windows-nt/Source/XPSP1/NT/shell/osshell/control/scrnsave/pipes/eval.cpp

500 lines
15 KiB
C++
Raw Normal View History

2020-09-26 03:20:57 -05:00
//-----------------------------------------------------------------------------
// File: eval.cpp
//
// Desc: EVAL class
// Evaluator composed of one or more sections that are evaluated
// separately with OpenGL evaluators
//
// Copyright (c) 1994-2000 Microsoft Corporation
//-----------------------------------------------------------------------------
#include "stdafx.h"
typedef enum
{
X_PLANE = 0,
Y_PLANE,
Z_PLANE
};
#define EVAL_VSIZE 3 // vertex size in floats
#define TMAJOR_ORDER 2
#define TMINOR_ORDER 2
#define VDIM 3
#define TDIM 2
static void RotatePointSet( D3DXVECTOR3 *inPts, int numPts, float angle, int dir,
float radius, D3DXVECTOR3 *outPts );
static void ExtrudePointSetDir( D3DXVECTOR3 *inPts, int numPts, float *acPts,
int dir, D3DXVECTOR3 *outPts );
//-----------------------------------------------------------------------------
// Name: EVAL
// Desc: Evaluator constructor
//-----------------------------------------------------------------------------
EVAL::EVAL( BOOL bTex )
{
m_bTexture = bTex;
// Allocate points buffer
//mf: might want to use less than max in some cases
int size = MAX_USECTIONS * MAX_UORDER * MAX_VORDER * sizeof(D3DXVECTOR3);
m_pts = (D3DXVECTOR3 *) LocalAlloc( LMEM_FIXED, size );
assert( m_pts != NULL && "EVAL constructor\n" );
// Alloc texture points buffer
if( m_bTexture )
{
size = MAX_USECTIONS * TEX_ORDER * TEX_ORDER * sizeof(TEX_POINT2D);
m_texPts = (TEX_POINT2D *) LocalAlloc( LMEM_FIXED, size );
assert( m_texPts != NULL && "EVAL constructor\n" );
}
ResetEvaluator( m_bTexture );
}
//-----------------------------------------------------------------------------
// Name: ~EVAL
// Desc: Evaluator destructor
//-----------------------------------------------------------------------------
EVAL::~EVAL( )
{
LocalFree( m_pts );
if( m_bTexture )
LocalFree( m_texPts );
}
//-----------------------------------------------------------------------------
// Name: Reset
// Desc: Reset evaluator to generate 3d vertices and vertex normals
//-----------------------------------------------------------------------------
void ResetEvaluator( BOOL bTexture )
{
/*
if( bTexture )
{
glEnable( GL_MAP2_TEXTURE_COORD_2 );
}
glEnable( GL_MAP2_VERTEX_3 );
glEnable( GL_AUTO_NORMAL );
glFrontFace( GL_CW ); // cuz
*/
// mf: !!! if mixing Normal and Flex, have to watch out for this, cuz normal
// needs CCW
}
//-----------------------------------------------------------------------------
// Name: SetTextureControlPoints
// Desc: Set texture control point net
//
// This sets up 'numSections' sets of texture coordinate control points, based
// on starting and ending s and t values.
//
// s coords run along pipe direction, t coords run around circumference
//-----------------------------------------------------------------------------
void EVAL::SetTextureControlPoints( float s_start, float s_end,
float t_start, float t_end )
{
int i;
TEX_POINT2D *ptexPts = m_texPts;
float t_delta = (t_end - t_start) / m_numSections;
float t = t_start;
// calc ctrl pts for each quadrant
for( i = 0; i < m_numSections; i++, ptexPts += (TDIM*TDIM) )
{
// s, t coords
ptexPts[0].t = ptexPts[2].t = t;
t += t_delta;
ptexPts[1].t = ptexPts[3].t = t;
ptexPts[0].s = ptexPts[1].s = s_start;
ptexPts[2].s = ptexPts[3].s = s_end;
}
}
//-----------------------------------------------------------------------------
// Name: SetVertexCtrlPtsXCTranslate
// Desc: Builds 3D control eval control net from 2 xcObjs displaced along the
// z-axis by 'length'.
