605 lines
14 KiB
C++
605 lines
14 KiB
C++
|
#include "stdafx.h"
|
||
|
#pragma hdrstop
|
||
|
|
||
|
/***************************************************************************
|
||
|
*
|
||
|
* INTEL Corporation Proprietary Information
|
||
|
*
|
||
|
*
|
||
|
* Copyright (c) 1996 Intel Corporation.
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
***************************************************************************
|
||
|
*/
|
||
|
/*
|
||
|
* jidctfst.c
|
||
|
*
|
||
|
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||
|
* This file is part of the Independent JPEG Group's software.
|
||
|
* For conditions of distribution and use, see the accompanying README file.
|
||
|
*
|
||
|
* This file contains a fast, not so accurate integer implementation of the
|
||
|
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
||
|
* must also perform dequantization of the input coefficients.
|
||
|
*
|
||
|
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
||
|
* on each row (or vice versa, but it's more convenient to emit a row at
|
||
|
* a time). Direct algorithms are also available, but they are much more
|
||
|
* complex and seem not to be any faster when reduced to code.
|
||
|
*
|
||
|
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||
|
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||
|
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||
|
* JPEG textbook (see REFERENCES section in file README). The following code
|
||
|
* is based directly on figure 4-8 in P&M.
|
||
|
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||
|
* possible to arrange the computation so that many of the multiplies are
|
||
|
* simple scalings of the final outputs. These multiplies can then be
|
||
|
* folded into the multiplications or divisions by the JPEG quantization
|
||
|
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||
|
* to be done in the DCT itself.
|
||
|
* The primary disadvantage of this method is that with fixed-point math,
|
||
|
* accuracy is lost due to imprecise representation of the scaled
|
||
|
* quantization values. The smaller the quantization table entry, the less
|
||
|
* precise the scaled value, so this implementation does worse with high-
|
||
|
* quality-setting files than with low-quality ones.
|
||
|
*/
|
||
|
|
||
|
#define JPEG_INTERNALS
|
||
|
#include "jinclude.h"
|
||
|
#include "jpeglib.h"
|
||
|
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||
|
|
||
|
#ifdef DCT_IFAST_SUPPORTED
|
||
|
|
||
|
|
||
|
/*
|
||
|
* This module is specialized to the case DCTSIZE = 8.
|
||
|
*/
|
||
|
|
||
|
#if DCTSIZE != 8
|
||
|
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/* Scaling decisions are generally the same as in the LL&M algorithm;
|
||
|
* see jidctint.c for more details. However, we choose to descale
|
||
|
* (right shift) multiplication products as soon as they are formed,
|
||
|
* rather than carrying additional fractional bits into subsequent additions.
|
||
|
* This compromises accuracy slightly, but it lets us save a few shifts.
|
||
|
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
|
||
|
* everywhere except in the multiplications proper; this saves a good deal
|
||
|
* of work on 16-bit-int machines.
|
||
|
*
|
||
|
* The dequantized coefficients are not integers because the AA&N scaling
|
||
|
* factors have been incorporated. We represent them scaled up by PASS1_BITS,
|
||
|
* so that the first and second IDCT rounds have the same input scaling.
|
||
|
* For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
|
||
|
* avoid a descaling shift; this compromises accuracy rather drastically
|
||
|
* for small quantization table entries, but it saves a lot of shifts.
|
||
|
* For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
|
||
|
* so we use a much larger scaling factor to preserve accuracy.
|
||
|
*
|
||
|
* A final compromise is to represent the multiplicative constants to only
|
||
|
* 8 fractional bits, rather than 13. This saves some shifting work on some
|
||
|
* machines, and may also reduce the cost of multiplication (since there
|
||
|
* are fewer one-bits in the constants).
|
||
|
*/
|
||
|
|
||
|
#if BITS_IN_JSAMPLE == 8
|
||
|
#define CONST_BITS 8
|
||
|
#define PASS1_BITS 2
|
||
|
#else
|
||
|
#define CONST_BITS 8
|
||
|
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
||
|
#endif
|
||
|
|
||
|
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||
|
* causing a lot of useless floating-point operations at run time.
