/*++ BUILD Version: 0109 // Increment this if a change has global effects Copyright (c) Microsoft Corporation. All rights reserved. Module Name: wdm.h Abstract: This module defines the WDM types, constants, and functions that are exposed to device drivers. Revision History: --*/ #ifndef _WDMDDK_ #define _WDMDDK_ #define _NTDDK_ #ifndef RC_INVOKED #if _MSC_VER < 1300 #error Compiler version not supported by Windows DDK #endif #endif // RC_INVOKED #define NT_INCLUDED #define _CTYPE_DISABLE_MACROS #include #include #include #include #include // // Define types that are not exported. // typedef struct _ACCESS_STATE *PACCESS_STATE; typedef struct _CALLBACK_OBJECT *PCALLBACK_OBJECT; typedef struct _EPROCESS *PEPROCESS; typedef struct _ETHREAD *PETHREAD; typedef struct _IO_TIMER *PIO_TIMER; typedef struct _KINTERRUPT *PKINTERRUPT; typedef struct _KTHREAD *PKTHREAD, *PRKTHREAD; typedef struct _OBJECT_TYPE *POBJECT_TYPE; typedef struct _SECURITY_QUALITY_OF_SERVICE *PSECURITY_QUALITY_OF_SERVICE; #if defined(_M_AMD64) PKTHREAD NTAPI KeGetCurrentThread( VOID ); #endif // defined(_M_AMD64) #if defined(_M_IX86) PKTHREAD NTAPI KeGetCurrentThread(); #endif // defined(_M_IX86) #if defined(_M_IA64) // // Define base address for kernel and user space // #ifdef _WIN64 #define UREGION_INDEX 1 #define KREGION_INDEX 7 #define UADDRESS_BASE ((ULONG_PTR)UREGION_INDEX << 61) #define KADDRESS_BASE ((ULONG_PTR)KREGION_INDEX << 61) #else // !_WIN64 #define KADDRESS_BASE 0 #define UADDRESS_BASE 0 #endif // !_WIN64 // // Define Address of Processor Control Registers. // #define KIPCR ((ULONG_PTR)(KADDRESS_BASE + 0xffff0000)) // kernel address of first PCR // // Define Pointer to Processor Control Registers. // #define PCR ((volatile KPCR * const)KIPCR) PKTHREAD NTAPI KeGetCurrentThread(); #endif // defined(_M_IA64) #include #ifndef FAR #define FAR #endif #define PsGetCurrentProcess() IoGetCurrentProcess() #define PsGetCurrentThread() ((PETHREAD) (KeGetCurrentThread())) extern NTSYSAPI CCHAR KeNumberProcessors; // // Define alignment macros to align structure sizes and pointers up and down. // #define ALIGN_DOWN(length, type) \ ((ULONG)(length) & ~(sizeof(type) - 1)) #define ALIGN_UP(length, type) \ (ALIGN_DOWN(((ULONG)(length) + sizeof(type) - 1), type)) #define ALIGN_DOWN_POINTER(address, type) \ ((PVOID)((ULONG_PTR)(address) & ~((ULONG_PTR)sizeof(type) - 1))) #define ALIGN_UP_POINTER(address, type) \ (ALIGN_DOWN_POINTER(((ULONG_PTR)(address) + sizeof(type) - 1), type)) #define POOL_TAGGING 1 #ifndef DBG #define DBG 0 #endif #if DBG #define IF_DEBUG if (TRUE) #else #define IF_DEBUG if (FALSE) #endif #if DEVL extern ULONG NtGlobalFlag; #define IF_NTOS_DEBUG( FlagName ) \ if (NtGlobalFlag & (FLG_ ## FlagName)) #else #define IF_NTOS_DEBUG( FlagName ) if (FALSE) #endif // // Kernel definitions that need to be here for forward reference purposes // // // Processor modes. // typedef CCHAR KPROCESSOR_MODE; typedef enum _MODE { KernelMode, UserMode, MaximumMode } MODE; // // APC function types // // // Put in an empty definition for the KAPC so that the // routines can reference it before it is declared. // struct _KAPC; typedef VOID (*PKNORMAL_ROUTINE) ( IN PVOID NormalContext, IN PVOID SystemArgument1, IN PVOID SystemArgument2 ); typedef VOID (*PKKERNEL_ROUTINE) ( IN struct _KAPC *Apc, IN OUT PKNORMAL_ROUTINE *NormalRoutine, IN OUT PVOID *NormalContext, IN OUT PVOID *SystemArgument1, IN OUT PVOID *SystemArgument2 ); typedef VOID (*PKRUNDOWN_ROUTINE) ( IN struct _KAPC *Apc ); typedef BOOLEAN (*PKSYNCHRONIZE_ROUTINE) ( IN PVOID SynchronizeContext ); typedef BOOLEAN (*PKTRANSFER_ROUTINE) ( VOID ); // // // Asynchronous Procedure Call (APC) object // // typedef struct _KAPC { CSHORT Type; CSHORT Size; ULONG Spare0; struct _KTHREAD *Thread; LIST_ENTRY ApcListEntry; PKKERNEL_ROUTINE KernelRoutine; PKRUNDOWN_ROUTINE RundownRoutine; PKNORMAL_ROUTINE NormalRoutine; PVOID NormalContext; // // N.B. The following two members MUST be together. // PVOID SystemArgument1; PVOID SystemArgument2; CCHAR ApcStateIndex; KPROCESSOR_MODE ApcMode; BOOLEAN Inserted; } KAPC, *PKAPC, *RESTRICTED_POINTER PRKAPC; // // DPC routine // struct _KDPC; typedef VOID (*PKDEFERRED_ROUTINE) ( IN struct _KDPC *Dpc, IN PVOID DeferredContext, IN PVOID SystemArgument1, IN PVOID SystemArgument2 ); // // Define DPC importance. // // LowImportance - Queue DPC at end of target DPC queue. // MediumImportance - Queue DPC at end of target DPC queue. // HighImportance - Queue DPC at front of target DPC DPC queue. // // If there is currently a DPC active on the target processor, or a DPC // interrupt has already been requested on the target processor when a // DPC is queued, then no further action is necessary. The DPC will be // executed on the target processor when its queue entry is processed. // // If there is not a DPC active on the target processor and a DPC interrupt // has not been requested on the target processor, then the exact treatment // of the DPC is dependent on whether the host system is a UP system or an // MP system. // // UP system. // // If the DPC is of medium or high importance, the current DPC queue depth // is greater than the maximum target depth, or current DPC request rate is // less the minimum target rate, then a DPC interrupt is requested on the // host processor and the DPC will be processed when the interrupt occurs. // Otherwise, no DPC interupt is requested and the DPC execution will be // delayed until the DPC queue depth is greater that the target depth or the // minimum DPC rate is less than the target rate. // // MP system. // // If the DPC is being queued to another processor and the depth of the DPC // queue on the target processor is greater than the maximum target depth or // the DPC is of high importance, then a DPC interrupt is requested on the // target processor and the DPC will be processed when the interrupt occurs. // Otherwise, the DPC execution will be delayed on the target processor until // the DPC queue depth on the target processor is greater that the maximum // target depth or the minimum DPC rate on the target processor is less than // the target mimimum rate. // // If the DPC is being queued to the current processor and the DPC is not of // low importance, the current DPC queue depth is greater than the maximum // target depth, or the minimum DPC rate is less than the minimum target rate, // then a DPC interrupt is request on the current processor and the DPV will // be processed whne the interrupt occurs. Otherwise, no DPC interupt is // requested and the DPC execution will be delayed until the DPC queue depth // is greater that the target depth or the minimum DPC rate is less than the // target rate. // typedef enum _KDPC_IMPORTANCE { LowImportance, MediumImportance, HighImportance } KDPC_IMPORTANCE; // // Deferred Procedure Call (DPC) object // typedef struct _KDPC { CSHORT Type; UCHAR Number; UCHAR Importance; LIST_ENTRY DpcListEntry; PKDEFERRED_ROUTINE DeferredRoutine; PVOID DeferredContext; PVOID SystemArgument1; PVOID SystemArgument2; PULONG_PTR Lock; } KDPC, *PKDPC, *RESTRICTED_POINTER PRKDPC; // // Interprocessor interrupt worker routine function prototype. // typedef PVOID PKIPI_CONTEXT; typedef VOID (*PKIPI_WORKER)( IN PKIPI_CONTEXT PacketContext, IN PVOID Parameter1, IN PVOID Parameter2, IN PVOID Parameter3 ); // // Define interprocessor interrupt performance counters. // typedef struct _KIPI_COUNTS { ULONG Freeze; ULONG Packet; ULONG DPC; ULONG APC; ULONG FlushSingleTb; ULONG FlushMultipleTb; ULONG FlushEntireTb; ULONG GenericCall; ULONG ChangeColor; ULONG SweepDcache; ULONG SweepIcache; ULONG SweepIcacheRange; ULONG FlushIoBuffers; ULONG GratuitousDPC; } KIPI_COUNTS, *PKIPI_COUNTS; #if defined(NT_UP) #define HOT_STATISTIC(a) a #else #define HOT_STATISTIC(a) (KeGetCurrentPrcb()->a) #endif // // I/O system definitions. // // Define a Memory Descriptor List (MDL) // // An MDL describes pages in a virtual buffer in terms of physical pages. The // pages associated with the buffer are described in an array that is allocated // just after the MDL header structure itself. In a future compiler this will // be placed at: // // ULONG Pages[]; // // Until this declaration is permitted, however, one simply calculates the // base of the array by adding one to the base MDL pointer: // // Pages = (PULONG) (Mdl + 1); // // Notice that while in the context of the subject thread, the base virtual // address of a buffer mapped by an MDL may be referenced using the following: // // Mdl->StartVa | Mdl->ByteOffset // typedef struct _MDL { struct _MDL *Next; CSHORT Size; CSHORT MdlFlags; struct _EPROCESS *Process; PVOID MappedSystemVa; PVOID StartVa; ULONG ByteCount; ULONG ByteOffset; } MDL, *PMDL; #define MDL_MAPPED_TO_SYSTEM_VA 0x0001 #define MDL_PAGES_LOCKED 0x0002 #define MDL_SOURCE_IS_NONPAGED_POOL 0x0004 #define MDL_ALLOCATED_FIXED_SIZE 0x0008 #define MDL_PARTIAL 0x0010 #define MDL_PARTIAL_HAS_BEEN_MAPPED 0x0020 #define MDL_IO_PAGE_READ 0x0040 #define MDL_WRITE_OPERATION 0x0080 #define MDL_PARENT_MAPPED_SYSTEM_VA 0x0100 #define MDL_FREE_EXTRA_PTES 0x0200 #define MDL_IO_SPACE 0x0800 #define MDL_NETWORK_HEADER 0x1000 #define MDL_MAPPING_CAN_FAIL 0x2000 #define MDL_ALLOCATED_MUST_SUCCEED 0x4000 #define MDL_MAPPING_FLAGS (MDL_MAPPED_TO_SYSTEM_VA | \ MDL_PAGES_LOCKED | \ MDL_SOURCE_IS_NONPAGED_POOL | \ MDL_PARTIAL_HAS_BEEN_MAPPED | \ MDL_PARENT_MAPPED_SYSTEM_VA | \ MDL_SYSTEM_VA | \ MDL_IO_SPACE ) // // switch to DBG when appropriate // #if DBG #define PAGED_CODE() \ { if (KeGetCurrentIrql() > APC_LEVEL) { \ KdPrint(( "EX: Pageable code called at IRQL %d\n", KeGetCurrentIrql() )); \ ASSERT(FALSE); \ } \ } #else #define PAGED_CODE() NOP_FUNCTION; #endif #define NTKERNELAPI DECLSPEC_IMPORT #define NTHALAPI DECLSPEC_IMPORT // // Common dispatcher object header // // N.B. The size field contains the number of dwords in the structure. // typedef struct _DISPATCHER_HEADER { UCHAR Type; UCHAR Absolute; UCHAR Size; UCHAR Inserted; LONG SignalState; LIST_ENTRY WaitListHead; } DISPATCHER_HEADER; // // Event object // typedef struct _KEVENT { DISPATCHER_HEADER Header; } KEVENT, *PKEVENT, *RESTRICTED_POINTER PRKEVENT; // // Timer object // typedef struct _KTIMER { DISPATCHER_HEADER Header; ULARGE_INTEGER DueTime; LIST_ENTRY TimerListEntry; struct _KDPC *Dpc; LONG Period; } KTIMER, *PKTIMER, *RESTRICTED_POINTER PRKTIMER; #ifdef _X86_ // // Disable these two pragmas that evaluate to "sti" "cli" on x86 so that driver // writers to not leave them inadvertantly in their code. // #if !defined(MIDL_PASS) #if !defined(RC_INVOKED) #if _MSC_VER >= 1200 #pragma warning(push) #endif #pragma warning(disable:4164) // disable C4164 warning so that apps that // build with /Od don't get weird errors ! #ifdef _M_IX86 #pragma function(_enable) #pragma function(_disable) #endif #if _MSC_VER >= 1200 #pragma warning(pop) #else #pragma warning(default:4164) // reenable C4164 warning #endif #endif #endif #endif // _X86_ #if defined(_AMD64_) #if defined(_M_AMD64) && !defined(RC_INVOKED) && !defined(MIDL_PASS) // // Define function to get the caller's EFLAGs value. // #define GetCallersEflags() __getcallerseflags() unsigned __int32 __getcallerseflags ( VOID ); #pragma intrinsic(__getcallerseflags) // // Define function to read the value of the time stamp counter // #define ReadTimeStampCounter() __rdtsc() ULONG64 __rdtsc ( VOID ); #pragma intrinsic(__rdtsc) // // Define functions to move strings or bytes, words, dwords, and qwords. // VOID __movsb ( IN PUCHAR Destination, IN PUCHAR Source, IN ULONG Count ); VOID __movsw ( IN PUSHORT Destination, IN PUSHORT Source, IN ULONG Count ); VOID __movsd ( IN PULONG Destination, IN PULONG Source, IN ULONG Count ); VOID __movsq ( IN PULONGLONG Destination, IN PULONGLONG Source, IN ULONG Count ); #pragma intrinsic(__movsb) #pragma intrinsic(__movsw) #pragma intrinsic(__movsd) #pragma intrinsic(__movsq) // // Define functions to capture the high 64-bits of a 128-bit multiply. // #define MultiplyHigh __mulh #define UnsignedMultiplyHigh __umulh LONGLONG MultiplyHigh ( IN LONGLONG Multiplier, IN LONGLONG Multiplicand ); ULONGLONG UnsignedMultiplyHigh ( IN ULONGLONG Multiplier, IN ULONGLONG Multiplicand ); #pragma intrinsic(__mulh) #pragma intrinsic(__umulh) // // Define functions to read and write the uer TEB and the system PCR/PRCB. // UCHAR __readgsbyte ( IN ULONG Offset ); USHORT __readgsword ( IN ULONG Offset ); ULONG __readgsdword ( IN ULONG Offset ); ULONG64 __readgsqword ( IN ULONG Offset ); VOID __writegsbyte ( IN ULONG Offset, IN UCHAR Data ); VOID __writegsword ( IN ULONG Offset, IN USHORT Data ); VOID __writegsdword ( IN ULONG Offset, IN ULONG Data ); VOID __writegsqword ( IN ULONG Offset, IN ULONG64 Data ); #pragma intrinsic(__readgsbyte) #pragma intrinsic(__readgsword) #pragma intrinsic(__readgsdword) #pragma intrinsic(__readgsqword) #pragma intrinsic(__writegsbyte) #pragma intrinsic(__writegsword) #pragma intrinsic(__writegsdword) #pragma intrinsic(__writegsqword) #endif // defined(_M_AMD64) && !defined(RC_INVOKED) && !defined(MIDL_PASS) #endif // _AMD64_ #ifdef _IA64_ #endif // _IA64_ // // Define an access token from a programmer's viewpoint. The structure is // completely opaque and the programer is only allowed to have pointers // to tokens. // typedef PVOID PACCESS_TOKEN; // // Pointer to a SECURITY_DESCRIPTOR opaque data type. // typedef PVOID PSECURITY_DESCRIPTOR; // // Define a pointer to the Security ID data type (an opaque data type) // typedef PVOID PSID; typedef ULONG ACCESS_MASK; typedef ACCESS_MASK *PACCESS_MASK; // // The following are masks for the predefined standard access types // #define DELETE (0x00010000L) #define READ_CONTROL (0x00020000L) #define WRITE_DAC (0x00040000L) #define WRITE_OWNER (0x00080000L) #define SYNCHRONIZE (0x00100000L) #define STANDARD_RIGHTS_REQUIRED (0x000F0000L) #define STANDARD_RIGHTS_READ (READ_CONTROL) #define STANDARD_RIGHTS_WRITE (READ_CONTROL) #define STANDARD_RIGHTS_EXECUTE (READ_CONTROL) #define STANDARD_RIGHTS_ALL (0x001F0000L) #define SPECIFIC_RIGHTS_ALL (0x0000FFFFL) // // AccessSystemAcl access type // #define ACCESS_SYSTEM_SECURITY (0x01000000L) // // MaximumAllowed access type // #define MAXIMUM_ALLOWED (0x02000000L) // // These are the generic rights. // #define GENERIC_READ (0x80000000L) #define GENERIC_WRITE (0x40000000L) #define GENERIC_EXECUTE (0x20000000L) #define GENERIC_ALL (0x10000000L) // // Define the generic mapping array. This is used to denote the // mapping of each generic access right to a specific access mask. // typedef struct _GENERIC_MAPPING { ACCESS_MASK GenericRead; ACCESS_MASK GenericWrite; ACCESS_MASK GenericExecute; ACCESS_MASK GenericAll; } GENERIC_MAPPING; typedef GENERIC_MAPPING *PGENERIC_MAPPING; //////////////////////////////////////////////////////////////////////// // // // LUID_AND_ATTRIBUTES // // // //////////////////////////////////////////////////////////////////////// // // #include typedef struct _LUID_AND_ATTRIBUTES { LUID Luid; ULONG Attributes; } LUID_AND_ATTRIBUTES, * PLUID_AND_ATTRIBUTES; typedef LUID_AND_ATTRIBUTES LUID_AND_ATTRIBUTES_ARRAY[ANYSIZE_ARRAY]; typedef LUID_AND_ATTRIBUTES_ARRAY *PLUID_AND_ATTRIBUTES_ARRAY; #include // This is the *current* ACL revision #define ACL_REVISION (2) #define ACL_REVISION_DS (4) // This is the history of ACL revisions. Add a new one whenever // ACL_REVISION is updated #define ACL_REVISION1 (1) #define MIN_ACL_REVISION ACL_REVISION2 #define ACL_REVISION2 (2) #define ACL_REVISION3 (3) #define ACL_REVISION4 (4) #define MAX_ACL_REVISION ACL_REVISION4 typedef struct _ACL { UCHAR AclRevision; UCHAR Sbz1; USHORT AclSize; USHORT AceCount; USHORT Sbz2; } ACL; typedef ACL *PACL; // // Current security descriptor revision value // #define SECURITY_DESCRIPTOR_REVISION (1) #define SECURITY_DESCRIPTOR_REVISION1 (1) // // Privilege attributes // #define SE_PRIVILEGE_ENABLED_BY_DEFAULT (0x00000001L) #define SE_PRIVILEGE_ENABLED (0x00000002L) #define SE_PRIVILEGE_USED_FOR_ACCESS (0x80000000L) // // Privilege Set Control flags // #define PRIVILEGE_SET_ALL_NECESSARY (1) // // Privilege Set - This is defined for a privilege set of one. // If more than one privilege is needed, then this structure // will need to be allocated with more space. // // Note: don't change this structure without fixing the INITIAL_PRIVILEGE_SET // structure (defined in se.h) // typedef struct _PRIVILEGE_SET { ULONG PrivilegeCount; ULONG Control; LUID_AND_ATTRIBUTES Privilege[ANYSIZE_ARRAY]; } PRIVILEGE_SET, * PPRIVILEGE_SET; // // These must be converted to LUIDs before use. // #define SE_MIN_WELL_KNOWN_PRIVILEGE (2L) #define SE_CREATE_TOKEN_PRIVILEGE (2L) #define SE_ASSIGNPRIMARYTOKEN_PRIVILEGE (3L) #define SE_LOCK_MEMORY_PRIVILEGE (4L) #define SE_INCREASE_QUOTA_PRIVILEGE (5L) #define SE_MACHINE_ACCOUNT_PRIVILEGE (6L) #define SE_TCB_PRIVILEGE (7L) #define SE_SECURITY_PRIVILEGE (8L) #define SE_TAKE_OWNERSHIP_PRIVILEGE (9L) #define SE_LOAD_DRIVER_PRIVILEGE (10L) #define SE_SYSTEM_PROFILE_PRIVILEGE (11L) #define SE_SYSTEMTIME_PRIVILEGE (12L) #define SE_PROF_SINGLE_PROCESS_PRIVILEGE (13L) #define SE_INC_BASE_PRIORITY_PRIVILEGE (14L) #define SE_CREATE_PAGEFILE_PRIVILEGE (15L) #define SE_CREATE_PERMANENT_PRIVILEGE (16L) #define SE_BACKUP_PRIVILEGE (17L) #define SE_RESTORE_PRIVILEGE (18L) #define SE_SHUTDOWN_PRIVILEGE (19L) #define SE_DEBUG_PRIVILEGE (20L) #define SE_AUDIT_PRIVILEGE (21L) #define SE_SYSTEM_ENVIRONMENT_PRIVILEGE (22L) #define SE_CHANGE_NOTIFY_PRIVILEGE (23L) #define SE_REMOTE_SHUTDOWN_PRIVILEGE (24L) #define SE_UNDOCK_PRIVILEGE (25L) #define SE_SYNC_AGENT_PRIVILEGE (26L) #define SE_ENABLE_DELEGATION_PRIVILEGE (27L) #define SE_MANAGE_VOLUME_PRIVILEGE (28L) #define SE_MAX_WELL_KNOWN_PRIVILEGE (SE_MANAGE_VOLUME_PRIVILEGE) // // Impersonation Level // // Impersonation level is represented by a pair of bits in Windows. // If a new impersonation level is added or lowest value is changed from // 0 to something else, fix the Windows CreateFile call. // typedef enum _SECURITY_IMPERSONATION_LEVEL { SecurityAnonymous, SecurityIdentification, SecurityImpersonation, SecurityDelegation } SECURITY_IMPERSONATION_LEVEL, * PSECURITY_IMPERSONATION_LEVEL; #define SECURITY_MAX_IMPERSONATION_LEVEL SecurityDelegation #define SECURITY_MIN_IMPERSONATION_LEVEL SecurityAnonymous #define DEFAULT_IMPERSONATION_LEVEL SecurityImpersonation #define VALID_IMPERSONATION_LEVEL(L) (((L) >= SECURITY_MIN_IMPERSONATION_LEVEL) && ((L) <= SECURITY_MAX_IMPERSONATION_LEVEL)) // // Security Tracking Mode // #define SECURITY_DYNAMIC_TRACKING (TRUE) #define SECURITY_STATIC_TRACKING (FALSE) typedef BOOLEAN SECURITY_CONTEXT_TRACKING_MODE, * PSECURITY_CONTEXT_TRACKING_MODE; // // Quality Of Service // typedef struct _SECURITY_QUALITY_OF_SERVICE { ULONG Length; SECURITY_IMPERSONATION_LEVEL ImpersonationLevel; SECURITY_CONTEXT_TRACKING_MODE ContextTrackingMode; BOOLEAN EffectiveOnly; } SECURITY_QUALITY_OF_SERVICE, * PSECURITY_QUALITY_OF_SERVICE; // // Used to represent information related to a thread impersonation // typedef struct _SE_IMPERSONATION_STATE { PACCESS_TOKEN Token; BOOLEAN CopyOnOpen; BOOLEAN EffectiveOnly; SECURITY_IMPERSONATION_LEVEL Level; } SE_IMPERSONATION_STATE, *PSE_IMPERSONATION_STATE; typedef ULONG SECURITY_INFORMATION, *PSECURITY_INFORMATION; #define OWNER_SECURITY_INFORMATION (0x00000001L) #define GROUP_SECURITY_INFORMATION (0x00000002L) #define DACL_SECURITY_INFORMATION (0x00000004L) #define SACL_SECURITY_INFORMATION (0x00000008L) #define PROTECTED_DACL_SECURITY_INFORMATION (0x80000000L) #define PROTECTED_SACL_SECURITY_INFORMATION (0x40000000L) #define UNPROTECTED_DACL_SECURITY_INFORMATION (0x20000000L) #define UNPROTECTED_SACL_SECURITY_INFORMATION (0x10000000L) #define LOW_PRIORITY 0 // Lowest thread priority level #define LOW_REALTIME_PRIORITY 16 // Lowest realtime priority level #define HIGH_PRIORITY 31 // Highest thread priority level #define MAXIMUM_PRIORITY 32 // Number of thread priority levels #define MAXIMUM_WAIT_OBJECTS 64 // Maximum number of wait objects #define MAXIMUM_SUSPEND_COUNT MAXCHAR // Maximum times thread can be suspended // // Define system time structure. // typedef struct _KSYSTEM_TIME { ULONG LowPart; LONG High1Time; LONG High2Time; } KSYSTEM_TIME, *PKSYSTEM_TIME; // // Thread priority // typedef LONG KPRIORITY; // // Spin Lock // typedef ULONG_PTR KSPIN_LOCK; typedef KSPIN_LOCK *PKSPIN_LOCK; // // Interrupt routine (first level dispatch) // typedef VOID (*PKINTERRUPT_ROUTINE) ( VOID ); // // Profile source types // typedef enum _KPROFILE_SOURCE { ProfileTime, ProfileAlignmentFixup, ProfileTotalIssues, ProfilePipelineDry, ProfileLoadInstructions, ProfilePipelineFrozen, ProfileBranchInstructions, ProfileTotalNonissues, ProfileDcacheMisses, ProfileIcacheMisses, ProfileCacheMisses, ProfileBranchMispredictions, ProfileStoreInstructions, ProfileFpInstructions, ProfileIntegerInstructions, Profile2Issue, Profile3Issue, Profile4Issue, ProfileSpecialInstructions, ProfileTotalCycles, ProfileIcacheIssues, ProfileDcacheAccesses, ProfileMemoryBarrierCycles, ProfileLoadLinkedIssues, ProfileMaximum } KPROFILE_SOURCE; // // for move macros // #ifdef _MAC #ifndef _INC_STRING #include #endif /* _INC_STRING */ #else #include #endif // _MAC #ifndef _SLIST_HEADER_ #define _SLIST_HEADER_ #define SLIST_ENTRY SINGLE_LIST_ENTRY #define _SLIST_ENTRY _SINGLE_LIST_ENTRY #define PSLIST_ENTRY PSINGLE_LIST_ENTRY #if defined(_WIN64) typedef struct DECLSPEC_ALIGN(16) _SLIST_HEADER { ULONGLONG Alignment; ULONGLONG Region; } SLIST_HEADER; typedef struct _SLIST_HEADER *PSLIST_HEADER; #else typedef union _SLIST_HEADER { ULONGLONG Alignment; struct { SLIST_ENTRY Next; USHORT Depth; USHORT Sequence; }; } SLIST_HEADER, *PSLIST_HEADER; #endif #endif // // If debugging support enabled, define an ASSERT macro that works. Otherwise // define the ASSERT macro to expand to an empty expression. // // The ASSERT macro has been updated to be an expression instead of a statement. // #if DBG NTSYSAPI VOID NTAPI RtlAssert( PVOID FailedAssertion, PVOID FileName, ULONG LineNumber, PCHAR Message ); #define ASSERT( exp ) \ ((!