//
// First xc used to generate points in z=0 plane.
// Second xc generates points in z=length plane.
// ! Replicates the last point around each u.
//-----------------------------------------------------------------------------
void EVAL::SetVertexCtrlPtsXCTranslate( D3DXVECTOR3 *pts, float length,
XC *xcStart, XC *xcEnd )
{
int i;
D3DXVECTOR2 *ptsStart, *ptsEnd;
D3DXVECTOR3 *pts1, *pts2;
int numPts = xcStart->m_numPts;
numPts++; // due to last point replication
ptsStart = xcStart->m_pts;
ptsEnd = xcEnd->m_pts;
pts1 = pts;
pts2 = pts + numPts;
for( i = 0; i < (numPts-1); i++, pts1++, pts2++ )
{
// copy over x,y from each xc
*( (D3DXVECTOR2 *) pts1) = *ptsStart++;
*( (D3DXVECTOR2 *) pts2) = *ptsEnd++;
// set z for each
pts1->z = 0.0f;
pts2->z = length;
}
// Replicate last point in each u-band
*pts1 = *pts;
*pts2 = *(pts + numPts);
}
//-----------------------------------------------------------------------------
// Name: ProcessXCPrimLinear
// Desc: Processes a prim according to evaluator data
// - Only valid for colinear xc's (along z)
// - XC's may be identical (extrusion). If not identical, may have
// discontinuities at each end.
// - Converts 2D XC pts to 3D pts
//-----------------------------------------------------------------------------
void EVAL::ProcessXCPrimLinear( XC *xcStart, XC *xcEnd, float length )
{
if( length <= 0.0f )
// nuttin' to do
return;
// Build a vertex control net from 2 xcObj's a distance 'length' apart
// this will displace the end xcObj a distance 'length' down the z-axis
SetVertexCtrlPtsXCTranslate( m_pts, length, xcStart, xcEnd );
Evaluate( );
}
//-----------------------------------------------------------------------------
// Name: ProcessXCPrimBendSimple
// Desc: Processes a prim by bending along dir from xcCur
// - dir is relative from xc in x-y plane
// - adds C2 continuity at ends
//-----------------------------------------------------------------------------
void EVAL::ProcessXCPrimBendSimple( XC *xcCur, int dir, float radius )
{
D3DXVECTOR3 *ptsSrc, *ptsDst;
static float acPts[MAX_XC_PTS+1];
int ptSetStride = xcCur->m_numPts + 1; // pt stride for output pts buffer
// We will be creating 4 cross-sectional control point sets here.
// Convert 2D pts in xcCur to 3D pts at z=0 for 1st point set
xcCur->ConvertPtsZ( m_pts, 0.0f );
// Calc 4th point set by rotating 1st set as per dir
ptsDst = m_pts + 3*ptSetStride;
RotatePointSet( m_pts, ptSetStride, 90.0f, dir, radius, ptsDst );
// angles != 90, hard, cuz not easy to extrude 3rd set from 4th
// Next, have to figure out ac values. Need to extend each xc's points
// into bend to generate ac net. For circular bend (and later for general
// case elliptical bend), need to know ac distance from xc for each point.
// This is based on the point's turn radius - a function of its distance
// from the 'hinge' of the turn.
// Can take advantage of symmetry here. Figure for one xc, good for 2nd.
