/////////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2000, Microsoft Corp. All rights reserved. // // FILE // // radprxy.cpp // // SYNOPSIS // // Defines the reusable RadiusProxy engine. This should have no IAS specific // dependencies. // // MODIFICATION HISTORY // // 02/08/2000 Original version. // 05/30/2000 Eliminate QUESTIONABLE state. // /////////////////////////////////////////////////////////////////////////////// #include #include #include // Avoid dependencies on ntrtl.h extern "C" ULONG __stdcall RtlRandom(PULONG seed); // Extract a 32-bit integer from a buffer. ULONG ExtractUInt32(const BYTE* p) throw () { return (ULONG)(p[0] << 24) | (ULONG)(p[1] << 16) | (ULONG)(p[2] << 8) | (ULONG)(p[3] ); } // Insert a 32-bit integer into a buffer. void InsertUInt32(BYTE* p, ULONG val) throw () { *p++ = (BYTE)(val >> 24); *p++ = (BYTE)(val >> 16); *p++ = (BYTE)(val >> 8); *p = (BYTE)(val ); } // // Layout of a Microsoft State attribute // // struct MicrosoftState // { // BYTE checksum[4]; // BYTE vendorID[4]; // BYTE version[2]; // BYTE serverAddress[4]; // BYTE sourceID[4]; // BYTE sessionID[4]; // }; // // Extracts the creators address from a State attribute or INADDR_NONE if this // isn't a valid Microsoft State attributes. ULONG ExtractAddressFromState(const RadiusAttribute& state) throw () { if (state.length == 22 && !memcmp(state.value + 4, "\x00\x00\x01\x37\x00\x01", 6) && IASAdler32(state.value + 4, 18) == ExtractUInt32(state.value)) { return ExtractUInt32(state.value + 10); } return INADDR_NONE; } // Returns true if this is an Accounting-On/Off packet. bool IsNasStateRequest(const RadiusPacket& packet) throw () { const RadiusAttribute* status = FindAttribute( packet, RADIUS_ACCT_STATUS_TYPE ); if (!status) { return false; } ULONG value = ExtractUInt32(status->value); return value == 7 || value == 8; } RemotePort::RemotePort( ULONG ipAddress, USHORT port, PCSTR sharedSecret ) : address(ipAddress, port), secret((const BYTE*)sharedSecret, strlen(sharedSecret)) { } RemotePort::RemotePort(const RemotePort& port) : address(port.address), secret(port.secret), nextIdentifier(port.nextIdentifier) { } RemoteServer::RemoteServer( const RemoteServerConfig& config ) : guid(config.guid), authPort(config.ipAddress, config.authPort, config.authSecret), acctPort(config.ipAddress, config.acctPort, config.acctSecret), timeout(config.timeout), maxLost((LONG)config.maxLost), blackout(config.blackout), priority(config.priority), weight(config.weight), sendSignature(config.sendSignature), sendAcctOnOff(config.sendAcctOnOff), state(AVAILABLE), lostCount(0), expiry(0) { } ////////// // We can make this inline since it's never called from outside this file. ////////// inline bool RemoteServer::changeState(State from, State to) throw () { return (State)InterlockedCompareExchange( (LPLONG)&state, to, from ) == from; } bool RemoteServer::shouldBroadcast() throw () { // We only broadcast to unavailable servers and then only if we can lock the // server. if (changeState(UNAVAILABLE, LOCKED)) { ULONG64 now = GetSystemTime64(); // Has the blackout interval expired ? if (now > expiry) { // Yes, so set a new expiration ... expiry = now + blackout * 10000i64; // ... and unlock the server. If this transition fails, then the // server must have been marked available, so we don't want to send a // broadcast. return changeState(LOCKED, UNAVAILABLE); } // No, so just unlock and return false. changeState(LOCKED, UNAVAILABLE); } return false; } bool RemoteServer::onReceive() throw () { // Reset the lost count. lostCount = 0; // Force a state change to AVAILABLE. State previous = (State)InterlockedExchange((LPLONG)&state, AVAILABLE); // Did we transition? return previous == UNAVAILABLE; } bool RemoteServer::onTimeout() throw () { bool retval = false; // Have we exceeded the maxLost? if (InterlockedIncrement(&lostCount) >= maxLost) { // Yes, so lock the server ... if (changeState(AVAILABLE, LOCKED)) { // ... and set the blackout interval. expiry = GetSystemTime64() + blackout * 10000i64; if (changeState(LOCKED, UNAVAILABLE)) { // The server transitioned from AVAILABLE to UNAVAILABLE. retval = true; } } } return retval; } void RemoteServer::copyState(const RemoteServer& target) throw () { // Synchronize the ports. authPort.copyState(target.authPort); acctPort.copyState(target.acctPort); // Synchronize