(exp)) ? \ (RtlAssert( #exp, __FILE__, __LINE__, NULL ),FALSE) : \ TRUE) #define ASSERTMSG( msg, exp ) \ ((!(exp)) ? \ (RtlAssert( #exp, __FILE__, __LINE__, msg ),FALSE) : \ TRUE) #define RTL_SOFT_ASSERT(_exp) \ ((!(_exp)) ? \ (DbgPrint("%s(%d): Soft assertion failed\n Expression: %s\n", __FILE__, __LINE__, #_exp),FALSE) : \ TRUE) #define RTL_SOFT_ASSERTMSG(_msg, _exp) \ ((!(_exp)) ? \ (DbgPrint("%s(%d): Soft assertion failed\n Expression: %s\n Message: %s\n", __FILE__, __LINE__, #_exp, (_msg)),FALSE) : \ TRUE) #define RTL_VERIFY( exp ) ASSERT(exp) #define RTL_VERIFYMSG( msg, exp ) ASSERT(msg, exp) #define RTL_SOFT_VERIFY(_exp) RTL_SOFT_ASSERT(_exp) #define RTL_SOFT_VERIFYMSG(_msg, _exp) RTL_SOFT_ASSERTMSG(_msg, _exp) #else #define ASSERT( exp ) ((void) 0) #define ASSERTMSG( msg, exp ) ((void) 0) #define RTL_SOFT_ASSERT(_exp) ((void) 0) #define RTL_SOFT_ASSERTMSG(_msg, _exp) ((void) 0) #define RTL_VERIFY( exp ) ((exp) ? TRUE : FALSE) #define RTL_VERIFYMSG( msg, exp ) ((exp) ? TRUE : FALSE) #define RTL_SOFT_VERIFY(_exp) ((_exp) ? TRUE : FALSE) #define RTL_SOFT_VERIFYMSG(msg, _exp) ((_exp) ? TRUE : FALSE) #endif // DBG // // Doubly-linked list manipulation routines. // // // VOID // InitializeListHead32( // PLIST_ENTRY32 ListHead // ); // #define InitializeListHead32(ListHead) (\ (ListHead)->Flink = (ListHead)->Blink = PtrToUlong((ListHead))) #if !defined(MIDL_PASS) && !defined(SORTPP_PASS) VOID FORCEINLINE InitializeListHead( IN PLIST_ENTRY ListHead ) { ListHead->Flink = ListHead->Blink = ListHead; } // // BOOLEAN // IsListEmpty( // PLIST_ENTRY ListHead // ); // #define IsListEmpty(ListHead) \ ((ListHead)->Flink == (ListHead)) VOID FORCEINLINE RemoveEntryList( IN PLIST_ENTRY Entry ) { PLIST_ENTRY Blink; PLIST_ENTRY Flink; Flink = Entry->Flink; Blink = Entry->Blink; Blink->Flink = Flink; Flink->Blink = Blink; } PLIST_ENTRY FORCEINLINE RemoveHeadList( IN PLIST_ENTRY ListHead ) { PLIST_ENTRY Flink; PLIST_ENTRY Entry; Entry = ListHead->Flink; Flink = Entry->Flink; ListHead->Flink = Flink; Flink->Blink = ListHead; return Entry; } PLIST_ENTRY FORCEINLINE RemoveTailList( IN PLIST_ENTRY ListHead ) { PLIST_ENTRY Blink; PLIST_ENTRY Entry; Entry = ListHead->Blink; Blink = Entry->Blink; ListHead->Blink = Blink; Blink->Flink = ListHead; return Entry; } VOID FORCEINLINE InsertTailList( IN PLIST_ENTRY ListHead, IN PLIST_ENTRY Entry ) { PLIST_ENTRY Blink; Blink = ListHead->Blink; Entry->Flink = ListHead; Entry->Blink = Blink; Blink->Flink = Entry; ListHead->Blink = Entry; } VOID FORCEINLINE InsertHeadList( IN PLIST_ENTRY ListHead, IN PLIST_ENTRY Entry ) { PLIST_ENTRY Flink; Flink = ListHead->Flink; Entry->Flink = Flink; Entry->Blink = ListHead; Flink->Blink = Entry; ListHead->Flink = Entry; } // // // PSINGLE_LIST_ENTRY // PopEntryList( // PSINGLE_LIST_ENTRY ListHead // ); // #define PopEntryList(ListHead) \ (ListHead)->Next;\ {\ PSINGLE_LIST_ENTRY FirstEntry;\ FirstEntry = (ListHead)->Next;\ if (FirstEntry != NULL) { \ (ListHead)->Next = FirstEntry->Next;\ } \ } // // VOID // PushEntryList( // PSINGLE_LIST_ENTRY ListHead, // PSINGLE_LIST_ENTRY Entry // ); // #define PushEntryList(ListHead,Entry) \ (Entry)->Next = (ListHead)->Next; \ (ListHead)->Next = (Entry) #endif // !MIDL_PASS // // Subroutines for dealing with the Registry // typedef NTSTATUS (NTAPI * PRTL_QUERY_REGISTRY_ROUTINE)( IN PWSTR ValueName, IN ULONG ValueType, IN PVOID ValueData, IN ULONG ValueLength, IN PVOID Context, IN PVOID EntryContext ); typedef struct _RTL_QUERY_REGISTRY_TABLE { PRTL_QUERY_REGISTRY_ROUTINE QueryRoutine; ULONG Flags; PWSTR Name; PVOID EntryContext; ULONG DefaultType; PVOID DefaultData; ULONG DefaultLength; } RTL_QUERY_REGISTRY_TABLE, *PRTL_QUERY_REGISTRY_TABLE; // // The following flags specify how the Name field of a RTL_QUERY_REGISTRY_TABLE // entry is interpreted. A NULL name indicates the end of the table. // #define RTL_QUERY_REGISTRY_SUBKEY 0x00000001 // Name is a subkey and remainder of // table or until next subkey are value // names for that subkey to look at. #define RTL_QUERY_REGISTRY_TOPKEY 0x00000002 // Reset current key to original key for // this and all following table entries. #define RTL_QUERY_REGISTRY_REQUIRED 0x00000004 // Fail if no match found for this table // entry. #define RTL_QUERY_REGISTRY_NOVALUE 0x00000008 // Used to mark a table entry that has no // value name, just wants a call out, not // an enumeration of all values. #define RTL_QUERY_REGISTRY_NOEXPAND 0x00000010 // Used to suppress the expansion of // REG_MULTI_SZ into multiple callouts or // to prevent the expansion of environment // variable values in REG_EXPAND_SZ #define RTL_QUERY_REGISTRY_DIRECT 0x00000020 // QueryRoutine field ignored. EntryContext // field points to location to store value. // For null terminated strings, EntryContext // points to UNICODE_STRING structure that // that describes maximum size of buffer. // If .Buffer field is NULL then a buffer is // allocated. // #define RTL_QUERY_REGISTRY_DELETE 0x00000040 // Used to delete value keys after they // are queried. NTSYSAPI NTSTATUS NTAPI RtlQueryRegistryValues( IN ULONG RelativeTo, IN PCWSTR Path, IN PRTL_QUERY_REGISTRY_TABLE QueryTable, IN PVOID Context, IN PVOID Environment OPTIONAL ); NTSYSAPI NTSTATUS NTAPI RtlWriteRegistryValue( IN ULONG RelativeTo, IN PCWSTR Path, IN PCWSTR ValueName, IN ULONG ValueType, IN PVOID ValueData, IN ULONG ValueLength ); NTSYSAPI NTSTATUS NTAPI RtlDeleteRegistryValue( IN ULONG RelativeTo, IN PCWSTR Path, IN PCWSTR ValueName ); // // The following values for the RelativeTo parameter determine what the // Path parameter to RtlQueryRegistryValues is relative to. // #define RTL_REGISTRY_ABSOLUTE 0 // Path is a full path #define RTL_REGISTRY_SERVICES 1 // \Registry\Machine\System\CurrentControlSet\Services #define RTL_REGISTRY_CONTROL 2 // \Registry\Machine\System\CurrentControlSet\Control #define RTL_REGISTRY_WINDOWS_NT 3 // \Registry\Machine\Software\Microsoft\Windows NT\CurrentVersion #define RTL_REGISTRY_DEVICEMAP 4 // \Registry\Machine\Hardware\DeviceMap #define RTL_REGISTRY_USER 5 // \Registry\User\CurrentUser #define RTL_REGISTRY_MAXIMUM 6 #define RTL_REGISTRY_HANDLE 0x40000000 // Low order bits are registry handle #define RTL_REGISTRY_OPTIONAL 0x80000000 // Indicates the key node is optional NTSYSAPI NTSTATUS NTAPI RtlIntegerToUnicodeString ( ULONG Value, ULONG Base, PUNICODE_STRING String ); NTSYSAPI NTSTATUS NTAPI RtlInt64ToUnicodeString ( IN ULONGLONG Value, IN ULONG Base OPTIONAL, IN OUT PUNICODE_STRING String ); #ifdef _WIN64 #define RtlIntPtrToUnicodeString(Value, Base, String) RtlInt64ToUnicodeString(Value, Base, String) #else #define RtlIntPtrToUnicodeString(Value, Base, String) RtlIntegerToUnicodeString(Value, Base, String) #endif NTSYSAPI NTSTATUS NTAPI RtlUnicodeStringToInteger ( PCUNICODE_STRING String, ULONG Base, PULONG Value ); // // String manipulation routines // #ifdef _NTSYSTEM_ #define NLS_MB_CODE_PAGE_TAG NlsMbCodePageTag #define NLS_MB_OEM_CODE_PAGE_TAG NlsMbOemCodePageTag #else #define NLS_MB_CODE_PAGE_TAG (*NlsMbCodePageTag) #define NLS_MB_OEM_CODE_PAGE_TAG (*NlsMbOemCodePageTag) #endif // _NTSYSTEM_ extern BOOLEAN NLS_MB_CODE_PAGE_TAG; // TRUE -> Multibyte CP, FALSE -> Singlebyte extern BOOLEAN NLS_MB_OEM_CODE_PAGE_TAG; // TRUE -> Multibyte CP, FALSE -> Singlebyte NTSYSAPI VOID NTAPI RtlInitString( PSTRING DestinationString, PCSZ SourceString ); NTSYSAPI VOID NTAPI RtlInitAnsiString( PANSI_STRING DestinationString, PCSZ SourceString ); NTSYSAPI VOID NTAPI RtlInitUnicodeString( PUNICODE_STRING DestinationString, PCWSTR SourceString ); #define RtlInitEmptyUnicodeString(_ucStr,_buf,_bufSize) \ ((_ucStr)->Buffer = (_buf), \ (_ucStr)->Length = 0, \ (_ucStr)->MaximumLength = (USHORT)(_bufSize)) // // NLS String functions // NTSYSAPI NTSTATUS NTAPI RtlAnsiStringToUnicodeString( PUNICODE_STRING DestinationString, PCANSI_STRING SourceString, BOOLEAN AllocateDestinationString ); NTSYSAPI NTSTATUS NTAPI RtlUnicodeStringToAnsiString( PANSI_STRING DestinationString, PCUNICODE_STRING SourceString, BOOLEAN AllocateDestinationString ); NTSYSAPI LONG NTAPI RtlCompareUnicodeString( PCUNICODE_STRING String1, PCUNICODE_STRING String2, BOOLEAN CaseInSensitive ); NTSYSAPI BOOLEAN NTAPI RtlEqualUnicodeString( const UNICODE_STRING *String1, const UNICODE_STRING *String2, BOOLEAN CaseInSensitive ); #define HASH_STRING_ALGORITHM_DEFAULT (0) #define HASH_STRING_ALGORITHM_X65599 (1) #define HASH_STRING_ALGORITHM_INVALID (0xffffffff) NTSYSAPI NTSTATUS NTAPI RtlHashUnicodeString( IN const UNICODE_STRING *String, IN BOOLEAN CaseInSensitive, IN ULONG HashAlgorithm, OUT PULONG HashValue ); NTSYSAPI VOID NTAPI RtlCopyUnicodeString( PUNICODE_STRING DestinationString, PCUNICODE_STRING SourceString ); NTSYSAPI NTSTATUS NTAPI RtlAppendUnicodeStringToString ( PUNICODE_STRING Destination, PCUNICODE_STRING Source ); NTSYSAPI NTSTATUS NTAPI RtlAppendUnicodeToString ( PUNICODE_STRING Destination, PCWSTR Source ); NTSYSAPI VOID NTAPI RtlFreeUnicodeString( PUNICODE_STRING UnicodeString ); NTSYSAPI VOID NTAPI RtlFreeAnsiString( PANSI_STRING AnsiString ); NTSYSAPI ULONG NTAPI RtlxUnicodeStringToAnsiSize( PCUNICODE_STRING UnicodeString ); // // NTSYSAPI // ULONG // NTAPI // RtlUnicodeStringToAnsiSize( // PUNICODE_STRING UnicodeString // ); // #define RtlUnicodeStringToAnsiSize(STRING) ( \ NLS_MB_CODE_PAGE_TAG ? \ RtlxUnicodeStringToAnsiSize(STRING) : \ ((STRING)->Length + sizeof(UNICODE_NULL)) / sizeof(WCHAR) \ ) NTSYSAPI ULONG NTAPI RtlxAnsiStringToUnicodeSize( PCANSI_STRING AnsiString ); // // NTSYSAPI // ULONG // NTAPI // RtlAnsiStringToUnicodeSize( // PANSI_STRING AnsiString // ); // #define RtlAnsiStringToUnicodeSize(STRING) ( \ NLS_MB_CODE_PAGE_TAG ? \ RtlxAnsiStringToUnicodeSize(STRING) : \ ((STRING)->Length + sizeof(ANSI_NULL)) * sizeof(WCHAR) \ ) #include #ifndef DEFINE_GUIDEX #define DEFINE_GUIDEX(name) EXTERN_C const CDECL GUID name #endif // !defined(DEFINE_GUIDEX) #ifndef STATICGUIDOF #define STATICGUIDOF(guid) STATIC_##guid #endif // !defined(STATICGUIDOF) #ifndef __IID_ALIGNED__ #define __IID_ALIGNED__ #ifdef __cplusplus inline int IsEqualGUIDAligned(REFGUID guid1, REFGUID guid2) { return ((*(PLONGLONG)(&guid1) == *(PLONGLONG)(&guid2)) && (*((PLONGLONG)(&guid1) + 1) == *((PLONGLONG)(&guid2) + 1))); } #else // !__cplusplus #define IsEqualGUIDAligned(guid1, guid2) \ ((*(PLONGLONG)(guid1) == *(PLONGLONG)(guid2)) && (*((PLONGLONG)(guid1) + 1) == *((PLONGLONG)(guid2) + 1))) #endif // !__cplusplus #endif // !__IID_ALIGNED__ NTSYSAPI NTSTATUS NTAPI RtlStringFromGUID( IN REFGUID Guid, OUT PUNICODE_STRING GuidString ); NTSYSAPI NTSTATUS NTAPI RtlGUIDFromString( IN PUNICODE_STRING GuidString, OUT GUID* Guid ); // // Fast primitives to compare, move, and zero memory // NTSYSAPI SIZE_T NTAPI RtlCompareMemory ( const VOID *Source1, const VOID *Source2, SIZE_T Length ); #if defined(_M_AMD64) || defined(_M_IA64) #define RtlEqualMemory(Source1, Source2, Length) \ ((Length) == RtlCompareMemory(Source1, Source2, Length)) NTSYSAPI VOID NTAPI RtlCopyMemory ( VOID UNALIGNED *Destination, CONST VOID UNALIGNED *Source, SIZE_T Length ); #if !defined(_M_AMD64) NTSYSAPI VOID NTAPI RtlCopyMemory32 ( VOID UNALIGNED *Destination, CONST VOID UNALIGNED *Source, ULONG Length ); #endif NTSYSAPI VOID NTAPI RtlMoveMemory ( VOID UNALIGNED *Destination, CONST VOID UNALIGNED *Source, SIZE_T Length ); NTSYSAPI VOID NTAPI RtlFillMemory ( VOID UNALIGNED *Destination, SIZE_T Length, UCHAR Fill ); NTSYSAPI VOID NTAPI RtlZeroMemory ( VOID UNALIGNED *Destination, SIZE_T Length ); #else #define RtlEqualMemory(Destination,Source,Length) (!memcmp((Destination),(Source),(Length))) #define RtlMoveMemory(Destination,Source,Length) memmove((Destination),(Source),(Length)) #define RtlCopyMemory(Destination,Source,Length) memcpy((Destination),(Source),(Length)) #define RtlFillMemory(Destination,Length,Fill) memset((Destination),(Fill),(Length)) #define RtlZeroMemory(Destination,Length) memset((Destination),0,(Length)) #endif #if !defined(MIDL_PASS) FORCEINLINE PVOID RtlSecureZeroMemory( IN PVOID ptr, IN SIZE_T cnt ) { volatile char *vptr = (volatile char *)ptr; while (cnt) { *vptr = 0; vptr++; cnt--; } return ptr; } #endif #define RtlCopyBytes RtlCopyMemory #define RtlZeroBytes RtlZeroMemory #define RtlFillBytes RtlFillMemory #if defined(_M_AMD64) NTSYSAPI VOID NTAPI RtlCopyMemoryNonTemporal ( VOID UNALIGNED *Destination, CONST VOID UNALIGNED *Source, SIZE_T Length ); #else #define RtlCopyMemoryNonTemporal RtlCopyMemory #endif NTSYSAPI VOID FASTCALL RtlPrefetchMemoryNonTemporal( IN PVOID Source, IN SIZE_T Length ); // // Define kernel debugger print prototypes and macros. // // N.B. The following function cannot be directly imported because there are // a few places in the source tree where this function is redefined. // VOID NTAPI DbgBreakPoint( VOID ); #define DBG_STATUS_CONTROL_C 1 #define DBG_STATUS_SYSRQ 2 #define DBG_STATUS_BUGCHECK_FIRST 3 #define DBG_STATUS_BUGCHECK_SECOND 4 #define DBG_STATUS_FATAL 5 #define DBG_STATUS_DEBUG_CONTROL 6 #define DBG_STATUS_WORKER 7 #if DBG #define KdPrint(_x_) DbgPrint _x_ #define KdBreakPoint() DbgBreakPoint() #else #define KdPrint(_x_) #define KdBreakPoint() #endif #ifndef _DBGNT_ ULONG __cdecl DbgPrint( PCH Format, ... ); #endif // _DBGNT_ // // Large integer arithmetic routines. // // // Large integer add - 64-bits + 64-bits -> 64-bits // #if !defined(MIDL_PASS) DECLSPEC_DEPRECATED_DDK // Use native __int64 math __inline LARGE_INTEGER NTAPI RtlLargeIntegerAdd ( LARGE_INTEGER Addend1, LARGE_INTEGER Addend2 ) { LARGE_INTEGER Sum; Sum.QuadPart = Addend1.QuadPart + Addend2.QuadPart; return Sum; } // // Enlarged integer multiply - 32-bits * 32-bits -> 64-bits // DECLSPEC_DEPRECATED_DDK // Use native __int64 math __inline LARGE_INTEGER NTAPI RtlEnlargedIntegerMultiply ( LONG Multiplicand, LONG Multiplier ) { LARGE_INTEGER Product; Product.QuadPart = (LONGLONG)Multiplicand * (ULONGLONG)Multiplier; return Product; } // // Unsigned enlarged integer multiply - 32-bits * 32-bits -> 64-bits // DECLSPEC_DEPRECATED_DDK // Use native __int64 math __inline LARGE_INTEGER NTAPI RtlEnlargedUnsignedMultiply ( ULONG Multiplicand, ULONG Multiplier ) { LARGE_INTEGER Product; Product.QuadPart = (ULONGLONG)Multiplicand * (ULONGLONG)Multiplier; return Product; } // // Enlarged integer divide - 64-bits / 32-bits > 32-bits // DECLSPEC_DEPRECATED_DDK // Use native __int64 math __inline ULONG NTAPI RtlEnlargedUnsignedDivide ( IN ULARGE_INTEGER Dividend, IN ULONG Divisor, IN PULONG Remainder OPTIONAL ) { ULONG Quotient; Quotient = (ULONG)(Dividend.QuadPart / Divisor); if (ARGUMENT_PRESENT(Remainder)) { *Remainder = (ULONG)(Dividend.QuadPart % Divisor); } return Quotient; } // // Large integer negation - -(64-bits) // DECLSPEC_DEPRECATED_DDK // Use native __int64 math __inline LARGE_INTEGER NTAPI RtlLargeIntegerNegate ( LARGE_INTEGER Subtrahend ) { LARGE_INTEGER Difference; Difference.QuadPart = -Subtrahend.QuadPart; return Difference; } // // Large integer subtract - 64-bits - 64-bits -> 64-bits. // DECLSPEC_DEPRECATED_DDK // Use native __int64 math __inline LARGE_INTEGER NTAPI RtlLargeIntegerSubtract ( LARGE_INTEGER Minuend, LARGE_INTEGER Subtrahend ) { LARGE_INTEGER Difference; Difference.QuadPart = Minuend.QuadPart - Subtrahend.QuadPart; return Difference; } // // Extended large integer magic divide - 64-bits / 32-bits -> 64-bits // #if defined(_AMD64_) DECLSPEC_DEPRECATED_DDK // Use native __int64 math __inline LARGE_INTEGER NTAPI RtlExtendedMagicDivide ( LARGE_INTEGER Dividend, LARGE_INTEGER MagicDivisor, CCHAR ShiftCount ) { LARGE_INTEGER Quotient; Quotient.QuadPart = UnsignedMultiplyHigh((ULONG64)Dividend.QuadPart, (ULONG64)MagicDivisor.QuadPart); Quotient.QuadPart = (ULONG64)Quotient.QuadPart >> ShiftCount; return Quotient; } #endif // defined(_AMD64_) #if defined(_X86_) || defined(_IA64_) DECLSPEC_DEPRECATED_DDK // Use native __int64 math NTSYSAPI LARGE_INTEGER NTAPI RtlExtendedMagicDivide ( LARGE_INTEGER Dividend, LARGE_INTEGER MagicDivisor, CCHAR ShiftCount ); #endif // defined(_X86_) || defined(_IA64_) #if defined(_AMD64_) || defined(_IA64_) // // Large Integer divide - 64-bits / 32-bits -> 64-bits // DECLSPEC_DEPRECATED_DDK // Use native __int64 math __inline LARGE_INTEGER NTAPI RtlExtendedLargeIntegerDivide ( LARGE_INTEGER Dividend, ULONG Divisor, PULONG Remainder OPTIONAL ) { LARGE_INTEGER Quotient; Quotient.QuadPart = (ULONG64)Dividend.QuadPart / Divisor; if (ARGUMENT_PRESENT(Remainder)) { *Remainder = (ULONG)(Dividend.QuadPart % Divisor); } return Quotient; } // // Extended integer multiply - 32-bits * 64-bits -> 64-bits // DECLSPEC_DEPRECATED_DDK // Use native __int64 math __inline LARGE_INTEGER NTAPI RtlExtendedIntegerMultiply ( LARGE_INTEGER Multiplicand, LONG Multiplier ) { LARGE_INTEGER Product; Product.QuadPart = Multiplicand.QuadPart * Multiplier; return Product; } #else // // Large Integer divide - 64-bits / 32-bits -> 64-bits // DECLSPEC_DEPRECATED_DDK // Use native __int64 math NTSYSAPI LARGE_INTEGER NTAPI RtlExtendedLargeIntegerDivide ( LARGE_INTEGER Dividend, ULONG Divisor, PULONG Remainder ); // // Extended integer multiply - 32-bits * 64-bits -> 64-bits // DECLSPEC_DEPRECATED_DDK // Use native __int64 math NTSYSAPI LARGE_INTEGER NTAPI RtlExtendedIntegerMultiply ( LARGE_INTEGER Multiplicand, LONG Multiplier ); #endif // defined(_AMD64_) || defined(_IA64_) // // Large integer and - 64-bite & 64-bits -> 64-bits. // #if PRAGMA_DEPRECATED_DDK #pragma deprecated(RtlLargeIntegerAnd) // Use native __int64 math #endif #define RtlLargeIntegerAnd(Result, Source, Mask) \ Result.QuadPart = Source.QuadPart & Mask.QuadPart // // Convert signed integer to large integer. // DECLSPEC_DEPRECATED_DDK // Use native __int64 math __inline LARGE_INTEGER NTAPI RtlConvertLongToLargeInteger ( LONG SignedInteger ) { LARGE_INTEGER Result; Result.QuadPart = SignedInteger; return Result; } // // Convert unsigned integer to large integer. // DECLSPEC_DEPRECATED_DDK // Use native __int64 math __inline LARGE_INTEGER NTAPI RtlConvertUlongToLargeInteger ( ULONG UnsignedInteger ) { LARGE_INTEGER Result; Result.QuadPart = UnsignedInteger; return Result; } // // Large integer shift routines. // DECLSPEC_DEPRECATED_DDK // Use native __int64 math __inline LARGE_INTEGER NTAPI RtlLargeIntegerShiftLeft ( LARGE_INTEGER LargeInteger, CCHAR ShiftCount ) { LARGE_INTEGER Result; Result.QuadPart = LargeInteger.QuadPart << ShiftCount; return Result; } DECLSPEC_DEPRECATED_DDK // Use native __int64 math __inline LARGE_INTEGER NTAPI RtlLargeIntegerShiftRight ( LARGE_INTEGER LargeInteger, CCHAR ShiftCount ) { LARGE_INTEGER Result; Result.QuadPart = (ULONG64)LargeInteger.QuadPart >> ShiftCount; return Result; } DECLSPEC_DEPRECATED_DDK // Use native __int64 math __inline LARGE_INTEGER NTAPI RtlLargeIntegerArithmeticShift ( LARGE_INTEGER LargeInteger, CCHAR ShiftCount ) { LARGE_INTEGER Result; Result.QuadPart = LargeInteger.QuadPart >> ShiftCount; return Result; } // // Large integer comparison routines. // #if PRAGMA_DEPRECATED_DDK #pragma deprecated(RtlLargeIntegerGreaterThan) // Use native __int64 math #pragma deprecated(RtlLargeIntegerGreaterThanOrEqualTo) // Use native __int64 math #pragma deprecated(RtlLargeIntegerEqualTo) // Use native __int64 math #pragma deprecated(RtlLargeIntegerNotEqualTo) // Use native __int64 math #pragma deprecated(RtlLargeIntegerLessThan) // Use native __int64 math #pragma deprecated(RtlLargeIntegerLessThanOrEqualTo) // Use native __int64 math #pragma deprecated(RtlLargeIntegerGreaterThanZero) // Use native __int64 math #pragma deprecated(RtlLargeIntegerGreaterOrEqualToZero) // Use native __int64 math #pragma deprecated(RtlLargeIntegerEqualToZero) // Use native __int64 math #pragma deprecated(RtlLargeIntegerNotEqualToZero) // Use native __int64 math #pragma deprecated(RtlLargeIntegerLessThanZero) // Use native __int64 math #pragma deprecated(RtlLargeIntegerLessOrEqualToZero) // Use native __int64 math #endif #define RtlLargeIntegerGreaterThan(X,Y) ( \ (((X).HighPart == (Y).HighPart) && ((X).LowPart > (Y).LowPart)) || \ ((X).HighPart > (Y).HighPart) \ ) #define RtlLargeIntegerGreaterThanOrEqualTo(X,Y) ( \ (((X).HighPart == (Y).HighPart) && ((X).LowPart >= (Y).LowPart)) || \ ((X).HighPart > (Y).HighPart) \ ) #define RtlLargeIntegerEqualTo(X,Y) ( \ !(((X).LowPart ^ (Y).LowPart) | ((X).HighPart ^ (Y).HighPart)) \ ) #define RtlLargeIntegerNotEqualTo(X,Y) ( \ (((X).LowPart ^ (Y).LowPart) | ((X).HighPart ^ (Y).HighPart)) \ ) #define RtlLargeIntegerLessThan(X,Y) ( \ (((X).HighPart == (Y).HighPart) && ((X).LowPart < (Y).LowPart)) || \ ((X).HighPart < (Y).HighPart) \ ) #define RtlLargeIntegerLessThanOrEqualTo(X,Y) ( \ (((X).HighPart == (Y).HighPart) && ((X).LowPart <= (Y).LowPart)) || \ ((X).HighPart < (Y).HighPart) \ ) #define RtlLargeIntegerGreaterThanZero(X) ( \ (((X).HighPart == 0) && ((X).LowPart > 0)) || \ ((X).HighPart > 0 ) \ ) #define RtlLargeIntegerGreaterOrEqualToZero(X) ( \ (X).HighPart >= 0 \ ) #define RtlLargeIntegerEqualToZero(X) ( \ !((X).LowPart | (X).HighPart) \ ) #define RtlLargeIntegerNotEqualToZero(X) ( \ ((X).LowPart | (X).HighPart) \ ) #define RtlLargeIntegerLessThanZero(X) ( \ ((X).HighPart < 0) \ ) #define RtlLargeIntegerLessOrEqualToZero(X) ( \ ((X).HighPart < 0) || !