/*++ Copyright (c) 1991 Microsoft Corporation Module Name: arcemul.c Abstract: This module provides the x86 emulation for the Arc routines which are built into the firmware on ARC machines. N. B. This is where all the initialization of the SYSTEM_PARAMETER_BLOCK takes place. If there is any non-standard hardware, some of the vectors may have to be changed. This is where to do it. Author: John Vert (jvert) 13-Jun-1991 Environment: x86 only Revision History: --*/ #include "arccodes.h" #include "bootx86.h" #include "ntdddisk.h" #include "string.h" #include "stdio.h" #include "stdlib.h" #include "scsi.h" #include "scsiboot.h" #include "ramdisk.h" #define CMOS_CONTROL_PORT ((PUCHAR)0x70) #define CMOS_DATA_PORT ((PUCHAR)0x71) #define CMOS_STATUS_B 0x0B #define CMOS_DAYLIGHT_BIT 1 extern PCHAR MnemonicTable[]; // // Size definitions for HardDiskInitialize() // #define SUPPORTED_NUMBER_OF_DISKS 32 #define SIZE_FOR_SUPPORTED_DISK_STRUCTURE (SUPPORTED_NUMBER_OF_DISKS*sizeof(DRIVER_LOOKUP_ENTRY)) BOOLEAN AEBiosDisabled = FALSE; // spew UTF8 data over the headless port on FE builds. #define UTF8_CLIENT_SUPPORT (1) BOOLEAN AEArcDiskInformationInitialized = FALSE; ARC_DISK_INFORMATION AEArcDiskInformation; PDRIVER_UNLOAD AEDriverUnloadRoutine = NULL; #define PORT_BUFFER_SIZE 10 UCHAR PortBuffer[PORT_BUFFER_SIZE]; ULONG PortBufferStart = 0; ULONG PortBufferEnd = 0; // // Macro for aligning buffers. It returns the aligned pointer into the // buffer. Buffer should be of size you want to use + alignment. // #define ALIGN_BUFFER_ON_BOUNDARY(Buffer,Alignment) ((PVOID) \ ((((ULONG_PTR)(Buffer) + (Alignment) - 1)) & (~((ULONG_PTR)(Alignment) - 1)))) // // Miniport DriverEntry typedef // typedef NTSTATUS (*PDRIVER_ENTRY) ( IN PDRIVER_OBJECT DriverObject, IN PVOID Parameter2 ); typedef BOOLEAN (*PFWNODE_CALLBACK)( IN PCONFIGURATION_COMPONENT FoundComponent ); // // Private function prototypes // ARC_STATUS BlArcNotYetImplemented( IN ULONG FileId ); PCONFIGURATION_COMPONENT AEComponentInfo( IN PCONFIGURATION_COMPONENT Current ); PCONFIGURATION_COMPONENT FwGetChild( IN PCONFIGURATION_COMPONENT Current ); BOOLEAN FwSearchTree( IN PCONFIGURATION_COMPONENT Node, IN CONFIGURATION_CLASS Class, IN CONFIGURATION_TYPE Type, IN ULONG Key, IN PFWNODE_CALLBACK CallbackRoutine ); PCHAR AEGetEnvironment( IN PCHAR Variable ); PCONFIGURATION_COMPONENT FwGetPeer( IN PCONFIGURATION_COMPONENT Current ); BOOLEAN AEEnumerateDisks( PCONFIGURATION_COMPONENT Disk ); VOID AEGetArcDiskInformation( VOID ); VOID AEGetPathnameFromComponent( IN PCONFIGURATION_COMPONENT Component, OUT PCHAR ArcName ); PCONFIGURATION_COMPONENT AEGetParent( IN PCONFIGURATION_COMPONENT Current ); ARC_STATUS AEGetConfigurationData( IN PVOID ConfigurationData, IN PCONFIGURATION_COMPONENT Current ); PMEMORY_DESCRIPTOR AEGetMemoryDescriptor( IN PMEMORY_DESCRIPTOR MemoryDescriptor OPTIONAL ); ARC_STATUS AEOpen( IN PCHAR OpenPath, IN OPEN_MODE OpenMode, OUT PULONG FileId ); ARC_STATUS AEClose( IN ULONG FileId ); ARC_STATUS AERead ( IN ULONG FileId, OUT PVOID Buffer, IN ULONG Length, OUT PULONG Count ); ARC_STATUS AEReadStatus ( IN ULONG FileId ); VOID AEReboot( VOID ); ARC_STATUS AESeek ( IN ULONG FileId, IN PLARGE_INTEGER Offset, IN SEEK_MODE SeekMode ); ARC_STATUS AEWrite ( IN ULONG FileId, OUT PVOID Buffer, IN ULONG Length, OUT PULONG Count ); ARC_STATUS AEGetFileInformation( IN ULONG FileId, OUT PFILE_INFORMATION FileInformation ); PTIME_FIELDS AEGetTime( VOID ); ULONG AEGetRelativeTime( VOID ); ARC_STATUS ScsiDiskClose ( IN ULONG FileId ); ARC_STATUS ScsiDiskMount ( IN PCHAR MountPath, IN MOUNT_OPERATION Operation ); ARC_STATUS ScsiDiskOpen ( IN PCHAR OpenPath, IN OPEN_MODE OpenMode, OUT PULONG FileId ); ARC_STATUS ScsiDiskRead ( IN ULONG FileId, IN PVOID Buffer, IN ULONG Length, OUT PULONG Count ); ARC_STATUS ScsiDiskSeek ( IN ULONG FileId, IN PLARGE_INTEGER Offset, IN SEEK_MODE SeekMode ); ARC_STATUS ScsiDiskWrite ( IN ULONG FileId, IN PVOID Buffer, IN ULONG Length, OUT PULONG Count ); VOID HardDiskInitialize( IN OUT PVOID LookupTable, IN ULONG Entries, IN PVOID DeviceFoundCallback ); BOOLEAN AEReadDiskSignature( IN PCHAR DiskName, IN BOOLEAN IsCdRom ); // // This is the x86 version of the system parameter block on the ARC machines. // It lives here, and any module that uses an ArcXXXX routine must declare // it external. Machines that have other than very plain-vanilla hardware // may have to replace some of the hard-wired vectors with different // procedures. // PVOID GlobalFirmwareVectors[MaximumRoutine]; SYSTEM_PARAMETER_BLOCK GlobalSystemBlock = { 0, // Signature?? sizeof(SYSTEM_PARAMETER_BLOCK), // Length 0, // Version 0, // Revision NULL, // RestartBlock NULL, // DebugBlock NULL, // GenerateExceptionVector NULL, // TlbMissExceptionVector MaximumRoutine, // FirmwareVectorLength GlobalFirmwareVectors, // Pointer to vector block 0, // VendorVectorLength NULL // Pointer to vendor vector block }; extern BL_FILE_TABLE BlFileTable[BL_FILE_TABLE_SIZE]; // // temptemp John Vert (jvert) 6-Sep-1991 // Just do this until we can make our device driver interface look // like the ARC firmware one. // extern BL_DEVICE_ENTRY_TABLE ScsiDiskEntryTable; ULONG FwStallCounter; // // This table provides a quick lookup conversion between ASCII values // that fall between 128 and 255, and their UNICODE counterpart. // // Note that ASCII values between 0 and 127 are equvilent to their // unicode counter parts, so no lookups would be required. // // Therefore when using this table, remove the high bit from the ASCII // value and use the resulting value as an offset into this array. For // example, 0x80 ->(remove the high bit) 00 -> 0x00C7. // USHORT PcAnsiToUnicode[0xFF] = { 0x00C7, 0x00FC, 0x00E9, 0x00E2, 0x00E4, 0x00E0, 0x00E5, 0x0087, 0x00EA, 0x00EB, 0x00E8, 0x00EF, 0x00EE, 0x00EC, 0x00C4, 0x00C5, 0x00C9, 0x00E6, 0x00C6, 0x00F4, 0x00F6, 0x00F2, 0x00FB, 0x00F9, 0x00FF, 0x00D6, 0x00DC, 0x00A2, 0x00A3, 0x00A5, 0x20A7, 0x0192, 0x00E1, 0x00ED, 0x00F3, 0x00FA, 0x00F1, 0x00D1, 0x00AA, 0x00BA, 0x00BF, 0x2310, 0x00AC, 0x00BD, 0x00BC, 0x00A1, 0x00AB, 0x00BB, 0x2591, 0x2592, 0x2593, 0x2502, 0x2524, 0x2561, 0x2562, 0x2556, 0x2555, 0x2563, 0x2551, 0x2557, 0x255D, 0x255C, 0x255B, 0x2510, 0x2514, 0x2534, 0x252C, 0x251C, 0x2500, 0x253C, 0x255E, 0x255F, 0x255A, 0x2554, 0x2569, 0x2566, 0x2560, 0x2550, 0x256C, 