server availability. state = target.state; lostCount = target.lostCount; expiry = target.expiry; } bool RemoteServer::operator==(const RemoteServer& s) const throw () { return authPort == s.authPort && acctPort == s.acctPort && priority == s.priority && weight == s.weight && timeout == s.timeout && maxLost == s.maxLost && blackout == s.blackout && sendSignature == s.sendSignature && sendAcctOnOff == s.sendAcctOnOff; } ////////// // Used for sorting servers by priority. ////////// int __cdecl sortServersByPriority( const RemoteServer* const* server1, const RemoteServer* const* server2 ) throw () { return (int)(*server1)->priority - (int)(*server2)->priority; } ULONG ServerGroup::theSeed; ServerGroup::ServerGroup( PCWSTR groupName, RemoteServer* const* first, RemoteServer* const* last ) : servers(first, last), name(groupName) { // We don't allow empty groups. if (servers.empty()) { _com_issue_error(E_INVALIDARG); } if (theSeed == 0) { FILETIME ft; GetSystemTimeAsFileTime(&ft); theSeed = ft.dwLowDateTime | ft.dwHighDateTime; } // Sort by priority. servers.sort(sortServersByPriority); // Find the end of the top priority servers. This will be useful when doing // a forced pick. ULONG topPriority = (*servers.begin())->priority; for (endTopPriority = servers.begin(); endTopPriority != servers.end(); ++endTopPriority) { if ((*endTopPriority)->priority != topPriority) { break; } } // Find the max number of servers at any priority level. This will be useful // when allocating a buffer to hold the candidates. ULONG maxCount = 0, count = 0, priority = (*servers.begin())->priority; for (RemoteServer* const* i = begin(); i != end(); ++i) { if ((*i)->priority != priority) { priority = (*i)->priority; count = 0; } if (++count > maxCount) { maxCount = count; } } maxCandidatesSize = maxCount * sizeof(RemoteServer*); } RemoteServer* ServerGroup::pickServer( RemoteServer* const* first, RemoteServer* const* last ) throw () { // If the list has exactly one entry, there's nothing to do. if (last == first + 1) { return *first; } RemoteServer* const* i; // Compute the combined weight off all the servers. ULONG weight = 0; for (i = first; i != last; ++i) { weight += (*i)->weight; } // Pick a random number from [0, weight) ULONG offset = (ULONG) (((ULONG64)RtlRandom(&theSeed) * (ULONG64)weight) >> 31); // We don't test the last server since if we make it that far we have to use // it anyway. --last; // Iterate through the candidates until we reach the offset. for (i = first; i != last; ++i) { if ((*i)->weight >= offset) { break; } offset -= (*i)->weight; } return *i; } void ServerGroup::getServersForRequest( ProxyContext* context, BYTE packetCode, RequestStack& result ) const { // List of candidates. RemoteServer** first = (RemoteServer**)_alloca(maxCandidatesSize); RemoteServer** last = first; // Iterate through the servers. ULONG maxPriority = (ULONG)-1; for (RemoteServer* const* i = servers.begin(); i != servers.end(); ++i) { // If this test fails, we must have found a higher priority server that's // available. if ((*i)->priority > maxPriority) { break; } if ((*i)->isAvailable()) { // Don't consider lower priority servers. maxPriority = (*i)->priority; // Add this to the list of candidates. *last++ = *i; } else if ((*i)->shouldBroadcast()) { // It's not available, but it's ready for a broadcast result.push(new Request(context, *i, packetCode)); } } if (first != last) { // We have at least one candidate, so pick one and add it to the list. result.push(new Request( context, pickServer(first, last), packetCode )); } else if (result.empty() && !servers.empty()) { // We have no candidates and no servers available for broadcast, so just // force a pick from the top priority servers. result.push(new Request( context, pickServer(servers.begin(), endTopPriority), packetCode )); } } ////////// // Used for sorting and searching groups by name. ////////// int __cdecl sortGroupsByName( const ServerGroup* const* group1, const ServerGroup* const* group2 ) throw () { return wcscmp((*group1)->getName(), (*group2)->getName()); } int __cdecl findGroupByName( const void* key, const ServerGroup* const* group ) throw () { return wcscmp((PCWSTR)key, (*group)->getName()); } ////////// // Used for sorting and searching servers by address. ////////// int __cdecl sortServersByAddress( const RemoteServer* const* server1, const RemoteServer* const* server2 ) { if ((*server1)->getAddress() < (*server2)->getAddress()) { return -1; } if ((*server1)->getAddress() > (*server2)->getAddress()) { return 1; } return 0; } int __cdecl findServerByAddress( const void* key, const RemoteServer* const* server ) throw () { if ((ULONG_PTR)key < (*server)->getAddress()) { return -1; } if ((ULONG_PTR)key > (*server)->getAddress()) { return 1; } return 0; } ////////// // Used for sorting and searching servers by guid. ////////// int __cdecl sortServersByGUID( const RemoteServer* const* server1, const RemoteServer* const* server2 ) throw () { return memcmp(&(*server1)->guid, &(*server2)->guid, sizeof(GUID)); } int __cdecl findServerByGUID( const void* key, const RemoteServer* const* server ) throw () { return memcmp(key, &(*server)->guid, sizeof(GUID)); } ////////// // Used for sorting accounting servers by port. ////////// int __cdecl sortServersByAcctPort( const RemoteServer* const* server1, const RemoteServer* const* server2 ) { const sockaddr_in& a1 = (*server1)->acctPort.address; const sockaddr_in& a2 = (*server2)->acctPort.address; return memcmp(&a1.sin_port, &a2.sin_port, 6); } bool ServerGroupManager::setServerGroups( ServerGroup* const* first, ServerGroup* const* last ) throw () { bool success; try { // Save the new server groups ... ServerGroups newGroups(first, last); // Sort by name. newGroups.sort(sortGroupsByName); // Useful iterators. ServerGroups::iterator i; RemoteServers::iterator j; // Count the number of servers and accounting servers. ULONG count = 0, acctCount = 0; for (i = first; i != last; ++i) { for (j = (*i)->begin(); j != (*i)->end(); ++j) { ++count; if ((*j)->sendAcctOnOff) { ++acctCount; } } } // Reserve space for the servers. RemoteServers newServers(count); RemoteServers newAcctServers(acctCount); // Populate the servers. for (i = first; i != last; ++i) { for (j = (*i)->begin(); j != (*i)->end(); ++j) { RemoteServer* newServer = *j; // Does this server already exist? RemoteServer* existing = byGuid.search( (const void*)&newServer->guid, findServerByGUID ); if (existing) { if (*existing == *newServer) { // If it's an exact match, use the existing server. newServer = existing; } else { // Otherwise, copy the state of the existing server. newServer->copyState(*existing); } } newServers.push_back(newServer); if (newServer->sendAcctOnOff) { newAcctServers.push_back(newServer); } } } // Sort the servers by address ... newServers.sort(sortServersByAddress); // ... and GUID. RemoteServers newServersByGuid(newServers); newServersByGuid.sort(sortServersByGUID); // Everything is ready so now we grab the write lock ... monitor.LockExclusive(); // ... and swap in the collections. groups.swap(newGroups); byAddress.swap(newServers); byGuid.swap(newServersByGuid); acctServers.swap(newAcctServers); monitor.Unlock(); success = true; } catch (...) { success = false; } return success; } RemoteServerPtr ServerGroupManager::findServer( ULONG address ) const throw () { monitor.Lock(); RemoteServer* server = byAddress.search( (const void*)ULongToPtr(address), findServerByAddress ); monitor.Unlock(); return server; } void ServerGroupManager::getServersByGroup( ProxyContext* context, BYTE packetCode, PCWSTR name, RequestStack& result ) const throw () { monitor.Lock(); ServerGroup* group = groups.search(name, findGroupByName); if (group) { group->getServersForRequest(context, packetCode, result); } monitor.Unlock(); } void ServerGroupManager::getServersForAcctOnOff( ProxyContext* context, RequestStack& result ) const throw () { monitor.Lock(); for (RemoteServer* const* i = acctServers.begin(); i != acctServers.end(); ++i) { result.push(new Request(context, *i, RADIUS_ACCOUNTING_REQUEST)); } monitor.Unlock(); } RadiusProxyEngine* RadiusProxyEngine::theProxy; RadiusProxyEngine::RadiusProxyEngine(RadiusProxyClient* source) throw () : client(source), proxyAddress(INADDR_NONE), pending(Request::hash, 1), sessions(Session::hash, 1, 10000, 120000) { theProxy = this; // We don't care if this fails. The proxy will just use INADDR_NONE in it's // proxy-state attribute. PHOSTENT he = IASGetHostByName(NULL); if (he) { if (he->h_addr_list[0]) { proxyAddress = *(PULONG)he->h_addr_list[0]; } LocalFree(he); } } RadiusProxyEngine::~RadiusProxyEngine() throw () { // Block any new reponses. authSock.close(); acctSock.close(); // Clear the pending request table. pending.clear(); // Cancel all the timers. timers.cancelAllTimers(); // At this point all our threads should be done, but let's just make sure. SwitchToThread(); theProxy = NULL; } bool RadiusProxyEngine::setServerGroups( ServerGroup* const* begin, ServerGroup* const* end ) throw () { // We don't open the sockets unless we actually have some server groups // configured. This is just to be a good corporate citizen. if (begin != end) { if ((!authSock.isOpen() && !authSock.open(this, portAuthentication)) || (!acctSock.isOpen() && !acctSock.open(this, portAccounting))) { return false; } } return groups.setServerGroups(begin, end); } void RadiusProxyEngine::forwardRequest( PVOID context, PCWSTR serverGroup, BYTE code, const BYTE* requestAuthenticator, const RadiusAttribute* begin, const RadiusAttribute* end ) throw () { // Save the request context. We have to handle this carefully since we rely // on the ProxyContext object to ensure that onComplete gets called exactly // one. If we can't allocate the object, we have to handle it specially. ProxyContextPtr ctxt(new (std::nothrow) ProxyContext(context)); if (!ctxt) { client->onComplete( resultNotEnoughMemory, context, NULL, code, NULL, NULL ); return; } Result retval; // Store the in parameters in a RadiusPacket struct. RadiusPacket packet; packet.code = code; packet.begin = const_cast(begin); packet.end = const_cast(end); // Generate the list of RADIUS requests to be sent. RequestStack requests; switch (code) { case RADIUS_ACCESS_REQUEST: { // Is this request associated with a particular server? RemoteServerPtr server = getServerAffinity(packet); if (server) { requests.push(new Request(ctxt, server, RADIUS_ACCESS_REQUEST)); } else { groups.getServersByGroup( ctxt, code, serverGroup, requests ); retval = resultUnknownServerGroup; } // put request authenticator in the packet. // the request authenticator can be NULL // the authenticator will not be changed. packet.authenticator = requestAuthenticator; break; } case RADIUS_ACCOUNTING_REQUEST: { if (!IsNasStateRequest(packet)) { groups.getServersByGroup( ctxt, code, serverGroup, requests ); retval = resultUnknownServerGroup; } else { groups.getServersForAcctOnOff( ctxt, requests ); // NAS State requests are always reported as a success since we // don't care if it gets to all the destinations. context = ctxt->takeOwnership(); if (context) { client->onComplete( resultSuccess, context, NULL, RADIUS_ACCOUNTING_RESPONSE, NULL, NULL ); } retval = resultSuccess; } break; } default: { retval = resultInvalidRequest; } } if (!requests.empty()) { // First we handle the primary. RequestPtr request = requests.pop(); ctxt->setPrimaryServer(&request->getServer()); retval = sendRequest(packet, request); // Now we broadcast. while (!requests.empty()) { request = requests.pop(); Result result = sendRequest(packet, request); if (result == resultSuccess && retval != resultSuccess) { // This was the first request to succeed so mark it as primary. retval = resultSuccess; ctxt->setPrimaryServer(&request->getServer()); } } } if (retval != resultSuccess) { // If we made it here, then we didn't successfully send a packet to any // server, so we have to report the result ourself. context = ctxt->takeOwnership(); if (context) { client->onComplete( retval, context, ctxt->getPrimaryServer(), code, NULL, NULL ); } } } void RadiusProxyEngine::onRequestAbandoned( PVOID context, RemoteServer* server ) throw () { // Nobody took responsibility for the request, so we time it out. theProxy->client->onComplete( resultRequestTimeout, context, server, 0, NULL, NULL ); } inline void RadiusProxyEngine::reportEvent( const RadiusEvent& event ) const throw () { client->onEvent(event); } inline void RadiusProxyEngine::reportEvent( RadiusEvent& event, RadiusEventType type ) const throw () { event.eventType = type; client->onEvent(event); } void RadiusProxyEngine::onRequestTimeout( Request* request ) throw () { // Erase the pending request. If it's not there, that's okay; it means that // we received a response, but weren't able to cancel the timer in time. if (theProxy->pending.erase(request->getRequestID())) { RadiusEvent event = { request->getPortType(), eventTimeout, &request->getServer(), request->getPort().address.address(), request->getPort().address.port() }; // Report the protocol event. theProxy->reportEvent(event); // Update request state. if (request->onTimeout()) { // The server was just marked unavailable, so notify the client. theProxy->reportEvent(event, eventServerUnavailable); } } } RemoteServerPtr RadiusProxyEngine::getServerAffinity( const RadiusPacket& packet ) throw () { // Find the State attribute. const RadiusAttribute* attr = FindAttribute(packet, RADIUS_STATE); if (!attr) { return NULL; } // Map it to a session. RadiusRawOctets key = { attr->value, attr->length }; SessionPtr session = sessions.find(key); if (!session) { return NULL; } return &session->getServer(); } void RadiusProxyEngine::setServerAffinity( const RadiusPacket& packet, RemoteServer& server ) throw () { // Is this an Access-Challenge ? if (packet.code != RADIUS_ACCESS_CHALLENGE) { return; } // Find the State attribute. const RadiusAttribute* state = FindAttribute(packet, RADIUS_STATE); if (!state) { return; } // Do we already have an entry for this State value. RadiusRawOctets key = { state->value, state->length }; SessionPtr session = sessions.find(key); if (session) { // Make sure the server matches. session->setServer(server); return; } // Otherwise, we'll have to create a new one. try { session = new Session(key, server); sessions.insert(*session); } catch (...) { // We don't care if this fails. } } void RadiusProxyEngine::onReceive( UDPSocket& socket, ULONG_PTR key, const SOCKADDR_IN& remoteAddress, BYTE* buffer, ULONG bufferLength ) throw () { ////////// // Set up the event struct. We'll fill in the other fields as we go along. ////////// RadiusEvent event = { (RadiusPortType)key, eventNone, NULL, remoteAddress.sin_addr.s_addr, remoteAddress.sin_port, buffer, bufferLength, 0 }; ////////// // Validate the remote address. ////////// RemoteServerPtr server = groups.findServer( remoteAddress.sin_addr.s_addr ); if (!server) { reportEvent(event, eventInvalidAddress); return; } // Use the server as the event context. event.context = server; ////////// // Validate the packet type. ////////// if (bufferLength == 0) { reportEvent(event, eventUnknownType); return; } switch (MAKELONG(key, buffer[0])) { case MAKELONG(portAuthentication, RADIUS_ACCESS_ACCEPT): reportEvent(event, eventAccessAccept); break; case MAKELONG(portAuthentication, RADIUS_ACCESS_REJECT): reportEvent(event, eventAccessReject); break; case MAKELONG(portAuthentication, RADIUS_ACCESS_CHALLENGE): reportEvent(event, eventAccessChallenge); break; case MAKELONG(portAccounting, RADIUS_ACCOUNTING_RESPONSE): reportEvent(event, eventAccountingResponse); break; default: reportEvent(event, eventUnknownType); return; } ////////// // Validate that the packet is properly formatted. ////////// RadiusPacket* packet; ALLOC_PACKET_FOR_BUFFER(packet, buffer, bufferLength); if (!packet) { reportEvent(event, eventMalformedPacket); return; } // Unpack the attributes. UnpackBuffer(buffer, bufferLength, *packet); ////////// // Validate that we were expecting this response. ////////// // Look for our Proxy-State attribute. RadiusAttribute* proxyState = FindAttribute( *packet, RADIUS_PROXY_STATE ); // If we didn't find it OR it's the wrong length OR it doesn't start with // our address, then we weren't expecting this packet. if (!proxyState || proxyState->length != 8 || memcmp(proxyState->value, &proxyAddress, 4)) { reportEvent(event, eventUnexpectedResponse); return; } // Extract the request ID. ULONG requestID = ExtractUInt32(proxyState->value + 4); // Don't send the Proxy-State back to our client. --packet->end; memmove( proxyState, proxyState + 1, (packet->end - proxyState) * sizeof(RadiusAttribute) ); // Look up the request object. We don't remove it yet because we don't know // if this is an authentic response. RequestPtr request = pending.find(requestID); if (!request) { // If it's not there, we'll assume that this is a packet that's // already been reported as a timeout. reportEvent(event, eventLateResponse); return; } // Get the actual server we used for the request in case there are multiple // servers defined for the same IP address. event.context = server = &request->getServer(); const RemotePort& port = request->getPort(); // Validate the packet source && identifier. if (!