((X).LowPart | (X).HighPart) \ ) #endif // !defined(MIDL_PASS) // // Time conversion routines // typedef struct _TIME_FIELDS { CSHORT Year; // range [1601...] CSHORT Month; // range [1..12] CSHORT Day; // range [1..31] CSHORT Hour; // range [0..23] CSHORT Minute; // range [0..59] CSHORT Second; // range [0..59] CSHORT Milliseconds;// range [0..999] CSHORT Weekday; // range [0..6] == [Sunday..Saturday] } TIME_FIELDS; typedef TIME_FIELDS *PTIME_FIELDS; NTSYSAPI VOID NTAPI RtlTimeToTimeFields ( PLARGE_INTEGER Time, PTIME_FIELDS TimeFields ); // // A time field record (Weekday ignored) -> 64 bit Time value // NTSYSAPI BOOLEAN NTAPI RtlTimeFieldsToTime ( PTIME_FIELDS TimeFields, PLARGE_INTEGER Time ); // // The following macros store and retrieve USHORTS and ULONGS from potentially // unaligned addresses, avoiding alignment faults. they should probably be // rewritten in assembler // #define SHORT_SIZE (sizeof(USHORT)) #define SHORT_MASK (SHORT_SIZE - 1) #define LONG_SIZE (sizeof(LONG)) #define LONGLONG_SIZE (sizeof(LONGLONG)) #define LONG_MASK (LONG_SIZE - 1) #define LONGLONG_MASK (LONGLONG_SIZE - 1) #define LOWBYTE_MASK 0x00FF #define FIRSTBYTE(VALUE) ((VALUE) & LOWBYTE_MASK) #define SECONDBYTE(VALUE) (((VALUE) >> 8) & LOWBYTE_MASK) #define THIRDBYTE(VALUE) (((VALUE) >> 16) & LOWBYTE_MASK) #define FOURTHBYTE(VALUE) (((VALUE) >> 24) & LOWBYTE_MASK) // // if MIPS Big Endian, order of bytes is reversed. // #define SHORT_LEAST_SIGNIFICANT_BIT 0 #define SHORT_MOST_SIGNIFICANT_BIT 1 #define LONG_LEAST_SIGNIFICANT_BIT 0 #define LONG_3RD_MOST_SIGNIFICANT_BIT 1 #define LONG_2ND_MOST_SIGNIFICANT_BIT 2 #define LONG_MOST_SIGNIFICANT_BIT 3 //++ // // VOID // RtlStoreUshort ( // PUSHORT ADDRESS // USHORT VALUE // ) // // Routine Description: // // This macro stores a USHORT value in at a particular address, avoiding // alignment faults. // // Arguments: // // ADDRESS - where to store USHORT value // VALUE - USHORT to store // // Return Value: // // none. // //-- #define RtlStoreUshort(ADDRESS,VALUE) \ if ((ULONG_PTR)(ADDRESS) & SHORT_MASK) { \ ((PUCHAR) (ADDRESS))[SHORT_LEAST_SIGNIFICANT_BIT] = (UCHAR)(FIRSTBYTE(VALUE)); \ ((PUCHAR) (ADDRESS))[SHORT_MOST_SIGNIFICANT_BIT ] = (UCHAR)(SECONDBYTE(VALUE)); \ } \ else { \ *((PUSHORT) (ADDRESS)) = (USHORT) VALUE; \ } //++ // // VOID // RtlStoreUlong ( // PULONG ADDRESS // ULONG VALUE // ) // // Routine Description: // // This macro stores a ULONG value in at a particular address, avoiding // alignment faults. // // Arguments: // // ADDRESS - where to store ULONG value // VALUE - ULONG to store // // Return Value: // // none. // // Note: // Depending on the machine, we might want to call storeushort in the // unaligned case. // //-- #define RtlStoreUlong(ADDRESS,VALUE) \ if ((ULONG_PTR)(ADDRESS) & LONG_MASK) { \ ((PUCHAR) (ADDRESS))[LONG_LEAST_SIGNIFICANT_BIT ] = (UCHAR)(FIRSTBYTE(VALUE)); \ ((PUCHAR) (ADDRESS))[LONG_3RD_MOST_SIGNIFICANT_BIT ] = (UCHAR)(SECONDBYTE(VALUE)); \ ((PUCHAR) (ADDRESS))[LONG_2ND_MOST_SIGNIFICANT_BIT ] = (UCHAR)(THIRDBYTE(VALUE)); \ ((PUCHAR) (ADDRESS))[LONG_MOST_SIGNIFICANT_BIT ] = (UCHAR)(FOURTHBYTE(VALUE)); \ } \ else { \ *((PULONG) (ADDRESS)) = (ULONG) (VALUE); \ } //++ // // VOID // RtlStoreUlonglong ( // PULONGLONG ADDRESS // ULONG VALUE // ) // // Routine Description: // // This macro stores a ULONGLONG value in at a particular address, avoiding // alignment faults. // // Arguments: // // ADDRESS - where to store ULONGLONG value // VALUE - ULONGLONG to store // // Return Value: // // none. // //-- #define RtlStoreUlonglong(ADDRESS,VALUE) \ if ((ULONG_PTR)(ADDRESS) & LONGLONG_MASK) { \ RtlStoreUlong((ULONG_PTR)(ADDRESS), \ (ULONGLONG)(VALUE) & 0xFFFFFFFF); \ RtlStoreUlong((ULONG_PTR)(ADDRESS)+sizeof(ULONG), \ (ULONGLONG)(VALUE) >> 32); \ } else { \ *((PULONGLONG)(ADDRESS)) = (ULONGLONG)(VALUE); \ } //++ // // VOID // RtlStoreUlongPtr ( // PULONG_PTR ADDRESS // ULONG_PTR VALUE // ) // // Routine Description: // // This macro stores a ULONG_PTR value in at a particular address, avoiding // alignment faults. // // Arguments: // // ADDRESS - where to store ULONG_PTR value // VALUE - ULONG_PTR to store // // Return Value: // // none. // //-- #ifdef _WIN64 #define RtlStoreUlongPtr(ADDRESS,VALUE) \ RtlStoreUlonglong(ADDRESS,VALUE) #else #define RtlStoreUlongPtr(ADDRESS,VALUE) \ RtlStoreUlong(ADDRESS,VALUE) #endif //++ // // VOID // RtlRetrieveUshort ( // PUSHORT DESTINATION_ADDRESS // PUSHORT SOURCE_ADDRESS // ) // // Routine Description: // // This macro retrieves a USHORT value from the SOURCE address, avoiding // alignment faults. The DESTINATION address is assumed to be aligned. // // Arguments: // // DESTINATION_ADDRESS - where to store USHORT value // SOURCE_ADDRESS - where to retrieve USHORT value from // // Return Value: // // none. // //-- #define RtlRetrieveUshort(DEST_ADDRESS,SRC_ADDRESS) \ if ((ULONG_PTR)SRC_ADDRESS & SHORT_MASK) { \ ((PUCHAR) DEST_ADDRESS)[0] = ((PUCHAR) SRC_ADDRESS)[0]; \ ((PUCHAR) DEST_ADDRESS)[1] = ((PUCHAR) SRC_ADDRESS)[1]; \ } \ else { \ *((PUSHORT) DEST_ADDRESS) = *((PUSHORT) SRC_ADDRESS); \ } \ //++ // // VOID // RtlRetrieveUlong ( // PULONG DESTINATION_ADDRESS // PULONG SOURCE_ADDRESS // ) // // Routine Description: // // This macro retrieves a ULONG value from the SOURCE address, avoiding // alignment faults. The DESTINATION address is assumed to be aligned. // // Arguments: // // DESTINATION_ADDRESS - where to store ULONG value // SOURCE_ADDRESS - where to retrieve ULONG value from // // Return Value: // // none. // // Note: // Depending on the machine, we might want to call retrieveushort in the // unaligned case. // //-- #define RtlRetrieveUlong(DEST_ADDRESS,SRC_ADDRESS) \ if ((ULONG_PTR)SRC_ADDRESS & LONG_MASK) { \ ((PUCHAR) DEST_ADDRESS)[0] = ((PUCHAR) SRC_ADDRESS)[0]; \ ((PUCHAR) DEST_ADDRESS)[1] = ((PUCHAR) SRC_ADDRESS)[1]; \ ((PUCHAR) DEST_ADDRESS)[2] = ((PUCHAR) SRC_ADDRESS)[2]; \ ((PUCHAR) DEST_ADDRESS)[3] = ((PUCHAR) SRC_ADDRESS)[3]; \ } \ else { \ *((PULONG) DEST_ADDRESS) = *((PULONG) SRC_ADDRESS); \ } // // BitMap routines. The following structure, routines, and macros are // for manipulating bitmaps. The user is responsible for allocating a bitmap // structure (which is really a header) and a buffer (which must be longword // aligned and multiple longwords in size). // typedef struct _RTL_BITMAP { ULONG SizeOfBitMap; // Number of bits in bit map PULONG Buffer; // Pointer to the bit map itself } RTL_BITMAP; typedef RTL_BITMAP *PRTL_BITMAP; // // The following routine initializes a new bitmap. It does not alter the // data currently in the bitmap. This routine must be called before // any other bitmap routine/macro. // NTSYSAPI VOID NTAPI RtlInitializeBitMap ( PRTL_BITMAP BitMapHeader, PULONG BitMapBuffer, ULONG SizeOfBitMap ); // // The following three routines clear, set, and test the state of a // single bit in a bitmap. // NTSYSAPI VOID NTAPI RtlClearBit ( PRTL_BITMAP BitMapHeader, ULONG BitNumber ); NTSYSAPI VOID NTAPI RtlSetBit ( PRTL_BITMAP BitMapHeader, ULONG BitNumber ); NTSYSAPI BOOLEAN NTAPI RtlTestBit ( PRTL_BITMAP BitMapHeader, ULONG BitNumber ); // // The following two routines either clear or set all of the bits // in a bitmap. // NTSYSAPI VOID NTAPI RtlClearAllBits ( PRTL_BITMAP BitMapHeader ); NTSYSAPI VOID NTAPI RtlSetAllBits ( PRTL_BITMAP BitMapHeader ); // // The following two routines locate a contiguous region of either // clear or set bits within the bitmap. The region will be at least // as large as the number specified, and the search of the bitmap will // begin at the specified hint index (which is a bit index within the // bitmap, zero based). The return value is the bit index of the located // region (zero based) or -1 (i.e., 0xffffffff) if such a region cannot // be located // NTSYSAPI ULONG NTAPI RtlFindClearBits ( PRTL_BITMAP BitMapHeader, ULONG NumberToFind, ULONG HintIndex ); NTSYSAPI ULONG NTAPI RtlFindSetBits ( PRTL_BITMAP BitMapHeader, ULONG NumberToFind, ULONG HintIndex ); // // The following two routines locate a contiguous region of either // clear or set bits within the bitmap and either set or clear the bits // within the located region. The region will be as large as the number // specified, and the search for the region will begin at the specified // hint index (which is a bit index within the bitmap, zero based). The // return value is the bit index of the located region (zero based) or // -1 (i.e., 0xffffffff) if such a region cannot be located. If a region // cannot be located then the setting/clearing of the bitmap is not performed. // NTSYSAPI ULONG NTAPI RtlFindClearBitsAndSet ( PRTL_BITMAP BitMapHeader, ULONG NumberToFind, ULONG HintIndex ); NTSYSAPI ULONG NTAPI RtlFindSetBitsAndClear ( PRTL_BITMAP BitMapHeader, ULONG NumberToFind, ULONG HintIndex ); // // The following two routines clear or set bits within a specified region // of the bitmap. The starting index is zero based. // NTSYSAPI VOID NTAPI RtlClearBits ( PRTL_BITMAP BitMapHeader, ULONG StartingIndex, ULONG NumberToClear ); NTSYSAPI VOID NTAPI RtlSetBits ( PRTL_BITMAP BitMapHeader, ULONG StartingIndex, ULONG NumberToSet ); // // The following routine locates a set of contiguous regions of clear // bits within the bitmap. The caller specifies whether to return the // longest runs or just the first found lcoated. The following structure is // used to denote a contiguous run of bits. The two routines return an array // of this structure, one for each run located. // typedef struct _RTL_BITMAP_RUN { ULONG StartingIndex; ULONG NumberOfBits; } RTL_BITMAP_RUN; typedef RTL_BITMAP_RUN *PRTL_BITMAP_RUN; NTSYSAPI ULONG NTAPI RtlFindClearRuns ( PRTL_BITMAP BitMapHeader, PRTL_BITMAP_RUN RunArray, ULONG SizeOfRunArray, BOOLEAN LocateLongestRuns ); // // The following routine locates the longest contiguous region of // clear bits within the bitmap. The returned starting index value // denotes the first contiguous region located satisfying our requirements // The return value is the length (in bits) of the longest region found. // NTSYSAPI ULONG NTAPI RtlFindLongestRunClear ( PRTL_BITMAP BitMapHeader, PULONG StartingIndex ); // // The following routine locates the first contiguous region of // clear bits within the bitmap. The returned starting index value // denotes the first contiguous region located satisfying our requirements // The return value is the length (in bits) of the region found. // NTSYSAPI ULONG NTAPI RtlFindFirstRunClear ( PRTL_BITMAP BitMapHeader, PULONG StartingIndex ); // // The following macro returns the value of the bit stored within the // bitmap at the specified location. If the bit is set a value of 1 is // returned otherwise a value of 0 is returned. // // ULONG // RtlCheckBit ( // PRTL_BITMAP BitMapHeader, // ULONG BitPosition // ); // // // To implement CheckBit the macro retrieves the longword containing the // bit in question, shifts the longword to get the bit in question into the // low order bit position and masks out all other bits. // #define RtlCheckBit(BMH,BP) ((((BMH)->Buffer[(BP) / 32]) >> ((BP) % 32)) & 0x1) // // The following two procedures return to the caller the total number of // clear or set bits within the specified bitmap. // NTSYSAPI ULONG NTAPI RtlNumberOfClearBits ( PRTL_BITMAP BitMapHeader ); NTSYSAPI ULONG NTAPI RtlNumberOfSetBits ( PRTL_BITMAP BitMapHeader ); // // The following two procedures return to the caller a boolean value // indicating if the specified range of bits are all clear or set. // NTSYSAPI BOOLEAN NTAPI RtlAreBitsClear ( PRTL_BITMAP BitMapHeader, ULONG StartingIndex, ULONG Length ); NTSYSAPI BOOLEAN NTAPI RtlAreBitsSet ( PRTL_BITMAP BitMapHeader, ULONG StartingIndex, ULONG Length ); NTSYSAPI ULONG NTAPI RtlFindNextForwardRunClear ( IN PRTL_BITMAP BitMapHeader, IN ULONG FromIndex, IN PULONG StartingRunIndex ); NTSYSAPI ULONG NTAPI RtlFindLastBackwardRunClear ( IN PRTL_BITMAP BitMapHeader, IN ULONG FromIndex, IN PULONG StartingRunIndex ); // // The following two procedures return to the caller a value indicating // the position within a ULONGLONG of the most or least significant non-zero // bit. A value of zero results in a return value of -1. // NTSYSAPI CCHAR NTAPI RtlFindLeastSignificantBit ( IN ULONGLONG Set ); NTSYSAPI CCHAR NTAPI RtlFindMostSignificantBit ( IN ULONGLONG Set ); // // SecurityDescriptor RTL routine definitions // NTSYSAPI NTSTATUS NTAPI RtlCreateSecurityDescriptor ( PSECURITY_DESCRIPTOR SecurityDescriptor, ULONG Revision ); NTSYSAPI BOOLEAN NTAPI RtlValidSecurityDescriptor ( PSECURITY_DESCRIPTOR SecurityDescriptor ); NTSYSAPI ULONG NTAPI RtlLengthSecurityDescriptor ( PSECURITY_DESCRIPTOR SecurityDescriptor ); NTSYSAPI BOOLEAN NTAPI RtlValidRelativeSecurityDescriptor ( IN PSECURITY_DESCRIPTOR SecurityDescriptorInput, IN ULONG SecurityDescriptorLength, IN SECURITY_INFORMATION RequiredInformation ); NTSYSAPI NTSTATUS NTAPI RtlSetDaclSecurityDescriptor ( PSECURITY_DESCRIPTOR SecurityDescriptor, BOOLEAN DaclPresent, PACL Dacl, BOOLEAN DaclDefaulted ); // // Byte swap routines. These are used to convert from little-endian to // big-endian and vice-versa. // #if (defined(_M_IX86) && (_MSC_FULL_VER > 13009037)) || ((defined(_M_AMD64) || defined(_M_IA64)) && (_MSC_FULL_VER > 13009175)) #ifdef __cplusplus extern "C" { #endif unsigned short __cdecl _byteswap_ushort(unsigned short); unsigned long __cdecl _byteswap_ulong (unsigned long); unsigned __int64 __cdecl _byteswap_uint64(unsigned __int64); #ifdef __cplusplus } #endif #pragma intrinsic(_byteswap_ushort) #pragma intrinsic(_byteswap_ulong) #pragma intrinsic(_byteswap_uint64) #define RtlUshortByteSwap(_x) _byteswap_ushort((USHORT)(_x)) #define RtlUlongByteSwap(_x) _byteswap_ulong((_x)) #define RtlUlonglongByteSwap(_x) _byteswap_uint64((_x)) #else USHORT FASTCALL RtlUshortByteSwap( IN USHORT Source ); ULONG FASTCALL RtlUlongByteSwap( IN ULONG Source ); ULONGLONG FASTCALL RtlUlonglongByteSwap( IN ULONGLONG Source ); #endif // // Interlocked bit manipulation interfaces // NTSYSAPI ULONG FASTCALL RtlInterlockedSetBits ( IN OUT PULONG Flags, IN ULONG Flag ); NTSYSAPI ULONG FASTCALL RtlInterlockedClearBits ( IN OUT PULONG Flags, IN ULONG Flag ); NTSYSAPI ULONG FASTCALL RtlInterlockedSetClearBits ( IN OUT PULONG Flags, IN ULONG sFlag, IN ULONG cFlag ); // // These are for when the compiler has fixes in for these intrinsics // #if (_MSC_FULL_VER > 13009037) || !defined (_M_IX86) #define RtlInterlockedSetBits(Flags, Flag) \ InterlockedOr ((PLONG) (Flags), Flag) #define RtlInterlockedAndBits(Flags, Flag) \ InterlockedAnd ((PLONG) (Flags), Flag) #define RtlInterlockedClearBits(Flags, Flag) \ RtlInterlockedAndBits (Flags, ~(Flag)) #define RtlInterlockedXorBits(Flags, Flag) \ InterlockedXor (Flags, Flag) #define RtlInterlockedSetBitsDiscardReturn(Flags, Flag) \ (VOID) RtlInterlockedSetBits (Flags, Flag) #define RtlInterlockedAndBitsDiscardReturn(Flags, Flag) \ (VOID) RtlInterlockedAndBits (Flags, Flag) #define RtlInterlockedClearBitsDiscardReturn(Flags, Flag) \ RtlInterlockedAndBitsDiscardReturn (Flags, ~(Flag)) #else #if defined (_X86_) && !defined(MIDL_PASS) FORCEINLINE VOID RtlInterlockedSetBitsDiscardReturn( IN OUT PULONG Flags, IN ULONG Flag ) { __asm { mov ecx, Flags mov eax, Flag #if defined (NT_UP) or [ecx], eax #else lock or [ecx], eax #endif } } FORCEINLINE VOID RtlInterlockedAndBitsDiscardReturn( IN OUT PULONG Flags, IN ULONG Flag ) { __asm { mov ecx, Flags mov eax, Flag #if defined (NT_UP) and [ecx], eax #else lock and [ecx], eax #endif } } #define RtlInterlockedClearBitsDiscardReturn(Flags, Flag) \ (VOID) RtlInterlockedAndBitsDiscardReturn ((Flags), ~(Flag)) #else #define RtlInterlockedSetBitsDiscardReturn(Flags, Flag) \ (VOID) RtlInterlockedSetBits ((Flags), (Flag)) #define RtlInterlockedClearBitsDiscardReturn(Flags, Flag) \ (VOID) RtlInterlockedClearBits ((Flags), (Flag)) #endif /* #if defined(_X86_) && !defined(MIDL_PASS) */ #endif // // Component name filter id enumeration and levels. // #define DPFLTR_ERROR_LEVEL 0 #define DPFLTR_WARNING_LEVEL 1 #define DPFLTR_TRACE_LEVEL 2 #define DPFLTR_INFO_LEVEL 3 #define DPFLTR_MASK 0x80000000 typedef enum _DPFLTR_TYPE { DPFLTR_SYSTEM_ID = 0, DPFLTR_SMSS_ID = 1, DPFLTR_SETUP_ID = 2, DPFLTR_NTFS_ID = 3, DPFLTR_FSTUB_ID = 4, DPFLTR_CRASHDUMP_ID = 5, DPFLTR_CDAUDIO_ID = 6, DPFLTR_CDROM_ID = 7, DPFLTR_CLASSPNP_ID = 8, DPFLTR_DISK_ID = 9, DPFLTR_REDBOOK_ID = 10, DPFLTR_STORPROP_ID = 11, DPFLTR_SCSIPORT_ID = 12, DPFLTR_SCSIMINIPORT_ID = 13, DPFLTR_CONFIG_ID = 14, DPFLTR_I8042PRT_ID = 15, DPFLTR_SERMOUSE_ID = 16, DPFLTR_LSERMOUS_ID = 17, DPFLTR_KBDHID_ID = 18, DPFLTR_MOUHID_ID = 19, DPFLTR_KBDCLASS_ID = 20, DPFLTR_MOUCLASS_ID = 21, DPFLTR_TWOTRACK_ID = 22, DPFLTR_WMILIB_ID = 23, DPFLTR_ACPI_ID = 24, DPFLTR_AMLI_ID = 25, DPFLTR_HALIA64_ID = 26, DPFLTR_VIDEO_ID = 27, DPFLTR_SVCHOST_ID = 28, DPFLTR_VIDEOPRT_ID = 29, DPFLTR_TCPIP_ID = 30, DPFLTR_DMSYNTH_ID = 31, DPFLTR_NTOSPNP_ID = 32, DPFLTR_FASTFAT_ID = 33, DPFLTR_SAMSS_ID = 34, DPFLTR_PNPMGR_ID = 35, DPFLTR_NETAPI_ID = 36, DPFLTR_SCSERVER_ID = 37, DPFLTR_SCCLIENT_ID = 38, DPFLTR_SERIAL_ID = 39, DPFLTR_SERENUM_ID = 40, DPFLTR_UHCD_ID = 41, DPFLTR_BOOTOK_ID = 42, DPFLTR_BOOTVRFY_ID = 43, DPFLTR_RPCPROXY_ID = 44, DPFLTR_AUTOCHK_ID = 45, DPFLTR_DCOMSS_ID = 46, DPFLTR_UNIMODEM_ID = 47, DPFLTR_SIS_ID = 48, DPFLTR_FLTMGR_ID = 49, DPFLTR_WMICORE_ID = 50, DPFLTR_BURNENG_ID = 51, DPFLTR_IMAPI_ID = 52, DPFLTR_SXS_ID = 53, DPFLTR_FUSION_ID = 54, DPFLTR_IDLETASK_ID = 55, DPFLTR_SOFTPCI_ID = 56, DPFLTR_TAPE_ID = 57, DPFLTR_MCHGR_ID = 58, DPFLTR_IDEP_ID = 59, DPFLTR_PCIIDE_ID = 60, DPFLTR_FLOPPY_ID = 61, DPFLTR_FDC_ID = 62, DPFLTR_TERMSRV_ID = 63, DPFLTR_W32TIME_ID = 64, DPFLTR_PREFETCHER_ID = 65, DPFLTR_RSFILTER_ID = 66, DPFLTR_FCPORT_ID = 67, DPFLTR_PCI_ID = 68, DPFLTR_DMIO_ID = 69, DPFLTR_DMCONFIG_ID = 70, DPFLTR_DMADMIN_ID = 71, DPFLTR_WSOCKTRANSPORT_ID = 72, DPFLTR_VSS_ID = 73, DPFLTR_PNPMEM_ID = 74, DPFLTR_PROCESSOR_ID = 75, DPFLTR_DMSERVER_ID = 76, DPFLTR_SR_ID = 77, DPFLTR_INFINIBAND_ID = 78, DPFLTR_IHVDRIVER_ID = 79, DPFLTR_IHVVIDEO_ID = 80, DPFLTR_IHVAUDIO_ID = 81, DPFLTR_IHVNETWORK_ID = 82, DPFLTR_IHVSTREAMING_ID = 83, DPFLTR_IHVBUS_ID = 84, DPFLTR_HPS_ID = 85, DPFLTR_RTLTHREADPOOL_ID = 86, DPFLTR_LDR_ID = 87, DPFLTR_TCPIP6_ID = 88, DPFLTR_ISAPNP_ID = 89, DPFLTR_SHPC_ID = 90, DPFLTR_STORPORT_ID = 91, DPFLTR_STORMINIPORT_ID = 92, DPFLTR_PRINTSPOOLER_ID = 93, DPFLTR_ENDOFTABLE_ID } DPFLTR_TYPE; // // Define the various device type values. Note that values used by Microsoft // Corporation are in the range 0-32767, and 32768-65535 are reserved for use // by customers. // #define DEVICE_TYPE ULONG #define FILE_DEVICE_BEEP 0x00000001 #define FILE_DEVICE_CD_ROM 0x00000002 #define FILE_DEVICE_CD_ROM_FILE_SYSTEM 0x00000003 #define FILE_DEVICE_CONTROLLER 0x00000004 #define FILE_DEVICE_DATALINK 0x00000005 #define FILE_DEVICE_DFS 0x00000006 #define FILE_DEVICE_DISK 0x00000007 #define FILE_DEVICE_DISK_FILE_SYSTEM 0x00000008 #define FILE_DEVICE_FILE_SYSTEM 0x00000009 #define FILE_DEVICE_INPORT_PORT 0x0000000a #define FILE_DEVICE_KEYBOARD 0x0000000b #define FILE_DEVICE_MAILSLOT 0x0000000c #define FILE_DEVICE_MIDI_IN 0x0000000d #define FILE_DEVICE_MIDI_OUT 0x0000000e #define FILE_DEVICE_MOUSE 0x0000000f #define FILE_DEVICE_MULTI_UNC_PROVIDER 0x00000010 #define FILE_DEVICE_NAMED_PIPE 0x00000011 #define FILE_DEVICE_NETWORK 0x00000012 #define FILE_DEVICE_NETWORK_BROWSER 0x00000013 #define FILE_DEVICE_NETWORK_FILE_SYSTEM 0x00000014 #define FILE_DEVICE_NULL 0x00000015 #define FILE_DEVICE_PARALLEL_PORT 0x00000016 #define FILE_DEVICE_PHYSICAL_NETCARD 0x00000017 #define FILE_DEVICE_PRINTER 0x00000018 #define FILE_DEVICE_SCANNER 0x00000019 #define FILE_DEVICE_SERIAL_MOUSE_PORT 0x0000001a #define FILE_DEVICE_SERIAL_PORT 0x0000001b #define FILE_DEVICE_SCREEN 0x0000001c #define FILE_DEVICE_SOUND 0x0000001d #define FILE_DEVICE_STREAMS 0x0000001e #define FILE_DEVICE_TAPE 0x0000001f #define FILE_DEVICE_TAPE_FILE_SYSTEM 0x00000020 #define FILE_DEVICE_TRANSPORT 0x00000021 #define FILE_DEVICE_UNKNOWN 0x00000022 #define FILE_DEVICE_VIDEO 0x00000023 #define FILE_DEVICE_VIRTUAL_DISK 0x00000024 #define FILE_DEVICE_WAVE_IN 0x00000025 #define FILE_DEVICE_WAVE_OUT 0x00000026 #define FILE_DEVICE_8042_PORT 0x00000027 #define FILE_DEVICE_NETWORK_REDIRECTOR 0x00000028 #define FILE_DEVICE_BATTERY 0x00000029 #define FILE_DEVICE_BUS_EXTENDER 0x0000002a #define FILE_DEVICE_MODEM 0x0000002b #define FILE_DEVICE_VDM 0x0000002c #define FILE_DEVICE_MASS_STORAGE 0x0000002d #define FILE_DEVICE_SMB 0x0000002e #define FILE_DEVICE_KS 0x0000002f #define FILE_DEVICE_CHANGER 0x00000030 #define FILE_DEVICE_SMARTCARD 0x00000031 #define FILE_DEVICE_ACPI 0x00000032 #define FILE_DEVICE_DVD 0x00000033 #define FILE_DEVICE_FULLSCREEN_VIDEO 0x00000034 #define FILE_DEVICE_DFS_FILE_SYSTEM 0x00000035 #define FILE_DEVICE_DFS_VOLUME 0x00000036 #define FILE_DEVICE_SERENUM 0x00000037 #define FILE_DEVICE_TERMSRV 0x00000038 #define FILE_DEVICE_KSEC 0x00000039 #define FILE_DEVICE_FIPS 0x0000003A // // Macro definition for defining IOCTL and FSCTL function control codes. Note // that function codes 0-2047 are reserved for Microsoft Corporation, and // 2048-4095 are reserved for customers. // #define CTL_CODE( DeviceType, Function, Method, Access ) ( \ ((DeviceType) << 16) | ((Access) << 14) | ((Function) << 2) | (Method) \ ) // // Macro to extract device type out of the device io control code // #define DEVICE_TYPE_FROM_CTL_CODE(ctrlCode) (((ULONG)(ctrlCode & 0xffff0000)) >> 16) // // Define the method codes for how buffers are passed for I/O and FS controls // #define METHOD_BUFFERED 0 #define METHOD_IN_DIRECT 1 #define METHOD_OUT_DIRECT 2 #define METHOD_NEITHER 3 // // Define the access check value for any access // // // The FILE_READ_ACCESS and FILE_WRITE_ACCESS constants are also defined in // ntioapi.h as FILE_READ_DATA and FILE_WRITE_DATA. The values for these // constants *MUST* always be in sync. // // // FILE_SPECIAL_ACCESS is checked by the NT I/O system the same as FILE_ANY_ACCESS. // The file systems, however, may add additional access checks for I/O and FS controls // that use this value. // #define FILE_ANY_ACCESS 0 #define FILE_SPECIAL_ACCESS (FILE_ANY_ACCESS) #define FILE_READ_ACCESS ( 0x0001 ) // file & pipe #define FILE_WRITE_ACCESS ( 0x0002 ) // file & pipe // // Define access rights to files and directories // // // The FILE_READ_DATA and FILE_WRITE_DATA constants are also defined in // devioctl.h as FILE_READ_ACCESS and FILE_WRITE_ACCESS. The values for these // constants *MUST* always be in sync. // The values are redefined in devioctl.h because they must be available to // both DOS and NT. // #define FILE_READ_DATA ( 0x0001 ) // file & pipe #define FILE_LIST_DIRECTORY ( 0x0001 ) // directory #define FILE_WRITE_DATA ( 0x0002 ) // file & pipe #define FILE_ADD_FILE ( 0x0002 ) // directory #define FILE_APPEND_DATA ( 0x0004 ) // file #define FILE_ADD_SUBDIRECTORY ( 0x0004 ) // directory #define FILE_CREATE_PIPE_INSTANCE ( 0x0004 ) // named pipe #define FILE_READ_EA ( 0x0008 ) // file & directory #define FILE_WRITE_EA ( 0x0010 ) // file & directory #define FILE_EXECUTE ( 0x0020 ) // file #define FILE_TRAVERSE ( 0x0020 ) // directory #define FILE_DELETE_CHILD ( 0x0040 ) // directory #define FILE_READ_ATTRIBUTES ( 0x0080 ) // all #define FILE_WRITE_ATTRIBUTES ( 0x0100 ) // all #define FILE_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED | SYNCHRONIZE | 0x1FF) #define FILE_GENERIC_READ (STANDARD_RIGHTS_READ |\ FILE_READ_DATA |\ FILE_READ_ATTRIBUTES |\ FILE_READ_EA |\ SYNCHRONIZE) #define FILE_GENERIC_WRITE (STANDARD_RIGHTS_WRITE |\ FILE_WRITE_DATA |\ FILE_WRITE_ATTRIBUTES |\ FILE_WRITE_EA |\ FILE_APPEND_DATA |\ SYNCHRONIZE) #define FILE_GENERIC_EXECUTE (STANDARD_RIGHTS_EXECUTE |\ FILE_READ_ATTRIBUTES |\ FILE_EXECUTE |\ SYNCHRONIZE) // // Define share access rights to files and directories // #define FILE_SHARE_READ 0x00000001 #define FILE_SHARE_WRITE 0x00000002 #define FILE_SHARE_DELETE 0x00000004 #define FILE_SHARE_VALID_FLAGS 0x00000007 // // Define the file attributes values // // Note: 0x00000008 is reserved for use for the old DOS VOLID (volume ID) // and is therefore not considered valid in NT. // // Note: 0x00000010 is reserved for use for the old DOS SUBDIRECTORY flag // and is therefore not considered valid in NT. This flag has // been disassociated with file attributes since the other flags are // protected with READ_ and WRITE_ATTRIBUTES access to the file. // // Note: Note also that the order of these flags is set to allow both the // FAT and the Pinball File Systems to directly set the attributes // flags in attributes words without having to pick each flag out // individually. The order of these flags should not be changed! // #define FILE_ATTRIBUTE_READONLY 0x00000001 #define FILE_ATTRIBUTE_HIDDEN 0x00000002 #define FILE_ATTRIBUTE_SYSTEM 0x00000004 //OLD DOS VOLID 0x00000008 #define FILE_ATTRIBUTE_DIRECTORY 0x00000010 #define FILE_ATTRIBUTE_ARCHIVE 0x00000020 #define FILE_ATTRIBUTE_DEVICE 0x00000040 #define FILE_ATTRIBUTE_NORMAL 0x00000080 #define FILE_ATTRIBUTE_TEMPORARY 0x00000100 #define FILE_ATTRIBUTE_SPARSE_FILE 0x00000200 #define FILE_ATTRIBUTE_REPARSE_POINT 0x00000400 #define FILE_ATTRIBUTE_COMPRESSED 0x00000800 #define FILE_ATTRIBUTE_OFFLINE 0x00001000 #define FILE_ATTRIBUTE_NOT_CONTENT_INDEXED 0x00002000 #define FILE_ATTRIBUTE_ENCRYPTED 0x00004000 #define FILE_ATTRIBUTE_VALID_FLAGS 0x00007fb7 #define FILE_ATTRIBUTE_VALID_SET_FLAGS 0x000031a7 // // Define the create disposition values // #define FILE_SUPERSEDE 0x00000000 #define FILE_OPEN 0x00000001 #define FILE_CREATE 0x00000002 #define FILE_OPEN_IF 0x00000003 #define FILE_OVERWRITE 0x00000004 #define FILE_OVERWRITE_IF 0x00000005 #define FILE_MAXIMUM_DISPOSITION 0x00000005 // // Define the create/open option flags // #define FILE_DIRECTORY_FILE 0x00000001 #define FILE_WRITE_THROUGH 0x00000002 #define FILE_SEQUENTIAL_ONLY 0x00000004 #define FILE_NO_INTERMEDIATE_BUFFERING 0x00000008 #define FILE_SYNCHRONOUS_IO_ALERT 0x00000010 #define FILE_SYNCHRONOUS_IO_NONALERT 0x00000020 #define FILE_NON_DIRECTORY_FILE 0x00000040 #define FILE_CREATE_TREE_CONNECTION 0x00000080 #define FILE_COMPLETE_IF_OPLOCKED 0x00000100 #define FILE_NO_EA_KNOWLEDGE 0x00000200 #define FILE_OPEN_FOR_RECOVERY 0x00000400 #define FILE_RANDOM_ACCESS 0x00000800 #define FILE_DELETE_ON_CLOSE 0x00001000 #define FILE_OPEN_BY_FILE_ID 0x00002000 #define FILE_OPEN_FOR_BACKUP_INTENT 0x00004000 #define FILE_NO_COMPRESSION 0x00008000 #define FILE_RESERVE_OPFILTER 0x00100000 #define FILE_OPEN_REPARSE_POINT 0x00200000 #define FILE_OPEN_NO_RECALL 0x00400000 #define FILE_OPEN_FOR_FREE_SPACE_QUERY 0x00800000 #define FILE_COPY_STRUCTURED_STORAGE 0x00000041 #define FILE_STRUCTURED_STORAGE 0x00000441 #define FILE_VALID_OPTION_FLAGS 0x00ffffff #define FILE_VALID_PIPE_OPTION_FLAGS 0x00000032 #define FILE_VALID_MAILSLOT_OPTION_FLAGS 0x00000032 #define FILE_VALID_SET_FLAGS 0x00000036 // // Define the I/O status information return values for NtCreateFile/NtOpenFile // #define FILE_SUPERSEDED 0x00000000 #define FILE_OPENED 0x00000001 #define FILE_CREATED 0x00000002 #define FILE_OVERWRITTEN 0x00000003 #define FILE_EXISTS 0x00000004 #define FILE_DOES_NOT_EXIST 0x00000005 // // Define special ByteOffset parameters for read and write operations // #define FILE_WRITE_TO_END_OF_FILE 0xffffffff #define FILE_USE_FILE_POINTER_POSITION 0xfffffffe // // Define alignment requirement values // #define FILE_BYTE_ALIGNMENT 0x00000000 #define FILE_WORD_ALIGNMENT 0x00000001 #define FILE_LONG_ALIGNMENT 0x00000003 #define FILE_QUAD_ALIGNMENT 0x00000007 #define FILE_OCTA_ALIGNMENT 0x0000000f #define FILE_32_BYTE_ALIGNMENT 0x0000001f #define FILE_64_BYTE_ALIGNMENT 0x0000003f #define FILE_128_BYTE_ALIGNMENT 0x0000007f #define FILE_256_BYTE_ALIGNMENT 0x000000ff #define FILE_512_BYTE_ALIGNMENT 0x000001ff // // Define the maximum length of a filename string // #define MAXIMUM_FILENAME_LENGTH 256 // // Define the various device characteristics flags // #define FILE_REMOVABLE_MEDIA 0x00000001 #define FILE_READ_ONLY_DEVICE 0x00000002 #define FILE_FLOPPY_DISKETTE 0x00000004 #define FILE_WRITE_ONCE_MEDIA 0x00000008 #define FILE_REMOTE_DEVICE 0x00000010 #define FILE_DEVICE_IS_MOUNTED 0x00000020 #define FILE_VIRTUAL_VOLUME 0x00000040 #define FILE_AUTOGENERATED_DEVICE_NAME 0x00000080 #define FILE_DEVICE_SECURE_OPEN 0x00000100 #define FILE_CHARACTERISTIC_PNP_DEVICE 0x00000800 // // Define the base asynchronous I/O argument types // typedef struct _IO_STATUS_BLOCK { union { NTSTATUS Status; PVOID Pointer; }; ULONG_PTR Information; } IO_STATUS_BLOCK, *PIO_STATUS_BLOCK; #if defined(_WIN64) typedef struct _IO_STATUS_BLOCK32 { NTSTATUS Status; ULONG Information; } IO_STATUS_BLOCK32, *PIO_STATUS_BLOCK32; #endif // // Define an Asynchronous Procedure Call from I/O viewpoint // typedef VOID (NTAPI *PIO_APC_ROUTINE) ( IN PVOID ApcContext, IN PIO_STATUS_BLOCK IoStatusBlock, IN ULONG Reserved ); #define PIO_APC_ROUTINE_DEFINED // // Define the file information class values // // WARNING: The order of the following values are assumed by the I/O system. // Any changes made here should be reflected there as well. // typedef enum _FILE_INFORMATION_CLASS { FileBasicInformation = 4, FileStandardInformation = 5, FilePositionInformation = 14, FileEndOfFileInformation = 20, } FILE_INFORMATION_CLASS, *PFILE_INFORMATION_CLASS; // // Define the various structures which are returned on query operations // typedef struct _FILE_BASIC_INFORMATION { LARGE_INTEGER CreationTime; LARGE_INTEGER LastAccessTime; LARGE_INTEGER LastWriteTime; LARGE_INTEGER ChangeTime; ULONG FileAttributes; } FILE_BASIC_INFORMATION, *PFILE_BASIC_INFORMATION; typedef struct _FILE_STANDARD_INFORMATION { LARGE_INTEGER AllocationSize; LARGE_INTEGER EndOfFile; ULONG NumberOfLinks; BOOLEAN DeletePending; BOOLEAN Directory; } FILE_STANDARD_INFORMATION, *PFILE_STANDARD_INFORMATION; typedef struct _FILE_POSITION_INFORMATION { LARGE_INTEGER CurrentByteOffset; } FILE_POSITION_INFORMATION, *PFILE_POSITION_INFORMATION; typedef struct _FILE_NETWORK_OPEN_INFORMATION { LARGE_INTEGER CreationTime; LARGE_INTEGER LastAccessTime; LARGE_INTEGER LastWriteTime; LARGE_INTEGER ChangeTime; LARGE_INTEGER AllocationSize; LARGE_INTEGER EndOfFile; ULONG FileAttributes; } FILE_NETWORK_OPEN_INFORMATION, *PFILE_NETWORK_OPEN_INFORMATION; typedef struct _FILE_FULL_EA_INFORMATION { ULONG NextEntryOffset; UCHAR Flags; UCHAR EaNameLength; USHORT EaValueLength; CHAR EaName[1]; } FILE_FULL_EA_INFORMATION, *PFILE_FULL_EA_INFORMATION; // // Define the file system information class values // // WARNING: The order of the following values are assumed by the I/O system. // Any changes made here should be reflected there as well. typedef enum _FSINFOCLASS { FileFsVolumeInformation = 1, FileFsLabelInformation, // 2 FileFsSizeInformation, // 3 FileFsDeviceInformation, // 4 FileFsAttributeInformation, // 5 FileFsControlInformation, // 6 FileFsFullSizeInformation, // 7 FileFsObjectIdInformation, // 8 FileFsDriverPathInformation, // 9 FileFsMaximumInformation } FS_INFORMATION_CLASS, *PFS_INFORMATION_CLASS; typedef struct _FILE_FS_DEVICE_INFORMATION { DEVICE_TYPE DeviceType; ULONG Characteristics; } FILE_FS_DEVICE_INFORMATION, *PFILE_FS_DEVICE_INFORMATION; // // Define the I/O bus interface types. // typedef enum _INTERFACE_TYPE { InterfaceTypeUndefined = -1, Internal, Isa, Eisa, MicroChannel, TurboChannel, PCIBus, VMEBus, NuBus, PCMCIABus, CBus, MPIBus, MPSABus, ProcessorInternal, InternalPowerBus, PNPISABus, PNPBus, MaximumInterfaceType }INTERFACE_TYPE, *PINTERFACE_TYPE; // // Define the DMA transfer widths. // typedef enum _DMA_WIDTH { Width8Bits, Width16Bits, Width32Bits, MaximumDmaWidth }DMA_WIDTH, *PDMA_WIDTH; // // Define DMA transfer speeds. // typedef enum _DMA_SPEED { Compatible, TypeA, TypeB, TypeC, TypeF, MaximumDmaSpeed }DMA_SPEED, *PDMA_SPEED; // // Define Interface reference/dereference routines for // Interfaces exported by IRP_MN_QUERY_INTERFACE // typedef VOID (*PINTERFACE_REFERENCE)(PVOID Context); typedef VOID (*PINTERFACE_DEREFERENCE)(PVOID Context); // // Define I/O Driver error log packet structure. This structure is filled in // by the driver. // typedef struct _IO_ERROR_LOG_PACKET { UCHAR MajorFunctionCode; UCHAR RetryCount; USHORT DumpDataSize; USHORT NumberOfStrings; USHORT StringOffset; USHORT EventCategory; NTSTATUS ErrorCode; ULONG UniqueErrorValue; NTSTATUS FinalStatus; ULONG SequenceNumber; ULONG IoControlCode; LARGE_INTEGER DeviceOffset; ULONG DumpData[1]; }IO_ERROR_LOG_PACKET, *PIO_ERROR_LOG_PACKET; // // Define the I/O error log message. This message is sent by the error log // thread over the lpc port. // typedef struct _IO_ERROR_LOG_MESSAGE { USHORT Type; USHORT Size; USHORT DriverNameLength; LARGE_INTEGER TimeStamp; ULONG DriverNameOffset; IO_ERROR_LOG_PACKET EntryData; }IO_ERROR_LOG_MESSAGE, *PIO_ERROR_LOG_MESSAGE; // // Define the maximum message size that will be sent over the LPC to the // application reading the error log entries. // // // Regardless of LPC size restrictions, ERROR_LOG_MAXIMUM_SIZE must remain // a value that can fit in a UCHAR. // #define ERROR_LOG_LIMIT_SIZE (256-16) // // This limit, exclusive of IO_ERROR_LOG_MESSAGE_HEADER_LENGTH, also applies // to IO_ERROR_LOG_MESSAGE_LENGTH // #define IO_ERROR_LOG_MESSAGE_HEADER_LENGTH (sizeof(IO_ERROR_LOG_MESSAGE) - \ sizeof(IO_ERROR_LOG_PACKET) + \ (sizeof(WCHAR) * 40)) #define ERROR_LOG_MESSAGE_LIMIT_SIZE \ (ERROR_LOG_LIMIT_SIZE + IO_ERROR_LOG_MESSAGE_HEADER_LENGTH) // // IO_ERROR_LOG_MESSAGE_LENGTH is // min(PORT_MAXIMUM_MESSAGE_LENGTH, ERROR_LOG_MESSAGE_LIMIT_SIZE) // #define IO_ERROR_LOG_MESSAGE_LENGTH \ ((PORT_MAXIMUM_MESSAGE_LENGTH > ERROR_LOG_MESSAGE_LIMIT_SIZE) ? \ ERROR_LOG_MESSAGE_LIMIT_SIZE : \ PORT_MAXIMUM_MESSAGE_LENGTH) // // Define the maximum packet size a driver can allocate. // #define ERROR_LOG_MAXIMUM_SIZE (IO_ERROR_LOG_MESSAGE_LENGTH - \ IO_ERROR_LOG_MESSAGE_HEADER_LENGTH) #ifdef _WIN64 #define PORT_MAXIMUM_MESSAGE_LENGTH 512 #else #define PORT_MAXIMUM_MESSAGE_LENGTH 256 #endif // // Registry Specific Access Rights. // #define KEY_QUERY_VALUE (0x0001) #define KEY_SET_VALUE (0x0002) #define KEY_CREATE_SUB_KEY (0x0004) #define KEY_ENUMERATE_SUB_KEYS (0x0008) #define KEY_NOTIFY (0x0010) #define KEY_CREATE_LINK (0x0020) #define KEY_WOW64_32KEY (0x0200) #define KEY_WOW64_64KEY (0x0100) #define KEY_WOW64_RES (0x0300) #define KEY_READ ((STANDARD_RIGHTS_READ |\ KEY_QUERY_VALUE |\ KEY_ENUMERATE_SUB_KEYS |\ KEY_NOTIFY) \ & \ (~SYNCHRONIZE)) #define KEY_WRITE ((STANDARD_RIGHTS_WRITE |\ KEY_SET_VALUE |\ KEY_CREATE_SUB_KEY) \ & \ (~SYNCHRONIZE)) #define KEY_EXECUTE ((KEY_READ) \ & \ (~SYNCHRONIZE)) #define KEY_ALL_ACCESS ((STANDARD_RIGHTS_ALL |\ KEY_QUERY_VALUE |\ KEY_SET_VALUE |\ KEY_CREATE_SUB_KEY |\ KEY_ENUMERATE_SUB_KEYS |\ KEY_NOTIFY |\ KEY_CREATE_LINK) \ & \ (~SYNCHRONIZE)) // // Open/Create Options // #define REG_OPTION_RESERVED (0x00000000L) // Parameter is reserved #define REG_OPTION_NON_VOLATILE (0x00000000L) // Key is preserved // when system is rebooted #define REG_OPTION_VOLATILE (0x00000001L) // Key is not preserved // when system is rebooted #define REG_OPTION_CREATE_LINK (0x00000002L) // Created key is a // symbolic link #define REG_OPTION_BACKUP_RESTORE (0x00000004L) // open for backup or restore // special access rules // privilege required #define REG_OPTION_OPEN_LINK (0x00000008L) // Open symbolic link #define REG_LEGAL_OPTION \ (REG_OPTION_RESERVED |\ REG_OPTION_NON_VOLATILE |\ REG_OPTION_VOLATILE |\ REG_OPTION_CREATE_LINK |\ REG_OPTION_BACKUP_RESTORE |\ REG_OPTION_OPEN_LINK) // // Key creation/open disposition // #define REG_CREATED_NEW_KEY (0x00000001L) // New Registry Key created #define REG_OPENED_EXISTING_KEY (0x00000002L) // Existing Key opened // // hive format to be used by Reg(Nt)SaveKeyEx // #define REG_STANDARD_FORMAT 1 #define REG_LATEST_FORMAT 2 #define REG_NO_COMPRESSION 4 // // Key restore flags // #define REG_WHOLE_HIVE_VOLATILE (0x00000001L) // Restore whole hive volatile #define REG_REFRESH_HIVE (0x00000002L) // Unwind changes to last flush #define REG_NO_LAZY_FLUSH (0x00000004L) // Never lazy flush this hive #define REG_FORCE_RESTORE (0x00000008L) // Force the restore process even when we have open handles on subkeys // // Key query structures // typedef struct _KEY_BASIC_INFORMATION { LARGE_INTEGER LastWriteTime; ULONG TitleIndex; ULONG NameLength; WCHAR Name[1]; // Variable length string } KEY_BASIC_INFORMATION, *PKEY_BASIC_INFORMATION; typedef struct _KEY_NODE_INFORMATION { LARGE_INTEGER LastWriteTime; ULONG TitleIndex; ULONG ClassOffset; ULONG ClassLength; ULONG NameLength; WCHAR Name[1]; // Variable length string // Class[1]; // Variable length string not declared } KEY_NODE_INFORMATION, *PKEY_NODE_INFORMATION; typedef struct _KEY_FULL_INFORMATION { LARGE_INTEGER LastWriteTime; ULONG TitleIndex; ULONG ClassOffset; ULONG ClassLength; ULONG SubKeys; ULONG MaxNameLen; ULONG MaxClassLen; ULONG Values; ULONG MaxValueNameLen; ULONG MaxValueDataLen; WCHAR Class[1]; // Variable length } KEY_FULL_INFORMATION, *PKEY_FULL_INFORMATION; typedef enum _KEY_INFORMATION_CLASS { KeyBasicInformation, KeyNodeInformation, KeyFullInformation } KEY_INFORMATION_CLASS; typedef struct _KEY_WRITE_TIME_INFORMATION { LARGE_INTEGER LastWriteTime; } KEY_WRITE_TIME_INFORMATION, *PKEY_WRITE_TIME_INFORMATION; typedef struct _KEY_USER_FLAGS_INFORMATION { ULONG UserFlags; } KEY_USER_FLAGS_INFORMATION, *PKEY_USER_FLAGS_INFORMATION; typedef enum _KEY_SET_INFORMATION_CLASS { KeyWriteTimeInformation, KeyUserFlagsInformation } KEY_SET_INFORMATION_CLASS; // // Value entry query structures // typedef struct _KEY_VALUE_BASIC_INFORMATION { ULONG TitleIndex; ULONG Type; ULONG NameLength; WCHAR Name[1]; // Variable size } KEY_VALUE_BASIC_INFORMATION, *PKEY_VALUE_BASIC_INFORMATION; typedef struct _KEY_VALUE_FULL_INFORMATION { ULONG TitleIndex; ULONG Type; ULONG DataOffset; ULONG DataLength; ULONG NameLength; WCHAR Name[1]; // Variable size // Data[1]; // Variable size data not declared } KEY_VALUE_FULL_INFORMATION, *PKEY_VALUE_FULL_INFORMATION; typedef struct _KEY_VALUE_PARTIAL_INFORMATION { ULONG TitleIndex; ULONG Type; ULONG DataLength; UCHAR Data[1]; // Variable size } KEY_VALUE_PARTIAL_INFORMATION, *PKEY_VALUE_PARTIAL_INFORMATION; typedef struct _KEY_VALUE_PARTIAL_INFORMATION_ALIGN64 { ULONG Type; ULONG DataLength; UCHAR Data[1]; // Variable size } KEY_VALUE_PARTIAL_INFORMATION_ALIGN64, *PKEY_VALUE_PARTIAL_INFORMATION_ALIGN64; typedef struct _KEY_VALUE_ENTRY { PUNICODE_STRING ValueName; ULONG DataLength; ULONG DataOffset; ULONG Type; } KEY_VALUE_ENTRY, *PKEY_VALUE_ENTRY; typedef enum _KEY_VALUE_INFORMATION_CLASS { KeyValueBasicInformation, KeyValueFullInformation, KeyValuePartialInformation, KeyValueFullInformationAlign64, KeyValuePartialInformationAlign64 } KEY_VALUE_INFORMATION_CLASS; #define OBJ_NAME_PATH_SEPARATOR ((WCHAR)L'\\') // // Object Manager Object Type Specific Access Rights. // #define OBJECT_TYPE_CREATE (0x0001) #define OBJECT_TYPE_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED | 0x1) // // Object Manager Directory Specific Access Rights. // #define DIRECTORY_QUERY (0x0001) #define DIRECTORY_TRAVERSE (0x0002) #define DIRECTORY_CREATE_OBJECT (0x0004) #define DIRECTORY_CREATE_SUBDIRECTORY (0x0008) #define DIRECTORY_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED | 0xF) // // Object Manager Symbolic Link Specific Access Rights. // #define SYMBOLIC_LINK_QUERY (0x0001) #define SYMBOLIC_LINK_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED | 0x1) typedef struct _OBJECT_NAME_INFORMATION { UNICODE_STRING Name; } OBJECT_NAME_INFORMATION, *POBJECT_NAME_INFORMATION; #define DUPLICATE_CLOSE_SOURCE 0x00000001 #define DUPLICATE_SAME_ACCESS 0x00000002 #define DUPLICATE_SAME_ATTRIBUTES 0x00000004 // // Section Information Structures. // typedef enum _SECTION_INHERIT { ViewShare = 1, ViewUnmap = 2 } SECTION_INHERIT; // // Section Access Rights. // #define SECTION_QUERY 0x0001 #define SECTION_MAP_WRITE 0x0002 #define SECTION_MAP_READ 0x0004 #define SECTION_MAP_EXECUTE 0x0008 #define SECTION_EXTEND_SIZE 0x0010 #define SECTION_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED|SECTION_QUERY|\ SECTION_MAP_WRITE | \ SECTION_MAP_READ | \ SECTION_MAP_EXECUTE | \ SECTION_EXTEND_SIZE) #define SEGMENT_ALL_ACCESS SECTION_ALL_ACCESS #define PAGE_NOACCESS 0x01 #define PAGE_READONLY 0x02 #define PAGE_READWRITE 0x04 #define PAGE_WRITECOPY 0x08 #define PAGE_EXECUTE 0x10 #define PAGE_EXECUTE_READ 0x20 #define PAGE_EXECUTE_READWRITE 0x40 #define PAGE_EXECUTE_WRITECOPY 0x80 #define PAGE_GUARD 0x100 #define PAGE_NOCACHE 0x200 #define PAGE_WRITECOMBINE 0x400 #define MEM_COMMIT 0x1000 #define MEM_RESERVE 0x2000 #define MEM_DECOMMIT 0x4000 #define MEM_RELEASE 0x8000 #define MEM_FREE 0x10000 #define MEM_PRIVATE 0x20000 #define MEM_MAPPED 0x40000 #define MEM_RESET 0x80000 #define MEM_TOP_DOWN 0x100000 #define MEM_LARGE_PAGES 0x20000000 #define MEM_4MB_PAGES 0x80000000 #define SEC_RESERVE 0x4000000 #define PROCESS_DUP_HANDLE (0x0040) #define PROCESS_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED | SYNCHRONIZE | \ 0xFFF) #if defined(_WIN64) #define MAXIMUM_PROCESSORS 64 #else #define MAXIMUM_PROCESSORS 32 #endif // // Thread Specific Access Rights // #define THREAD_TERMINATE (0x0001) #define THREAD_SET_INFORMATION (0x0020) #define THREAD_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED | SYNCHRONIZE | \ 0x3FF) // // ClientId // typedef struct _CLIENT_ID { HANDLE UniqueProcess; HANDLE UniqueThread; } CLIENT_ID; typedef CLIENT_ID *PCLIENT_ID; #define NtCurrentProcess() ( (HANDLE)(LONG_PTR) -1 ) #define NtCurrentThread() ( (HANDLE)(LONG_PTR) -2 ) #ifndef _PO_DDK_ #define _PO_DDK_ typedef enum _SYSTEM_POWER_STATE { PowerSystemUnspecified = 0, PowerSystemWorking = 1, PowerSystemSleeping1 = 2, PowerSystemSleeping2 = 3, PowerSystemSleeping3 = 4, PowerSystemHibernate = 5, PowerSystemShutdown = 6, PowerSystemMaximum = 7 } SYSTEM_POWER_STATE, *PSYSTEM_POWER_STATE; #define POWER_SYSTEM_MAXIMUM 7 typedef enum { PowerActionNone = 0, PowerActionReserved, PowerActionSleep, PowerActionHibernate, PowerActionShutdown, PowerActionShutdownReset, PowerActionShutdownOff, PowerActionWarmEject } POWER_ACTION, *PPOWER_ACTION; typedef enum _DEVICE_POWER_STATE { PowerDeviceUnspecified = 0, PowerDeviceD0, PowerDeviceD1, PowerDeviceD2, PowerDeviceD3, PowerDeviceMaximum } DEVICE_POWER_STATE, *PDEVICE_POWER_STATE; typedef union _POWER_STATE { SYSTEM_POWER_STATE SystemState; DEVICE_POWER_STATE DeviceState; } POWER_STATE, *PPOWER_STATE; typedef enum _POWER_STATE_TYPE { SystemPowerState = 0, DevicePowerState } POWER_STATE_TYPE, *PPOWER_STATE_TYPE; // // Generic power related IOCTLs // #define IOCTL_QUERY_DEVICE_POWER_STATE \ CTL_CODE(FILE_DEVICE_BATTERY, 0x0, METHOD_BUFFERED, FILE_READ_ACCESS) #define IOCTL_SET_DEVICE_WAKE \ CTL_CODE(FILE_DEVICE_BATTERY, 0x1, METHOD_BUFFERED, FILE_WRITE_ACCESS) #define IOCTL_CANCEL_DEVICE_WAKE \ CTL_CODE(FILE_DEVICE_BATTERY, 0x2, METHOD_BUFFERED, FILE_WRITE_ACCESS) // // Defines for W32 interfaces // #define ES_SYSTEM_REQUIRED ((ULONG)0x00000001) #define ES_DISPLAY_REQUIRED ((ULONG)0x00000002) #define ES_USER_PRESENT ((ULONG)0x00000004) #define ES_CONTINUOUS ((ULONG)0x80000000) typedef ULONG EXECUTION_STATE; typedef enum { LT_DONT_CARE, LT_LOWEST_LATENCY } LATENCY_TIME; // // System power manager capabilities // typedef struct { ULONG Granularity; ULONG Capacity; } BATTERY_REPORTING_SCALE, *PBATTERY_REPORTING_SCALE; #endif // !