|
||
|
* To get around this we use the following pre-calculated constants.
|
||
|
* If you change CONST_BITS you may want to add appropriate values.
|
||
|
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
||
|
*/
|
||
|
|
||
|
#if CONST_BITS == 8
|
||
|
#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
|
||
|
#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
|
||
|
#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
|
||
|
#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
|
||
|
#else
|
||
|
#define FIX_1_082392200 FIX(1.082392200)
|
||
|
#define FIX_1_414213562 FIX(1.414213562)
|
||
|
#define FIX_1_847759065 FIX(1.847759065)
|
||
|
#define FIX_2_613125930 FIX(2.613125930)
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/* We can gain a little more speed, with a further compromise in accuracy,
|
||
|
* by omitting the addition in a descaling shift. This yields an incorrectly
|
||
|
* rounded result half the time...
|
||
|
*/
|
||
|
|
||
|
#ifndef USE_ACCURATE_ROUNDING
|
||
|
#undef DESCALE
|
||
|
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
|
||
|
#endif
|
||
|
|
||
|
//#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
|
||
|
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
|
||
|
* descale to yield a DCTELEM result.
|
||
|
*/
|
||
|
|
||
|
//#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
|
||
|
#define MULTIPLY(var,const) ((DCTELEM) ((var) * (const)))
|
||
|
|
||
|
|
||
|
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||
|
* entry; produce a DCTELEM result. For 8-bit data a 16x16->16
|
||
|
* multiplication will do. For 12-bit data, the multiplier table is
|
||
|
* declared INT32, so a 32-bit multiply will be used.
|
||
|
*/
|
||
|
|
||
|
#if BITS_IN_JSAMPLE == 8
|
||
|
//#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
|
||
|
#define DEQUANTIZE(coef,quantval) (((coef)) * (quantval))
|
||
|
#else
|
||
|
#define DEQUANTIZE(coef,quantval) \
|
||
|
DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/* Like DESCALE, but applies to a DCTELEM and produces an int.
|
||
|
* We assume that int right shift is unsigned if INT32 right shift is.
|
||
|
*/
|
||
|
|
||
|
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
||
|
#define ISHIFT_TEMPS DCTELEM ishift_temp;
|
||
|
#if BITS_IN_JSAMPLE == 8
|
||
|
#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
|
||
|
#else
|
||
|
#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
|
||
|
#endif
|
||
|
#define IRIGHT_SHIFT(x,shft) \
|
||
|
((ishift_temp = (x)) < 0 ? \
|
||
|
(ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
|
||
|
(ishift_temp >> (shft)))
|
||
|
#else
|
||
|
#define ISHIFT_TEMPS
|
||
|
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
|
||
|
#endif
|
||
|
|
||
|
#ifdef USE_ACCURATE_ROUNDING
|
||
|
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
|
||
|
#else
|
||
|
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n))
|
||
|
#endif
|
||
|
|
||
|
|
||
|
static const long x5a825a825a825a82 = 0x0000016a ;
|
||
|
static const long x539f539f539f539f = 0xfffffd63 ;
|
||
|
static const long x4546454645464546 = 0x00000115 ;
|
||
|
static const long x61f861f861f861f8 = 0x000001d9 ;
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Perform dequantization and inverse DCT on one block of coefficients.