0x2567, 0x2568, 0x2564, 0x2565, 0x2559, 0x2558, 0x2552, 0x2553, 0x256B, 0x256A, 0x2518, 0x250C, 0x2588, 0x2584, 0x258C, 0x2590, 0x2580, 0x03B1, 0x00DF, 0x0393, 0x03C0, 0x03A3, 0x03C3, 0x00B5, 0x03C4, 0x03A6, 0x0398, 0x03A9, 0x03B4, 0x221E, 0x03C6, 0x03B5, 0x2229, 0x2261, 0x00B1, 0x2265, 0x2264, 0x2320, 0x2321, 0x00F7, 0x2248, 0x00B0, 0x2219, 0x00B7, 0x221A, 0x207F, 0x00B2, 0x25A0, 0x00A0 }; VOID AEInitializeStall( VOID ) { FwStallCounter = GET_STALL_COUNT(); return; } ARC_STATUS AEInitializeIo( IN ULONG DriveId ) /*++ Routine Description: Initializes SCSI boot driver, if any. Loads ntbootdd.sys from the boot partition, binds it to the osloader, and initializes it. Arguments: DriveId - file id of the opened boot partition Return Value: ESUCCESS - Drivers successfully initialized --*/ { extern ULONG ScsiPortCount; extern ULONG MachineType; ARC_STATUS Status; PVOID Buffer; PVOID ImageBase; PKLDR_DATA_TABLE_ENTRY DriverDataTableEntry; PDRIVER_ENTRY Entry; extern MEMORY_DESCRIPTOR MDArray[]; ScsiPortCount = 0; FwStallCounter = GET_STALL_COUNT(); Status = BlLoadImage(DriveId, MemoryFirmwarePermanent, "\\NTBOOTDD.SYS", TARGET_IMAGE, &ImageBase); if (Status != ESUCCESS) { return(Status); } // // Find the memory descriptor for this entry in the table in the loader // block and then allocate it in the MD array. // { ULONG imageBasePage; ULONG imageEndPage = 0; PLIST_ENTRY entry; imageBasePage = (((ULONG)ImageBase) & 0x7fffffff) >> PAGE_SHIFT; entry = BlLoaderBlock->MemoryDescriptorListHead.Flink; while(entry != &(BlLoaderBlock->MemoryDescriptorListHead)) { PMEMORY_ALLOCATION_DESCRIPTOR descriptor; descriptor = CONTAINING_RECORD(entry, MEMORY_ALLOCATION_DESCRIPTOR, ListEntry); if(descriptor->BasePage == imageBasePage) { imageEndPage = imageBasePage + descriptor->PageCount; break; } entry = entry->Flink; } if(imageEndPage == 0) { return EINVAL; } Status = MempAllocDescriptor(imageBasePage, imageEndPage, MemoryFirmwareTemporary); if(Status != ESUCCESS) { return EINVAL; } } Status = BlAllocateDataTableEntry("NTBOOTDD.SYS", "\\NTBOOTDD.SYS", ImageBase, &DriverDataTableEntry); if (Status != ESUCCESS) { return(Status); } // // [ChuckL 2001-Dec-04] // BlAllocateDataTableEntry inserts the data table entry for NTBOOTDD.SYS // into BlLoaderBlock->LoadOrderListHead. We don't want this, for at least // two reasons: // // 1) This entry is only temporarily loaded for use by the loader. We // don't want the kernel to think that it's loaded. // // 2) There is code in the kernel (MM) that assumes that the first two // entries in the list are the kernel and HAL. But we've just // inserted ntbootdd.sys as the first entry. This really screws up // MM, because it ends up moving the HAL as if it were a loaded // driver. // // Prior to a change to boot\bldr\osloader.c, the routine BlMemoryInitialize() // was called twice during loader init. The second call occurred after ntbootdd // was loaded, and reinitialized the LoadOrderListHead, thereby eliminating (by // accident) ntbootdd from the module list. Now we don't do the second memory // initialization, so we have to explicitly remove ntbootdd from the list. // RemoveEntryList(&DriverDataTableEntry->InLoadOrderLinks); // // Scan the import table and bind to osloader // Status = BlScanOsloaderBoundImportTable(DriverDataTableEntry); if (Status != ESUCCESS) { return(Status); } Entry = (PDRIVER_ENTRY)DriverDataTableEntry->EntryPoint; // // Before calling into the driver we need to collect ARC info blocks // for all the bios based devices. // AEGetArcDiskInformation(); // // Zero out the driver object. // Status = (*Entry)(NULL, NULL); if (Status == ESUCCESS) { Buffer = FwAllocateHeap(SIZE_FOR_SUPPORTED_DISK_STRUCTURE); if(Buffer == NULL) { return ENOMEM; } HardDiskInitialize(Buffer, SUPPORTED_NUMBER_OF_DISKS, NULL); } if(Status == ESUCCESS) { AEBiosDisabled = TRUE; } return(Status); } VOID BlFillInSystemParameters( IN PBOOT_CONTEXT BootContextRecord ) /*++ Routine Description: This routine fills in all the fields in the Global System Parameter Block that it can. This includes all the firmware vectors, the vendor-specific information, and anything else that may come up. Arguments: None. Return Value: None. --*/ { int cnt; // // Fill in the pointers to the firmware functions which we emulate. // Those which we don't emulate are stubbed by BlArcNotYetImplemented, // which will print an error message if it is accidentally called. // for (cnt=0; cnt= (NumberDescriptors-1)) { return NULL; } else { Return = ++MemoryDescriptor; } } return(Return); } ARC_STATUS BlArcNotYetImplemented( IN ULONG FileId ) /*++ Routine Description: This is a stub routine used to fill in the firmware vectors which haven't been defined yet. It uses BlPrint to print a message on the screen. Arguments: None. Return Value: EINVAL --*/ { BlPrint("ERROR - Unimplemented Firmware Vector called (FID %lx)\n", FileId ); return(EINVAL); } PCONFIGURATION_COMPONENT FwGetChild( IN PCONFIGURATION_COMPONENT Current ) /*++ Routine Description: This is the arc emulation routine for GetChild. Based on the current component, it returns the component's child component. Arguments: Current - Supplies pointer to the current configuration component Return Value: A pointer to a CONFIGURATION_COMPONENT structure OR NULL - No more configuration information --*/ { PCONFIGURATION_COMPONENT_DATA CurrentEntry; // // if current component is NULL, return a pointer to first system // component; otherwise return current component's child component. // if (Current) { CurrentEntry = CONTAINING_RECORD(Current, CONFIGURATION_COMPONENT_DATA, ComponentEntry); if (CurrentEntry->Child) { return(&(CurrentEntry->Child->ComponentEntry)); } else { return(NULL); } } else { if (FwConfigurationTree) { return(&(FwConfigurationTree->ComponentEntry)); } else { return(NULL); } } } PCONFIGURATION_COMPONENT FwGetPeer( IN PCONFIGURATION_COMPONENT Current ) /*++ Routine Description: This is the arc emulation routine for GetPeer. Based on the current component, it returns the component's sibling. Arguments: Current - Supplies pointer to the current configuration component Return Value: A pointer to a CONFIGURATION_COMPONENT structure OR NULL - No more configuration information --*/ { PCONFIGURATION_COMPONENT_DATA CurrentEntry; if (Current) { CurrentEntry = CONTAINING_RECORD(Current, CONFIGURATION_COMPONENT_DATA, ComponentEntry); if (CurrentEntry->Sibling) { return(&(CurrentEntry->Sibling->ComponentEntry)); } else { return(NULL); } } else { return(NULL); } } PCONFIGURATION_COMPONENT AEGetParent( IN PCONFIGURATION_COMPONENT Current ) /*++ Routine Description: This is the arc emulation routine for GetParent. Based on the current component, it returns the component's parent. Arguments: Current - Supplies pointer to the current configuration component Return Value: A pointer to a CONFIGURATION_COMPONENT structure OR NULL - No more configuration information --*/ { PCONFIGURATION_COMPONENT_DATA CurrentEntry; if (Current) { CurrentEntry = CONTAINING_RECORD(Current, CONFIGURATION_COMPONENT_DATA, ComponentEntry); if (CurrentEntry->Parent) { return(&(CurrentEntry->Parent->ComponentEntry)); } else { return(NULL); } } else { return(NULL); } } ARC_STATUS AEGetConfigurationData( IN PVOID ConfigurationData, IN PCONFIGURATION_COMPONENT Current ) /*++ Routine Description: This is the arc emulation routine for GetParent. Based on the current component, it returns the component's parent. Arguments: Current - Supplies pointer to the current configuration component Return Value: ESUCCESS - Data successfully returned. --*/ { PCONFIGURATION_COMPONENT_DATA CurrentEntry; if (Current) { CurrentEntry = CONTAINING_RECORD(Current, CONFIGURATION_COMPONENT_DATA, ComponentEntry); RtlMoveMemory(ConfigurationData, CurrentEntry->ConfigurationData, Current->ConfigurationDataLength); return(ESUCCESS); } else { return(EINVAL); } } PCHAR AEGetEnvironment( IN PCHAR Variable ) /*++ Routine Description: This is the arc emulation routine for ArcGetEnvironment. It returns the value of the specified NVRAM environment variable. NOTE John Vert (jvert) 23-Apr-1992 This particular implementation uses the Daylight Savings Bit on the Real Time Clock to reflect the state of the LastKnownGood environment variable. This is the only variable we support. Arguments: Variable - Supplies the name of the environment variable to look up. Return Value: A pointer to the specified environment variable's value, or NULL if the variable does not exist. --*/ { UCHAR StatusByte; if (_stricmp(Variable, "LastKnownGood") != 0) { return(NULL); } // // Read the Daylight Savings Bit out of the RTC to determine whether // the LastKnownGood environment variable is TRUE or FALSE. // WRITE_PORT_UCHAR(CMOS_CONTROL_PORT, CMOS_STATUS_B); StatusByte = READ_PORT_UCHAR(CMOS_DATA_PORT); if (StatusByte & CMOS_DAYLIGHT_BIT) { return("TRUE"); } else { return(NULL); } } ARC_STATUS AEOpen( IN PCHAR OpenPath, IN OPEN_MODE OpenMode, OUT PULONG FileId ) /*++ Routine Description: Opens the file or device specified by OpenPath. Arguments: OpenPath - Supplies a pointer to the fully-qualified path name. OpenMode - Supplies the mode to open the file. 0 - Read Only 1 - Write Only 2 - Read/Write FileId - Returns the file descriptor for use with the Close, Read, Write, and Seek routines Return Value: ESUCCESS - File successfully opened. --*/ { ARC_STATUS Status; CHAR Buffer[128]; Status = RamdiskOpen( OpenPath, OpenMode, FileId ); if (Status == ESUCCESS) { return(ESUCCESS); } Status = BiosConsoleOpen( OpenPath, OpenMode, FileId ); if (Status == ESUCCESS) { return(ESUCCESS); } // // Once a disk driver has been loaded we need to disable bios access to // all drives to avoid mixing bios & driver i/o operations. // if(AEBiosDisabled == FALSE) { Status = BiosPartitionOpen( OpenPath, OpenMode, FileId ); if (Status == ESUCCESS) { return(ESUCCESS); } } // // It's not the console or a BIOS partition, so let's try the SCSI // driver. // // // Find a free FileId // *FileId = 2; while (BlFileTable[*FileId].Flags.Open == 1) { *FileId += 1; if (*FileId == BL_FILE_TABLE_SIZE) { return(ENOENT); } } strcpy(Buffer,OpenPath); Status = ScsiDiskOpen( Buffer, OpenMode, FileId ); if (Status == ESUCCESS) { // // SCSI successfully opened it. For now, we stick the appropriate // SCSI DeviceEntryTable into the BlFileTable. This is temporary. // BlFileTable[*FileId].Flags.Open = 1; BlFileTable[*FileId].DeviceEntryTable = &ScsiDiskEntryTable; return(ESUCCESS); } return(Status); } ARC_STATUS AESeek ( IN ULONG FileId, IN PLARGE_INTEGER Offset, IN SEEK_MODE SeekMode ) /*++ Routine Description: Changes the current offset of the file specified by FileId Arguments: FileId - specifies the file on which the current offset is to be changed. Offset - New offset into file. SeekMode - Either SeekAbsolute or SeekRelative SeekEndRelative is not supported Return Value: ESUCCESS - Operation completed succesfully EBADF - Operation did not complete successfully. --*/ { return(BlFileTable[FileId].DeviceEntryTable->Seek)( FileId, Offset, SeekMode ); } ARC_STATUS AEClose ( IN ULONG FileId ) /*++ Routine Description: Closes the file specified by FileId Arguments: FileId - specifies the file to close Return Value: ESUCCESS - Operation completed succesfully EBADF - Operation did not complete successfully. --*/ { return(BlFileTable[FileId].DeviceEntryTable->Close)(FileId); } ARC_STATUS AEReadStatus( IN ULONG FileId ) /*++ Routine Description: Determines if data is available on the specified device Arguments: FileId - Specifies the device to check for data. Return Value: ESUCCESS - At least one byte is available. EAGAIN - No data is available --*/ { // // Special case for console input // if (FileId == 0) { // // Give priority to dumb terminal // if (BlIsTerminalConnected() && (PortBufferStart != PortBufferEnd)) { return(ESUCCESS); } if (BlIsTerminalConnected() && (BlPortPollOnly(BlTerminalDeviceId) == CP_GET_SUCCESS)) { return(ESUCCESS); } return(BiosConsoleReadStatus(FileId)); } else { return(BlArcNotYetImplemented(FileId)); } } ARC_STATUS AERead ( IN ULONG FileId, OUT PVOID Buffer, IN ULONG Length, OUT PULONG Count ) /*++ Routine Description: Reads from the specified file or device Arguments: FileId - specifies the file to read from Buffer - Address of buffer to hold the data that is read Length - Maximum number of bytes to read Count - Address of location in which to store the actual bytes read. Return Value: ESUCCESS - Read completed successfully !ESUCCESS - Read failed. --*/ { ARC_STATUS Status; ULONG Limit; ULONG PartCount; PCHAR TmpBuffer; ULONG StartTime; ULONG LastTime; UCHAR Ch; // // Special case console input // if (FileId == 0) { RetryRead: if (BlIsTerminalConnected()) { *Count = 0; TmpBuffer = (PCHAR)Buffer; while (*Count < Length) { // // First return any buffered input // if (PortBufferStart != PortBufferEnd) { TmpBuffer[*Count] = PortBuffer[PortBufferStart]; PortBufferStart++; PortBufferStart = PortBufferStart % PORT_BUFFER_SIZE; *Count = *Count + 1; continue; } // // Now check for new input // if (BlPortPollByte(BlTerminalDeviceId, TmpBuffer + *Count) != CP_GET_SUCCESS) { break; } // // Convert ESC key to the local equivalent // if (TmpBuffer[*Count] == 0x1b) { TmpBuffer[*Count] = (CHAR)ASCI_CSI_IN; // // Wait for the user to type a key. // StartTime = AEGetRelativeTime(); while (BlPortPollOnly(BlTerminalDeviceId) != CP_GET_SUCCESS) { LastTime = AEGetRelativeTime(); // // if the counter wraps back to zero, just restart the wait. // if (LastTime < StartTime) { StartTime = LastTime; } // // If one second has passed, the user must have just wanted a single // escape key, so return with that. // if ((LastTime - StartTime) > 1) { *Count = *Count + 1; return (ESUCCESS); } } // // We have another key, get it and translate the escape sequence. // if (BlPortPollByte(BlTerminalDeviceId, &Ch) != CP_GET_SUCCESS) { *Count = *Count + 1; return (ESUCCESS); } switch (Ch) { case '@': // F12 key PortBuffer[PortBufferEnd] = 'O'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; PortBuffer[PortBufferEnd] = 'B'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; break; case '!': // F11 key PortBuffer[PortBufferEnd] = 'O'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; PortBuffer[PortBufferEnd] = 'A'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; break; case '0': // F10 key PortBuffer[PortBufferEnd] = 'O'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; PortBuffer[PortBufferEnd] = 'M'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; break; case '9': // F9 key PortBuffer[PortBufferEnd] = 'O'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; PortBuffer[PortBufferEnd] = 'p'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; break; case '8': // F8 key PortBuffer[PortBufferEnd] = 'O'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; PortBuffer[PortBufferEnd] = 'r'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; break; case '7': // F7 key PortBuffer[PortBufferEnd] = 'O'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; PortBuffer[PortBufferEnd] = 'q'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; break; case '6': // F6 key PortBuffer[PortBufferEnd] = 'O'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; PortBuffer[PortBufferEnd] = 'u'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; break; case '5': // F5 key PortBuffer[PortBufferEnd] = 'O'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; PortBuffer[PortBufferEnd] = 't'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; break; case '4': // F4 key PortBuffer[PortBufferEnd] = 'O'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; PortBuffer[PortBufferEnd] = 'x'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; break; case '3': // F3 key PortBuffer[PortBufferEnd] = 'O'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; PortBuffer[PortBufferEnd] = 'w'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; break; case '2': // F2 key PortBuffer[PortBufferEnd] = 'O'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; PortBuffer[PortBufferEnd] = 'Q'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; break; case '1': // F1 key PortBuffer[PortBufferEnd] = 'O'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; PortBuffer[PortBufferEnd] = 'P'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; break; case 'H': // Home key case 'h': // Home key PortBuffer[PortBufferEnd] = 'H'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; break; case 'K': // End key case 'k': // End key PortBuffer[PortBufferEnd] = 'K'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; break; case '+': // Insert key PortBuffer[PortBufferEnd] = '@'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; break; case '-': // Del key PortBuffer[PortBufferEnd] = 'P'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; break; case (UCHAR)TAB_KEY: // Tab key PortBuffer[PortBufferEnd] = (UCHAR)TAB_KEY; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; break; case '[': // Cursor movement key // // The local computer can run a lot faster than the serial port can give bytes, // so spin, polling, for a second. // StartTime = AEGetRelativeTime(); while (BlPortPollOnly(BlTerminalDeviceId) != CP_GET_SUCCESS) { LastTime = AEGetRelativeTime(); // // if the counter wraps back to zero, just restart the wait. // if (LastTime < StartTime) { StartTime = LastTime; } // // If one second has passed, we must be done. // if ((LastTime - StartTime) > 1) { break; } } if (BlPortPollByte(BlTerminalDeviceId, &Ch) != CP_GET_SUCCESS) { PortBuffer[PortBufferEnd] = '['; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; break; } if ((Ch == 'A') || (Ch == 'B') || (Ch == 'C') || (Ch == 'D')) { // Arrow key. PortBuffer[PortBufferEnd] = Ch; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; } else { // // Leave it as is // PortBuffer[PortBufferEnd] = '['; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; PortBuffer[PortBufferEnd] = Ch; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; } break; default: PortBuffer[PortBufferEnd] = Ch; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; break; } } else if (TmpBuffer[*Count] == 0x7F) { // DEL key TmpBuffer[*Count] = (CHAR)ASCI_CSI_IN; PortBuffer[PortBufferEnd] = 'P'; PortBufferEnd++; PortBufferEnd = PortBufferEnd % PORT_BUFFER_SIZE; } *Count = *Count + 1; } if (*Count != 0) { return(ESUCCESS); } } if (BiosConsoleReadStatus(FileId) == ESUCCESS) { return(BiosConsoleRead(FileId,Buffer,Length,Count)); } goto RetryRead; } else { // // Declare a local 64KB aligned buffer, so we don't have to // break up I/Os of size less than 64KB, because the buffer // crosses a 64KB boundary. // static PCHAR AlignedBuf = 0; BOOLEAN fUseAlignedBuf; // // Initialize the AlignedBuf once from the pool. // if (!AlignedBuf) { AlignedBuf = FwAllocatePool(128 * 1024); AlignedBuf = ALIGN_BUFFER_ON_BOUNDARY(AlignedBuf, 64 * 1024); } *Count = 0; do { fUseAlignedBuf = FALSE; if (((ULONG) Buffer & 0xffff0000) != (((ULONG) Buffer + Length - 1) & 0xffff0000)) { // // If the buffer crosses the 64KB boundary use our // aligned buffer instead. If we don't have an aligned // buffer, adjust the read size. // if (AlignedBuf) { fUseAlignedBuf = TRUE; // // We can read max 64KB into our aligned // buffer. // Limit = Length; if (Limit > (ULONG) 0xFFFF) { Limit = (ULONG) 0xFFFF; } } else { Limit = (64 * 1024) - ((ULONG_PTR) Buffer & 0xFFFF); } } else { Limit = Length; } Status = (BlFileTable[FileId].DeviceEntryTable->Read)( FileId, (fUseAlignedBuf) ? AlignedBuf : Buffer, Limit, &PartCount ); // // If we used our aligned buffer, copy the read data // to the callers buffer. // if (fUseAlignedBuf) { RtlCopyMemory(Buffer, AlignedBuf, PartCount); } *Count += PartCount; Length -= Limit; (PCHAR) Buffer += Limit; if (Status != ESUCCESS) { #if DBG BlPrint("Disk I/O error: Status = %lx\n",Status); #endif return(Status); } } while (Length > 0); return(Status); } } ARC_STATUS AEWrite ( IN ULONG FileId, OUT PVOID Buffer, IN ULONG Length, OUT PULONG Count ) /*++ Routine Description: Writes to the specified file or device Arguments: FileId - Supplies the file or device to write to Buffer - Supplies address of the data to be written Length - Supplies number of bytes to write Count - Address of location in which to store the actual bytes written. Return Value: ESUCCESS - Read completed successfully !ESUCCESS - Read failed. --*/ { ARC_STATUS Status; ULONG Limit; ULONG PartCount; PUCHAR TmpBuffer, String; UCHAR Char; USHORT WChar; // // Special case for console output // if (FileId == 1) { if (BlIsTerminalConnected()) { BOOLEAN InTerminalEscape = FALSE; // // Translate ANSI codes to vt100 escape sequences // TmpBuffer = (PUCHAR)Buffer; Limit = Length; if (Length == 4) { if (strncmp(TmpBuffer, "\033[2J", Length)==0) { // // 2J turns into HJ // // (erase entire screen) // TmpBuffer = "\033[H\033[J"; Limit = 6; } else if (strncmp(TmpBuffer, "\033[0J", Length)==0) { // // 0J turns into J // // (erase to end of screen) // TmpBuffer = "\033[J"; Limit = 3; } else if (strncmp(TmpBuffer, "\033[0K", Length)==0) { // // 0K turns into K // // (erase to end of the line) // TmpBuffer = "\033[K"; Limit = 3; } else if (strncmp(TmpBuffer, "\033[0m", Length)==0) { // // 0m turns into m // // (turn attributes off) // TmpBuffer = "\033[m"; Limit = 3; } } // // loop through the string to be output, printing data to the // headless terminal. // String = TmpBuffer; for (PartCount = 0; PartCount < Limit; PartCount++, String++) { #if UTF8_CLIENT_SUPPORT // // check if we're in a DBCS language. If we are, then we // need to translate the characters into UTF8 codes by // referencing a lookup table in bootfont.bin // if (DbcsLangId) { UCHAR UTF8Encoding[3]; ULONG i; if (GrIsDBCSLeadByte(*String)) { // // double byte characters have their own separate table // from the SBCS characters. // // we need to advance the string forward 2 characters // for double byte characters. // GetDBCSUtf8Translation(String,UTF8Encoding); String += 1; PartCount += 1; } else { ULONG Bytes; LPSTR p; // // single byte characters have their own separate table // from the DBCS characters. // GetSBCSUtf8Translation(String,UTF8Encoding); } for( i = 0; i < 3; i++ ) { if( UTF8Encoding[i] != 0 ) { BlPortPutByte( BlTerminalDeviceId, UTF8Encoding[i] ); FwStallExecution(BlTerminalDelay); } } } else #endif { // // standard ASCII character // Char = *String; #if 1 // // filter some characters that aren't printable in VT100 // into substitute characters which are printable // if (Char & 0x80) { switch (Char) { case 0xB0: // Light shaded block case 0xB3: // Light vertical case 0xBA: // Double vertical line Char = '|'; break; case 0xB1: // Middle shaded block case 0xDC: // Lower half block case 0xDD: // Right half block case 0xDE: // Left half block case 0xDF: // Upper half block Char = '%'; break; case 0xB2: // Dark shaded block case 0xDB: // Full block Char = '#'; break; case 0xA9: // Reversed NOT sign case 0xAA: // NOT sign case 0xBB: // '»' case 0xBC: // '¼' case 0xBF: // '¿' case 0xC0: // 'À' case 0xC8: // 'È' case 0xC9: // 'É' case 0xD9: // 'Ù' case 0xDA: // 'Ú' Char = '+'; break; case 0xC4: // 'Ä' Char = '-'; break; case 0xCD: // 'Í' Char = '='; break; } } #endif // // If the high-bit is still set, and we're here, then we know we're // not doing DBCS/SBCS characters. We need to convert this // 8bit ANSI character into unicode, then UTF8 encode that, then send // it over the wire. // if( Char & 0x80 ) { UCHAR UTF8Encoding[3]; ULONG i; // // Lookup the Unicode equivilent of this 8-bit ANSI value. // UTF8Encode( PcAnsiToUnicode[(Char & 0x7F)], UTF8Encoding ); for( i = 0; i < 3; i++ ) { if( UTF8Encoding[i] != 0 ) { BlPortPutByte( BlTerminalDeviceId, UTF8Encoding[i] ); FwStallExecution(BlTerminalDelay); } } } else { // // write the data to the port. Note that we write an 8 bit // character to the terminal, and that the remote display // must correctly interpret the code for it to display // properly. // BlPortPutByte(BlTerminalDeviceId, Char); FwStallExecution(BlTerminalDelay); } } } } return (BiosConsoleWrite(FileId,Buffer,Length,Count)); } else { *Count = 0; do { if (((ULONG) Buffer & 0xffff0000) != (((ULONG) Buffer + Length) & 0xffff0000)) { Limit = 0x10000 - ((ULONG) Buffer & 0x0000ffff); } else { Limit = Length; } Status = (BlFileTable[FileId].DeviceEntryTable->Write)( FileId, Buffer, Limit, &PartCount ); *Count += PartCount; Length -= Limit; (PCHAR) Buffer += Limit; if (Status != ESUCCESS) { #if DBG BlPrint("AERead: Status = %lx\n",Status); #endif return(Status); } } while (Length > 0); return(Status); } } ARC_STATUS AEGetFileInformation( IN ULONG FileId, OUT PFILE_INFORMATION FileInformation ) { return(BlFileTable[FileId].DeviceEntryTable->GetFileInformation)( FileId, FileInformation); } TIME_FIELDS AETime; PTIME_FIELDS AEGetTime( VOID ) { ULONG Date,Time; GET_DATETIME(&Date,&Time); // // Date and time are filled as as follows: // // Date: // // bits 0 - 4 : day // bits 5 - 8 : month // bits 9 - 31 : year // // Time: // // bits 0 - 5 : second // bits 6 - 11 : minute // bits 12 - 16 : hour // AETime.Second = (CSHORT)((Time & 0x0000003f) >> 0); AETime.Minute = (CSHORT)((Time & 0x00000fc0) >> 6); AETime.Hour = (CSHORT)((Time & 0x0001f000) >> 12); AETime.Day = (CSHORT)((Date & 0x0000001f) >> 0); AETime.Month = (CSHORT)((Date & 0x000001e0) >> 5); AETime.Year = (CSHORT)((Date & 0xfffffe00) >> 9); AETime.Milliseconds = 0; // info is not available AETime.Weekday = 7; // info is not available - set out of range return(&AETime); } ULONG AEGetRelativeTime( VOID ) /*++ Routine Description: Returns the time in seconds since some arbitrary starting point. Arguments: None Return Value: Time in seconds since some arbitrary starting point. --*/ { ULONG TimerTicks; TimerTicks = GET_COUNTER(); return((TimerTicks*10) / 182); } VOID AEReboot( VOID ) /*++ Routine Description: Reboots the machine. Arguments: None Return Value: Does not return --*/ { ULONG DriveId; ULONG Status; TextGrTerminate(); // // HACKHACK John Vert (jvert) // Some SCSI drives get really confused and return zeroes when // you use the BIOS to query their size after the AHA driver has // initialized. This can completely tube OS/2 or DOS. So here // we try and open both BIOS-accessible hard drives. Our open // code is smart enough to retry if it gets back zeros, so hopefully // this will give the SCSI drives a chance to get their act together. // Status = ArcOpen("multi(0)disk(0)rdisk(0)partition(0)", ArcOpenReadOnly, &DriveId); if (Status == ESUCCESS) { ArcClose(DriveId); } Status = ArcOpen("multi(0)disk(0)rdisk(1)partition(0)", ArcOpenReadOnly, &DriveId); if (Status == ESUCCESS) { ArcClose(DriveId); } REBOOT_PROCESSOR(); } ARC_STATUS HardDiskPartitionOpen( IN ULONG FileId, IN ULONG DiskId, IN UCHAR PartitionNumber ) /*++ Routine Description: This routine opens the specified partition and sets the partition info in the FileTable at the specified index. It does not fill in the Device Entry table. It reads the partition information until the requested partition is found or no more partitions are defined. Arguments: FileId - Supplies the file id for the file table entry. DiskId - Supplies the file id for the physical device. PartitionNumber - Supplies the zero-based partition number Return Value: If a valid partition is found on the hard disk, then ESUCCESS is returned. Otherwise, EIO is returned. --*/ { USHORT DataBuffer[SECTOR_SIZE / sizeof(USHORT)]; PPARTITION_DESCRIPTOR Partition; ULONG PartitionLength; ULONG StartingSector; ULONG VolumeOffset; ARC_STATUS Status; BOOLEAN PrimaryPartitionTable; ULONG PartitionOffset=0; ULONG PartitionIndex,PartitionCount=0; ULONG Count; LARGE_INTEGER SeekPosition; BlFileTable[FileId].u.PartitionContext.DiskId=(UCHAR)DiskId; BlFileTable[FileId].Position.QuadPart=0; VolumeOffset=0; PrimaryPartitionTable=TRUE; // // Change to a 1-based partition number // PartitionNumber++; do { SeekPosition.QuadPart = (LONGLONG)PartitionOffset * SECTOR_SIZE; Status = (BlFileTable[DiskId].DeviceEntryTable->Seek)(DiskId, &SeekPosition, SeekAbsolute ); if (Status != ESUCCESS) { return(Status); } Status = (BlFileTable[DiskId].DeviceEntryTable->Read)(DiskId, DataBuffer, SECTOR_SIZE, &Count ); if (Status != ESUCCESS) { return Status; } // // If sector zero is not a master boot record, then return failure // status. Otherwise return success. // if (DataBuffer[BOOT_SIGNATURE_OFFSET] != BOOT_RECORD_SIGNATURE) { #if DBG BlPrint("Boot record signature %x not found (%x found)\n", BOOT_RECORD_SIGNATURE, DataBuffer[BOOT_SIGNATURE_OFFSET] ); #endif Status = EIO; break; } // // Read the partition information until the four entries are // checked or until we found the requested one. // Partition = (PPARTITION_DESCRIPTOR)&DataBuffer[PARTITION_TABLE_OFFSET]; for (PartitionIndex=0; PartitionIndex < NUM_PARTITION_TABLE_ENTRIES; PartitionIndex++,Partition++) { // // Count first the partitions in the MBR. The units // inside the extended partition are counted later. // if ((Partition->PartitionType != PARTITION_ENTRY_UNUSED) && (Partition->PartitionType != STALE_GPT_PARTITION_ENTRY) && !IsContainerPartition(Partition->PartitionType)) { PartitionCount++; // another partition found. } // // Check if the requested partition has already been found. // set the partition info in the file table and return. // if (PartitionCount == PartitionNumber) { StartingSector = (ULONG)(Partition->StartingSectorLsb0) | (ULONG)(Partition->StartingSectorLsb1 << 8) | (ULONG)(Partition->StartingSectorMsb0 << 16) | (ULONG)(Partition->StartingSectorMsb1 << 24); PartitionLength = (ULONG)(Partition->PartitionLengthLsb0) | (ULONG)(Partition->PartitionLengthLsb1 << 8) | (ULONG)(Partition->PartitionLengthMsb0 << 16) | (ULONG)(Partition->PartitionLengthMsb1 << 24); BlFileTable[FileId].u.PartitionContext.PartitionLength.QuadPart = (PartitionLength << SECTOR_SHIFT); BlFileTable[FileId].u.PartitionContext.StartingSector=PartitionOffset + StartingSector; return ESUCCESS; } } // // If requested partition was not yet found. // Look for an extended partition. // Partition = (PPARTITION_DESCRIPTOR)&DataBuffer[PARTITION_TABLE_OFFSET]; PartitionOffset = 0; for (PartitionIndex=0; PartitionIndex < NUM_PARTITION_TABLE_ENTRIES; PartitionIndex++,Partition++) { if (IsContainerPartition(Partition->PartitionType)) { StartingSector = (ULONG)(Partition->StartingSectorLsb0) | (ULONG)(Partition->StartingSectorLsb1 << 8) | (ULONG)(Partition->StartingSectorMsb0 << 16) | (ULONG)(Partition->StartingSectorMsb1 << 24); PartitionOffset = VolumeOffset+StartingSector; if (PrimaryPartitionTable) { VolumeOffset = StartingSector; } break; // only one partition can be extended. } } PrimaryPartitionTable=FALSE; } while (PartitionOffset != 0); return EBADF; } VOID BlpTranslateDosToArc( IN PCHAR DosName, OUT PCHAR ArcName ) /*++ Routine Description: This routine takes a DOS drive name ("A:" "B:" "C:" etc.) and translates it into an ARC name. ("multi(0)disk(0)rdisk(0)partition(1)") N.B. This will always return some sort of name suitable for passing to BiosPartitionOpen. The name it constructs may not be an actual partition. BiosPartitionOpen is responsible for determining whether the partition actually exists. Since no other driver should ever use ARC names beginning with "multi(0)disk(0)..." this will not be a problem. (there is no way this routine will construct a name that BiosPartitionOpen will not open, but some other random driver will grab and successfully open) Arguments: DosName - Supplies the DOS name of the drive. ArcName - Returns the ARC name of the drive. Return Value: --*/ { ARC_STATUS Status; ULONG DriveId; ULONG