_PO_DDK_ #if defined(_X86_) // // Types to use to contain PFNs and their counts. // typedef ULONG PFN_COUNT; typedef LONG SPFN_NUMBER, *PSPFN_NUMBER; typedef ULONG PFN_NUMBER, *PPFN_NUMBER; // // Define maximum size of flush multiple TB request. // #define FLUSH_MULTIPLE_MAXIMUM 16 // // Indicate that the i386 compiler supports the pragma textout construct. // #define ALLOC_PRAGMA 1 // // Indicate that the i386 compiler supports the DATA_SEG("INIT") and // DATA_SEG("PAGE") pragmas // #define ALLOC_DATA_PRAGMA 1 #define NORMAL_DISPATCH_LENGTH 106 #define DISPATCH_LENGTH NORMAL_DISPATCH_LENGTH // // Interrupt Request Level definitions // #define PASSIVE_LEVEL 0 // Passive release level #define LOW_LEVEL 0 // Lowest interrupt level #define APC_LEVEL 1 // APC interrupt level #define DISPATCH_LEVEL 2 // Dispatcher level #define PROFILE_LEVEL 27 // timer used for profiling. #define CLOCK1_LEVEL 28 // Interval clock 1 level - Not used on x86 #define CLOCK2_LEVEL 28 // Interval clock 2 level #define IPI_LEVEL 29 // Interprocessor interrupt level #define POWER_LEVEL 30 // Power failure level #define HIGH_LEVEL 31 // Highest interrupt level #if defined(NT_UP) #define SYNCH_LEVEL DISPATCH_LEVEL // synchronization level - UP system #else #define SYNCH_LEVEL (IPI_LEVEL-1) // synchronization level - MP system #endif // // I/O space read and write macros. // // These have to be actual functions on the 386, because we need // to use assembler, but cannot return a value if we inline it. // // The READ/WRITE_REGISTER_* calls manipulate I/O registers in MEMORY space. // (Use x86 move instructions, with LOCK prefix to force correct behavior // w.r.t. caches and write buffers.) // // The READ/WRITE_PORT_* calls manipulate I/O registers in PORT space. // (Use x86 in/out instructions.) // NTKERNELAPI UCHAR NTAPI READ_REGISTER_UCHAR( PUCHAR Register ); NTKERNELAPI USHORT NTAPI READ_REGISTER_USHORT( PUSHORT Register ); NTKERNELAPI ULONG NTAPI READ_REGISTER_ULONG( PULONG Register ); NTKERNELAPI VOID NTAPI READ_REGISTER_BUFFER_UCHAR( PUCHAR Register, PUCHAR Buffer, ULONG Count ); NTKERNELAPI VOID NTAPI READ_REGISTER_BUFFER_USHORT( PUSHORT Register, PUSHORT Buffer, ULONG Count ); NTKERNELAPI VOID NTAPI READ_REGISTER_BUFFER_ULONG( PULONG Register, PULONG Buffer, ULONG Count ); NTKERNELAPI VOID NTAPI WRITE_REGISTER_UCHAR( PUCHAR Register, UCHAR Value ); NTKERNELAPI VOID NTAPI WRITE_REGISTER_USHORT( PUSHORT Register, USHORT Value ); NTKERNELAPI VOID NTAPI WRITE_REGISTER_ULONG( PULONG Register, ULONG Value ); NTKERNELAPI VOID NTAPI WRITE_REGISTER_BUFFER_UCHAR( PUCHAR Register, PUCHAR Buffer, ULONG Count ); NTKERNELAPI VOID NTAPI WRITE_REGISTER_BUFFER_USHORT( PUSHORT Register, PUSHORT Buffer, ULONG Count ); NTKERNELAPI VOID NTAPI WRITE_REGISTER_BUFFER_ULONG( PULONG Register, PULONG Buffer, ULONG Count ); NTHALAPI UCHAR NTAPI READ_PORT_UCHAR( PUCHAR Port ); NTHALAPI USHORT NTAPI READ_PORT_USHORT( PUSHORT Port ); NTHALAPI ULONG NTAPI READ_PORT_ULONG( PULONG Port ); NTHALAPI VOID NTAPI READ_PORT_BUFFER_UCHAR( PUCHAR Port, PUCHAR Buffer, ULONG Count ); NTHALAPI VOID NTAPI READ_PORT_BUFFER_USHORT( PUSHORT Port, PUSHORT Buffer, ULONG Count ); NTHALAPI VOID NTAPI READ_PORT_BUFFER_ULONG( PULONG Port, PULONG Buffer, ULONG Count ); NTHALAPI VOID NTAPI WRITE_PORT_UCHAR( PUCHAR Port, UCHAR Value ); NTHALAPI VOID NTAPI WRITE_PORT_USHORT( PUSHORT Port, USHORT Value ); NTHALAPI VOID NTAPI WRITE_PORT_ULONG( PULONG Port, ULONG Value ); NTHALAPI VOID NTAPI WRITE_PORT_BUFFER_UCHAR( PUCHAR Port, PUCHAR Buffer, ULONG Count ); NTHALAPI VOID NTAPI WRITE_PORT_BUFFER_USHORT( PUSHORT Port, PUSHORT Buffer, ULONG Count ); NTHALAPI VOID NTAPI WRITE_PORT_BUFFER_ULONG( PULONG Port, PULONG Buffer, ULONG Count ); // // Get data cache fill size. // #if PRAGMA_DEPRECATED_DDK #pragma deprecated(KeGetDcacheFillSize) // Use GetDmaAlignment #endif #define KeGetDcacheFillSize() 1L #define KeFlushIoBuffers(Mdl, ReadOperation, DmaOperation) #define ExAcquireSpinLock(Lock, OldIrql) KeAcquireSpinLock((Lock), (OldIrql)) #define ExReleaseSpinLock(Lock, OldIrql) KeReleaseSpinLock((Lock), (OldIrql)) #define ExAcquireSpinLockAtDpcLevel(Lock) KeAcquireSpinLockAtDpcLevel(Lock) #define ExReleaseSpinLockFromDpcLevel(Lock) KeReleaseSpinLockFromDpcLevel(Lock) #define KeQueryTickCount(CurrentCount ) { \ volatile PKSYSTEM_TIME _TickCount = *((PKSYSTEM_TIME *)(&KeTickCount)); \ while (TRUE) { \ (CurrentCount)->HighPart = _TickCount->High1Time; \ (CurrentCount)->LowPart = _TickCount->LowPart; \ if ((CurrentCount)->HighPart == _TickCount->High2Time) break; \ _asm { rep nop } \ } \ } // // The non-volatile 387 state // typedef struct _KFLOATING_SAVE { ULONG DoNotUse1; ULONG DoNotUse2; ULONG DoNotUse3; ULONG DoNotUse4; ULONG DoNotUse5; ULONG DoNotUse6; ULONG DoNotUse7; ULONG DoNotUse8; } KFLOATING_SAVE, *PKFLOATING_SAVE; // // i386 Specific portions of mm component // // // Define the page size for the Intel 386 as 4096 (0x1000). // #define PAGE_SIZE 0x1000 // // Define the number of trailing zeroes in a page aligned virtual address. // This is used as the shift count when shifting virtual addresses to // virtual page numbers. // #define PAGE_SHIFT 12L #define MmGetProcedureAddress(Address) (Address) #define MmLockPagableCodeSection(Address) MmLockPagableDataSection(Address) #define KIP0PCRADDRESS 0xffdff000 #define ExInterlockedAddUlong ExfInterlockedAddUlong #define ExInterlockedInsertHeadList ExfInterlockedInsertHeadList #define ExInterlockedInsertTailList ExfInterlockedInsertTailList #define ExInterlockedRemoveHeadList ExfInterlockedRemoveHeadList #define ExInterlockedPopEntryList ExfInterlockedPopEntryList #define ExInterlockedPushEntryList ExfInterlockedPushEntryList #pragma warning(disable:4035) #if !defined(MIDL_PASS) NTKERNELAPI LONG FASTCALL InterlockedIncrement( IN LONG volatile *Addend ); NTKERNELAPI LONG FASTCALL InterlockedDecrement( IN LONG volatile *Addend ); NTKERNELAPI LONG FASTCALL InterlockedExchange( IN OUT LONG volatile *Target, IN LONG Value ); #define InterlockedExchangePointer(Target, Value) \ (PVOID)InterlockedExchange((PLONG)(Target), (LONG)(Value)) LONG FASTCALL InterlockedExchangeAdd( IN OUT LONG volatile *Addend, IN LONG Increment ); NTKERNELAPI LONG FASTCALL InterlockedCompareExchange( IN OUT LONG volatile *Destination, IN LONG ExChange, IN LONG Comperand ); #define InterlockedCompareExchangePointer(Destination, ExChange, Comperand) \ (PVOID)InterlockedCompareExchange((PLONG)Destination, (LONG)ExChange, (LONG)Comperand) #define InterlockedCompareExchange64(Destination, ExChange, Comperand) \ ExfInterlockedCompareExchange64(Destination, &(ExChange), &(Comperand)) NTKERNELAPI LONGLONG FASTCALL ExfInterlockedCompareExchange64( IN OUT LONGLONG volatile *Destination, IN PLONGLONG ExChange, IN PLONGLONG Comperand ); FORCEINLINE LONG FASTCALL InterlockedExchangeAdd( IN OUT LONG volatile *Addend, IN LONG Increment ) { __asm { mov eax, Increment mov ecx, Addend lock xadd [ecx], eax } } #endif // MIDL_PASS // end_ntosp end_ntddk end_nthal #pragma warning(default:4035) #if !defined(MIDL_PASS) && defined(_M_IX86) // // i386 function definitions // #pragma warning(disable:4035) // re-enable below // // Get current IRQL. // // On x86 this function resides in the HAL // NTHALAPI KIRQL NTAPI KeGetCurrentIrql(); #endif // !defined(MIDL_PASS) && defined(_M_IX86) NTKERNELAPI NTSTATUS NTAPI KeSaveFloatingPointState ( OUT PKFLOATING_SAVE FloatSave ); NTKERNELAPI NTSTATUS NTAPI KeRestoreFloatingPointState ( IN PKFLOATING_SAVE FloatSave ); #endif // defined(_X86_) #if defined(_M_AMD64) && !defined(RC_INVOKED) && !defined(MIDL_PASS) // // Define intrinsic function to do in's and out's. // #ifdef __cplusplus extern "C" { #endif UCHAR __inbyte ( IN USHORT Port ); USHORT __inword ( IN USHORT Port ); ULONG __indword ( IN USHORT Port ); VOID __outbyte ( IN USHORT Port, IN UCHAR Data ); VOID __outword ( IN USHORT Port, IN USHORT Data ); VOID __outdword ( IN USHORT Port, IN ULONG Data ); VOID __inbytestring ( IN USHORT Port, IN PUCHAR Buffer, IN ULONG Count ); VOID __inwordstring ( IN USHORT Port, IN PUSHORT Buffer, IN ULONG Count ); VOID __indwordstring ( IN USHORT Port, IN PULONG Buffer, IN ULONG Count ); VOID __outbytestring ( IN USHORT Port, IN PUCHAR Buffer, IN ULONG Count ); VOID __outwordstring ( IN USHORT Port, IN PUSHORT Buffer, IN ULONG Count ); VOID __outdwordstring ( IN USHORT Port, IN PULONG Buffer, IN ULONG Count ); #ifdef __cplusplus } #endif #pragma intrinsic(__inbyte) #pragma intrinsic(__inword) #pragma intrinsic(__indword) #pragma intrinsic(__outbyte) #pragma intrinsic(__outword) #pragma intrinsic(__outdword) #pragma intrinsic(__inbytestring) #pragma intrinsic(__inwordstring) #pragma intrinsic(__indwordstring) #pragma intrinsic(__outbytestring) #pragma intrinsic(__outwordstring) #pragma intrinsic(__outdwordstring) // // Interlocked intrinsic functions. // #define InterlockedAnd _InterlockedAnd #define InterlockedOr _InterlockedOr #define InterlockedXor _InterlockedXor #define InterlockedIncrement _InterlockedIncrement #define InterlockedDecrement _InterlockedDecrement #define InterlockedAdd _InterlockedAdd #define InterlockedExchange _InterlockedExchange #define InterlockedExchangeAdd _InterlockedExchangeAdd #define InterlockedCompareExchange _InterlockedCompareExchange #define InterlockedAnd64 _InterlockedAnd64 #define InterlockedOr64 _InterlockedOr64 #define InterlockedXor64 _InterlockedXor64 #define InterlockedIncrement64 _InterlockedIncrement64 #define InterlockedDecrement64 _InterlockedDecrement64 #define InterlockedAdd64 _InterlockedAdd64 #define InterlockedExchange64 _InterlockedExchange64 #define InterlockedExchangeAdd64 _InterlockedExchangeAdd64 #define InterlockedCompareExchange64 _InterlockedCompareExchange64 #define InterlockedExchangePointer _InterlockedExchangePointer #define InterlockedCompareExchangePointer _InterlockedCompareExchangePointer #ifdef __cplusplus extern "C" { #endif LONG InterlockedAnd ( IN OUT LONG volatile *Destination, IN LONG Value ); LONG InterlockedOr ( IN OUT LONG volatile *Destination, IN LONG Value ); LONG InterlockedXor ( IN OUT LONG volatile *Destination, IN LONG Value ); LONG64 InterlockedAnd64 ( IN OUT LONG64 volatile *Destination, IN LONG64 Value ); LONG64 InterlockedOr64 ( IN OUT LONG64 volatile *Destination, IN LONG64 Value ); LONG64 InterlockedXor64 ( IN OUT LONG64 volatile *Destination, IN LONG64 Value ); LONG InterlockedIncrement( IN OUT LONG volatile *Addend ); LONG InterlockedDecrement( IN OUT LONG volatile *Addend ); LONG InterlockedExchange( IN OUT LONG volatile *Target, IN LONG Value ); LONG InterlockedExchangeAdd( IN OUT LONG volatile *Addend, IN LONG Value ); #if !defined(_X86AMD64_) __forceinline LONG InterlockedAdd( IN OUT LONG volatile *Addend, IN LONG Value ) { return InterlockedExchangeAdd(Addend, Value) + Value; } #endif LONG InterlockedCompareExchange ( IN OUT LONG volatile *Destination, IN LONG ExChange, IN LONG Comperand ); LONG64 InterlockedIncrement64( IN OUT LONG64 volatile *Addend ); LONG64 InterlockedDecrement64( IN OUT LONG64 volatile *Addend ); LONG64 InterlockedExchange64( IN OUT LONG64 volatile *Target, IN LONG64 Value ); LONG64 InterlockedExchangeAdd64( IN OUT LONG64 volatile *Addend, IN LONG64 Value ); #if !defined(_X86AMD64_) __forceinline LONG64 InterlockedAdd64( IN OUT LONG64 volatile *Addend, IN LONG64 Value ) { return InterlockedExchangeAdd64(Addend, Value) + Value; } #endif LONG64 InterlockedCompareExchange64 ( IN OUT LONG64 volatile *Destination, IN LONG64 ExChange, IN LONG64 Comperand ); PVOID InterlockedCompareExchangePointer ( IN OUT PVOID volatile *Destination, IN PVOID Exchange, IN PVOID Comperand ); PVOID InterlockedExchangePointer( IN OUT PVOID volatile *Target, IN PVOID Value ); #pragma intrinsic(_InterlockedAnd) #pragma intrinsic(_InterlockedOr) #pragma intrinsic(_InterlockedXor) #pragma intrinsic(_InterlockedIncrement) #pragma intrinsic(_InterlockedDecrement) #pragma intrinsic(_InterlockedExchange) #pragma intrinsic(_InterlockedExchangeAdd) #pragma intrinsic(_InterlockedCompareExchange) #pragma intrinsic(_InterlockedAnd64) #pragma intrinsic(_InterlockedOr64) #pragma intrinsic(_InterlockedXor64) #pragma intrinsic(_InterlockedIncrement64) #pragma intrinsic(_InterlockedDecrement64) #pragma intrinsic(_InterlockedExchange64) #pragma intrinsic(_InterlockedExchangeAdd64) #pragma intrinsic(_InterlockedCompareExchange64) #pragma intrinsic(_InterlockedExchangePointer) #pragma intrinsic(_InterlockedCompareExchangePointer) #ifdef __cplusplus } #endif #endif // defined(_M_AMD64) && !defined(RC_INVOKED) && !defined(MIDL_PASS) #if defined(_AMD64_) // // Types to use to contain PFNs and their counts. // typedef ULONG PFN_COUNT; typedef LONG64 SPFN_NUMBER, *PSPFN_NUMBER; typedef ULONG64 PFN_NUMBER, *PPFN_NUMBER; // // Define maximum size of flush multiple TB request. // #define FLUSH_MULTIPLE_MAXIMUM 16 // // Indicate that the AMD64 compiler supports the allocate pragmas. // #define ALLOC_PRAGMA 1 #define ALLOC_DATA_PRAGMA 1 #define NORMAL_DISPATCH_LENGTH 106 #define DISPATCH_LENGTH NORMAL_DISPATCH_LENGTH // // Interrupt Request Level definitions // #define PASSIVE_LEVEL 0 // Passive release level #define LOW_LEVEL 0 // Lowest interrupt level #define APC_LEVEL 1 // APC interrupt level #define DISPATCH_LEVEL 2 // Dispatcher level #define CLOCK_LEVEL 13 // Interval clock level #define IPI_LEVEL 14 // Interprocessor interrupt level #define POWER_LEVEL 14 // Power failure level #define PROFILE_LEVEL 15 // timer used for profiling. #define HIGH_LEVEL 15 // Highest interrupt level #if defined(NT_UP) #define SYNCH_LEVEL DISPATCH_LEVEL // synchronization level #else #define SYNCH_LEVEL (IPI_LEVEL - 1) // synchronization level #endif #define IRQL_VECTOR_OFFSET 2 // offset from IRQL to vector / 16 // // I/O space read and write macros. // // The READ/WRITE_REGISTER_* calls manipulate I/O registers in MEMORY space. // (Use move instructions, with LOCK prefix to force correct behavior // w.r.t. caches and write buffers.) // // The READ/WRITE_PORT_* calls manipulate I/O registers in PORT space. // (Use in/out instructions.) // __forceinline UCHAR READ_REGISTER_UCHAR ( volatile UCHAR *Register ) { return *Register; } __forceinline USHORT READ_REGISTER_USHORT ( volatile USHORT *Register ) { return *Register; } __forceinline ULONG READ_REGISTER_ULONG ( volatile ULONG *Register ) { return *Register; } __forceinline VOID READ_REGISTER_BUFFER_UCHAR ( PUCHAR Register, PUCHAR Buffer, ULONG Count ) { __movsb(Register, Buffer, Count); return; } __forceinline VOID READ_REGISTER_BUFFER_USHORT ( PUSHORT Register, PUSHORT Buffer, ULONG Count ) { __movsw(Register, Buffer, Count); return; } __forceinline VOID READ_REGISTER_BUFFER_ULONG ( PULONG Register, PULONG Buffer, ULONG Count ) { __movsd(Register, Buffer, Count); return; } __forceinline VOID WRITE_REGISTER_UCHAR ( PUCHAR Register, UCHAR Value ) { LONG Synch; *Register = Value; InterlockedOr(&Synch, 1); return; } __forceinline VOID WRITE_REGISTER_USHORT ( PUSHORT Register, USHORT Value ) { LONG Synch; *Register = Value; InterlockedOr(&Synch, 1); return; } __forceinline VOID WRITE_REGISTER_ULONG ( PULONG Register, ULONG Value ) { LONG Synch; *Register = Value; InterlockedOr(&Synch, 1); return; } __forceinline VOID WRITE_REGISTER_BUFFER_UCHAR ( PUCHAR Register, PUCHAR Buffer, ULONG Count ) { LONG Synch; __movsb(Register, Buffer, Count); InterlockedOr(&Synch, 1); return; } __forceinline VOID WRITE_REGISTER_BUFFER_USHORT ( PUSHORT Register, PUSHORT Buffer, ULONG Count ) { LONG Synch; __movsw(Register, Buffer, Count); InterlockedOr(&Synch, 1); return; } __forceinline VOID WRITE_REGISTER_BUFFER_ULONG ( PULONG Register, PULONG Buffer, ULONG Count ) { LONG Synch; __movsd(Register, Buffer, Count); InterlockedOr(&Synch, 1); return; } __forceinline UCHAR READ_PORT_UCHAR ( PUCHAR Port ) { return __inbyte((USHORT)((ULONG64)Port)); } __forceinline USHORT READ_PORT_USHORT ( PUSHORT Port ) { return __inword((USHORT)((ULONG64)Port)); } __forceinline ULONG READ_PORT_ULONG ( PULONG Port ) { return __indword((USHORT)((ULONG64)Port)); } __forceinline VOID READ_PORT_BUFFER_UCHAR ( PUCHAR Port, PUCHAR Buffer, ULONG Count ) { __inbytestring((USHORT)((ULONG64)Port), Buffer, Count); return; } __forceinline VOID READ_PORT_BUFFER_USHORT ( PUSHORT Port, PUSHORT Buffer, ULONG Count ) { __inwordstring((USHORT)((ULONG64)Port), Buffer, Count); return; } __forceinline VOID READ_PORT_BUFFER_ULONG ( PULONG Port, PULONG Buffer, ULONG Count ) { __indwordstring((USHORT)((ULONG64)Port), Buffer, Count); return; } __forceinline VOID WRITE_PORT_UCHAR ( PUCHAR Port, UCHAR Value ) { __outbyte((USHORT)((ULONG64)Port), Value); return; } __forceinline VOID WRITE_PORT_USHORT ( PUSHORT Port, USHORT Value ) { __outword((USHORT)((ULONG64)Port), Value); return; } __forceinline VOID WRITE_PORT_ULONG ( PULONG Port, ULONG Value ) { __outdword((USHORT)((ULONG64)Port), Value); return; } __forceinline VOID WRITE_PORT_BUFFER_UCHAR ( PUCHAR Port, PUCHAR Buffer, ULONG Count ) { __outbytestring((USHORT)((ULONG64)Port), Buffer, Count); return; } __forceinline VOID WRITE_PORT_BUFFER_USHORT ( PUSHORT Port, PUSHORT Buffer, ULONG Count ) { __outwordstring((USHORT)((ULONG64)Port), Buffer, Count); return; } __forceinline VOID WRITE_PORT_BUFFER_ULONG ( PULONG Port, PULONG Buffer, ULONG Count ) { __outdwordstring((USHORT)((ULONG64)Port), Buffer, Count); return; } // // Get data cache fill size. // #if PRAGMA_DEPRECATED_DDK #pragma deprecated(KeGetDcacheFillSize) // Use GetDmaAlignment #endif #define KeGetDcacheFillSize() 1L #define KeFlushIoBuffers(Mdl, ReadOperation, DmaOperation) #define ExAcquireSpinLock(Lock, OldIrql) KeAcquireSpinLock((Lock), (OldIrql)) #define ExReleaseSpinLock(Lock, OldIrql) KeReleaseSpinLock((Lock), (OldIrql)) #define ExAcquireSpinLockAtDpcLevel(Lock) KeAcquireSpinLockAtDpcLevel(Lock) #define ExReleaseSpinLockFromDpcLevel(Lock) KeReleaseSpinLockFromDpcLevel(Lock) #define KeQueryTickCount(CurrentCount ) \ *(PULONG64)(CurrentCount) = **((volatile ULONG64 **)(&KeTickCount)); // // The nonvolatile floating state // typedef struct _KFLOATING_SAVE { ULONG MxCsr; } KFLOATING_SAVE, *PKFLOATING_SAVE; // // AMD64 Specific portions of mm component. // // Define the page size for the AMD64 as 4096 (0x1000). // #define PAGE_SIZE 0x1000 // // Define the number of trailing zeroes in a page aligned virtual address. // This is used as the shift count when shifting virtual addresses to // virtual page numbers. // #define PAGE_SHIFT 12L #define MmGetProcedureAddress(Address) (Address) #define MmLockPagableCodeSection(Address) MmLockPagableDataSection(Address) #if defined(_M_AMD64) && !defined(RC_INVOKED) && !defined(MIDL_PASS) #endif // defined(_M_AMD64) && !defined(RC_INVOKED) && !defined(MIDL_PASS) #if !defined(MIDL_PASS) && defined(_M_AMD64) // // AMD646 function prototype definitions // #endif // !defined(MIDL_PASS) && defined(_M_AMD64) NTKERNELAPI NTSTATUS KeSaveFloatingPointState ( OUT PKFLOATING_SAVE SaveArea ); NTKERNELAPI NTSTATUS KeRestoreFloatingPointState ( IN PKFLOATING_SAVE SaveArea ); #endif // defined(_AMD64_) #if defined(_AMD64_) NTKERNELAPI KIRQL KeGetCurrentIrql ( VOID ); NTKERNELAPI VOID KeLowerIrql ( IN KIRQL NewIrql ); #define KeRaiseIrql(a,b) *(b) = KfRaiseIrql(a) NTKERNELAPI KIRQL KfRaiseIrql ( IN KIRQL NewIrql ); #endif // defined(_AMD64_) #if defined(_IA64_) // // Types to use to contain PFNs and their counts. // typedef ULONG PFN_COUNT; typedef LONG_PTR SPFN_NUMBER, *PSPFN_NUMBER; typedef ULONG_PTR PFN_NUMBER, *PPFN_NUMBER; // // Define maximum size of flush multiple TB request. // #define FLUSH_MULTIPLE_MAXIMUM 100 // // Indicate that the IA64 compiler supports the pragma textout construct. // #define ALLOC_PRAGMA 1 // // Define intrinsic calls and their prototypes // #include "ia64reg.h" #ifdef __cplusplus extern "C" { #endif unsigned __int64 __getReg (int); void __setReg (int, unsigned __int64); void __isrlz (void); void __dsrlz (void); void __fwb (void); void __mf (void); void __mfa (void); void __synci (void); __int64 __thash (__int64); __int64 __ttag (__int64); void __ptcl (__int64, __int64); void __ptcg (__int64, __int64); void __ptcga (__int64, __int64); void __ptri (__int64, __int64); void __ptrd (__int64, __int64); void __invalat (void); void __break (int); void __fc (__int64); void __sum (int); void __rsm (int); void _ReleaseSpinLock( unsigned __int64 *); #ifdef _M_IA64 #pragma intrinsic (__getReg) #pragma intrinsic (__setReg) #pragma intrinsic (__isrlz) #pragma intrinsic (__dsrlz) #pragma intrinsic (__fwb) #pragma intrinsic (__mf) #pragma intrinsic (__mfa) #pragma intrinsic (__synci) #pragma intrinsic (__thash) #pragma intrinsic (__ttag) #pragma intrinsic (__ptcl) #pragma intrinsic (__ptcg) #pragma intrinsic (__ptcga) #pragma intrinsic (__ptri) #pragma intrinsic (__ptrd) #pragma intrinsic (__invalat) #pragma intrinsic (__break) #pragma intrinsic (__fc) #pragma intrinsic (__sum) #pragma intrinsic (__rsm) #pragma intrinsic (_ReleaseSpinLock) #endif // _M_IA64 #ifdef __cplusplus } #endif // // Define length of interrupt vector table. // #define MAXIMUM_VECTOR 256 // // IA64 Interrupt Definitions. // // Define length of interrupt object dispatch code in longwords. // #define DISPATCH_LENGTH 2*2 // Length of dispatch code template in 32-bit words // // Begin of a block of definitions that must be synchronized with kxia64.h. // // // Define Interrupt Request Levels. // #define PASSIVE_LEVEL 0 // Passive release level #define LOW_LEVEL 0 // Lowest interrupt level #define APC_LEVEL 1 // APC interrupt level #define DISPATCH_LEVEL 2 // Dispatcher level #define CMC_LEVEL 3 // Correctable machine check level #define DEVICE_LEVEL_BASE 4 // 4 - 11 - Device IRQLs #define PC_LEVEL 12 // Performance Counter IRQL #define IPI_LEVEL 14 // IPI IRQL #define CLOCK_LEVEL 13 // Clock Timer IRQL #define POWER_LEVEL 15 // Power failure level #define PROFILE_LEVEL 15 // Profiling level #define HIGH_LEVEL 15 // Highest interrupt level #if defined(NT_UP) #define SYNCH_LEVEL DISPATCH_LEVEL // Synchronization level - UP #else #define SYNCH_LEVEL (IPI_LEVEL-1) // Synchronization level - MP #endif // // The current IRQL is maintained in the TPR.mic field. The // shift count is the number of bits to shift right to extract the // IRQL from the TPR. See the GET/SET_IRQL macros. // #define TPR_MIC 4 #define TPR_IRQL_SHIFT TPR_MIC // To go from vector number <-> IRQL we just do a shift #define VECTOR_IRQL_SHIFT TPR_IRQL_SHIFT // // Interrupt Vector Definitions // #define APC_VECTOR APC_LEVEL << VECTOR_IRQL_SHIFT #define DISPATCH_VECTOR DISPATCH_LEVEL << VECTOR_IRQL_SHIFT // // End of a block of definitions that must be synchronized with kxia64.h. // // // Define profile intervals. // #define DEFAULT_PROFILE_COUNT 0x40000000 // ~= 20 seconds @50mhz #define DEFAULT_PROFILE_INTERVAL (10 * 500) // 500 microseconds #define MAXIMUM_PROFILE_INTERVAL (10 * 1000 * 1000) // 1 second #define MINIMUM_PROFILE_INTERVAL (10 * 40) // 40 microseconds #if defined(_M_IA64) && !defined(RC_INVOKED) #define InterlockedAdd _InterlockedAdd #define InterlockedIncrement _InterlockedIncrement #define InterlockedDecrement _InterlockedDecrement #define InterlockedExchange _InterlockedExchange #define InterlockedExchangeAdd _InterlockedExchangeAdd #define InterlockedAdd64 _InterlockedAdd64 #define InterlockedIncrement64 _InterlockedIncrement64 #define InterlockedDecrement64 _InterlockedDecrement64 #define InterlockedExchange64 _InterlockedExchange64 #define