|
||
|
*/
|
||
|
|
||
|
GLOBAL(void)
|
||
|
pidct8x8aan (JCOEFPTR coef_block, short * wsptr, short * quantptr,
|
||
|
JSAMPARRAY output_buf, JDIMENSION output_col, JSAMPLE *range_limit )
|
||
|
{
|
||
|
|
||
|
INT32 locdwinptr, locdwqptr, locdwwsptr, locwctr ;
|
||
|
short locwcounter, locwtmp0, locwtmp1 ;
|
||
|
short locwtmp3, scratch1, scratch2, scratch3 ;
|
||
|
|
||
|
|
||
|
|
||
|
// do the 2-Dal idct and store the corresponding results
|
||
|
// from the range_limit array
|
||
|
// pidct(coef_block, quantptr, wsptr, output_buf, output_col, range_limit) ;
|
||
|
|
||
|
__asm {
|
||
|
|
||
|
|
||
|
mov esi, coef_block ; source coeff
|
||
|
mov edi, quantptr ; quant pointer
|
||
|
|
||
|
mov locdwinptr, esi
|
||
|
mov eax, wsptr ; temp storage pointer
|
||
|
|
||
|
mov locdwqptr, edi
|
||
|
mov locdwwsptr, eax
|
||
|
|
||
|
mov locwcounter, 8
|
||
|
|
||
|
;; perform the 1D-idct on each of the eight columns
|
||
|
|
||
|
idct_column:
|
||
|
|
||
|
mov esi, locdwinptr
|
||
|
mov edi, locdwqptr
|
||
|
|
||
|
mov ax, word ptr [esi+16*0]
|
||
|
|
||
|
mov bx, word ptr [esi+16*4]
|
||
|
imul ax, word ptr [edi+16*0]
|
||
|
|
||
|
mov cx, word ptr [esi+16*2]
|
||
|
|
||
|
imul bx, word ptr [edi+16*4]
|
||
|
|
||
|
mov dx, word ptr [esi+16*6]
|
||
|
imul cx, word ptr [edi+16*2]
|
||
|
|
||
|
imul dx, word ptr [edi+16*6]
|
||
|
|
||
|
;;;; at this point C0, C2, C4 and C6 have been dequantized
|
||
|
|
||
|
mov scratch1, ax
|
||
|
add ax, bx ; tmp10 in ax
|
||
|
|
||
|
sub scratch1, bx ; tmp11
|
||
|
mov bx, cx
|
||
|
|
||
|
add cx, dx ; tmp13 in cx
|
||
|
sub bx, dx ; tmp1 - tmp3 in bx
|
||
|
|
||
|
mov dx, ax
|
||
|
movsx ebx, bx ; sign extend bx: get ready to do imul
|
||
|
|
||
|
add ax, cx ; tmp0 in ax
|
||
|
imul ebx, dword ptr x5a825a825a825a82
|
||
|
|
||
|
sub dx, cx ; tmp3 in dx
|
||
|
mov locwtmp0, ax
|
||
|
|
||
|
mov locwtmp3, dx
|
||
|
sar ebx, 8 ; bx now has (tmp1-tmp3)*1.414
|
||
|
|
||
|
mov ax, scratch1 ; copy of tmp11
|
||
|
sub bx, cx ; tmp12 in bx
|
||
|
|
||
|
add ax, bx ; tmp1 in ax
|
||
|
sub scratch1, bx ; tmp2
|
||
|
|
||
|
mov locwtmp1, ax
|
||
|
|
||
|
;;;;;completed computing/storing the even part;;;;;;;;;;
|
||
|
|
||
|
mov ax, [esi+16*1] ; get C1
|
||
|
|
||
|
imul ax, [edi+16*1]
|
||
|
mov bx, [esi+16*7] ; get C7
|
||
|
|
||
|
mov cx, [esi+16*3]
|
||
|
|
||
|
imul bx, [edi+16*7]
|
||
|
|
||
|
mov dx, [esi+16*5]
|
||
|
|
||
|
imul cx, [edi+16*3]
|
||
|
|
||
|
imul dx, [edi+16*5]
|
||
|
|
||
|
mov scratch2, ax
|
||
|
add ax, bx ; z11 in ax
