCHAR BIST; // Built in self test
union {
struct _PCI_HEADER_TYPE_0 {
ULONG BaseAddresses[PCI_TYPE0_ADDRESSES];
ULONG CIS;
USHORT SubVendorID;
USHORT SubSystemID;
ULONG ROMBaseAddress;
UCHAR CapabilitiesPtr;
UCHAR Reserved1[3];
ULONG Reserved2;
UCHAR InterruptLine; //
UCHAR InterruptPin; // (ro)
UCHAR MinimumGrant; // (ro)
UCHAR MaximumLatency; // (ro)
} type0;
} u;
UCHAR DeviceSpecific[192];
} PCI_COMMON_CONFIG, *PPCI_COMMON_CONFIG;
#define PCI_COMMON_HDR_LENGTH (FIELD_OFFSET (PCI_COMMON_CONFIG, DeviceSpecific))
#define PCI_MAX_DEVICES 32
#define PCI_MAX_FUNCTION 8
#define PCI_MAX_BRIDGE_NUMBER 0xFF
#define PCI_INVALID_VENDORID 0xFFFF
//
// Bit encodings for PCI_COMMON_CONFIG.HeaderType
//
#define PCI_MULTIFUNCTION 0x80
#define PCI_DEVICE_TYPE 0x00
#define PCI_BRIDGE_TYPE 0x01
#define PCI_CARDBUS_BRIDGE_TYPE 0x02
#define PCI_CONFIGURATION_TYPE(PciData) \
(((PPCI_COMMON_CONFIG)(PciData))->HeaderType & ~PCI_MULTIFUNCTION)
#define PCI_MULTIFUNCTION_DEVICE(PciData) \
((((PPCI_COMMON_CONFIG)(PciData))->HeaderType & PCI_MULTIFUNCTION) != 0)
//
// Bit encodings for PCI_COMMON_CONFIG.Command
//
#define PCI_ENABLE_IO_SPACE 0x0001
#define PCI_ENABLE_MEMORY_SPACE 0x0002
#define PCI_ENABLE_BUS_MASTER 0x0004
#define PCI_ENABLE_SPECIAL_CYCLES 0x0008
#define PCI_ENABLE_WRITE_AND_INVALIDATE 0x0010
#define PCI_ENABLE_VGA_COMPATIBLE_PALETTE 0x0020
#define PCI_ENABLE_PARITY 0x0040 // (ro+)
#define PCI_ENABLE_WAIT_CYCLE 0x0080 // (ro+)
#define PCI_ENABLE_SERR 0x0100 // (ro+)
#define PCI_ENABLE_FAST_BACK_TO_BACK 0x0200 // (ro)
//
// Bit encodings for PCI_COMMON_CONFIG.Status
//
#define PCI_STATUS_CAPABILITIES_LIST 0x0010 // (ro)
#define PCI_STATUS_66MHZ_CAPABLE 0x0020 // (ro)
#define PCI_STATUS_UDF_SUPPORTED 0x0040 // (ro)
#define PCI_STATUS_FAST_BACK_TO_BACK 0x0080 // (ro)
#define PCI_STATUS_DATA_PARITY_DETECTED 0x0100
#define PCI_STATUS_DEVSEL 0x0600 // 2 bits wide
#define PCI_STATUS_SIGNALED_TARGET_ABORT 0x0800
#define PCI_STATUS_RECEIVED_TARGET_ABORT 0x1000
#define PCI_STATUS_RECEIVED_MASTER_ABORT 0x2000
#define PCI_STATUS_SIGNALED_SYSTEM_ERROR 0x4000
#define PCI_STATUS_DETECTED_PARITY_ERROR 0x8000
//
// The NT PCI Driver uses a WhichSpace parameter on its CONFIG_READ/WRITE
// routines. The following values are defined-
//
#define PCI_WHICHSPACE_CONFIG 0x0
#define PCI_WHICHSPACE_ROM 0x52696350
//
// Base Class Code encodings for Base Class (from PCI spec rev 2.1).