PartitionNumber; ULONG PartitionCount; ULONG Count; USHORT DataBuffer[SECTOR_SIZE / sizeof(USHORT)]; PPARTITION_DESCRIPTOR Partition; ULONG PartitionIndex; BOOLEAN HasPrimary; LARGE_INTEGER SeekPosition; // // Eliminate the easy ones first. // A: is always "multi(0)disk(0)fdisk(0)partition(0)" // B: is always "multi(0)disk(0)fdisk(1)partition(0)" // C: is always "multi(0)disk(0)rdisk(0)partition(1)" // if (_stricmp(DosName,"A:")==0) { strcpy(ArcName,"multi(0)disk(0)fdisk(0)partition(0)"); return; } if (_stricmp(DosName,"B:")==0) { strcpy(ArcName,"multi(0)disk(0)fdisk(1)partition(0)"); return; } if (_stricmp(DosName,"C:")==0) { strcpy(ArcName,"multi(0)disk(0)rdisk(0)partition(1)"); return; } // // Now things get more unpleasant. If there are two drives, then // D: is the primary partition on the second drive. Successive letters // are the secondary partitions on the first drive, then back to the // second drive when that runs out. // // The exception to this is when there is no primary partition on the // second drive. Then, we letter the partitions on the first driver // consecutively, and when those partitions run out, we letter the // partitions on the second drive. // // I have no idea who came up with this wonderful scheme, but we have // to live with it. // // // Try to open the second drive. If this doesn't work, we only have // one drive and life is easy. // Status = ArcOpen("multi(0)disk(0)rdisk(1)partition(0)", ArcOpenReadOnly, &DriveId ); if (Status != ESUCCESS) { // // We only have one drive, so whatever drive letter he's requesting // has got to be on it. // sprintf(ArcName, "multi(0)disk(0)rdisk(0)partition(%d)", toupper(DosName[0]) - 'C' + 1 ); return; } else { // // Now we read the partition table off the second drive, so we can // tell if there is a primary partition or not. // SeekPosition.QuadPart = 0; Status = ArcSeek(DriveId, &SeekPosition, SeekAbsolute); if (Status != ESUCCESS) { ArcName[0]='\0'; return; } Status = ArcRead(DriveId, DataBuffer, SECTOR_SIZE, &Count); ArcClose(DriveId); if (Status != ESUCCESS) { ArcName[0] = '\0'; return; } HasPrimary = FALSE; Partition = (PPARTITION_DESCRIPTOR)&DataBuffer[PARTITION_TABLE_OFFSET]; for (PartitionIndex = 0; PartitionIndex < NUM_PARTITION_TABLE_ENTRIES; PartitionIndex++,Partition++) { if (IsRecognizedPartition(Partition->PartitionType)) { HasPrimary = TRUE; } } // // Now we have to go through and count // the partitions on the first drive. We do this by just constructing // ARC names for each successive partition until one BiosPartitionOpen // call fails. // PartitionCount = 0; do { ++PartitionCount; sprintf(ArcName, "multi(0)disk(0)rdisk(0)partition(%d)", PartitionCount+1); Status = BiosPartitionOpen( ArcName, ArcOpenReadOnly, &DriveId ); if (Status==ESUCCESS) { BiosPartitionClose(DriveId); } } while ( Status == ESUCCESS ); PartitionNumber = toupper(DosName[0])-'C' + 1; if (HasPrimary) { // // There is Windows NT primary partition on the second drive. // // If the DosName is "D:" then we know // this is the first partition on the second drive. // if (_stricmp(DosName,"D:")==0) { strcpy(ArcName,"multi(0)disk(0)rdisk(1)partition(1)"); return; } if (PartitionNumber-1 > PartitionCount) { PartitionNumber -= PartitionCount; sprintf(ArcName, "multi(0)disk(0)rdisk(1)partition(%d)", PartitionNumber ); } else { sprintf(ArcName, "multi(0)disk(0)rdisk(0)partition(%d)", PartitionNumber-1); } } else { // // There is no primary partition on the second drive, so we // consecutively letter the partitions on the first drive, // then the second drive. // if (PartitionNumber > PartitionCount) { PartitionNumber -= PartitionCount; sprintf(ArcName, "multi(0)disk(0)rdisk(1)partition(%d)", PartitionNumber ); } else { sprintf(ArcName, "multi(0)disk(0)rdisk(0)partition(%d)", PartitionNumber); } } return; } } VOID FwStallExecution( IN ULONG Microseconds ) /*++ Routine Description: Does a busy wait for a specified number of microseconds (very approximate!) Arguments: Microseconds - Supplies the number of microseconds to busy wait. Return Value: None. --*/ { ULONG FinalCount; FinalCount = Microseconds * FwStallCounter; _asm { mov eax,FinalCount looptop: sub eax,1 jnz short looptop } } BOOLEAN FwGetPathMnemonicKey( IN PCHAR OpenPath, IN PCHAR Mnemonic, IN PULONG Key ) /*++ Routine Description: This routine looks for the given Mnemonic in OpenPath. If Mnemonic is a component of the path, then it converts the key value to an integer wich is returned in Key. Arguments: OpenPath - Pointer to a string that contains an ARC pathname. Mnemonic - Pointer to a string that contains a ARC Mnemonic Key - Pointer to a ULONG where the Key value is stored. Return Value: FALSE if mnemonic is found in path and a valid key is converted. TRUE otherwise. --*/ { return(BlGetPathMnemonicKey(OpenPath,Mnemonic,Key)); } PCONFIGURATION_COMPONENT FwAddChild ( IN PCONFIGURATION_COMPONENT Component, IN PCONFIGURATION_COMPONENT NewComponent, IN PVOID ConfigurationData OPTIONAL ) { ULONG Size; PCONFIGURATION_COMPONENT_DATA NewEntry; PCONFIGURATION_COMPONENT_DATA Parent; if (Component==NULL) { return(NULL); } Parent = CONTAINING_RECORD(Component, CONFIGURATION_COMPONENT_DATA, ComponentEntry); Size = sizeof(CONFIGURATION_COMPONENT_DATA) + NewComponent->IdentifierLength + 1; NewEntry = FwAllocateHeap(Size); if (NewEntry==NULL) { return(NULL); } RtlCopyMemory(&NewEntry->ComponentEntry, NewComponent, sizeof(CONFIGURATION_COMPONENT)); NewEntry->ComponentEntry.Identifier = (PUCHAR)(NewEntry+1); NewEntry->ComponentEntry.ConfigurationDataLength = 0; strncpy(NewEntry->ComponentEntry.Identifier, NewComponent->Identifier, NewComponent->IdentifierLength); // // Add the new component as the first child of its parent. // NewEntry->Child = NULL; NewEntry->Sibling = Parent->Child; Parent->Child = NewEntry; return(&NewEntry->ComponentEntry); } PCONFIGURATION_COMPONENT FwGetComponent( IN PCHAR Pathname ) { PCONFIGURATION_COMPONENT Component; PCONFIGURATION_COMPONENT MatchComponent; PCHAR PathString; PCHAR MatchString; PCHAR Token; ULONG Key; PathString = Pathname; // // Get the the root component. // MatchComponent = FwGetChild(NULL); // // Repeat search for each new match component. // do { // // Get the first child of the current match component. // Component = FwGetChild( MatchComponent ); // // Search each child of