// This assumes 90 deg turn. (also,last point replicated)
xcCur->CalcArcACValues90( dir, radius, acPts );
// 2) extrude each point's ac from xcCur (extrusion in +z)
// apply values to 1st to get 2nd
// MINUS_Z, cuz subtracts *back* from dir
ExtrudePointSetDir( m_pts, ptSetStride, acPts, MINUS_Z,
m_pts + ptSetStride );
// 3) extrude each point's ac from xcEnd (extrusion in -dir)
ptsSrc = m_pts + 3*ptSetStride;
ptsDst = m_pts + 2*ptSetStride;
ExtrudePointSetDir( ptsSrc, ptSetStride, acPts, dir, ptsDst );
Evaluate();
}
//-----------------------------------------------------------------------------
// Name: EVAL::ProcessXCPrimSingularity
// Desc: Processes a prim by joining singularity to an xc
// - Used for closing or opening the pipe
// - If bOpening is true, starts with singularity, otherwise ends with one
// - the xc side is always in z=0 plane
// - singularity side is radius on either side of xc
// - adds C2 continuity at ends (perpendicular to +z at singularity end)
//-----------------------------------------------------------------------------
void EVAL::ProcessXCPrimSingularity( XC *xcCur, float length, BOOL bOpening )
{
D3DXVECTOR3 *ptsSing, *ptsXC;
static float acPts[MAX_XC_PTS+1];
float zSing; // z-value at singularity
int ptSetStride = xcCur->m_numPts + 1; // pt stride for output pts buffer
int i;
XC xcSing(xcCur);
// create singularity xc - which is an extremely scaled-down version
// of xcCur (this prevents any end-artifacts, unless of course we were
// to zoom it ultra-large).
xcSing.Scale( .0005f );
// We will be creating 4 cross-sectional control point sets here.
// mf: 4 is like hard coded; what about for different xc component levels ?
if( bOpening )
{
ptsSing = m_pts;
ptsXC = m_pts + 3*ptSetStride;
}
else
{
ptsSing = m_pts + 3*ptSetStride;
ptsXC = m_pts;
}
// Convert 2D pts in xcCur to 3D pts at 'xc' point set
xcCur->ConvertPtsZ( ptsXC, 0.0f );
// Set z-value for singularity point set
zSing = bOpening ? -length : length;
xcSing.ConvertPtsZ( ptsSing, zSing );
// The arc control for each point is based on a radius value that is
// each xc point's distance from the xc center
xcCur->CalcArcACValuesByDistance( acPts );
// Calculate point set near xc
if( bOpening )
ExtrudePointSetDir( ptsXC, ptSetStride, acPts, PLUS_Z,
ptsXC - ptSetStride );
else
ExtrudePointSetDir( ptsXC, ptSetStride, acPts, MINUS_Z,
ptsXC + ptSetStride );
// Point set near singularity is harder, as the points must generate
// a curve between the singularity and each xc point
// No, easier, just scale each point by universal arc controller !
D3DXVECTOR3* ptsDst = m_pts;
ptsDst = bOpening ? ptsSing + ptSetStride : ptsSing - ptSetStride;
for( i = 0; i < ptSetStride; i ++, ptsDst++ )
{
ptsDst->x = EVAL_CIRC_ARC_CONTROL * ptsXC[i].x;
ptsDst->y = EVAL_CIRC_ARC_CONTROL * ptsXC[i].y;
ptsDst->z = zSing;
}
Evaluate();
}
//-----------------------------------------------------------------------------
// Name: Evaluate
// Desc: Evaluates the EVAL object
// - There may be 1 or more lengthwise sections around an xc
// - u is minor, v major
// - u,t run around circumference, v,s lengthwise
// - Texture maps are 2x2 for each section
// - ! uDiv is per section !
//-----------------------------------------------------------------------------
void EVAL::Evaluate()
{
int i;
D3DXVECTOR3 *ppts = m_pts;
TEX_POINT2D *ptexPts = m_texPts;
// total # pts in cross-section:
int xcPointCount = (m_uOrder-1)*m_numSections + 1;
for( i = 0; i < m_numSections; i ++,
ppts += (m_uOrder-1),
ptexPts += (TEX_ORDER*TEX_ORDER) )
{
/*
// map texture coords
if( bTexture )
{
glMap2f(GL_MAP2_TEXTURE_COORD_2,
0.0f, 1.0f, TDIM, TEX_ORDER,
0.0f, 1.0f, TEX_ORDER*TDIM, TEX_ORDER,
(float *) ptexPts );
}
// map vertices
glMa
p2f(GL_MAP2_VERTEX_3,
0.0f, 1.0f, VDIM, uOrder,
0.0f, 1.0f, xcPointCount*VDIM, vOrder,
(float *) ppts );
// evaluate
glMapGrid2f(uDiv, 0.0f, 1.0f, ``vDiv, 0.0f, 1.0f);
glEvalMesh2( GL_FILL, 0, uDiv, 0, vDiv);
*/
}
}
//-----------------------------------------------------------------------------
// Name: ExtrudePointSetDir
// Desc: Extrude a point set back from the current direction
// Generates C2 continuity at the supplied point set xc, by generating another
// point set back of the first, using supplied subtraction values.