|
||
|
|
||
|
sub scratch2, bx ; z12
|
||
|
mov bx, dx ; copy of deQ C5
|
||
|
|
||
|
add dx, cx ; z13 in dx
|
||
|
sub bx, cx ; z10 in bx
|
||
|
|
||
|
mov cx, ax ; copy of z11
|
||
|
add ax, dx ; tmp7 in ax
|
||
|
|
||
|
sub cx, dx ; partial tmp11
|
||
|
|
||
|
movsx ecx, cx
|
||
|
mov dx, bx ; copy of z10
|
||
|
|
||
|
add bx, scratch2 ; partial z5
|
||
|
imul ecx, dword ptr x5a825a825a825a82
|
||
|
|
||
|
movsx edx, dx ; sign extend z10: get ready for imul
|
||
|
movsx ebx, bx ; sign extend partial z5 for imul
|
||
|
|
||
|
imul edx, dword ptr x539f539f539f539f ; partial tmp12
|
||
|
imul ebx, dword ptr x61f861f861f861f8 ; partial z5 product
|
||
|
|
||
|
mov di, scratch2
|
||
|
movsx edi, di ; sign extend z12: get ready for imul
|
||
|
sar ecx, 8 ; tmp11 in cx
|
||
|
|
||
|
sar ebx, 8 ; z5 in bx
|
||
|
imul edi, dword ptr x4546454645464546
|
||
|
|
||
|
sar edx, 8
|
||
|
sar edi, 8
|
||
|
|
||
|
sub di, bx ; tmp10
|
||
|
add dx, bx ; tmp12 in dx
|
||
|
|
||
|
sub dx, ax ; tmp6 in dx
|
||
|
|
||
|
sub cx, dx ; tmp5 in cx
|
||
|
|
||
|
add di, cx ; tmp4
|
||
|
mov scratch3, di
|
||
|
|
||
|
;;; completed calculating the odd part ;;;;;;;;;;;
|
||
|
|
||
|
mov edi, dword ptr locdwwsptr ; get address of temp. destn
|
||
|
|
||
|
mov si, ax ; copy of tmp7
|
||
|
mov bx, locwtmp0 ; get tmp0
|
||
|
|
||
|
add ax, locwtmp0 ; wsptr[0]
|
||
|
sub bx, si ; wsptr[7]
|
||
|
|
||
|
mov word ptr [edi+16*0], ax
|
||
|
mov word ptr [edi+16*7], bx
|
||
|
|
||
|
mov ax, dx ; copy of tmp6
|
||
|
mov bx, locwtmp1
|
||
|
|
||
|
add dx, bx ; wsptr[1]
|
||
|
sub bx, ax ; wsptr[6]
|
||
|
|
||
|
mov word ptr [edi+16*1], dx
|
||
|
mov word ptr [edi+16*6], bx
|
||
|
|
||
|
mov dx, cx ; copy of tmp5
|
||
|
mov bx, scratch1
|
||
|
|
||
|
|
||
|
add cx, bx ; wsptr[2]
|
||
|
sub bx, dx ; wsptr[5]
|
||
|
|
||
|
mov word ptr [edi+16*2], cx
|
||
|
mov word ptr [edi+16*5], bx
|
||
|
|
||
|
mov cx, scratch3 ; copy of tmp4
|
||
|
mov ax, locwtmp3
|
||
|
|
||
|
add scratch3, ax ; wsptr[4]
|
||
|
sub ax, cx ; wsptr[3]
|
||
|
|
||
|
mov bx, scratch3
|
||
|
mov word ptr [edi+16*4], bx
|
||
|
mov word ptr [edi+16*3], ax
|
||
|
|
||
|
;;;;; completed storing 1D idct of one column ;;;;;;;;
|
||
|
|
||
|
;; update inptr, qptr and wsptr for next column
|
||
|
|
||
|
add locdwinptr, 2
|
||
|
add locdwqptr, 2
|
||
|
|
||
|
add locdwwsptr, 2
|
||
|
mov ax, locwcounter ; get loop count
|
||
|
|
||
|
dec ax ; another loop done
|
||
|
|
||
|
mov locwcounter, ax
|
||
|
jnz idct_column
|
||
|
|
||
|