InterlockedExchangeAdd64 _InterlockedExchangeAdd64 #define InterlockedCompareExchange64 _InterlockedCompareExchange64 #define InterlockedCompareExchange _InterlockedCompareExchange #define InterlockedExchangePointer _InterlockedExchangePointer #define InterlockedCompareExchangePointer _InterlockedCompareExchangePointer #ifdef __cplusplus extern "C" { #endif LONG __cdecl InterlockedAdd ( LONG volatile *Addend, LONG Value ); LONGLONG __cdecl InterlockedAdd64 ( LONGLONG volatile *Addend, LONGLONG Value ); LONG __cdecl InterlockedIncrement( IN OUT LONG volatile *Addend ); LONG __cdecl InterlockedDecrement( IN OUT LONG volatile *Addend ); LONG __cdecl InterlockedExchange( IN OUT LONG volatile *Target, IN LONG Value ); LONG __cdecl InterlockedExchangeAdd( IN OUT LONG volatile *Addend, IN LONG Value ); LONG __cdecl InterlockedCompareExchange ( IN OUT LONG volatile *Destination, IN LONG ExChange, IN LONG Comperand ); LONGLONG __cdecl InterlockedIncrement64( IN OUT LONGLONG volatile *Addend ); LONGLONG __cdecl InterlockedDecrement64( IN OUT LONGLONG volatile *Addend ); LONGLONG __cdecl InterlockedExchange64( IN OUT LONGLONG volatile *Target, IN LONGLONG Value ); LONGLONG __cdecl InterlockedExchangeAdd64( IN OUT LONGLONG volatile *Addend, IN LONGLONG Value ); LONGLONG __cdecl InterlockedCompareExchange64 ( IN OUT LONGLONG volatile *Destination, IN LONGLONG ExChange, IN LONGLONG Comperand ); PVOID __cdecl InterlockedCompareExchangePointer ( IN OUT PVOID volatile *Destination, IN PVOID Exchange, IN PVOID Comperand ); PVOID __cdecl InterlockedExchangePointer( IN OUT PVOID volatile *Target, IN PVOID Value ); #pragma intrinsic(_InterlockedAdd) #pragma intrinsic(_InterlockedIncrement) #pragma intrinsic(_InterlockedDecrement) #pragma intrinsic(_InterlockedExchange) #pragma intrinsic(_InterlockedCompareExchange) #pragma intrinsic(_InterlockedExchangeAdd) #pragma intrinsic(_InterlockedAdd64) #pragma intrinsic(_InterlockedIncrement64) #pragma intrinsic(_InterlockedDecrement64) #pragma intrinsic(_InterlockedExchange64) #pragma intrinsic(_InterlockedCompareExchange64) #pragma intrinsic(_InterlockedExchangeAdd64) #pragma intrinsic(_InterlockedExchangePointer) #pragma intrinsic(_InterlockedCompareExchangePointer) #ifdef __cplusplus } #endif #endif // defined(_M_IA64) && !defined(RC_INVOKED) #define KI_USER_SHARED_DATA ((ULONG_PTR)(KADDRESS_BASE + 0xFFFE0000)) #define SharedUserData ((KUSER_SHARED_DATA * const)KI_USER_SHARED_DATA) // // Prototype for get current IRQL. **** TBD (read TPR) // NTKERNELAPI KIRQL KeGetCurrentIrql(); #define KeSaveFloatingPointState(a) STATUS_SUCCESS #define KeRestoreFloatingPointState(a) STATUS_SUCCESS // // Define the page size // #define PAGE_SIZE 0x2000 // // Define the number of trailing zeroes in a page aligned virtual address. // This is used as the shift count when shifting virtual addresses to // virtual page numbers. // #define PAGE_SHIFT 13L // // Cache and write buffer flush functions. // NTKERNELAPI VOID KeFlushIoBuffers ( IN PMDL Mdl, IN BOOLEAN ReadOperation, IN BOOLEAN DmaOperation ); // // Kernel breakin breakpoint // VOID KeBreakinBreakpoint ( VOID ); #define ExAcquireSpinLock(Lock, OldIrql) KeAcquireSpinLock((Lock), (OldIrql)) #define ExReleaseSpinLock(Lock, OldIrql) KeReleaseSpinLock((Lock), (OldIrql)) #define ExAcquireSpinLockAtDpcLevel(Lock) KeAcquireSpinLockAtDpcLevel(Lock) #define ExReleaseSpinLockFromDpcLevel(Lock) KeReleaseSpinLockFromDpcLevel(Lock) #define KeQueryTickCount(CurrentCount ) \ *(PULONGLONG)(CurrentCount) = **((volatile ULONGLONG **)(&KeTickCount)); // // I/O space read and write macros. // NTHALAPI UCHAR READ_PORT_UCHAR ( PUCHAR RegisterAddress ); NTHALAPI USHORT READ_PORT_USHORT ( PUSHORT RegisterAddress ); NTHALAPI ULONG READ_PORT_ULONG ( PULONG RegisterAddress ); NTHALAPI VOID READ_PORT_BUFFER_UCHAR ( PUCHAR portAddress, PUCHAR readBuffer, ULONG readCount ); NTHALAPI VOID READ_PORT_BUFFER_USHORT ( PUSHORT portAddress, PUSHORT readBuffer, ULONG readCount ); NTHALAPI VOID READ_PORT_BUFFER_ULONG ( PULONG portAddress, PULONG readBuffer, ULONG readCount ); NTHALAPI VOID WRITE_PORT_UCHAR ( PUCHAR portAddress, UCHAR Data ); NTHALAPI VOID WRITE_PORT_USHORT ( PUSHORT portAddress, USHORT Data ); NTHALAPI VOID WRITE_PORT_ULONG ( PULONG portAddress, ULONG Data ); NTHALAPI VOID WRITE_PORT_BUFFER_UCHAR ( PUCHAR portAddress, PUCHAR writeBuffer, ULONG writeCount ); NTHALAPI VOID WRITE_PORT_BUFFER_USHORT ( PUSHORT portAddress, PUSHORT writeBuffer, ULONG writeCount ); NTHALAPI VOID WRITE_PORT_BUFFER_ULONG ( PULONG portAddress, PULONG writeBuffer, ULONG writeCount ); #define READ_REGISTER_UCHAR(x) \ (__mf(), *(volatile UCHAR * const)(x)) #define READ_REGISTER_USHORT(x) \ (__mf(), *(volatile USHORT * const)(x)) #define READ_REGISTER_ULONG(x) \ (__mf(), *(volatile ULONG * const)(x)) #define READ_REGISTER_BUFFER_UCHAR(x, y, z) { \ PUCHAR registerBuffer = x; \ PUCHAR readBuffer = y; \ ULONG readCount; \ __mf(); \ for (readCount = z; readCount--; readBuffer++, registerBuffer++) { \ *readBuffer = *(volatile UCHAR * const)(registerBuffer); \ } \ } #define READ_REGISTER_BUFFER_USHORT(x, y, z) { \ PUSHORT registerBuffer = x; \ PUSHORT readBuffer = y; \ ULONG readCount; \ __mf(); \ for (readCount = z; readCount--; readBuffer++, registerBuffer++) { \ *readBuffer = *(volatile USHORT * const)(registerBuffer); \ } \ } #define READ_REGISTER_BUFFER_ULONG(x, y, z) { \ PULONG registerBuffer = x; \ PULONG readBuffer = y; \ ULONG readCount; \ __mf(); \ for (readCount = z; readCount--; readBuffer++, registerBuffer++) { \ *readBuffer = *(volatile ULONG * const)(registerBuffer); \ } \ } #define WRITE_REGISTER_UCHAR(x, y) { \ *(volatile UCHAR * const)(x) = y; \ KeFlushWriteBuffer(); \ } #define WRITE_REGISTER_USHORT(x, y) { \ *(volatile USHORT * const)(x) = y; \ KeFlushWriteBuffer(); \ } #define WRITE_REGISTER_ULONG(x, y) { \ *(volatile ULONG * const)(x) = y; \ KeFlushWriteBuffer(); \ } #define WRITE_REGISTER_BUFFER_UCHAR(x, y, z) { \ PUCHAR registerBuffer = x; \ PUCHAR writeBuffer = y; \ ULONG writeCount; \ for (writeCount = z; writeCount--; writeBuffer++, registerBuffer++) { \ *(volatile UCHAR * const)(registerBuffer) = *writeBuffer; \ } \ KeFlushWriteBuffer(); \ } #define WRITE_REGISTER_BUFFER_USHORT(x, y, z) { \ PUSHORT registerBuffer = x; \ PUSHORT writeBuffer = y; \ ULONG writeCount; \ for (writeCount = z; writeCount--; writeBuffer++, registerBuffer++) { \ *(volatile USHORT * const)(registerBuffer) = *writeBuffer; \ } \ KeFlushWriteBuffer(); \ } #define WRITE_REGISTER_BUFFER_ULONG(x, y, z) { \ PULONG registerBuffer = x; \ PULONG writeBuffer = y; \ ULONG writeCount; \ for (writeCount = z; writeCount--; writeBuffer++, registerBuffer++) { \ *(volatile ULONG * const)(registerBuffer) = *writeBuffer; \ } \ KeFlushWriteBuffer(); \ } // // Non-volatile floating point state // typedef struct _KFLOATING_SAVE { ULONG Reserved; } KFLOATING_SAVE, *PKFLOATING_SAVE; #define MmGetProcedureAddress(Address) (Address) #define MmLockPagableCodeSection(PLabelAddress) \ MmLockPagableDataSection((PVOID)(*((PULONGLONG)PLabelAddress))) #define VRN_MASK 0xE000000000000000UI64 // Virtual Region Number mask // // The lowest address for system space. // #define MM_LOWEST_SYSTEM_ADDRESS ((PVOID)((ULONG_PTR)(KADDRESS_BASE + 0xC0C00000))) #endif // defined(_IA64_) // // Event Specific Access Rights. // #define EVENT_QUERY_STATE 0x0001 #define EVENT_MODIFY_STATE 0x0002 #define EVENT_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED|SYNCHRONIZE|0x3) // // Semaphore Specific Access Rights. // #define SEMAPHORE_QUERY_STATE 0x0001 #define SEMAPHORE_MODIFY_STATE 0x0002 #define SEMAPHORE_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED|SYNCHRONIZE|0x3) // // Defined processor features // #define PF_FLOATING_POINT_PRECISION_ERRATA 0 #define PF_FLOATING_POINT_EMULATED 1 #define PF_COMPARE_EXCHANGE_DOUBLE 2 #define PF_MMX_INSTRUCTIONS_AVAILABLE 3 #define PF_PPC_MOVEMEM_64BIT_OK 4 #define PF_ALPHA_BYTE_INSTRUCTIONS 5 #define PF_XMMI_INSTRUCTIONS_AVAILABLE 6 #define PF_3DNOW_INSTRUCTIONS_AVAILABLE 7 #define PF_RDTSC_INSTRUCTION_AVAILABLE 8 #define PF_PAE_ENABLED 9 #define PF_XMMI64_INSTRUCTIONS_AVAILABLE 10 typedef enum _ALTERNATIVE_ARCHITECTURE_TYPE { StandardDesign, // None == 0 == standard design NEC98x86, // NEC PC98xx series on X86 EndAlternatives // past end of known alternatives } ALTERNATIVE_ARCHITECTURE_TYPE; // correctly define these run-time definitions for non X86 machines #ifndef _X86_ #ifndef IsNEC_98 #define IsNEC_98 (FALSE) #endif #ifndef IsNotNEC_98 #define IsNotNEC_98 (TRUE) #endif #ifndef SetNEC_98 #define SetNEC_98 #endif #ifndef SetNotNEC_98 #define SetNotNEC_98 #endif #endif #define PROCESSOR_FEATURE_MAX 64 // // Predefined Value Types. // #define REG_NONE ( 0 ) // No value type #define REG_SZ ( 1 ) // Unicode nul terminated string #define REG_EXPAND_SZ ( 2 ) // Unicode nul terminated string // (with environment variable references) #define REG_BINARY ( 3 ) // Free form binary #define REG_DWORD ( 4 ) // 32-bit number #define REG_DWORD_LITTLE_ENDIAN ( 4 ) // 32-bit number (same as REG_DWORD) #define REG_DWORD_BIG_ENDIAN ( 5 ) // 32-bit number #define REG_LINK ( 6 ) // Symbolic Link (unicode) #define REG_MULTI_SZ ( 7 ) // Multiple Unicode strings #define REG_RESOURCE_LIST ( 8 ) // Resource list in the resource map #define REG_FULL_RESOURCE_DESCRIPTOR ( 9 ) // Resource list in the hardware description #define REG_RESOURCE_REQUIREMENTS_LIST ( 10 ) #define REG_QWORD ( 11 ) // 64-bit number #define REG_QWORD_LITTLE_ENDIAN ( 11 ) // 64-bit number (same as REG_QWORD) // // Service Types (Bit Mask) // #define SERVICE_KERNEL_DRIVER 0x00000001 #define SERVICE_FILE_SYSTEM_DRIVER 0x00000002 #define SERVICE_ADAPTER 0x00000004 #define SERVICE_RECOGNIZER_DRIVER 0x00000008 #define SERVICE_DRIVER (SERVICE_KERNEL_DRIVER | \ SERVICE_FILE_SYSTEM_DRIVER | \ SERVICE_RECOGNIZER_DRIVER) #define SERVICE_WIN32_OWN_PROCESS 0x00000010 #define SERVICE_WIN32_SHARE_PROCESS 0x00000020 #define SERVICE_WIN32 (SERVICE_WIN32_OWN_PROCESS | \ SERVICE_WIN32_SHARE_PROCESS) #define SERVICE_INTERACTIVE_PROCESS 0x00000100 #define SERVICE_TYPE_ALL (SERVICE_WIN32 | \ SERVICE_ADAPTER | \ SERVICE_DRIVER | \ SERVICE_INTERACTIVE_PROCESS) // // Start Type // #define SERVICE_BOOT_START 0x00000000 #define SERVICE_SYSTEM_START 0x00000001 #define SERVICE_AUTO_START 0x00000002 #define SERVICE_DEMAND_START 0x00000003 #define SERVICE_DISABLED 0x00000004 // // Error control type // #define SERVICE_ERROR_IGNORE 0x00000000 #define SERVICE_ERROR_NORMAL 0x00000001 #define SERVICE_ERROR_SEVERE 0x00000002 #define SERVICE_ERROR_CRITICAL 0x00000003 // // // Define the registry driver node enumerations // typedef enum _CM_SERVICE_NODE_TYPE { DriverType = SERVICE_KERNEL_DRIVER, FileSystemType = SERVICE_FILE_SYSTEM_DRIVER, Win32ServiceOwnProcess = SERVICE_WIN32_OWN_PROCESS, Win32ServiceShareProcess = SERVICE_WIN32_SHARE_PROCESS, AdapterType = SERVICE_ADAPTER, RecognizerType = SERVICE_RECOGNIZER_DRIVER } SERVICE_NODE_TYPE; typedef enum _CM_SERVICE_LOAD_TYPE { BootLoad = SERVICE_BOOT_START, SystemLoad = SERVICE_SYSTEM_START, AutoLoad = SERVICE_AUTO_START, DemandLoad = SERVICE_DEMAND_START, DisableLoad = SERVICE_DISABLED } SERVICE_LOAD_TYPE; typedef enum _CM_ERROR_CONTROL_TYPE { IgnoreError = SERVICE_ERROR_IGNORE, NormalError = SERVICE_ERROR_NORMAL, SevereError = SERVICE_ERROR_SEVERE, CriticalError = SERVICE_ERROR_CRITICAL } SERVICE_ERROR_TYPE; // // Resource List definitions // // // Defines the Type in the RESOURCE_DESCRIPTOR // // NOTE: For all CM_RESOURCE_TYPE values, there must be a // corresponding ResType value in the 32-bit ConfigMgr headerfile // (cfgmgr32.h). Values in the range [0x6,0x80) use the same values // as their ConfigMgr counterparts. CM_RESOURCE_TYPE values with // the high bit set (i.e., in the range [0x80,0xFF]), are // non-arbitrated resources. These correspond to the same values // in cfgmgr32.h that have their high bit set (however, since // cfgmgr32.h uses 16 bits for ResType values, these values are in // the range [0x8000,0x807F). Note that ConfigMgr ResType values // cannot be in the range [0x8080,0xFFFF), because they would not // be able to map into CM_RESOURCE_TYPE values. (0xFFFF itself is // a special value, because it maps to CmResourceTypeDeviceSpecific.) // typedef int CM_RESOURCE_TYPE; // CmResourceTypeNull is reserved #define CmResourceTypeNull 0 // ResType_All or ResType_None (0x0000) #define CmResourceTypePort 1 // ResType_IO (0x0002) #define CmResourceTypeInterrupt 2 // ResType_IRQ (0x0004) #define CmResourceTypeMemory 3 // ResType_Mem (0x0001) #define CmResourceTypeDma 4 // ResType_DMA (0x0003) #define CmResourceTypeDeviceSpecific 5 // ResType_ClassSpecific (0xFFFF) #define CmResourceTypeBusNumber 6 // ResType_BusNumber (0x0006) #define CmResourceTypeNonArbitrated 128 // Not arbitrated if 0x80 bit set #define CmResourceTypeConfigData 128 // ResType_Reserved (0x8000) #define CmResourceTypeDevicePrivate 129 // ResType_DevicePrivate (0x8001) #define CmResourceTypePcCardConfig 130 // ResType_PcCardConfig (0x8002) #define CmResourceTypeMfCardConfig 131 // ResType_MfCardConfig (0x8003) // // Defines the ShareDisposition in the RESOURCE_DESCRIPTOR // typedef enum _CM_SHARE_DISPOSITION { CmResourceShareUndetermined = 0, // Reserved CmResourceShareDeviceExclusive, CmResourceShareDriverExclusive, CmResourceShareShared } CM_SHARE_DISPOSITION; // // Define the bit masks for Flags when type is CmResourceTypeInterrupt // #define CM_RESOURCE_INTERRUPT_LEVEL_SENSITIVE 0 #define CM_RESOURCE_INTERRUPT_LATCHED 1 // // Define the bit masks for Flags when type is CmResourceTypeMemory // #define CM_RESOURCE_MEMORY_READ_WRITE 0x0000 #define CM_RESOURCE_MEMORY_READ_ONLY 0x0001 #define CM_RESOURCE_MEMORY_WRITE_ONLY 0x0002 #define CM_RESOURCE_MEMORY_PREFETCHABLE 0x0004 #define CM_RESOURCE_MEMORY_COMBINEDWRITE 0x0008 #define CM_RESOURCE_MEMORY_24 0x0010 #define CM_RESOURCE_MEMORY_CACHEABLE 0x0020 // // Define the bit masks for Flags when type is CmResourceTypePort // #define CM_RESOURCE_PORT_MEMORY 0x0000 #define CM_RESOURCE_PORT_IO 0x0001 #define CM_RESOURCE_PORT_10_BIT_DECODE 0x0004 #define CM_RESOURCE_PORT_12_BIT_DECODE 0x0008 #define CM_RESOURCE_PORT_16_BIT_DECODE 0x0010 #define CM_RESOURCE_PORT_POSITIVE_DECODE 0x0020 #define CM_RESOURCE_PORT_PASSIVE_DECODE 0x0040 #define CM_RESOURCE_PORT_WINDOW_DECODE 0x0080 // // Define the bit masks for Flags when type is CmResourceTypeDma // #define CM_RESOURCE_DMA_8 0x0000 #define CM_RESOURCE_DMA_16 0x0001 #define CM_RESOURCE_DMA_32 0x0002 #define CM_RESOURCE_DMA_8_AND_16 0x0004 #define CM_RESOURCE_DMA_BUS_MASTER 0x0008 #define CM_RESOURCE_DMA_TYPE_A 0x0010 #define CM_RESOURCE_DMA_TYPE_B 0x0020 #define CM_RESOURCE_DMA_TYPE_F 0x0040 // // This structure defines one type of resource used by a driver. // // There can only be *1* DeviceSpecificData block. It must be located at // the end of all resource descriptors in a full descriptor block. // // // Make sure alignment is made properly by compiler; otherwise move // flags back to the top of the structure (common to all members of the // union). // #include "pshpack4.h" typedef struct _CM_PARTIAL_RESOURCE_DESCRIPTOR { UCHAR Type; UCHAR ShareDisposition; USHORT Flags; union { // // Range of resources, inclusive. These are physical, bus relative. // It is known that Port and Memory below have the exact same layout // as Generic. // struct { PHYSICAL_ADDRESS Start; ULONG Length; } Generic; // // struct { PHYSICAL_ADDRESS Start; ULONG Length; } Port; // // struct { ULONG Level; ULONG Vector; KAFFINITY Affinity; } Interrupt; // // Range of memory addresses, inclusive. These are physical, bus // relative. The value should be the same as the one passed to // HalTranslateBusAddress(). // struct { PHYSICAL_ADDRESS Start; // 64 bit physical addresses. ULONG Length; } Memory; // // Physical DMA channel. // struct { ULONG Channel; ULONG Port; ULONG Reserved1; } Dma; // // Device driver private data, usually used to help it figure // what the resource assignments decisions that were made. // struct { ULONG Data[3]; } DevicePrivate; // // Bus Number information. // struct { ULONG Start; ULONG Length; ULONG Reserved; } BusNumber; // // Device Specific information defined by the driver. // The DataSize field indicates the size of the data in bytes. The // data is located immediately after the DeviceSpecificData field in // the structure. // struct { ULONG DataSize; ULONG Reserved1; ULONG Reserved2; } DeviceSpecificData; } u; } CM_PARTIAL_RESOURCE_DESCRIPTOR, *PCM_PARTIAL_RESOURCE_DESCRIPTOR; #include "poppack.h" // // A Partial Resource List is what can be found in the ARC firmware // or will be generated by ntdetect.com. // The configuration manager will transform this structure into a Full // resource descriptor when it is about to store it in the regsitry. // // Note: There must a be a convention to the order of fields of same type, // (defined on a device by device basis) so that the fields can make sense // to a driver (i.e. when multiple memory ranges are necessary). // typedef struct _CM_PARTIAL_RESOURCE_LIST { USHORT Version; USHORT Revision; ULONG Count; CM_PARTIAL_RESOURCE_DESCRIPTOR PartialDescriptors[1]; } CM_PARTIAL_RESOURCE_LIST, *PCM_PARTIAL_RESOURCE_LIST; // // A Full Resource Descriptor is what can be found in the registry. // This is what will be returned to a driver when it queries the registry // to get device information; it will be stored under a key in the hardware // description tree. // // Note: There must a be a convention to the order of fields of same type, // (defined on a device by device basis) so that the fields can make sense // to a driver (i.e. when multiple memory ranges are necessary). // typedef struct _CM_FULL_RESOURCE_DESCRIPTOR { INTERFACE_TYPE DoNotUse1; ULONG DoNotUse2; CM_PARTIAL_RESOURCE_LIST PartialResourceList; } CM_FULL_RESOURCE_DESCRIPTOR, *PCM_FULL_RESOURCE_DESCRIPTOR; // // The Resource list is what will be stored by the drivers into the // resource map via the IO API. // typedef struct _CM_RESOURCE_LIST { ULONG Count; CM_FULL_RESOURCE_DESCRIPTOR List[1]; } CM_RESOURCE_LIST, *PCM_RESOURCE_LIST; // // Define the structures used to interpret configuration data of // \\Registry\machine\hardware\description tree. // Basically, these structures are used to interpret component // sepcific data. // // // Define DEVICE_FLAGS // typedef struct _DEVICE_FLAGS { ULONG Failed : 1; ULONG ReadOnly : 1; ULONG Removable : 1; ULONG ConsoleIn : 1; ULONG ConsoleOut : 1; ULONG Input : 1; ULONG Output : 1; } DEVICE_FLAGS, *PDEVICE_FLAGS; // // Define Component Information structure // typedef struct _CM_COMPONENT_INFORMATION { DEVICE_FLAGS Flags; ULONG Version; ULONG Key; KAFFINITY AffinityMask; } CM_COMPONENT_INFORMATION, *PCM_COMPONENT_INFORMATION; // // The following structures are used to interpret x86 // DeviceSpecificData of CM_PARTIAL_RESOURCE_DESCRIPTOR. // (Most of the structures are defined by BIOS. They are // not aligned on word (or dword) boundary. // // // Define the Rom Block structure // typedef struct _CM_ROM_BLOCK { ULONG Address; ULONG Size; } CM_ROM_BLOCK, *PCM_ROM_BLOCK; #include "pshpack1.h" // // Define INT13 driver parameter block // typedef struct _CM_INT13_DRIVE_PARAMETER { USHORT DriveSelect; ULONG MaxCylinders; USHORT SectorsPerTrack; USHORT MaxHeads; USHORT NumberDrives; } CM_INT13_DRIVE_PARAMETER, *PCM_INT13_DRIVE_PARAMETER; // // Define Mca POS data block for slot // typedef struct _CM_MCA_POS_DATA { USHORT AdapterId; UCHAR PosData1; UCHAR PosData2; UCHAR PosData3; UCHAR PosData4; } CM_MCA_POS_DATA, *PCM_MCA_POS_DATA; // // Memory configuration of eisa data block structure // typedef struct _EISA_MEMORY_TYPE { UCHAR ReadWrite: 1; UCHAR Cached : 1; UCHAR Reserved0 :1; UCHAR Type:2; UCHAR Shared:1; UCHAR Reserved1 :1; UCHAR MoreEntries : 1; } EISA_MEMORY_TYPE, *PEISA_MEMORY_TYPE; typedef struct _EISA_MEMORY_CONFIGURATION { EISA_MEMORY_TYPE ConfigurationByte; UCHAR DataSize; USHORT AddressLowWord; UCHAR AddressHighByte; USHORT MemorySize; } EISA_MEMORY_CONFIGURATION, *PEISA_MEMORY_CONFIGURATION; // // Interrupt configurationn of eisa data block structure // typedef struct _EISA_IRQ_DESCRIPTOR { UCHAR Interrupt : 4; UCHAR Reserved :1; UCHAR LevelTriggered :1; UCHAR Shared : 1; UCHAR MoreEntries : 1; } EISA_IRQ_DESCRIPTOR, *PEISA_IRQ_DESCRIPTOR; typedef struct _EISA_IRQ_CONFIGURATION { EISA_IRQ_DESCRIPTOR ConfigurationByte; UCHAR Reserved; } EISA_IRQ_CONFIGURATION, *PEISA_IRQ_CONFIGURATION; // // DMA description of eisa data block structure // typedef struct _DMA_CONFIGURATION_BYTE0 { UCHAR Channel : 3; UCHAR Reserved : 3; UCHAR Shared :1; UCHAR MoreEntries :1; } DMA_CONFIGURATION_BYTE0; typedef struct _DMA_CONFIGURATION_BYTE1 { UCHAR Reserved0 : 2; UCHAR TransferSize : 2; UCHAR Timing : 2; UCHAR Reserved1 : 2; } DMA_CONFIGURATION_BYTE1; typedef struct _EISA_DMA_CONFIGURATION { DMA_CONFIGURATION_BYTE0 ConfigurationByte0; DMA_CONFIGURATION_BYTE1 ConfigurationByte1; } EISA_DMA_CONFIGURATION, *PEISA_DMA_CONFIGURATION; // // Port description of eisa data block structure // typedef struct _EISA_PORT_DESCRIPTOR { UCHAR NumberPorts : 5; UCHAR Reserved :1; UCHAR Shared :1; UCHAR MoreEntries : 1; } EISA_PORT_DESCRIPTOR, *PEISA_PORT_DESCRIPTOR; typedef struct _EISA_PORT_CONFIGURATION { EISA_PORT_DESCRIPTOR Configuration; USHORT PortAddress; } EISA_PORT_CONFIGURATION, *PEISA_PORT_CONFIGURATION; // // Eisa slot information definition // N.B. This structure is different from the one defined // in ARC eisa addendum. // typedef struct _CM_EISA_SLOT_INFORMATION { UCHAR ReturnCode; UCHAR ReturnFlags; UCHAR MajorRevision; UCHAR MinorRevision; USHORT Checksum; UCHAR NumberFunctions; UCHAR FunctionInformation; ULONG CompressedId; } CM_EISA_SLOT_INFORMATION, *PCM_EISA_SLOT_INFORMATION; // // Eisa function information definition // typedef struct _CM_EISA_FUNCTION_INFORMATION { ULONG CompressedId; UCHAR IdSlotFlags1; UCHAR IdSlotFlags2; UCHAR MinorRevision; UCHAR MajorRevision; UCHAR Selections[26]; UCHAR FunctionFlags; UCHAR TypeString[80]; EISA_MEMORY_CONFIGURATION