//
#define PCI_CLASS_PRE_20 0x00
#define PCI_CLASS_MASS_STORAGE_CTLR 0x01
#define PCI_CLASS_NETWORK_CTLR 0x02
#define PCI_CLASS_DISPLAY_CTLR 0x03
#define PCI_CLASS_MULTIMEDIA_DEV 0x04
#define PCI_CLASS_MEMORY_CTLR 0x05
#define PCI_CLASS_BRIDGE_DEV 0x06
#define PCI_CLASS_SIMPLE_COMMS_CTLR 0x07
#define PCI_CLASS_BASE_SYSTEM_DEV 0x08
#define PCI_CLASS_INPUT_DEV 0x09
#define PCI_CLASS_DOCKING_STATION 0x0a
#define PCI_CLASS_PROCESSOR 0x0b
#define PCI_CLASS_SERIAL_BUS_CTLR 0x0c
#define PCI_CLASS_WIRELESS_CTLR 0x0d
#define PCI_CLASS_INTELLIGENT_IO_CTLR 0x0e
#define PCI_CLASS_SATELLITE_COMMS_CTLR 0x0f
#define PCI_CLASS_ENCRYPTION_DECRYPTION 0x10
#define PCI_CLASS_DATA_ACQ_SIGNAL_PROC 0x11
// 0d thru fe reserved
#define PCI_CLASS_NOT_DEFINED 0xff
//
// Sub Class Code encodings (PCI rev 2.1).
//
// Class 00 - PCI_CLASS_PRE_20
#define PCI_SUBCLASS_PRE_20_NON_VGA 0x00
#define PCI_SUBCLASS_PRE_20_VGA 0x01
// Class 01 - PCI_CLASS_MASS_STORAGE_CTLR
#define PCI_SUBCLASS_MSC_SCSI_BUS_CTLR 0x00
#define PCI_SUBCLASS_MSC_IDE_CTLR 0x01
#define PCI_SUBCLASS_MSC_FLOPPY_CTLR 0x02
#define PCI_SUBCLASS_MSC_IPI_CTLR 0x03
#define PCI_SUBCLASS_MSC_RAID_CTLR 0x04
#define PCI_SUBCLASS_MSC_OTHER 0x80
// Class 02 - PCI_CLASS_NETWORK_CTLR
#define PCI_SUBCLASS_NET_ETHERNET_CTLR 0x00
#define PCI_SUBCLASS_NET_TOKEN_RING_CTLR 0x01
#define PCI_SUBCLASS_NET_FDDI_CTLR 0x02
#define PCI_SUBCLASS_NET_ATM_CTLR 0x03
#define PCI_SUBCLASS_NET_ISDN_CTLR 0x04
#define PCI_SUBCLASS_NET_OTHER 0x80
// Class 03 - PCI_CLASS_DISPLAY_CTLR
// N.B. Sub Class 00 could be VGA or 8514 depending on Interface byte
#define PCI_SUBCLASS_VID_VGA_CTLR 0x00
#define PCI_SUBCLASS_VID_XGA_CTLR 0x01
#define PCI_SUBLCASS_VID_3D_CTLR 0x02
#define PCI_SUBCLASS_VID_OTHER 0x80
// Class 04 - PCI_CLASS_MULTIMEDIA_DEV
#define PCI_SUBCLASS_MM_VIDEO_DEV 0x00
#define PCI_SUBCLASS_MM_AUDIO_DEV 0x01
#define PCI_SUBCLASS_MM_TELEPHONY_DEV 0x02
#define PCI_SUBCLASS_MM_OTHER 0x80
// Class 05 - PCI_CLASS_MEMORY_CTLR
#define PCI_SUBCLASS_MEM_RAM 0x00
#define PCI_SUBCLASS_MEM_FLASH 0x01
#define PCI_SUBCLASS_MEM_OTHER 0x80
// Class 06 - PCI_CLASS_BRIDGE_DEV
#define PCI_SUBCLASS_BR_HOST 0x00
#define PCI_SUBCLASS_BR_ISA 0x01
#define PCI_SUBCLASS_BR_EISA 0x02
#define PCI_SUBCLASS_BR_MCA 0x03
#define PCI_SUBCLASS_BR_PCI_TO_PCI 0x04
#define PCI_SUBCLASS_BR_PCMCIA 0x05
#define PCI_SUBCLASS_BR_NUBUS 0x06
#define PCI_SUBCLASS_BR_CARDBUS 0x07
#define PCI_SUBCLASS_BR_RACEWAY 0x08
#define PCI_SUBCLASS_BR_OTHER 0x80
// Class 07 - PCI_CLASS_SIMPLE_COMMS_CTLR
// N.B. Sub Class 00 and 01 additional info in Interface byte
#define PCI_SUBCLASS_COM_SERIAL 0x00
#define PCI_SUBCLASS_COM_PARALLEL 0x01
#define PCI_SUBCLASS_COM_MULTIPORT 0x02
#define PCI_SUBCLASS_COM_MODEM 0x03
#define PCI_SUBCLASS_COM_OTHER 0x80
// Class 08 - PCI_CLASS_BASE_SYSTEM_DEV
// N.B. See Interface byte for additional info.