;;;;;;; end of 1D idct on all columns ;;;;;;;
|
||
|
;;;;;;; temp result is stored in wsptr ;;;;;;;
|
||
|
|
||
|
;;;;;;; perform 1D-idct on each row and store final result
|
||
|
|
||
|
mov esi, wsptr ; initialize source ptr to original wsptr
|
||
|
mov locwctr, 0
|
||
|
|
||
|
mov locwcounter, 8
|
||
|
mov locdwwsptr, esi
|
||
|
|
||
|
idct_row:
|
||
|
|
||
|
mov edi, output_buf
|
||
|
mov esi, locdwwsptr
|
||
|
|
||
|
add edi, locwctr
|
||
|
|
||
|
mov edi, [edi] ; get output_buf[ctr]
|
||
|
|
||
|
add edi, output_col ; now edi is pointing to the resp. row
|
||
|
add locwctr, 4
|
||
|
|
||
|
;; get even coeffs. and do the even part
|
||
|
|
||
|
mov ax, word ptr [esi+2*0]
|
||
|
|
||
|
mov bx, word ptr [esi+2*4]
|
||
|
|
||
|
mov cx, word ptr [esi+2*2]
|
||
|
|
||
|
mov dx, word ptr [esi+2*6]
|
||
|
|
||
|
mov scratch1, ax
|
||
|
add ax, bx ; tmp10 in ax
|
||
|
|
||
|
sub scratch1, bx ; tmp11
|
||
|
mov bx, cx
|
||
|
|
||
|
add cx, dx ; tmp13 in cx
|
||
|
sub bx, dx ; tmp1 - tmp3 in bx
|
||
|
|
||
|
mov dx, ax
|
||
|
movsx ebx, bx ; sign extend bx: get ready to do imul
|
||
|
|
||
|
add ax, cx ; tmp0 in ax
|
||
|
imul ebx, dword ptr x5a825a825a825a82
|
||
|
|
||
|
sub dx, cx ; tmp3 in dx
|
||
|
mov locwtmp0, ax
|
||
|
|
||
|
mov locwtmp3, dx
|
||
|
sar ebx, 8 ; bx now has (tmp1-tmp3)*1.414
|
||
|
|
||
|
mov ax, scratch1 ; copy of tmp11
|
||
|
sub bx, cx ; tmp12 in bx
|
||
|
|
||
|
add ax, bx ; tmp1 in ax
|
||
|
sub scratch1, bx ; tmp2
|
||
|
|
||
|
mov locwtmp1, ax
|
||
|
|
||
|
;;;;;completed computing/storing the even part;;;;;;;;;;
|
||
|
|
||
|
mov ax, [esi+2*1] ; get C1
|
||
|
mov bx, [esi+2*7] ; get C7
|
||
|
|
||
|
mov cx, [esi+2*3]
|
||
|
mov dx, [esi+2*5]
|
||
|
|
||
|
mov scratch2, ax
|
||
|
add ax, bx ; z11 in ax
|
||
|
|
||
|
sub scratch2, bx ; z12
|
||
|
mov bx, dx ; copy of deQ C5
|
||
|
|
||
|
add dx, cx ; z13 in dx
|
||
|
sub bx, cx ; z10 in bx
|
||
|
|
||
|
mov cx, ax ; copy of z11
|
||
|
add ax, dx ; tmp7 in ax
|
||
|
|
||
|
sub cx, dx ; partial tmp11
|
||
|
|
||
|
movsx ecx, cx
|
||
|
mov dx, bx ; copy of z10
|
||
|
|
||
|
add bx, scratch2 ; partial z5
|
||
|
imul ecx, dword ptr x5a825a825a825a82
|
||
|
|
||
|
movsx edx, dx ; sign extend z10: get ready for imul
|
||
|
movsx ebx, bx ; sign extend partial z5 for imul
|
||
|
|
||
|
imul edx, dword ptr x539f539f539f539f ; partial tmp12
|
||
|
imul ebx, dword ptr x61f861f861f861f8 ; partial z5 product
|
||
|
|
||
|
mov si, scratch2
|
||
|
movsx esi, si ; sign extend z12: get ready for imul
|
||
|
sar ecx, 8 ; tmp11 in cx