EisaMemory[9]; EISA_IRQ_CONFIGURATION EisaIrq[7]; EISA_DMA_CONFIGURATION EisaDma[4]; EISA_PORT_CONFIGURATION EisaPort[20]; UCHAR InitializationData[60]; } CM_EISA_FUNCTION_INFORMATION, *PCM_EISA_FUNCTION_INFORMATION; // // The following defines the way pnp bios information is stored in // the registry \\HKEY_LOCAL_MACHINE\HARDWARE\Description\System\MultifunctionAdapter\x // key, where x is an integer number indicating adapter instance. The // "Identifier" of the key must equal to "PNP BIOS" and the // "ConfigurationData" is organized as follow: // // CM_PNP_BIOS_INSTALLATION_CHECK + // CM_PNP_BIOS_DEVICE_NODE for device 1 + // CM_PNP_BIOS_DEVICE_NODE for device 2 + // ... // CM_PNP_BIOS_DEVICE_NODE for device n // // // Pnp BIOS device node structure // typedef struct _CM_PNP_BIOS_DEVICE_NODE { USHORT Size; UCHAR Node; ULONG ProductId; UCHAR DeviceType[3]; USHORT DeviceAttributes; // followed by AllocatedResourceBlock, PossibleResourceBlock // and CompatibleDeviceId } CM_PNP_BIOS_DEVICE_NODE,*PCM_PNP_BIOS_DEVICE_NODE; // // Pnp BIOS Installation check // typedef struct _CM_PNP_BIOS_INSTALLATION_CHECK { UCHAR Signature[4]; // $PnP (ascii) UCHAR Revision; UCHAR Length; USHORT ControlField; UCHAR Checksum; ULONG EventFlagAddress; // Physical address USHORT RealModeEntryOffset; USHORT RealModeEntrySegment; USHORT ProtectedModeEntryOffset; ULONG ProtectedModeCodeBaseAddress; ULONG OemDeviceId; USHORT RealModeDataBaseAddress; ULONG ProtectedModeDataBaseAddress; } CM_PNP_BIOS_INSTALLATION_CHECK, *PCM_PNP_BIOS_INSTALLATION_CHECK; #include "poppack.h" // // Masks for EISA function information // #define EISA_FUNCTION_ENABLED 0x80 #define EISA_FREE_FORM_DATA 0x40 #define EISA_HAS_PORT_INIT_ENTRY 0x20 #define EISA_HAS_PORT_RANGE 0x10 #define EISA_HAS_DMA_ENTRY 0x08 #define EISA_HAS_IRQ_ENTRY 0x04 #define EISA_HAS_MEMORY_ENTRY 0x02 #define EISA_HAS_TYPE_ENTRY 0x01 #define EISA_HAS_INFORMATION EISA_HAS_PORT_RANGE + \ EISA_HAS_DMA_ENTRY + \ EISA_HAS_IRQ_ENTRY + \ EISA_HAS_MEMORY_ENTRY + \ EISA_HAS_TYPE_ENTRY // // Masks for EISA memory configuration // #define EISA_MORE_ENTRIES 0x80 #define EISA_SYSTEM_MEMORY 0x00 #define EISA_MEMORY_TYPE_RAM 0x01 // // Returned error code for EISA bios call // #define EISA_INVALID_SLOT 0x80 #define EISA_INVALID_FUNCTION 0x81 #define EISA_INVALID_CONFIGURATION 0x82 #define EISA_EMPTY_SLOT 0x83 #define EISA_INVALID_BIOS_CALL 0x86 // // The following structures are used to interpret mips // DeviceSpecificData of CM_PARTIAL_RESOURCE_DESCRIPTOR. // // // Device data records for adapters. // // // The device data record for the Emulex SCSI controller. // typedef struct _CM_SCSI_DEVICE_DATA { USHORT Version; USHORT Revision; UCHAR HostIdentifier; } CM_SCSI_DEVICE_DATA, *PCM_SCSI_DEVICE_DATA; // // Device data records for controllers. // // // The device data record for the Video controller. // typedef struct _CM_VIDEO_DEVICE_DATA { USHORT Version; USHORT Revision; ULONG VideoClock; } CM_VIDEO_DEVICE_DATA, *PCM_VIDEO_DEVICE_DATA; // // The device data record for the SONIC network controller. // typedef struct _CM_SONIC_DEVICE_DATA { USHORT Version; USHORT Revision; USHORT DataConfigurationRegister; UCHAR EthernetAddress[8]; } CM_SONIC_DEVICE_DATA, *PCM_SONIC_DEVICE_DATA; // // The device data record for the serial controller. // typedef struct _CM_SERIAL_DEVICE_DATA { USHORT Version; USHORT Revision; ULONG BaudClock; } CM_SERIAL_DEVICE_DATA, *PCM_SERIAL_DEVICE_DATA; // // Device data records for peripherals. // // // The device data record for the Monitor peripheral. // typedef struct _CM_MONITOR_DEVICE_DATA { USHORT Version; USHORT Revision; USHORT HorizontalScreenSize; USHORT VerticalScreenSize; USHORT HorizontalResolution; USHORT VerticalResolution; USHORT HorizontalDisplayTimeLow; USHORT HorizontalDisplayTime; USHORT HorizontalDisplayTimeHigh; USHORT HorizontalBackPorchLow; USHORT HorizontalBackPorch; USHORT HorizontalBackPorchHigh; USHORT HorizontalFrontPorchLow; USHORT HorizontalFrontPorch; USHORT HorizontalFrontPorchHigh; USHORT HorizontalSyncLow; USHORT HorizontalSync; USHORT HorizontalSyncHigh; USHORT VerticalBackPorchLow; USHORT VerticalBackPorch; USHORT VerticalBackPorchHigh; USHORT VerticalFrontPorchLow; USHORT VerticalFrontPorch; USHORT VerticalFrontPorchHigh; USHORT VerticalSyncLow; USHORT VerticalSync; USHORT VerticalSyncHigh; } CM_MONITOR_DEVICE_DATA, *PCM_MONITOR_DEVICE_DATA; // // The device data record for the Floppy peripheral. // typedef struct _CM_FLOPPY_DEVICE_DATA { USHORT Version; USHORT Revision; CHAR Size[8]; ULONG MaxDensity; ULONG MountDensity; // // New data fields for version >= 2.0 // UCHAR StepRateHeadUnloadTime; UCHAR HeadLoadTime; UCHAR MotorOffTime; UCHAR SectorLengthCode; UCHAR SectorPerTrack; UCHAR ReadWriteGapLength; UCHAR DataTransferLength; UCHAR FormatGapLength; UCHAR FormatFillCharacter; UCHAR HeadSettleTime; UCHAR MotorSettleTime; UCHAR MaximumTrackValue; UCHAR DataTransferRate; } CM_FLOPPY_DEVICE_DATA, *PCM_FLOPPY_DEVICE_DATA; // // The device data record for the Keyboard peripheral. // The KeyboardFlags is defined (by x86 BIOS INT 16h, function 02) as: // bit 7 : Insert on // bit 6 : Caps Lock on // bit 5 : Num Lock on // bit 4 : Scroll Lock on // bit 3 : Alt Key is down // bit 2 : Ctrl Key is down // bit 1 : Left shift key is down // bit 0 : Right shift key is down // typedef struct _CM_KEYBOARD_DEVICE_DATA { USHORT Version; USHORT Revision; UCHAR Type; UCHAR Subtype; USHORT KeyboardFlags; } CM_KEYBOARD_DEVICE_DATA, *PCM_KEYBOARD_DEVICE_DATA; // // Declaration of the structure for disk geometries // typedef struct _CM_DISK_GEOMETRY_DEVICE_DATA { ULONG BytesPerSector; ULONG NumberOfCylinders; ULONG SectorsPerTrack; ULONG NumberOfHeads; } CM_DISK_GEOMETRY_DEVICE_DATA, *PCM_DISK_GEOMETRY_DEVICE_DATA; // // Defines Resource Options // #define IO_RESOURCE_PREFERRED 0x01 #define IO_RESOURCE_DEFAULT 0x02 #define IO_RESOURCE_ALTERNATIVE 0x08 // // This structure defines one type of resource requested by the driver // typedef struct _IO_RESOURCE_DESCRIPTOR { UCHAR Option; UCHAR Type; // use CM_RESOURCE_TYPE UCHAR ShareDisposition; // use CM_SHARE_DISPOSITION UCHAR Spare1; USHORT Flags; // use CM resource flag defines USHORT Spare2; // align union { struct { ULONG Length; ULONG Alignment; PHYSICAL_ADDRESS MinimumAddress; PHYSICAL_ADDRESS MaximumAddress; } Port; struct { ULONG Length; ULONG Alignment; PHYSICAL_ADDRESS MinimumAddress; PHYSICAL_ADDRESS MaximumAddress; } Memory; struct { ULONG MinimumVector; ULONG MaximumVector; } Interrupt; struct { ULONG MinimumChannel; ULONG MaximumChannel; } Dma; struct { ULONG Length; ULONG Alignment; PHYSICAL_ADDRESS MinimumAddress; PHYSICAL_ADDRESS MaximumAddress; } Generic; struct { ULONG Data[3]; } DevicePrivate; // // Bus Number information. // struct { ULONG Length; ULONG MinBusNumber; ULONG MaxBusNumber; ULONG Reserved; } BusNumber; struct { ULONG Priority; // use LCPRI_Xxx values in cfg.h ULONG Reserved1; ULONG Reserved2; } ConfigData; } u; } IO_RESOURCE_DESCRIPTOR, *PIO_RESOURCE_DESCRIPTOR; typedef struct _IO_RESOURCE_LIST { USHORT Version; USHORT Revision; ULONG Count; IO_RESOURCE_DESCRIPTOR Descriptors[1]; } IO_RESOURCE_LIST, *PIO_RESOURCE_LIST; typedef struct _IO_RESOURCE_REQUIREMENTS_LIST { ULONG ListSize; INTERFACE_TYPE DoNotUse1; ULONG DoNotUse2; ULONG DoNotUse3; ULONG Reserved[3]; ULONG AlternativeLists; IO_RESOURCE_LIST List[1]; } IO_RESOURCE_REQUIREMENTS_LIST, *PIO_RESOURCE_REQUIREMENTS_LIST; // // Exception flag definitions. // #define EXCEPTION_NONCONTINUABLE 0x1 // Noncontinuable exception // // Define maximum number of exception parameters. // #define EXCEPTION_MAXIMUM_PARAMETERS 15 // maximum number of exception parameters // // Exception record definition. // typedef struct _EXCEPTION_RECORD { NTSTATUS ExceptionCode; ULONG ExceptionFlags; struct _EXCEPTION_RECORD *ExceptionRecord; PVOID ExceptionAddress; ULONG NumberParameters; ULONG_PTR ExceptionInformation[EXCEPTION_MAXIMUM_PARAMETERS]; } EXCEPTION_RECORD; typedef EXCEPTION_RECORD *PEXCEPTION_RECORD; typedef struct _EXCEPTION_RECORD32 { NTSTATUS ExceptionCode; ULONG ExceptionFlags; ULONG ExceptionRecord; ULONG ExceptionAddress; ULONG NumberParameters; ULONG ExceptionInformation[EXCEPTION_MAXIMUM_PARAMETERS]; } EXCEPTION_RECORD32, *PEXCEPTION_RECORD32; typedef struct _EXCEPTION_RECORD64 { NTSTATUS ExceptionCode; ULONG ExceptionFlags; ULONG64 ExceptionRecord; ULONG64 ExceptionAddress; ULONG NumberParameters; ULONG __unusedAlignment; ULONG64 ExceptionInformation[EXCEPTION_MAXIMUM_PARAMETERS]; } EXCEPTION_RECORD64, *PEXCEPTION_RECORD64; // // Typedef for pointer returned by exception_info() // typedef struct _EXCEPTION_POINTERS { PEXCEPTION_RECORD ExceptionRecord; PVOID ContextRecord; } EXCEPTION_POINTERS, *PEXCEPTION_POINTERS; #define THREAD_WAIT_OBJECTS 3 // Builtin usable wait blocks // // Interrupt modes. // typedef enum _KINTERRUPT_MODE { LevelSensitive, Latched } KINTERRUPT_MODE; // // Wait reasons // typedef enum _KWAIT_REASON { Executive, FreePage, PageIn, PoolAllocation, DelayExecution, Suspended, UserRequest, WrExecutive, WrFreePage, WrPageIn, WrPoolAllocation, WrDelayExecution, WrSuspended, WrUserRequest, WrEventPair, WrQueue, WrLpcReceive, WrLpcReply, WrVirtualMemory, WrPageOut, WrRendezvous, Spare2, Spare3, Spare4, Spare5, Spare6, WrKernel, MaximumWaitReason } KWAIT_REASON; typedef struct _KWAIT_BLOCK { LIST_ENTRY WaitListEntry; struct _KTHREAD *RESTRICTED_POINTER Thread; PVOID Object; struct _KWAIT_BLOCK *RESTRICTED_POINTER NextWaitBlock; USHORT WaitKey; USHORT WaitType; } KWAIT_BLOCK, *PKWAIT_BLOCK, *RESTRICTED_POINTER PRKWAIT_BLOCK; // // Thread start function // typedef VOID (*PKSTART_ROUTINE) ( IN PVOID StartContext ); // // Kernel object structure definitions // // // Device Queue object and entry // typedef struct _KDEVICE_QUEUE { CSHORT Type; CSHORT Size; LIST_ENTRY DeviceListHead; KSPIN_LOCK Lock; BOOLEAN Busy; } KDEVICE_QUEUE, *PKDEVICE_QUEUE, *RESTRICTED_POINTER PRKDEVICE_QUEUE; typedef struct _KDEVICE_QUEUE_ENTRY { LIST_ENTRY DeviceListEntry; ULONG SortKey; BOOLEAN Inserted; } KDEVICE_QUEUE_ENTRY, *PKDEVICE_QUEUE_ENTRY, *RESTRICTED_POINTER PRKDEVICE_QUEUE_ENTRY; // // Define the interrupt service function type and the empty struct // type. // typedef BOOLEAN (*PKSERVICE_ROUTINE) ( IN struct _KINTERRUPT *Interrupt, IN PVOID ServiceContext ); // // Mutant object // typedef struct _KMUTANT { DISPATCHER_HEADER Header; LIST_ENTRY MutantListEntry; struct _KTHREAD *RESTRICTED_POINTER OwnerThread; BOOLEAN Abandoned; UCHAR ApcDisable; } KMUTANT, *PKMUTANT, *RESTRICTED_POINTER PRKMUTANT, KMUTEX, *PKMUTEX, *RESTRICTED_POINTER PRKMUTEX; // // // Semaphore object // typedef struct _KSEMAPHORE { DISPATCHER_HEADER Header; LONG Limit; } KSEMAPHORE, *PKSEMAPHORE, *RESTRICTED_POINTER PRKSEMAPHORE; // // DPC object // NTKERNELAPI VOID KeInitializeDpc ( IN PRKDPC Dpc, IN PKDEFERRED_ROUTINE DeferredRoutine, IN PVOID DeferredContext ); NTKERNELAPI BOOLEAN KeInsertQueueDpc ( IN PRKDPC Dpc, IN PVOID SystemArgument1, IN PVOID SystemArgument2 ); NTKERNELAPI BOOLEAN KeRemoveQueueDpc ( IN PRKDPC Dpc ); NTKERNELAPI VOID KeFlushQueuedDpcs ( VOID ); // // Device queue object // NTKERNELAPI VOID KeInitializeDeviceQueue ( IN PKDEVICE_QUEUE DeviceQueue ); NTKERNELAPI BOOLEAN KeInsertDeviceQueue ( IN PKDEVICE_QUEUE DeviceQueue, IN PKDEVICE_QUEUE_ENTRY DeviceQueueEntry ); NTKERNELAPI BOOLEAN KeInsertByKeyDeviceQueue ( IN PKDEVICE_QUEUE DeviceQueue, IN PKDEVICE_QUEUE_ENTRY DeviceQueueEntry, IN ULONG SortKey ); NTKERNELAPI PKDEVICE_QUEUE_ENTRY KeRemoveDeviceQueue ( IN PKDEVICE_QUEUE DeviceQueue ); NTKERNELAPI PKDEVICE_QUEUE_ENTRY KeRemoveByKeyDeviceQueue ( IN PKDEVICE_QUEUE DeviceQueue, IN ULONG SortKey ); NTKERNELAPI PKDEVICE_QUEUE_ENTRY KeRemoveByKeyDeviceQueueIfBusy ( IN PKDEVICE_QUEUE DeviceQueue, IN ULONG SortKey ); NTKERNELAPI BOOLEAN KeRemoveEntryDeviceQueue ( IN PKDEVICE_QUEUE DeviceQueue, IN PKDEVICE_QUEUE_ENTRY DeviceQueueEntry ); NTKERNELAPI BOOLEAN KeSynchronizeExecution ( IN PKINTERRUPT Interrupt, IN PKSYNCHRONIZE_ROUTINE SynchronizeRoutine, IN PVOID SynchronizeContext ); NTKERNELAPI KIRQL KeAcquireInterruptSpinLock ( IN PKINTERRUPT Interrupt ); NTKERNELAPI VOID KeReleaseInterruptSpinLock ( IN PKINTERRUPT Interrupt, IN KIRQL OldIrql ); // // Kernel dispatcher object functions // // Event Object // NTKERNELAPI VOID KeInitializeEvent ( IN PRKEVENT Event, IN EVENT_TYPE Type, IN BOOLEAN State ); NTKERNELAPI VOID KeClearEvent ( IN PRKEVENT Event ); NTKERNELAPI LONG KeReadStateEvent ( IN PRKEVENT Event ); NTKERNELAPI LONG KeResetEvent ( IN PRKEVENT Event ); NTKERNELAPI LONG KeSetEvent ( IN PRKEVENT Event, IN KPRIORITY Increment, IN BOOLEAN Wait ); // // Mutex object // NTKERNELAPI VOID KeInitializeMutex ( IN PRKMUTEX Mutex, IN ULONG Level ); NTKERNELAPI LONG KeReadStateMutex ( IN PRKMUTEX Mutex ); NTKERNELAPI LONG KeReleaseMutex ( IN PRKMUTEX Mutex, IN BOOLEAN Wait ); // // Semaphore object // NTKERNELAPI VOID KeInitializeSemaphore ( IN PRKSEMAPHORE Semaphore, IN LONG Count, IN LONG Limit ); NTKERNELAPI LONG KeReadStateSemaphore ( IN PRKSEMAPHORE Semaphore ); NTKERNELAPI LONG KeReleaseSemaphore ( IN PRKSEMAPHORE Semaphore, IN KPRIORITY Increment, IN LONG Adjustment, IN BOOLEAN Wait ); NTKERNELAPI NTSTATUS KeDelayExecutionThread ( IN KPROCESSOR_MODE WaitMode, IN BOOLEAN Alertable, IN PLARGE_INTEGER Interval ); NTKERNELAPI KPRIORITY KeQueryPriorityThread ( IN PKTHREAD Thread ); NTKERNELAPI ULONG KeQueryRuntimeThread ( IN PKTHREAD Thread, OUT PULONG UserTime ); NTKERNELAPI KPRIORITY KeSetPriorityThread ( IN PKTHREAD Thread, IN KPRIORITY Priority ); NTKERNELAPI VOID KeEnterCriticalRegion ( VOID ); NTKERNELAPI VOID KeLeaveCriticalRegion ( VOID ); NTKERNELAPI BOOLEAN KeAreApcsDisabled( VOID ); // // Timer object // NTKERNELAPI VOID KeInitializeTimer ( IN PKTIMER Timer ); NTKERNELAPI VOID KeInitializeTimerEx ( IN PKTIMER Timer, IN TIMER_TYPE Type ); NTKERNELAPI BOOLEAN KeCancelTimer ( IN PKTIMER ); NTKERNELAPI BOOLEAN KeReadStateTimer ( PKTIMER Timer ); NTKERNELAPI BOOLEAN KeSetTimer ( IN PKTIMER Timer, IN LARGE_INTEGER DueTime, IN PKDPC Dpc OPTIONAL ); NTKERNELAPI BOOLEAN KeSetTimerEx ( IN PKTIMER Timer, IN LARGE_INTEGER DueTime, IN LONG Period OPTIONAL, IN PKDPC Dpc OPTIONAL ); #define KeWaitForMutexObject KeWaitForSingleObject NTKERNELAPI NTSTATUS KeWaitForMultipleObjects ( IN ULONG Count, IN PVOID Object[], IN WAIT_TYPE WaitType, IN KWAIT_REASON WaitReason, IN KPROCESSOR_MODE WaitMode, IN BOOLEAN Alertable, IN PLARGE_INTEGER Timeout OPTIONAL, IN PKWAIT_BLOCK WaitBlockArray OPTIONAL ); NTKERNELAPI NTSTATUS KeWaitForSingleObject ( IN PVOID Object, IN KWAIT_REASON WaitReason, IN KPROCESSOR_MODE WaitMode, IN BOOLEAN Alertable, IN PLARGE_INTEGER Timeout OPTIONAL ); // // On X86 the following routines are defined in the HAL and imported by // all other modules. // #if defined(_X86_) && !defined(_NTHAL_) #define _DECL_HAL_KE_IMPORT __declspec(dllimport) #else #define _DECL_HAL_KE_IMPORT #endif // // spin lock functions // NTKERNELAPI VOID NTAPI KeInitializeSpinLock ( IN PKSPIN_LOCK SpinLock ); #if defined(_X86_) NTKERNELAPI VOID FASTCALL KefAcquireSpinLockAtDpcLevel ( IN PKSPIN_LOCK SpinLock ); NTKERNELAPI VOID FASTCALL KefReleaseSpinLockFromDpcLevel ( IN PKSPIN_LOCK SpinLock ); #define KeAcquireSpinLockAtDpcLevel(a) KefAcquireSpinLockAtDpcLevel(a) #define KeReleaseSpinLockFromDpcLevel(a) KefReleaseSpinLockFromDpcLevel(a) _DECL_HAL_KE_IMPORT KIRQL FASTCALL KfAcquireSpinLock ( IN PKSPIN_LOCK SpinLock ); _DECL_HAL_KE_IMPORT VOID FASTCALL KfReleaseSpinLock ( IN PKSPIN_LOCK SpinLock, IN KIRQL NewIrql ); #define KeAcquireSpinLock(a,b) *(b) = KfAcquireSpinLock(a) #define KeReleaseSpinLock(a,b) KfReleaseSpinLock(a,b) #else NTKERNELAPI KIRQL FASTCALL KeAcquireSpinLockRaiseToSynch ( IN PKSPIN_LOCK SpinLock ); NTKERNELAPI VOID KeAcquireSpinLockAtDpcLevel ( IN PKSPIN_LOCK SpinLock ); NTKERNELAPI VOID KeReleaseSpinLockFromDpcLevel ( IN PKSPIN_LOCK SpinLock ); NTKERNELAPI KIRQL KeAcquireSpinLockRaiseToDpc ( IN PKSPIN_LOCK SpinLock ); #define KeAcquireSpinLock(SpinLock, OldIrql) \ *(OldIrql) = KeAcquireSpinLockRaiseToDpc(SpinLock) NTKERNELAPI VOID KeReleaseSpinLock ( IN PKSPIN_LOCK SpinLock, IN KIRQL NewIrql ); #endif NTKERNELAPI BOOLEAN FASTCALL KeTryToAcquireSpinLockAtDpcLevel ( IN PKSPIN_LOCK SpinLock ); #if defined(_X86_) _DECL_HAL_KE_IMPORT VOID FASTCALL KfLowerIrql ( IN KIRQL NewIrql ); _DECL_HAL_KE_IMPORT KIRQL FASTCALL KfRaiseIrql ( IN KIRQL NewIrql ); #define KeLowerIrql(a) KfLowerIrql(a) #define KeRaiseIrql(a,b) *(b) = KfRaiseIrql(a) #elif defined(_ALPHA_) #define KeLowerIrql(a) __swpirql(a) #define KeRaiseIrql(a,b) *(b) = __swpirql(a) #elif defined(_IA64_) VOID KeLowerIrql ( IN KIRQL NewIrql ); VOID KeRaiseIrql ( IN KIRQL NewIrql, OUT PKIRQL OldIrql ); #elif defined(_AMD64_) // // These function are defined in amd64.h for the AMD64 platform. // #else #error "no target architecture" #endif // // Miscellaneous kernel functions // typedef enum _KBUGCHECK_BUFFER_DUMP_STATE { BufferEmpty, BufferInserted, BufferStarted, BufferFinished, BufferIncomplete } KBUGCHECK_BUFFER_DUMP_STATE; typedef VOID (*PKBUGCHECK_CALLBACK_ROUTINE) ( IN PVOID Buffer, IN ULONG Length ); typedef struct _KBUGCHECK_CALLBACK_RECORD { LIST_ENTRY Entry; PKBUGCHECK_CALLBACK_ROUTINE CallbackRoutine; PVOID Buffer; ULONG Length; PUCHAR Component; ULONG_PTR Checksum; UCHAR State; } KBUGCHECK_CALLBACK_RECORD, *PKBUGCHECK_CALLBACK_RECORD; #define KeInitializeCallbackRecord(CallbackRecord) \ (CallbackRecord)->State = BufferEmpty NTKERNELAPI BOOLEAN KeDeregisterBugCheckCallback ( IN PKBUGCHECK_CALLBACK_RECORD CallbackRecord ); NTKERNELAPI BOOLEAN KeRegisterBugCheckCallback ( IN PKBUGCHECK_CALLBACK_RECORD CallbackRecord, IN PKBUGCHECK_CALLBACK_ROUTINE CallbackRoutine, IN PVOID Buffer, IN ULONG Length, IN PUCHAR Component ); typedef enum _KBUGCHECK_CALLBACK_REASON { KbCallbackInvalid, KbCallbackReserved1, KbCallbackSecondaryDumpData, KbCallbackDumpIo, } KBUGCHECK_CALLBACK_REASON; typedef VOID (*PKBUGCHECK_REASON_CALLBACK_ROUTINE) ( IN KBUGCHECK_CALLBACK_REASON Reason, IN struct _KBUGCHECK_REASON_CALLBACK_RECORD* Record, IN OUT PVOID ReasonSpecificData, IN ULONG ReasonSpecificDataLength ); typedef struct _KBUGCHECK_REASON_CALLBACK_RECORD { LIST_ENTRY Entry; PKBUGCHECK_REASON_CALLBACK_ROUTINE CallbackRoutine; PUCHAR Component; ULONG_PTR Checksum; KBUGCHECK_CALLBACK_REASON Reason; UCHAR State; } KBUGCHECK_REASON_CALLBACK_RECORD, *PKBUGCHECK_REASON_CALLBACK_RECORD; typedef struct _KBUGCHECK_SECONDARY_DUMP_DATA { IN PVOID InBuffer; IN ULONG InBufferLength; IN ULONG MaximumAllowed; OUT GUID Guid; OUT PVOID OutBuffer; OUT ULONG OutBufferLength; } KBUGCHECK_SECONDARY_DUMP_DATA, *PKBUGCHECK_SECONDARY_DUMP_DATA; typedef enum _KBUGCHECK_DUMP_IO_TYPE { KbDumpIoInvalid, KbDumpIoHeader, KbDumpIoBody, KbDumpIoSecondaryData, KbDumpIoComplete } KBUGCHECK_DUMP_IO_TYPE; typedef struct _KBUGCHECK_DUMP_IO { IN ULONG64 Offset; IN PVOID Buffer; IN ULONG BufferLength; IN KBUGCHECK_DUMP_IO_TYPE Type; } KBUGCHECK_DUMP_IO, *PKBUGCHECK_DUMP_IO; NTKERNELAPI BOOLEAN KeDeregisterBugCheckReasonCallback ( IN PKBUGCHECK_REASON_CALLBACK_RECORD CallbackRecord ); NTKERNELAPI BOOLEAN KeRegisterBugCheckReasonCallback ( IN PKBUGCHECK_REASON_CALLBACK_RECORD CallbackRecord, IN PKBUGCHECK_REASON_CALLBACK_ROUTINE CallbackRoutine, IN KBUGCHECK_CALLBACK_REASON Reason, IN PUCHAR Component ); NTKERNELAPI DECLSPEC_NORETURN VOID KeBugCheckEx( IN ULONG BugCheckCode, IN ULONG_PTR BugCheckParameter1, IN ULONG_PTR BugCheckParameter2, IN ULONG_PTR BugCheckParameter3, IN ULONG_PTR BugCheckParameter4 ); NTKERNELAPI ULONGLONG KeQueryInterruptTime ( VOID ); NTKERNELAPI VOID KeQuerySystemTime ( OUT PLARGE_INTEGER CurrentTime ); NTKERNELAPI ULONG KeQueryTimeIncrement ( VOID ); NTKERNELAPI ULONG KeGetRecommendedSharedDataAlignment ( VOID ); #if defined(_AMD64_) || defined(_ALPHA_) || defined(_IA64_) extern volatile LARGE_INTEGER KeTickCount; #else extern volatile KSYSTEM_TIME KeTickCount; #endif typedef enum _MEMORY_CACHING_TYPE_ORIG { MmFrameBufferCached = 2 } MEMORY_CACHING_TYPE_ORIG; typedef enum _MEMORY_CACHING_TYPE { MmNonCached = FALSE, MmCached = TRUE, MmWriteCombined = MmFrameBufferCached, MmHardwareCoherentCached, MmCachingTypeDoNotUse1, MmCachingTypeDoNotUse2, MmMaximumCacheType } MEMORY_CACHING_TYPE; // // Define external data. // because of indirection for all drivers external to ntoskrnl these are actually ptrs // #if defined(_NTDDK_) || defined(_NTIFS_) || defined(_NTHAL_) || defined(_WDMDDK_) || defined(_NTOSP_) extern PBOOLEAN KdDebuggerNotPresent; extern PBOOLEAN KdDebuggerEnabled; #define KD_DEBUGGER_ENABLED *KdDebuggerEnabled #define KD_DEBUGGER_NOT_PRESENT *KdDebuggerNotPresent #else extern BOOLEAN KdDebuggerNotPresent; extern BOOLEAN KdDebuggerEnabled; #define KD_DEBUGGER_ENABLED KdDebuggerEnabled #define KD_DEBUGGER_NOT_PRESENT KdDebuggerNotPresent #endif VOID KdDisableDebugger( VOID ); VOID KdEnableDebugger( VOID ); // // Pool Allocation routines (in pool.c) // typedef enum _POOL_TYPE { NonPagedPool, PagedPool, NonPagedPoolMustSucceed, DontUseThisType, NonPagedPoolCacheAligned, PagedPoolCacheAligned, NonPagedPoolCacheAlignedMustS, MaxPoolType } POOL_TYPE; #define POOL_COLD_ALLOCATION 256 // Note this cannot encode into the header. NTKERNELAPI PVOID ExAllocatePool( IN POOL_TYPE PoolType, IN SIZE_T NumberOfBytes ); NTKERNELAPI PVOID ExAllocatePoolWithQuota( IN POOL_TYPE PoolType, IN SIZE_T NumberOfBytes ); NTKERNELAPI PVOID NTAPI ExAllocatePoolWithTag( IN POOL_TYPE PoolType, IN SIZE_T NumberOfBytes, IN ULONG Tag ); // // _EX_POOL_PRIORITY_ provides a method for the system to handle requests // intelligently in low resource conditions. // // LowPoolPriority should be used when it is acceptable to the driver for the // mapping request to fail if the system is low on resources. An example of // this could be for a non-critical network connection where the driver can // handle the failure case when system resources are close to being depleted. // // NormalPoolPriority should be used when it is acceptable to the driver for the // mapping request to fail