#define PCI_SUBCLASS_SYS_INTERRUPT_CTLR 0x00
#define PCI_SUBCLASS_SYS_DMA_CTLR 0x01
#define PCI_SUBCLASS_SYS_SYSTEM_TIMER 0x02
#define PCI_SUBCLASS_SYS_REAL_TIME_CLOCK 0x03
#define PCI_SUBCLASS_SYS_GEN_HOTPLUG_CTLR 0x04
#define PCI_SUBCLASS_SYS_OTHER 0x80
// Class 09 - PCI_CLASS_INPUT_DEV
#define PCI_SUBCLASS_INP_KEYBOARD 0x00
#define PCI_SUBCLASS_INP_DIGITIZER 0x01
#define PCI_SUBCLASS_INP_MOUSE 0x02
#define PCI_SUBCLASS_INP_SCANNER 0x03
#define PCI_SUBCLASS_INP_GAMEPORT 0x04
#define PCI_SUBCLASS_INP_OTHER 0x80
// Class 0a - PCI_CLASS_DOCKING_STATION
#define PCI_SUBCLASS_DOC_GENERIC 0x00
#define PCI_SUBCLASS_DOC_OTHER 0x80
// Class 0b - PCI_CLASS_PROCESSOR
#define PCI_SUBCLASS_PROC_386 0x00
#define PCI_SUBCLASS_PROC_486 0x01
#define PCI_SUBCLASS_PROC_PENTIUM 0x02
#define PCI_SUBCLASS_PROC_ALPHA 0x10
#define PCI_SUBCLASS_PROC_POWERPC 0x20
#define PCI_SUBCLASS_PROC_COPROCESSOR 0x40
// Class 0c - PCI_CLASS_SERIAL_BUS_CTLR
#define PCI_SUBCLASS_SB_IEEE1394 0x00
#define PCI_SUBCLASS_SB_ACCESS 0x01
#define PCI_SUBCLASS_SB_SSA 0x02
#define PCI_SUBCLASS_SB_USB 0x03
#define PCI_SUBCLASS_SB_FIBRE_CHANNEL 0x04
#define PCI_SUBCLASS_SB_SMBUS 0x05
// Class 0d - PCI_CLASS_WIRELESS_CTLR
#define PCI_SUBCLASS_WIRELESS_IRDA 0x00
#define PCI_SUBCLASS_WIRELESS_CON_IR 0x01
#define PCI_SUBCLASS_WIRELESS_RF 0x10
#define PCI_SUBCLASS_WIRELESS_OTHER 0x80
// Class 0e - PCI_CLASS_INTELLIGENT_IO_CTLR
#define PCI_SUBCLASS_INTIO_I2O 0x00
// Class 0f - PCI_CLASS_SATELLITE_CTLR
#define PCI_SUBCLASS_SAT_TV 0x01
#define PCI_SUBCLASS_SAT_AUDIO 0x02
#define PCI_SUBCLASS_SAT_VOICE 0x03
#define PCI_SUBCLASS_SAT_DATA 0x04
// Class 10 - PCI_CLASS_ENCRYPTION_DECRYPTION
#define PCI_SUBCLASS_CRYPTO_NET_COMP 0x00
#define PCI_SUBCLASS_CRYPTO_ENTERTAINMENT 0x10
#define PCI_SUBCLASS_CRYPTO_OTHER 0x80
// Class 11 - PCI_CLASS_DATA_ACQ_SIGNAL_PROC
#define PCI_SUBCLASS_DASP_DPIO 0x00
#define PCI_SUBCLASS_DASP_OTHER 0x80
//
// Bit encodes for PCI_COMMON_CONFIG.u.type0.BaseAddresses
//
#define PCI_ADDRESS_IO_SPACE 0x00000001 // (ro)
#define PCI_ADDRESS_MEMORY_TYPE_MASK 0x00000006 // (ro)
#define PCI_ADDRESS_MEMORY_PREFETCHABLE 0x00000008 // (ro)
#define PCI_ADDRESS_IO_ADDRESS_MASK 0xfffffffc
#define PCI_ADDRESS_MEMORY_ADDRESS_MASK 0xfffffff0
#define PCI_ADDRESS_ROM_ADDRESS_MASK 0xfffff800
#define PCI_TYPE_32BIT 0
#define PCI_TYPE_20BIT 2
#define PCI_TYPE_64BIT 4
//
// Bit encodes for PCI_COMMON_CONFIG.u.type0.ROMBaseAddresses
//
#define PCI_ROMADDRESS_ENABLED 0x00000001
//
// Reference notes for PCI configuration fields:
//
// ro these field are read only. changes to these fields are ignored
//
// ro+ these field are intended to be read only and should be initialized
// by the system to their proper values. However, driver may change
// these settings.
