/*++ Copyright (c) 1991 Microsoft Corporation Module Name: vdmredir.h Abstract: Contains common defines, structures, macros, etc. for VdmRedir. This file contains macros to read and write the 3 basic data structures from/to VDM memory. We *must* use these macros because the MIPS processor does not like unaligned data: a DWORD must be read/written on a DWORD boundary (low two bits in address = 00), a WORD must be read/written on a WORD boundary (low two bits in address = X0) and a BYTE can be read/written to any address (low two bits in address = XX). It is illegal to access a WORD at an address whose LSB is not 0, and a DWORD at an address whose 2 least significant bits are not both 0. Dos programs don't care much about alignment (smart ones do because there is a performance penalty for unaligned data on x86, but it still works). So we have to assume the worst case for MIPS and break down the read/writes of WORDs and DWORDs in VDM memory into BYTE read/writes In order to improve efficiency of load/store to potentially unaligned addresses, the following data pointer types are made available from this include file: ULPBYTE - unaligned byte pointer (same as LPBYTE) ULPWORD - unaligned word pointer ULPDWORD - unaligned dword pointer NB. Dependent upon mvdm.h Author: Richard L Firth (rfirth) 16-Sep-1991 Revision History: 16-Sep-1991 rfirth Created --*/ #ifndef _VDMREDIR_ #define _VDMREDIR_ #include // // PRIVATE - make a routine/data type inaccessible outside current module, but // only if not DEBUG version // #if DBG #define PRIVATE #else #define PRIVATE static #endif // // unaligned data pointer types. These produce exactly the same code as memory // accesses through 'aligned' pointers on x86, but generate code specific to // unaligned read/writes on MIPS (& other RISCs) // #ifdef UNALIGNED_VDM_POINTERS typedef BYTE UNALIGNED * ULPBYTE; typedef WORD UNALIGNED * ULPWORD; typedef DWORD UNALIGNED * ULPDWORD; #else typedef LPBYTE ULPBYTE; typedef LPWORD ULPWORD; typedef LPDWORD ULPDWORD; #endif // // misc. defines // #define BITS_IN_A_BYTE 8 #define LOCAL_DEVICE_PREFIX "\\\\." // // Define network interrupt to be on Irql 14. // If NETWORK_ICA changes to ICA_MASTER then vrnetb.c should only execute 1 eoi // If either change then NETWORK_INTERRUPT in int5c.inc must also change. // #if defined(NEC_98) #define NETWORK_ICA ICA_MASTER #define NETWORK_LINE 5 #else #define NETWORK_ICA ICA_SLAVE #define NETWORK_LINE 2 #endif // // helper macros // // // MAKE_DWORD - converts 2 16-bit words into a 32-bit double word // #define MAKE_DWORD(h, l) ((DWORD)(((DWORD)((WORD)(h)) << 16) | (DWORD)((WORD)(l)))) // // DWORD_FROM_WORDS - converts two 16-bit words into a 32-bit dword // #define DWORD_FROM_WORDS(h, l) MAKE_DWORD((h), (l)) // // HANDLE_FROM_WORDS - converts a pair of 16-bit words into a 32-bit handle // #define HANDLE_FROM_WORDS(h, l) ((HANDLE)(MAKE_DWORD((h), (l)))) // // POINTER_FROM_WORDS - returns a flat 32-bit VOID pointer (in the VDM) OR the // NULL macro, given the 16-bit real-mode segment & offset. On x86 this will // return 0 if we pass in 0:0 because all GetVDMAddr does is seg << 4 + off. // The MIPS version adds this to the start of the virtual DOS memory. The // problem arises when we have a NULL pointer, and want to keep it NULL - we // convert it to non-NULL on not x86 // //#define