the current match component for the next match. // while ( Component != NULL ) { // // Reset Token to be the current position on the pathname. // Token = PathString; MatchString = MnemonicTable[Component->Type]; // // Compare strings. // while (*MatchString == tolower(*Token)) { MatchString++; Token++; } // // Strings compare if the first mismatch is the terminator for // each. // if ((*MatchString == 0) && (*Token == '(')) { // // Form key. // Key = 0; Token++; while ((*Token != ')') && (*Token != 0)) { Key = (Key * 10) + *Token++ - '0'; } // // If the key matches the component matches, so update // pointers and break. // if (Component->Key == Key) { PathString = Token + 1; MatchComponent = Component; break; } } Component = FwGetPeer( Component ); } } while ((Component != NULL) && (*PathString != 0)); return MatchComponent; } /********************** * * The following are just stubs for the MIPS firmware. They all return NULL * ***********************/ ARC_STATUS FwDeleteComponent ( IN PCONFIGURATION_COMPONENT Component ) { return(ESUCCESS); } VOID AEGetArcDiskInformation( VOID ) { InitializeListHead(&(AEArcDiskInformation.DiskSignatures)); AEArcDiskInformationInitialized = TRUE; // // Scan through each node of the hardware tree - look for disk type // devices hanging off of multi-function controllers. // FwSearchTree(FwGetChild(NULL), PeripheralClass, DiskPeripheral, -1, AEEnumerateDisks); return; } BOOLEAN FwSearchTree( IN PCONFIGURATION_COMPONENT Node, IN CONFIGURATION_CLASS Class, IN CONFIGURATION_TYPE Type, IN ULONG Key, IN PFWNODE_CALLBACK CallbackRoutine ) /*++ Routine Description: Conduct a depth-first search of the firmware configuration tree starting at a given node, looking for nodes that match a given class and type. When a matching node is found, call a callback routine. Arguments: CurrentNode - node at which to begin the search. Class - configuration class to match, or -1 to match any class Type - configuration type to match, or -1 to match any class Key - key to match, or -1 to match any key FoundRoutine - pointer to a routine to be called when a node whose class and type match the class and type passed in is located. The routine takes a pointer to the configuration node and must return a boolean indicating whether to continue with the traversal. Return Value: FALSE if the caller should abandon the search. --*/ { PCONFIGURATION_COMPONENT child; do { if (child = FwGetChild(Node)) { if (!FwSearchTree(child, Class, Type, Key, CallbackRoutine)) { return(FALSE); } } if (((Class == -1) || (Node->Class == Class)) && ((Type == -1) || (Node->Type == Type)) && ((Key == (ULONG)-1) || (Node->Key == Key))) { if (!CallbackRoutine(Node)) { return(FALSE); } } Node = FwGetPeer(Node); } while ( Node != NULL ); return(TRUE); } VOID AEGetPathnameFromComponent( IN PCONFIGURATION_COMPONENT Component, OUT PCHAR ArcName ) /*++ Routine Description: This function builds an ARC pathname for the specified component. Arguments: Component - Supplies a pointer to a configuration component. ArcName - Returns the ARC name of the specified component. Caller must provide a large enough buffer. Return Value: None. --*/ { if (AEGetParent(Component) != NULL) { AEGetPathnameFromComponent(AEGetParent(Component),ArcName); // // append our segment to the arcname // sprintf(ArcName+strlen(ArcName), "%s(%d)", MnemonicTable[Component->Type], Component->Key); } else { // // We are the parent, initialize the string and return // ArcName[0] = '\0'; } return; } BOOLEAN AEEnumerateDisks( IN PCONFIGURATION_COMPONENT Disk ) /*++ Routine Description: Callback routine for enumerating the disks in the ARC firmware tree. It reads all the necessary information from the disk to uniquely identify it. Arguments: ConfigData - Supplies a pointer to the disk's ARC component data. Return Value: TRUE - continue searching FALSE - stop searching tree. --*/ { UCHAR path[100] = ""; ULONG key; AEGetPathnameFromComponent(Disk, path); #if 0 if((BlGetPathMnemonicKey(path, "multi", &key) == FALSE) || (BlGetPathMnemonicKey(path, "eisa", &key) == FALSE)) { DbgPrint("Found multi disk %s\n", path); } else { DbgPrint("Found disk %s\n", path); } #endif AEReadDiskSignature(path, FALSE); return TRUE; } BOOLEAN AEReadDiskSignature( IN PCHAR DiskName, IN BOOLEAN IsCdRom ) /*++ Routine Description: Given an ARC disk name, reads the MBR and adds its signature to the list of disks. Arguments: Diskname - Supplies the name of the disk. IsCdRom - Indicates whether the disk is a CD-ROM. Return Value: TRUE - Success FALSE - Failure --*/ { PARC_DISK_SIGNATURE signature; BOOLEAN status; signature = FwAllocateHeap(sizeof(ARC_DISK_SIGNATURE)); if (signature==NULL) { return(FALSE); } signature->ArcName = FwAllocateHeap(strlen(DiskName)+2); if (signature->ArcName==NULL) { return(FALSE); } status = BlGetDiskSignature(DiskName, IsCdRom, signature); if (status) { InsertHeadList(&(AEArcDiskInformation.DiskSignatures), &(signature->ListEntry)); } return(TRUE); } BOOLEAN BlFindDiskSignature( IN PCHAR DiskName, IN PARC_DISK_SIGNATURE Signature ) { PARC_DISK_SIGNATURE match; UCHAR buffer[] = "multi(xxx)disk(xxx)rdisk(xxx)"; if(AEArcDiskInformationInitialized == FALSE) { return FALSE; } // // If the disk name passed in contains an eisa component then convert // the entire string into one with a multi component. // if(strncmp(DiskName, "eisa", strlen("eisa")) == 0) { strcpy(&(buffer[1]), DiskName); RtlCopyMemory(buffer, "multi", 5); DiskName = buffer; } match = CONTAINING_RECORD(AEArcDiskInformation.DiskSignatures.Flink, ARC_DISK_SIGNATURE, ListEntry); while(&(match->ListEntry) != &(AEArcDiskInformation.DiskSignatures)) { if(strcmp(DiskName, match->ArcName) == 0) { PCHAR c; // // We found a match. Copy all the information out of this node. // // DbgPrint("BlFindDiskSignature found a match for %s - %#08lx\n", DiskName, match); Signature->CheckSum = match->CheckSum; Signature->Signature = match->Signature; Signature->ValidPartitionTable = match->ValidPartitionTable; strcpy(Signature->ArcName, match->ArcName); return TRUE; } match = CONTAINING_RECORD(match->ListEntry.Flink, ARC_DISK_SIGNATURE, ListEntry); } DbgPrint("BlFindDiskSignature found no match for %s\n", DiskName); return FALSE; } VOID AETerminateIo( VOID ) { if(AEDriverUnloadRoutine != NULL) { AEDriverUnloadRoutine(NULL); } return; }