//
// ---
//
// All resources comsumed by a PCI device start as unitialized
// under NT. An uninitialized memory or I/O base address can be
// determined by checking it's corrisponding enabled bit in the
// PCI_COMMON_CONFIG.Command value. An InterruptLine is unitialized
// if it contains the value of -1.
//
#define PCI_DEVICE_PRESENT_INTERFACE_VERSION 1
//
// Flags for PCI_DEVICE_PRESENCE_PARAMETERS
//
#define PCI_USE_SUBSYSTEM_IDS 0x00000001
#define PCI_USE_REVISION 0x00000002
// The following flags are only valid for IsDevicePresentEx
#define PCI_USE_VENDEV_IDS 0x00000004
#define PCI_USE_CLASS_SUBCLASS 0x00000008
#define PCI_USE_PROGIF 0x00000010
#define PCI_USE_LOCAL_BUS 0x00000020
#define PCI_USE_LOCAL_DEVICE 0x00000040
//
// Search parameters structure for IsDevicePresentEx
//
typedef struct _PCI_DEVICE_PRESENCE_PARAMETERS {
ULONG Size;
ULONG Flags;
USHORT VendorID;
USHORT DeviceID;
UCHAR RevisionID;
USHORT SubVendorID;
USHORT SubSystemID;
UCHAR BaseClass;
UCHAR SubClass;
UCHAR ProgIf;
} PCI_DEVICE_PRESENCE_PARAMETERS, *PPCI_DEVICE_PRESENCE_PARAMETERS;
typedef
BOOLEAN
(*PPCI_IS_DEVICE_PRESENT) (
IN USHORT VendorID,
IN USHORT DeviceID,
IN UCHAR RevisionID,
IN USHORT SubVendorID,
IN USHORT SubSystemID,
IN ULONG Flags
);
typedef
BOOLEAN
(*PPCI_IS_DEVICE_PRESENT_EX) (
IN PVOID Context,
IN PPCI_DEVICE_PRESENCE_PARAMETERS Parameters
);
typedef struct _PCI_DEVICE_PRESENT_INTERFACE {
//
// generic interface header
//
USHORT Size;
USHORT Version;
PVOID Context;
PINTERFACE_REFERENCE InterfaceReference;
PINTERFACE_DEREFERENCE InterfaceDereference;
//
// pci device info
//
PPCI_IS_DEVICE_PRESENT IsDevicePresent;
PPCI_IS_DEVICE_PRESENT_EX IsDevicePresentEx;
} PCI_DEVICE_PRESENT_INTERFACE, *PPCI_DEVICE_PRESENT_INTERFACE;
#ifdef POOL_TAGGING
#define ExAllocatePool(a,b) ExAllocatePoolWithTag(a,b,' mdW')
#define ExAllocatePoolWithQuota(a,b) ExAllocatePoolWithQuotaTag(a,b,' kdD')
#endif
extern POBJECT_TYPE *IoFileObjectType;
extern POBJECT_TYPE *ExEventObjectType;
extern POBJECT_TYPE *ExSemaphoreObjectType;
//
// Define exported ZwXxx routines to device drivers.