|
||
|
|
||
|
sar ebx, 8 ; z5 in bx
|
||
|
imul esi, dword ptr x4546454645464546
|
||
|
|
||
|
sar edx, 8
|
||
|
sar esi, 8
|
||
|
|
||
|
sub si, bx ; tmp10
|
||
|
add dx, bx ; tmp12 in dx
|
||
|
|
||
|
sub dx, ax ; tmp6 in dx
|
||
|
|
||
|
sub cx, dx ; tmp5 in cx
|
||
|
|
||
|
add si, cx ; tmp4
|
||
|
mov scratch3, si
|
||
|
|
||
|
;;; completed calculating the odd part ;;;;;;;;;;;
|
||
|
|
||
|
mov si, ax ; copy of tmp7
|
||
|
mov bx, locwtmp0 ; get tmp0
|
||
|
|
||
|
add ax, locwtmp0 ; wsptr[0]
|
||
|
sub bx, si ; wsptr[7]
|
||
|
|
||
|
mov esi, range_limit ; initialize esi to range_limit pointer
|
||
|
|
||
|
sar ax, 5
|
||
|
sar bx, 5
|
||
|
|
||
|
and eax, 3ffh
|
||
|
and ebx, 3ffh
|
||
|
|
||
|
mov al, byte ptr [esi][eax]
|
||
|
mov bl, byte ptr [esi][ebx]
|
||
|
|
||
|
mov byte ptr [edi+0], al
|
||
|
mov byte ptr [edi+7], bl
|
||
|
|
||
|
mov ax, dx ; copy of tmp6
|
||
|
mov bx, locwtmp1
|
||
|
|
||
|
add dx, bx ; wsptr[1]
|
||
|
sub bx, ax ; wsptr[6]
|
||
|
|
||
|
sar dx, 5
|
||
|
sar bx, 5
|
||
|
|
||
|
and edx, 3ffh
|
||
|
and ebx, 3ffh
|
||
|
|
||
|
mov dl, byte ptr [esi][edx]
|
||
|
mov bl, byte ptr [esi][ebx]
|
||
|
|
||
|
mov byte ptr [edi+1], dl
|
||
|
mov byte ptr [edi+6], bl
|
||
|
|
||
|
mov dx, cx ; copy of tmp5
|
||
|
mov bx, scratch1
|
||
|
|
||
|
add cx, bx ; wsptr[2]
|
||
|
sub bx, dx ; wsptr[5]
|
||
|
|
||
|
sar cx, 5
|
||
|
sar bx, 5
|
||
|
|
||
|
and ecx, 3ffh
|
||
|
and ebx, 3ffh
|
||
|
|
||
|
mov cl, byte ptr [esi][ecx]
|
||
|
mov bl, byte ptr [esi][ebx]
|
||
|
|
||
|
mov byte ptr [edi+2], cl
|
||
|
mov byte ptr [edi+5], bl
|
||
|
|
||
|
mov cx, scratch3 ; copy of tmp4
|
||
|
mov ax, locwtmp3
|
||
|
|
||
|
add scratch3, ax ; wsptr[4]
|
||
|
sub ax, cx ; wsptr[3]
|
||
|
|
||
|
sar scratch3, 5
|
||
|
sar ax, 5
|
||
|
|
||
|
mov cx, scratch3
|
||
|
|
||
|
and ecx, 3ffh
|
||
|
and eax, 3ffh
|
||
|
|
||
|
|
||
|
mov bl, byte ptr [esi][ecx]
|
||
|
mov al, byte ptr [esi][eax]
|
||
|
|
||
|
mov byte ptr [edi+4], bl
|
||
|
mov byte ptr [edi+3], al
|
||
|
|
||
|
;;;;; completed storing 1D idct of one row ;;;;;;;;
|
||
|
|
||
|
;; update the source pointer (wsptr) for next row
|
||
|
|
||
|
add locdwwsptr, 16
|
||
|
|
||
|
mov ax, locwcounter ; get loop count
|
||
|
|
||
|
dec ax ; another loop done
|
||
|
|
||
|
mov locwcounter, ax
|
||
|
jnz idct_row
|
||
|
|
||
|
|
||
|
;; end of 1D idct on all rows
|
||
|
;; final result is stored in outptr
|
||
|
|
||
|
} /* end of __asm */
|
||
|
}
|
||
|
|
||
|
#endif /* DCT_IFAST_SUPPORTED */
|