POINTER_FROM_WORDS(seg, off) ((LPVOID)GetVDMAddr((seg), (off))) //#define POINTER_FROM_WORDS(seg, off) (((((DWORD)(seg)) << 16) | (off)) ? ((LPVOID)GetVDMAddr((seg), (off))) : ((LPVOID)0)) #define POINTER_FROM_WORDS(seg, off) _inlinePointerFromWords((WORD)(seg), (WORD)(off)) // // LPSTR_FROM_WORDS - returns a 32-bit pointer to an ASCIZ string given the // 16-bit real-mode segment & offset // #define LPSTR_FROM_WORDS(seg, off) ((LPSTR)POINTER_FROM_WORDS((seg), (off))) // // LPBYTE_FROM_WORDS - returns a 32-bit byte pointer given the 16-bit // real-mode segment & offset // #define LPBYTE_FROM_WORDS(seg, off) ((LPBYTE)POINTER_FROM_WORDS((seg), (off))) // // READ_FAR_POINTER - read the pair of words in VDM memory, currently pointed at // by a 32-bit flat pointer and convert them to a 32-bit flat pointer // #define READ_FAR_POINTER(addr) ((LPVOID)(POINTER_FROM_WORDS(GET_SELECTOR(addr), GET_OFFSET(addr)))) // // READ_BYTE - retrieve a single byte from VDM memory. Both x86 and MIPS can // handle reading a single byte without pain // #define READ_BYTE(addr) (*((LPBYTE)(addr))) // // READ_WORD - read a single 16-bit little-endian word from VDM memory. x86 can // handle unaligned data, MIPS (&other RISCs) must be broken down into individual // BYTE reads & the WORD pieced together by shifting & oring. If we are using // UNALIGNED pointers then the RISC processor can handle non-aligned data // #ifdef i386 #define READ_WORD(addr) (*((LPWORD)(addr))) #else #ifdef UNALIGNED_VDM_POINTERS #define READ_WORD(addr) (*((ULPWORD)(addr))) #else #define READ_WORD(addr) (((WORD)READ_BYTE(addr)) | (((WORD)READ_BYTE((LPBYTE)(addr)+1)) << 8)) #endif // UNALIGNED_VDM_POINTERS #endif // i386 // // READ_DWORD - read a 4-byte little-endian double word from VDM memory. x86 can // handle unaligned data, MIPS (&other RISCs) must be broken down into individual // BYTE reads & the DWORD pieced together by shifting & oring. If we are using // UNALIGNED pointers then the RISC processor can handle non-aligned data // #ifdef i386 #define READ_DWORD(addr) (*((LPDWORD)(addr))) #else #ifdef UNALIGNED_VDM_POINTERS #define READ_DWORD(addr) (*((ULPDWORD)(addr))) #else #define READ_DWORD(addr) (((DWORD)READ_WORD(addr)) | (((DWORD)READ_WORD((LPWORD)(addr)+1)) << 16)) #endif // UNALIGNED_VDM_POINTERS #endif // i386 // // WRITE_BYTE - write a single byte in VDM memory. Both x86 and MIPS (RISC) can // write a single byte to a non-aligned address // #define WRITE_BYTE(addr, value) (*(LPBYTE)(addr) = (BYTE)(value)) // // WRITE_WORD - write a 16-bit little-endian value into VDM memory. x86 can write // WORD data to non-word-aligned address; MIPS (& other RISCs) cannot, so we // break down the write into 2 byte writes. If we are using UNALIGNED pointers // then the MIPS (&other RISCs) can generate code to handle this situation // #ifdef i386 #define WRITE_WORD(addr, value) (*((LPWORD)(addr)) = (WORD)(value)) #else #ifdef UNALIGNED_VDM_POINTERS #define WRITE_WORD(addr, value) (*((ULPWORD)(addr)) = (WORD)(value)) #else #define WRITE_WORD(addr, value) \ {\ ((LPBYTE)(addr))[0] = LOBYTE(value); \ ((LPBYTE)(addr))[1] = HIBYTE(value); \ } #endif // UNALIGNED_VDM_POINTERS #endif // i386 // // WRITE_DWORD - write a 32-bit DWORD value into VDM memory. x86 can write // DWORD data to non-dword-aligned address; MIPS (& other RISCs) cannot, so we // break down