//
NTSYSAPI
NTSTATUS
NTAPI
ZwCreateFile(
OUT PHANDLE FileHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PLARGE_INTEGER AllocationSize OPTIONAL,
IN ULONG FileAttributes,
IN ULONG ShareAccess,
IN ULONG CreateDisposition,
IN ULONG CreateOptions,
IN PVOID EaBuffer OPTIONAL,
IN ULONG EaLength
);
NTSYSAPI
NTSTATUS
NTAPI
ZwOpenFile(
OUT PHANDLE FileHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN ULONG ShareAccess,
IN ULONG OpenOptions
);
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryInformationFile(
IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID FileInformation,
IN ULONG Length,
IN FILE_INFORMATION_CLASS FileInformationClass
);
NTSYSAPI
NTSTATUS
NTAPI
ZwSetInformationFile(
IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PVOID FileInformation,
IN ULONG Length,
IN FILE_INFORMATION_CLASS FileInformationClass
);
NTSYSAPI
NTSTATUS
NTAPI
ZwReadFile(
IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID Buffer,
IN ULONG Length,
IN PLARGE_INTEGER ByteOffset OPTIONAL,
IN PULONG Key OPTIONAL
);
NTSYSAPI
NTSTATUS
NTAPI
ZwWriteFile(
IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PVOID Buffer,
IN ULONG Length,
IN PLARGE_INTEGER ByteOffset OPTIONAL,
IN PULONG Key OPTIONAL
);
NTSYSAPI
NTSTATUS
NTAPI
ZwClose(
IN HANDLE Handle
);
NTSYSAPI
NTSTATUS
NTAPI
ZwCreateDirectoryObject(
OUT PHANDLE DirectoryHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
);
NTSYSAPI
NTSTATUS
NTAPI
ZwMakeTemporaryObject(
IN HANDLE Handle
);
NTSYSAPI
NTSTATUS
NTAPI
ZwOpenSection(
OUT PHANDLE SectionHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
);
NTSYSAPI
NTSTATUS
NTAPI
ZwMapViewOfSection(
IN HANDLE SectionHandle,
IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,
IN ULONG ZeroBits,
IN ULONG CommitSize,
IN OUT PLARGE_INTEGER SectionOffset OPTIONAL,
IN OUT PSIZE_T ViewSize,
IN SECTION_INHERIT InheritDisposition,
IN ULONG AllocationType,
IN ULONG Protect
);
NTSYSAPI
NTSTATUS
NTAPI
ZwUnmapViewOfSection(
IN HANDLE ProcessHandle,
IN PVOID BaseAddress
);
NTSYSAPI
NTSTATUS
NTAPI
ZwCreateKey(
OUT PHANDLE KeyHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN ULONG TitleIndex,
IN PUNICODE_STRING Class OPTIONAL,
IN ULONG CreateOptions,
OUT PULONG Disposition OPTIONAL
);
NTSYSAPI
NTSTATUS
NTAPI
ZwOpenKey(
OUT PHANDLE KeyHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
);
NTSYSAPI
NTSTATUS
NTAPI
ZwDeleteKey(
IN HANDLE KeyHandle
);
NTSYSAPI
NTSTATUS
NTAPI
ZwDeleteValueKey(
IN HANDLE KeyHandle,
IN PUNICODE_STRING ValueName
);
NTSYSAPI
NTSTATUS
NTAPI
ZwEnumerateKey(
IN HANDLE KeyHandle,
IN ULONG Index,
IN KEY_INFORMATION_CLASS KeyInformationClass,
OUT PVOID KeyInformation,
IN ULONG Length,
OUT PULONG ResultLength
);
NTSYSAPI
NTSTATUS
NTAPI
ZwEnumerateValueKey(
IN HANDLE KeyHandle,
IN ULONG Index,
IN KEY_VALUE_INFORMATION_CLASS KeyValueInformationClass,
OUT PVOID KeyValueInformation,
IN ULONG Length,
OUT PULONG ResultLength
);
NTSYSAPI
NTSTATUS
NTAPI
ZwFlushKey(
IN HANDLE KeyHandle
);
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryKey(
IN HANDLE KeyHandle,
IN KEY_INFORMATION_CLASS KeyInformationClass,
OUT PVOID KeyInformation,
IN ULONG Length,
OUT PULONG ResultLength
);
NTSYSAPI
NTSTATUS
NTAPI
ZwQueryValueKey(
IN HANDLE KeyHandle,
IN PUNICODE_STRING ValueName,
IN KEY_VALUE_INFORMATION_CLASS KeyValueInformationClass,
OUT PVOID KeyValueInformation,
IN ULONG Length,
OUT PULONG ResultLength
);
NTSYSAPI
NTSTATUS
NTAPI
ZwSetValueKey(
IN HANDLE KeyHandle,
IN PUNICODE_STRING ValueName,
IN ULONG TitleIndex OPTIONAL,
IN ULONG Type,
IN PVOID Data,
IN ULONG DataSize
);
NTSYSAPI
NTSTATUS
NTAPI
ZwOpenSymbolicLinkObject(
OUT PHANDLE LinkHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
);
NTSYSAPI
NTSTATUS
NTAPI
ZwQuerySymbolicLinkObject(
IN HANDLE LinkHandle,
IN OUT PUNICODE_STRING LinkTarget,
OUT PULONG ReturnedLength OPTIONAL
);
#endif // _WDMDDK_