(port.address == remoteAddress) || request->getIdentifier() != packet->identifier) { reportEvent(event, eventUnexpectedResponse); return; } ////////// // Validate that the packet is authentic. ////////// AuthResult authResult = AuthenticateAndDecrypt( request->getAuthenticator(), port.secret, port.secret.length(), buffer, bufferLength, *packet ); switch (authResult) { case AUTH_BAD_AUTHENTICATOR: reportEvent(event, eventBadAuthenticator); return; case AUTH_BAD_SIGNATURE: reportEvent(event, eventBadSignature); return; case AUTH_MISSING_SIGNATURE: reportEvent(event, eventMissingSignature); return; } ////////// // At this point, all the tests have passed -- we have the real thing. ////////// if (!pending.erase(requestID)) { // It must have timed out while we were authenticating it. reportEvent(event, eventLateResponse); return; } // Update endpoint state. if (request->onReceive()) { // The server just came up, so notify the client. reportEvent(event, eventServerAvailable); } // Update the round-trip time. event.data = request->getRoundTripTime(); reportEvent(event, eventRoundTrip); // Set the server affinity. setServerAffinity(*packet, *server); // Take ownership of the context. PVOID context = request->getContext().takeOwnership(); if (context) { // The magic moment -- we have successfully processed the response. client->onComplete( resultSuccess, context, &request->getServer(), packet->code, packet->begin, packet->end ); } } void RadiusProxyEngine::onReceiveError( UDPSocket& socket, ULONG_PTR key, ULONG errorCode ) throw () { RadiusEvent event = { (RadiusPortType)key, eventReceiveError, NULL, socket.getLocalAddress().address(), socket.getLocalAddress().port(), NULL, 0, errorCode }; client->onEvent(event); } RadiusProxyEngine::Result RadiusProxyEngine::sendRequest( RadiusPacket& packet, Request* request ) { // Fill in the packet identifier. packet.identifier = request->getIdentifier(); // Get the info for the Signature. BOOL sign = request->getServer().sendSignature; // Format the Proxy-State attributes. BYTE proxyStateValue[8]; RadiusAttribute proxyState = { RADIUS_PROXY_STATE, 8, proxyStateValue }; // First our IP address ... memcpy(proxyStateValue, &proxyAddress, 4); // ... and then the unique request ID. InsertUInt32(proxyStateValue + 4, request->getRequestID()); // Allocate a buffer to hold the packet on the wire. PBYTE buffer; ALLOC_BUFFER_FOR_PACKET(buffer, &packet, &proxyState, sign); if (!buffer) { return resultInvalidRequest; } // Get the port for this request. const RemotePort& port = request->getPort(); // Pack the buffer. // packet.authenticator is used for CHAP when the request authenticator // is used for the chap-challenge. It can be null PackBuffer( port.secret, port.secret.length(), packet, &proxyState, sign, buffer ); // Save the request authenticator. request->setAuthenticator(buffer + 4); // Determine the request type. bool isAuth = request->isAccReq(); // Set up the event struct. RadiusEvent event = { (isAuth ? portAuthentication : portAccounting), (isAuth ? eventAccessRequest : eventAccountingRequest), &request->getServer(), port.address.address(), port.address.port(), buffer, packet.length }; // Get the appropriate socket. UDPSocket& sock = isAuth ? authSock : acctSock; // Insert the pending request before we send it to avoid a race condition. pending.insert(*request); // The magic moment -- we actually send the request. Result result; if (sock.send(port.address, buffer, packet.length)) { // Update request state. request->onSend(); // Set a timer to clean up if the server doesn't answer. if (timers.setTimer(request, request->getServer().timeout, 0)) { result = resultSuccess; } else { // If we can't set at timer we have to remove it from the pending // requests table or else it could leak. pending.erase(*request); result = resultNotEnoughMemory; } } else { // Update the event with the error data. event.eventType = eventSendError; event.data = GetLastError(); // If we received "Port Unreachable" ICMP packet, we'll count this as a // timeout since it means the server is unavailable. if (event.data == WSAECONNRESET) { request->onTimeout(); } // Remove from the pending requests table. pending.erase(*request); } // Report the event ... reportEvent(event); // ... and the result. return result; }