the write into 4 byte writes. If we are using UNALIGNED pointers // then the MIPS (&other RISCs) can generate code to handle this situation // #ifdef i386 #define WRITE_DWORD(addr, value) (*((LPDWORD)(addr)) = (DWORD)(value)) #else #ifdef UNALIGNED_VDM_POINTERS #define WRITE_DWORD(addr, value) (*((ULPDWORD)(addr)) = (DWORD)(value)) #else #define WRITE_DWORD(addr, value) \ { \ ((LPBYTE)(addr))[0] = LOBYTE(LOWORD((DWORD)(value))); \ ((LPBYTE)(addr))[1] = HIBYTE(LOWORD((DWORD)(value))); \ ((LPBYTE)(addr))[2] = LOBYTE(HIWORD((DWORD)(value))); \ ((LPBYTE)(addr))[3] = HIBYTE(HIWORD((DWORD)(value))); \ } #endif // UNALIGNED_VDM_POINTERS #endif // i386 // // WRITE_FAR_POINTER - write a 16:16 pointer into VDM memory. This is the same // as writing a DWORD // #define WRITE_FAR_POINTER(addr, ptr) WRITE_DWORD((addr), (DWORD)(ptr)) // // GET_SELECTOR - retrieves the selector word from the intel 32-bit far pointer // (DWORD) pointed at by (remember: stored as offset, segment) // #define GET_SELECTOR(pointer) READ_WORD((LPWORD)(pointer)+1) // // GET_SEGMENT - same as GET_SELECTOR // #define GET_SEGMENT(pointer) GET_SELECTOR(pointer) // // GET_OFFSET - retrieves the offset word from an intel 32-bit far pointer // (DWORD) pointed at by (remember: stored as offset, segment) // #define GET_OFFSET(pointer) READ_WORD((LPWORD)(pointer)) // // SET_SELECTOR - writes a word into the segment word of a real-mode far pointer // (DWORD) pointed at by (remember: stored as offset, segment) // #define SET_SELECTOR(pointer, word) WRITE_WORD(((LPWORD)(pointer)+1), (word)) // // SET_SEGMENT - same as SET_SELECTOR // #define SET_SEGMENT(pointer, word) SET_SELECTOR(pointer, word) // // SET_OFFSET - writes a word into the offset word of a real-mode far pointer // (DWORD) pointed at by (remember: stored as offset, segment) // #define SET_OFFSET(pointer, word) WRITE_WORD((LPWORD)(pointer), (word)) // // POINTER_FROM_POINTER - read a segmented pointer in the VDM from an address // pointed at by a flat 32-bit pointer. Convert the segmented pointer to a // flat pointer. SAME AS READ_FAR_POINTER // #define POINTER_FROM_POINTER(pointer) POINTER_FROM_WORDS(GET_SELECTOR(pointer), GET_OFFSET(pointer)) // // LPSTR_FROM_POINTER - perform a POINTER_FROM_POINTER, casting the result to // a string pointer. SAME AS READ_FAR_POINTER // #define LPSTR_FROM_POINTER(pointer) ((LPSTR)POINTER_FROM_POINTER(pointer)) // // LPBYTE_FROM_POINTER - perform a POINTER_FROM_POINTER, casting the result to // a byte pointer. SAME AS READ_FAR_POINTER // #define LPBYTE_FROM_POINTER(pointer) ((LPBYTE)POINTER_FROM_POINTER(pointer)) // // SET_ERROR - sets the caller's AX register in the VDM context descriptor to // the value given and sets the caller's VDM carry flag // #define SET_ERROR(err) {setAX(err); setCF(1);} // // SET_SUCCESS - sets the VDM caller's AX register to NERR_Success and clears // the carry flag // #define SET_SUCCESS() {setAX(NERR_Success); setCF(0);} // // SET_OK - an explicit version of SET_SUCCESS wherein NERR_Success would be // an inappropriate error, although the right value // #define SET_OK(value) {setAX(value); setCF(0);} // // Miscellaneous macros for working out sizes of things // // // ARRAY_ELEMENTS - gives the number of elements of a particular type in an // array // #define ARRAY_ELEMENTS(a) (sizeof(a)/sizeof((a)[0])) // // LAST_ELEMENT - returns the index of the last element in array // #define LAST_ELEMENT(a) (ARRAY_ELEMENTS(a)-1) // // BITSIN - returns the number of bits in a data type or structure. This is // predicated upon the number of bits in a byte being 8 and all data types // being composed of a collection of bytes (safe assumption?) // #define BITSIN(thing) (sizeof(thing) * BITS_IN_A_BYTE) // // Miscellaneous other macros // // // IS_ASCII_PATH_SEPARATOR - returns TRUE if ch is / or \. ch is a single // byte (ASCII) character // #define IS_ASCII_PATH_SEPARATOR(ch) (((ch) == '/') || ((ch) == '\\')) // // macros for setting CF and ZF flags for return from hardware interrupt // callback // #define SET_CALLBACK_NOTHING() {setZF(0); setCF(0);} #define SET_CALLBACK_NAMEPIPE() {setZF(0); setCF(1);} #define SET_CALLBACK_DLC() {setZF(1); setCF(0);} #define SET_CALLBACK_NETBIOS() {setZF(1); setCF(1);} // // DLC-specific macros etc. // extern LPVDM_REDIR_DOS_WINDOW lpVdmWindow; // // setPostRoutine - if dw is not 0 then we write the (DOS segmented) address of // the post routine into the dwPostRoutine field of the VDM_REDIR_DOS_WINDOW // structure passed to us at redir DLC initialization. We also set the flags // to indicate to the redir's hardware interrupt routine there is a DLC post // routine to run. If dw is 0 then we set the flags to indicate that there is // no post routine processing // #define setPostRoutine( dw ) if (dw) {\ (lpVdmWindow->dwPostRoutine = (DWORD)(dw));\ SET_CALLBACK_DLC();\ } else {\ SET_CALLBACK_NOTHING();\ } // // VR_ASYNC_DISPOSITION - we maintain a serialized list of these structures. // Used to dispose of VDM redir asynchronous completions in the order in which // they occurred // typedef struct _VR_ASYNC_DISPOSITION { // // Next - maintains a singly-linked list of dispositions // struct _VR_ASYNC_DISPOSITION* Next; // // AsyncDispositionRoutine - pointer to VOID function taking no args which // will dispose of the next asynchronous completion - Netbios, named pipe // or DLC // VOID (*AsyncDispositionRoutine)(VOID); } VR_ASYNC_DISPOSITION, *PVR_ASYNC_DISPOSITION; // // _inlinePointerFromWords - the POINTER_FROM_WORDS macro is inefficient if the // arguments are calls to eg. getES(), getBX() - the calls are made twice if // the pointer turns out to be non-zero. Use an inline function to achieve the // same results, but only call function arguments once // #ifdef i386 __inline LPVOID _inlinePointerFromWords(WORD seg, WORD off) { WORD _seg = seg; WORD _off = off; return (_seg + _off) ? (LPVOID)GetVDMAddr(_seg, _off) : 0; } #else LPVOID _inlinePointerFromWords(WORD seg, WORD off); #endif // // CONVERT_ADDRESS - convert a segmented (real or protect-mode) address to a // flat 32-bit address // //#define CONVERT_ADDRESS(seg, off, size, mode) !((WORD)(seg) | (WORD)(off)) ? 0 : Sim32GetVDMPointer((((DWORD)seg) << 16) + (DWORD)(off), (size), (mode)) #define CONVERT_ADDRESS(seg, off, size, mode) _inlineConvertAddress((WORD)(seg), (WORD)(off), (WORD)(size), (BOOLEAN)(mode)) #ifdef i386 __inline LPVOID _inlineConvertAddress(WORD Seg, WORD Off, WORD Size, BOOLEAN Pm) { WORD _seg = Seg; WORD _off = Off; return (_seg | _off) ? Sim32GetVDMPointer(((DWORD)_seg << 16) + _off, Size, Pm) : 0; } #else extern LPVOID _inlineConvertAddress(WORD Seg, WORD Off, WORD Size, BOOLEAN Pm); #endif #endif // _VDMREDIR_