//-----------------------------------------------------------------------------
static void ExtrudePointSetDir( D3DXVECTOR3 *inPts, int numPts, float *acPts, int dir,
D3DXVECTOR3 *outPts )
{
int i;
float sign;
int offset;
switch( dir )
{
case PLUS_X:
offset = 0;
sign = -1.0f;
break;
case MINUS_X:
offset = 0;
sign = 1.0f;
break;
case PLUS_Y:
offset = 1;
sign = -1.0f;
break;
case MINUS_Y:
offset = 1;
sign = 1.0f;
break;
case PLUS_Z:
offset = 2;
sign = -1.0f;
break;
case MINUS_Z:
offset = 2;
sign = 1.0f;
break;
}
for( i = 0; i < numPts; i++, inPts++, outPts++, acPts++ )
{
*outPts = *inPts;
((float *)outPts)[offset] = ((float *)inPts)[offset] + (sign * (*acPts));
}
}
//-----------------------------------------------------------------------------
// Name: RotatePointSet
// Desc: Rotate point set by angle, according to dir and radius
// - Put points in supplied outPts buffer
//-----------------------------------------------------------------------------
static void RotatePointSet( D3DXVECTOR3 *inPts, int numPts, float angle, int dir,
float radius, D3DXVECTOR3 *outPts )
{
D3DXMATRIX matrix1, matrix2, matrix3;
int i;
D3DXVECTOR3 rot = D3DXVECTOR3(0, 0, 0);
D3DXVECTOR3 anchor = D3DXVECTOR3(0, 0, 0);
// dir rot
// +x 90 y
// -x -90 y
// +y -90 x
// -y 90 x
// convert angle to radians
//mf: as noted in objects.c, we have to take negative angle to make
// it work in familiar 'CCW rotation is positive' mode. The ss_* rotate
// routines must work in the 'CW is +'ve' mode, as axis pointing at you.
angle = SS_DEG_TO_RAD(-angle);
// set axis rotation and anchor point
switch( dir )
{
case PLUS_X:
rot.y = angle;
anchor.x = radius;
break;
case MINUS_X:
rot.y = -angle;
anchor.x = -radius;
break;
case PLUS_Y:
rot.x = -angle;
anchor.y = radius;
break;
case MINUS_Y:
rot.x = angle;
anchor.y = -radius;
break;
}
// translate anchor point to origin
D3DXMatrixIdentity( &matrix1 );
D3DXMatrixTranslation( &matrix1, -anchor.x, -anchor.y, -anchor.z );
// rotate
D3DXMatrixIdentity( &matrix2 );
D3DXMatrixRotationYawPitchRoll( &matrix2, rot.y, rot.x, rot.z ); // TODO: right?
// concat these 2
D3DXMatrixMultiply( &matrix3, &matrix2, &matrix1 );
// translate back
D3DXMatrixIdentity( &matrix2 );
D3DXMatrixTranslation( &matrix2, anchor.x, anchor.y, anchor.z );
// concat these 2
D3DXMatrixMultiply( &matrix1, &matrix2, &matrix3 );
for( i = 0; i < numPts; i ++, outPts++, inPts++ )
{
// D3DXVec3TransformCoord( &tmp, inPts, &matrix1 ); // TODO: which?
D3DXVECTOR4 tmp;
D3DXVec3Transform( &tmp, inPts, &matrix1 );
outPts->x = tmp.x;
outPts->y = tmp.y;
outPts->z = tmp.z;
}
}