if the system is very low on resources. An example // of this could be for a non-critical local filesystem request. // // HighPoolPriority should be used when it is unacceptable to the driver for the // mapping request to fail unless the system is completely out of resources. // An example of this would be the paging file path in a driver. // // SpecialPool can be specified to bound the allocation at a page end (or // beginning). This should only be done on systems being debugged as the // memory cost is expensive. // // N.B. These values are very carefully chosen so that the pool allocation // code can quickly crack the priority request. // typedef enum _EX_POOL_PRIORITY { LowPoolPriority, LowPoolPrioritySpecialPoolOverrun = 8, LowPoolPrioritySpecialPoolUnderrun = 9, NormalPoolPriority = 16, NormalPoolPrioritySpecialPoolOverrun = 24, NormalPoolPrioritySpecialPoolUnderrun = 25, HighPoolPriority = 32, HighPoolPrioritySpecialPoolOverrun = 40, HighPoolPrioritySpecialPoolUnderrun = 41 } EX_POOL_PRIORITY; NTKERNELAPI PVOID NTAPI ExAllocatePoolWithTagPriority( IN POOL_TYPE PoolType, IN SIZE_T NumberOfBytes, IN ULONG Tag, IN EX_POOL_PRIORITY Priority ); #ifndef POOL_TAGGING #define ExAllocatePoolWithTag(a,b,c) ExAllocatePool(a,b) #endif //POOL_TAGGING NTKERNELAPI PVOID ExAllocatePoolWithQuotaTag( IN POOL_TYPE PoolType, IN SIZE_T NumberOfBytes, IN ULONG Tag ); #ifndef POOL_TAGGING #define ExAllocatePoolWithQuotaTag(a,b,c) ExAllocatePoolWithQuota(a,b) #endif //POOL_TAGGING NTKERNELAPI VOID NTAPI ExFreePool( IN PVOID P ); NTKERNELAPI VOID ExFreePoolWithTag( IN PVOID P, IN ULONG Tag ); // // Routines to support fast mutexes. // typedef struct _FAST_MUTEX { LONG Count; PKTHREAD Owner; ULONG Contention; KEVENT Event; ULONG OldIrql; } FAST_MUTEX, *PFAST_MUTEX; #define ExInitializeFastMutex(_FastMutex) \ (_FastMutex)->Count = 1; \ (_FastMutex)->Owner = NULL; \ (_FastMutex)->Contention = 0; \ KeInitializeEvent(&(_FastMutex)->Event, \ SynchronizationEvent, \ FALSE); NTKERNELAPI VOID FASTCALL ExAcquireFastMutexUnsafe ( IN PFAST_MUTEX FastMutex ); NTKERNELAPI VOID FASTCALL ExReleaseFastMutexUnsafe ( IN PFAST_MUTEX FastMutex ); #if defined(_ALPHA_) || defined(_IA64_) || defined(_AMD64_) NTKERNELAPI VOID FASTCALL ExAcquireFastMutex ( IN PFAST_MUTEX FastMutex ); NTKERNELAPI VOID FASTCALL ExReleaseFastMutex ( IN PFAST_MUTEX FastMutex ); NTKERNELAPI BOOLEAN FASTCALL ExTryToAcquireFastMutex ( IN PFAST_MUTEX FastMutex ); #elif defined(_X86_) NTHALAPI VOID FASTCALL ExAcquireFastMutex ( IN PFAST_MUTEX FastMutex ); NTHALAPI VOID FASTCALL ExReleaseFastMutex ( IN PFAST_MUTEX FastMutex ); NTHALAPI BOOLEAN FASTCALL ExTryToAcquireFastMutex ( IN PFAST_MUTEX FastMutex ); #else #error "Target architecture not defined" #endif // NTKERNELAPI VOID FASTCALL ExInterlockedAddLargeStatistic ( IN PLARGE_INTEGER Addend, IN ULONG Increment ); NTKERNELAPI LARGE_INTEGER ExInterlockedAddLargeInteger ( IN PLARGE_INTEGER Addend, IN LARGE_INTEGER Increment, IN PKSPIN_LOCK Lock ); NTKERNELAPI ULONG FASTCALL ExInterlockedAddUlong ( IN PULONG Addend, IN ULONG Increment, IN PKSPIN_LOCK Lock ); #if defined(_AMD64_) || defined(_AXP64_) || defined(_IA64_) #define ExInterlockedCompareExchange64(Destination, Exchange, Comperand, Lock) \ InterlockedCompareExchange64(Destination, *(Exchange), *(Comperand)) #elif defined(_ALPHA_) #define ExInterlockedCompareExchange64(Destination, Exchange, Comperand, Lock) \ ExpInterlockedCompareExchange64(Destination, Exchange, Comperand) #else #define ExInterlockedCompareExchange64(Destination, Exchange, Comperand, Lock) \ ExfInterlockedCompareExchange64(Destination, Exchange, Comperand) #endif NTKERNELAPI PLIST_ENTRY FASTCALL ExInterlockedInsertHeadList ( IN PLIST_ENTRY ListHead, IN PLIST_ENTRY ListEntry, IN PKSPIN_LOCK Lock ); NTKERNELAPI PLIST_ENTRY FASTCALL ExInterlockedInsertTailList ( IN PLIST_ENTRY ListHead, IN PLIST_ENTRY ListEntry, IN PKSPIN_LOCK Lock ); NTKERNELAPI PLIST_ENTRY FASTCALL ExInterlockedRemoveHeadList ( IN PLIST_ENTRY ListHead, IN PKSPIN_LOCK Lock ); NTKERNELAPI PSINGLE_LIST_ENTRY FASTCALL ExInterlockedPopEntryList ( IN PSINGLE_LIST_ENTRY ListHead, IN PKSPIN_LOCK Lock ); NTKERNELAPI PSINGLE_LIST_ENTRY FASTCALL ExInterlockedPushEntryList ( IN PSINGLE_LIST_ENTRY ListHead, IN PSINGLE_LIST_ENTRY ListEntry, IN PKSPIN_LOCK Lock ); // // Define interlocked sequenced listhead functions. // // A sequenced interlocked list is a singly linked list with a header that // contains the current depth and a sequence number. Each time an entry is // inserted or removed from the list the depth is updated and the sequence // number is incremented. This enables AMD64, IA64, and Pentium and later // machines to insert and remove from the list without the use of spinlocks. // #if !defined(_WINBASE_) /*++ Routine Description: This function initializes a sequenced singly linked listhead. Arguments: SListHead - Supplies a pointer to a sequenced singly linked listhead. Return Value: None. --*/ #if defined(_WIN64) && (defined(_NTDRIVER_) || defined(_NTDDK_) || defined(_NTIFS_) || defined(_NTHAL_) || defined(_NTOSP_)) NTKERNELAPI VOID InitializeSListHead ( IN PSLIST_HEADER SListHead ); #else __inline VOID InitializeSListHead ( IN PSLIST_HEADER SListHead ) { #ifdef _WIN64 // // Slist headers must be 16 byte aligned. // if ((ULONG_PTR) SListHead & 0x0f) { DbgPrint( "InitializeSListHead unaligned Slist header. Address = %p, Caller = %p\n", SListHead, _ReturnAddress()); RtlRaiseStatus(STATUS_DATATYPE_MISALIGNMENT); } #endif SListHead->Alignment = 0; // // For IA-64 we save the region number of the elements of the list in a // separate field. This imposes the requirement that all elements stored // in the list are from the same region. #if defined(_IA64_) SListHead->Region = (ULONG_PTR)SListHead & VRN_MASK; #elif defined(_AMD64_) SListHead->Region = 0; #endif return; } #endif #endif // !defined(_WINBASE_) #define ExInitializeSListHead InitializeSListHead PSLIST_ENTRY FirstEntrySList ( IN const SLIST_HEADER *SListHead ); /*++ Routine Description: This function queries the current number of entries contained in a sequenced single linked list. Arguments: SListHead - Supplies a pointer to the sequenced listhead which is be queried. Return Value: The current number of entries in the sequenced singly linked list is returned as the function value. --*/ #if defined(_WIN64) #if (defined(_NTDRIVER_) || defined(_NTDDK_) || defined(_NTIFS_) || defined(_NTHAL_) || defined(_NTOSP_)) NTKERNELAPI USHORT ExQueryDepthSList ( IN PSLIST_HEADER SListHead ); #else __inline USHORT ExQueryDepthSList ( IN PSLIST_HEADER SListHead ) { return (USHORT)(SListHead->Alignment & 0xffff); } #endif #else #define ExQueryDepthSList(_listhead_) (_listhead_)->Depth #endif #if defined(_WIN64) #define ExInterlockedPopEntrySList(Head, Lock) \ ExpInterlockedPopEntrySList(Head) #define ExInterlockedPushEntrySList(Head, Entry, Lock) \ ExpInterlockedPushEntrySList(Head, Entry) #define ExInterlockedFlushSList(Head) \ ExpInterlockedFlushSList(Head) #if !defined(_WINBASE_) #define InterlockedPopEntrySList(Head) \ ExpInterlockedPopEntrySList(Head) #define InterlockedPushEntrySList(Head, Entry) \ ExpInterlockedPushEntrySList(Head, Entry) #define InterlockedFlushSList(Head) \ ExpInterlockedFlushSList(Head) #define QueryDepthSList(Head) \ ExQueryDepthSList(Head) #endif // !defined(_WINBASE_) NTKERNELAPI PSLIST_ENTRY ExpInterlockedPopEntrySList ( IN PSLIST_HEADER ListHead ); NTKERNELAPI PSLIST_ENTRY ExpInterlockedPushEntrySList ( IN PSLIST_HEADER ListHead, IN PSLIST_ENTRY ListEntry ); NTKERNELAPI PSLIST_ENTRY ExpInterlockedFlushSList ( IN PSLIST_HEADER ListHead ); #else #if defined(_WIN2K_COMPAT_SLIST_USAGE) && defined(_X86_) NTKERNELAPI PSLIST_ENTRY FASTCALL ExInterlockedPopEntrySList ( IN PSLIST_HEADER ListHead, IN PKSPIN_LOCK Lock ); NTKERNELAPI PSLIST_ENTRY FASTCALL ExInterlockedPushEntrySList ( IN PSLIST_HEADER ListHead, IN PSLIST_ENTRY ListEntry, IN PKSPIN_LOCK Lock ); #else #define ExInterlockedPopEntrySList(ListHead, Lock) \ InterlockedPopEntrySList(ListHead) #define ExInterlockedPushEntrySList(ListHead, ListEntry, Lock) \ InterlockedPushEntrySList(ListHead, ListEntry) #endif NTKERNELAPI PSLIST_ENTRY FASTCALL ExInterlockedFlushSList ( IN PSLIST_HEADER ListHead ); #if !defined(_WINBASE_) NTKERNELAPI PSLIST_ENTRY FASTCALL InterlockedPopEntrySList ( IN PSLIST_HEADER ListHead ); NTKERNELAPI PSLIST_ENTRY FASTCALL InterlockedPushEntrySList ( IN PSLIST_HEADER ListHead, IN PSLIST_ENTRY ListEntry ); #define InterlockedFlushSList(Head) \ ExInterlockedFlushSList(Head) #define QueryDepthSList(Head) \ ExQueryDepthSList(Head) #endif // !defined(_WINBASE_) #endif // defined(_WIN64) typedef PVOID (*PALLOCATE_FUNCTION) ( IN POOL_TYPE PoolType, IN SIZE_T NumberOfBytes, IN ULONG Tag ); typedef VOID (*PFREE_FUNCTION) ( IN PVOID Buffer ); #if !defined(_WIN64) && (defined(_NTDDK_) || defined(_NTIFS_) || defined(_NDIS_)) typedef struct _GENERAL_LOOKASIDE { #else typedef struct DECLSPEC_CACHEALIGN _GENERAL_LOOKASIDE { #endif SLIST_HEADER ListHead; USHORT Depth; USHORT MaximumDepth; ULONG TotalAllocates; union { ULONG AllocateMisses; ULONG AllocateHits; }; ULONG TotalFrees; union { ULONG FreeMisses; ULONG FreeHits; }; POOL_TYPE Type; ULONG Tag; ULONG Size; PALLOCATE_FUNCTION Allocate; PFREE_FUNCTION Free; LIST_ENTRY ListEntry; ULONG LastTotalAllocates; union { ULONG LastAllocateMisses; ULONG LastAllocateHits; }; ULONG Future[2]; } GENERAL_LOOKASIDE, *PGENERAL_LOOKASIDE; #if !defined(_WIN64) && (defined(_NTDDK_) || defined(_NTIFS_) || defined(_NDIS_)) typedef struct _NPAGED_LOOKASIDE_LIST { #else typedef struct DECLSPEC_CACHEALIGN _NPAGED_LOOKASIDE_LIST { #endif GENERAL_LOOKASIDE L; #if !defined(_AMD64_) && !defined(_IA64_) KSPIN_LOCK Lock__ObsoleteButDoNotDelete; #endif } NPAGED_LOOKASIDE_LIST, *PNPAGED_LOOKASIDE_LIST; NTKERNELAPI VOID ExInitializeNPagedLookasideList ( IN PNPAGED_LOOKASIDE_LIST Lookaside, IN PALLOCATE_FUNCTION Allocate, IN PFREE_FUNCTION Free, IN ULONG Flags, IN SIZE_T Size, IN ULONG Tag, IN USHORT Depth ); NTKERNELAPI VOID ExDeleteNPagedLookasideList ( IN PNPAGED_LOOKASIDE_LIST Lookaside ); __inline PVOID ExAllocateFromNPagedLookasideList( IN PNPAGED_LOOKASIDE_LIST Lookaside ) /*++ Routine Description: This function removes (pops) the first entry from the specified nonpaged lookaside list. Arguments: Lookaside - Supplies a pointer to a nonpaged lookaside list structure. Return Value: If an entry is removed from the specified lookaside list, then the address of the entry is returned as the function value. Otherwise, NULL is returned. --*/ { PVOID Entry; Lookaside->L.TotalAllocates += 1; #if defined(_WIN2K_COMPAT_SLIST_USAGE) && defined(_X86_) Entry = ExInterlockedPopEntrySList(&Lookaside->L.ListHead, &Lookaside->Lock__ObsoleteButDoNotDelete); #else Entry = InterlockedPopEntrySList(&Lookaside->L.ListHead); #endif if (Entry == NULL) { Lookaside->L.AllocateMisses += 1; Entry = (Lookaside->L.Allocate)(Lookaside->L.Type, Lookaside->L.Size, Lookaside->L.Tag); } return Entry; } __inline VOID ExFreeToNPagedLookasideList( IN PNPAGED_LOOKASIDE_LIST Lookaside, IN PVOID Entry ) /*++ Routine Description: This function inserts (pushes) the specified entry into the specified nonpaged lookaside list. Arguments: Lookaside - Supplies a pointer to a nonpaged lookaside list structure. Entry - Supples a pointer to the entry that is inserted in the lookaside list. Return Value: None. --*/ { Lookaside->L.TotalFrees += 1; if (ExQueryDepthSList(&Lookaside->L.ListHead) >= Lookaside->L.Depth) { Lookaside->L.FreeMisses += 1; (Lookaside->L.Free)(Entry); } else { #if defined(_WIN2K_COMPAT_SLIST_USAGE) && defined(_X86_) ExInterlockedPushEntrySList(&Lookaside->L.ListHead, (PSLIST_ENTRY)Entry, &Lookaside->Lock__ObsoleteButDoNotDelete); #else InterlockedPushEntrySList(&Lookaside->L.ListHead, (PSLIST_ENTRY)Entry); #endif } return; } #if !defined(_WIN64) && (defined(_NTDDK_) || defined(_NTIFS_) || defined(_NDIS_)) typedef struct _PAGED_LOOKASIDE_LIST { #else typedef struct DECLSPEC_CACHEALIGN _PAGED_LOOKASIDE_LIST { #endif GENERAL_LOOKASIDE L; #if !defined(_AMD64_) && !defined(_IA64_) FAST_MUTEX Lock__ObsoleteButDoNotDelete; #endif } PAGED_LOOKASIDE_LIST, *PPAGED_LOOKASIDE_LIST; NTKERNELAPI VOID ExInitializePagedLookasideList ( IN PPAGED_LOOKASIDE_LIST Lookaside, IN PALLOCATE_FUNCTION Allocate, IN PFREE_FUNCTION Free, IN ULONG Flags, IN SIZE_T Size, IN ULONG Tag, IN USHORT Depth ); NTKERNELAPI VOID ExDeletePagedLookasideList ( IN PPAGED_LOOKASIDE_LIST Lookaside ); #if defined(_WIN2K_COMPAT_SLIST_USAGE) && defined(_X86_) NTKERNELAPI PVOID ExAllocateFromPagedLookasideList( IN PPAGED_LOOKASIDE_LIST Lookaside ); #else __inline PVOID ExAllocateFromPagedLookasideList( IN PPAGED_LOOKASIDE_LIST Lookaside ) /*++ Routine Description: This function removes (pops) the first entry from the specified paged lookaside list. Arguments: Lookaside - Supplies a pointer to a paged lookaside list structure. Return Value: If an entry is removed from the specified lookaside list, then the address of the entry is returned as the function value. Otherwise, NULL is returned. --*/ { PVOID Entry; Lookaside->L.TotalAllocates += 1; Entry = InterlockedPopEntrySList(&Lookaside->L.ListHead); if (Entry == NULL) { Lookaside->L.AllocateMisses += 1; Entry = (Lookaside->L.Allocate)(Lookaside->L.Type, Lookaside->L.Size, Lookaside->L.Tag); } return Entry; } #endif #if defined(_WIN2K_COMPAT_SLIST_USAGE) && defined(_X86_) NTKERNELAPI VOID ExFreeToPagedLookasideList( IN PPAGED_LOOKASIDE_LIST Lookaside, IN PVOID Entry ); #else __inline VOID ExFreeToPagedLookasideList( IN PPAGED_LOOKASIDE_LIST Lookaside, IN PVOID Entry ) /*++ Routine Description: This function inserts (pushes) the specified entry into the specified paged lookaside list. Arguments: Lookaside - Supplies a pointer to a nonpaged lookaside list structure. Entry - Supples a pointer to the entry that is inserted in the lookaside list. Return Value: None. --*/ { Lookaside->L.TotalFrees += 1; if (ExQueryDepthSList(&Lookaside->L.ListHead) >= Lookaside->L.Depth) { Lookaside->L.FreeMisses += 1; (Lookaside->L.Free)(Entry); } else { InterlockedPushEntrySList(&Lookaside->L.ListHead, (PSLIST_ENTRY)Entry); } return; } #endif NTKERNELAPI VOID NTAPI ProbeForRead( IN CONST VOID *Address, IN SIZE_T Length, IN ULONG Alignment ); // // Common probe for write functions. // NTKERNELAPI VOID NTAPI ProbeForWrite ( IN PVOID Address, IN SIZE_T Length, IN ULONG Alignment ); // // Worker Thread // typedef enum _WORK_QUEUE_TYPE { CriticalWorkQueue, DelayedWorkQueue, HyperCriticalWorkQueue, MaximumWorkQueue } WORK_QUEUE_TYPE; typedef VOID (*PWORKER_THREAD_ROUTINE)( IN PVOID Parameter ); typedef struct _WORK_QUEUE_ITEM { LIST_ENTRY List; PWORKER_THREAD_ROUTINE WorkerRoutine; PVOID Parameter; } WORK_QUEUE_ITEM, *PWORK_QUEUE_ITEM; #if PRAGMA_DEPRECATED_DDK #pragma deprecated(ExInitializeWorkItem) // Use IoAllocateWorkItem #endif #define ExInitializeWorkItem(Item, Routine, Context) \ (Item)->WorkerRoutine = (Routine); \ (Item)->Parameter = (Context); \ (Item)->List.Flink = NULL; DECLSPEC_DEPRECATED_DDK // Use IoQueueWorkItem NTKERNELAPI VOID ExQueueWorkItem( IN PWORK_QUEUE_ITEM WorkItem, IN WORK_QUEUE_TYPE QueueType ); NTKERNELAPI BOOLEAN ExIsProcessorFeaturePresent( ULONG ProcessorFeature ); // // Define executive resource data structures. // typedef ULONG_PTR ERESOURCE_THREAD; typedef ERESOURCE_THREAD *PERESOURCE_THREAD; typedef struct _OWNER_ENTRY { ERESOURCE_THREAD OwnerThread; union { LONG OwnerCount; ULONG TableSize; }; } OWNER_ENTRY, *POWNER_ENTRY; typedef struct _ERESOURCE { LIST_ENTRY SystemResourcesList; POWNER_ENTRY OwnerTable; SHORT ActiveCount; USHORT Flag; PKSEMAPHORE SharedWaiters; PKEVENT ExclusiveWaiters; OWNER_ENTRY OwnerThreads[2]; ULONG ContentionCount; USHORT NumberOfSharedWaiters; USHORT NumberOfExclusiveWaiters; union { PVOID Address; ULONG_PTR CreatorBackTraceIndex; }; KSPIN_LOCK SpinLock; } ERESOURCE, *PERESOURCE; // // Values for ERESOURCE.Flag // #define ResourceNeverExclusive 0x10 #define ResourceReleaseByOtherThread 0x20 #define ResourceOwnedExclusive 0x80 #define RESOURCE_HASH_TABLE_SIZE 64 typedef struct _RESOURCE_HASH_ENTRY { LIST_ENTRY ListEntry; PVOID Address; ULONG ContentionCount; ULONG Number; } RESOURCE_HASH_ENTRY, *PRESOURCE_HASH_ENTRY; typedef struct _RESOURCE_PERFORMANCE_DATA { ULONG ActiveResourceCount; ULONG TotalResourceCount; ULONG ExclusiveAcquire; ULONG SharedFirstLevel; ULONG SharedSecondLevel; ULONG StarveFirstLevel; ULONG StarveSecondLevel; ULONG WaitForExclusive; ULONG OwnerTableExpands; ULONG MaximumTableExpand; LIST_ENTRY HashTable[RESOURCE_HASH_TABLE_SIZE]; } RESOURCE_PERFORMANCE_DATA, *PRESOURCE_PERFORMANCE_DATA; // // Define executive resource function prototypes. // NTKERNELAPI NTSTATUS ExInitializeResourceLite( IN PERESOURCE Resource ); NTKERNELAPI NTSTATUS ExReinitializeResourceLite( IN PERESOURCE Resource ); NTKERNELAPI BOOLEAN ExAcquireResourceSharedLite( IN PERESOURCE Resource, IN BOOLEAN Wait ); NTKERNELAPI BOOLEAN ExAcquireResourceExclusiveLite( IN PERESOURCE Resource, IN BOOLEAN Wait ); NTKERNELAPI BOOLEAN ExAcquireSharedStarveExclusive( IN PERESOURCE Resource, IN BOOLEAN Wait ); NTKERNELAPI BOOLEAN ExAcquireSharedWaitForExclusive( IN PERESOURCE Resource, IN BOOLEAN Wait ); NTKERNELAPI BOOLEAN ExTryToAcquireResourceExclusiveLite( IN PERESOURCE Resource ); // // VOID // ExReleaseResource( // IN PERESOURCE Resource // ); // #if PRAGMA_DEPRECATED_DDK #pragma deprecated(ExReleaseResource) // Use ExReleaseResourceLite #endif #define ExReleaseResource(R) (ExReleaseResourceLite(R)) NTKERNELAPI VOID FASTCALL ExReleaseResourceLite( IN PERESOURCE Resource ); NTKERNELAPI VOID ExReleaseResourceForThreadLite( IN PERESOURCE Resource, IN ERESOURCE_THREAD ResourceThreadId ); NTKERNELAPI VOID ExSetResourceOwnerPointer( IN PERESOURCE Resource, IN PVOID OwnerPointer ); NTKERNELAPI VOID ExConvertExclusiveToSharedLite( IN PERESOURCE Resource ); NTKERNELAPI NTSTATUS ExDeleteResourceLite ( IN PERESOURCE Resource ); NTKERNELAPI ULONG ExGetExclusiveWaiterCount ( IN PERESOURCE Resource ); NTKERNELAPI ULONG ExGetSharedWaiterCount ( IN PERESOURCE Resource ); // // ERESOURCE_THREAD // ExGetCurrentResourceThread( // ); // #define ExGetCurrentResourceThread() ((ULONG_PTR)PsGetCurrentThread()) NTKERNELAPI BOOLEAN ExIsResourceAcquiredExclusiveLite ( IN PERESOURCE Resource ); NTKERNELAPI ULONG ExIsResourceAcquiredSharedLite ( IN PERESOURCE Resource ); // // An acquired resource is always owned shared, as shared ownership is a subset // of exclusive ownership. // #define ExIsResourceAcquiredLite ExIsResourceAcquiredSharedLite // // Get previous mode // NTKERNELAPI KPROCESSOR_MODE ExGetPreviousMode( VOID ); // // Raise status from kernel mode. // NTKERNELAPI VOID NTAPI ExRaiseStatus ( IN NTSTATUS Status ); // // Set timer resolution. // NTKERNELAPI ULONG ExSetTimerResolution ( IN ULONG DesiredTime, IN BOOLEAN SetResolution ); // // Subtract time zone bias from system time to get local time. // NTKERNELAPI VOID ExSystemTimeToLocalTime ( IN PLARGE_INTEGER SystemTime, OUT PLARGE_INTEGER LocalTime ); // // Add time zone bias to local time to get system time. // NTKERNELAPI VOID ExLocalTimeToSystemTime ( IN PLARGE_INTEGER LocalTime, OUT PLARGE_INTEGER SystemTime ); // // Define the type for Callback function. // typedef struct _CALLBACK_OBJECT *PCALLBACK_OBJECT; typedef VOID (*PCALLBACK_FUNCTION ) ( IN PVOID CallbackContext, IN PVOID Argument1, IN PVOID Argument2 ); NTKERNELAPI NTSTATUS ExCreateCallback ( OUT PCALLBACK_OBJECT *CallbackObject, IN POBJECT_ATTRIBUTES ObjectAttributes, IN BOOLEAN Create, IN BOOLEAN AllowMultipleCallbacks ); NTKERNELAPI PVOID ExRegisterCallback ( IN PCALLBACK_OBJECT CallbackObject, IN PCALLBACK_FUNCTION CallbackFunction, IN PVOID CallbackContext ); NTKERNELAPI VOID ExUnregisterCallback ( IN PVOID CallbackRegistration ); NTKERNELAPI VOID ExNotifyCallback ( IN PVOID CallbackObject, IN PVOID Argument1, IN PVOID Argument2 ); // // suite support // NTKERNELAPI BOOLEAN ExVerifySuite( SUITE_TYPE SuiteType ); // // Define a block to hold the actual routine registration. // typedef NTSTATUS (*PEX_CALLBACK_FUNCTION ) ( IN PVOID CallbackContext, IN PVOID Argument1, IN PVOID Argument2 ); // // Registry kernel mode callbacks // // // Hook selector // typedef enum _REG_NOTIFY_CLASS { RegNtDeleteKey, RegNtSetValueKey, RegNtDeleteValueKey, RegNtSetInformationKey, RegNtRenameKey, RegNtEnumerateKey, RegNtEnumerateValueKey, RegNtQueryKey, RegNtQueryValueKey, RegNtQueryMultipleValueKey, RegNtPreCreateKey, RegNtPostCreateKey, RegNtPreOpenKey, RegNtPostOpenKey, RegNtKeyHandleClose } REG_NOTIFY_CLASS; // // Parameter description for each notify class // typedef struct _REG_DELETE_KEY_INFORMATION { PVOID Object; // IN } REG_DELETE_KEY_INFORMATION, *PREG_DELETE_KEY_INFORMATION; typedef struct _REG_SET_VALUE_KEY_INFORMATION { PVOID Object; // IN PUNICODE_STRING ValueName; // IN ULONG TitleIndex; // IN ULONG Type; // IN PVOID Data; // IN ULONG DataSize; // IN } REG_SET_VALUE_KEY_INFORMATION, *PREG_SET_VALUE_KEY_INFORMATION; typedef struct _REG_DELETE_VALUE_KEY_INFORMATION { PVOID Object; // IN PUNICODE_STRING ValueName; // IN } REG_DELETE_VALUE_KEY_INFORMATION, *PREG_DELETE_VALUE_KEY_INFORMATION; typedef struct _REG_SET_INFORMATION_KEY_INFORMATION { PVOID Object; // IN KEY_SET_INFORMATION_CLASS KeySetInformationClass; // IN PVOID KeySetInformation; // IN ULONG KeySetInformationLength;// IN } REG_SET_INFORMATION_KEY_INFORMATION, *PREG_SET_INFORMATION_KEY_INFORMATION; typedef struct _REG_ENUMERATE_KEY_INFORMATION { PVOID Object; // IN ULONG Index; // IN KEY_INFORMATION_CLASS KeyInformationClass; // IN PVOID KeyInformation; // IN ULONG Length; // IN PULONG ResultLength; // OUT } REG_ENUMERATE_KEY_INFORMATION, *PREG_ENUMERATE_KEY_INFORMATION; typedef struct _REG_ENUMERATE_VALUE_KEY_INFORMATION { PVOID Object; // IN ULONG Index; // IN KEY_VALUE_INFORMATION_CLASS KeyValueInformationClass; // IN PVOID KeyValueInformation; // IN ULONG Length; // IN PULONG ResultLength; // OUT } REG_ENUMERATE_VALUE_KEY_INFORMATION, *PREG_ENUMERATE_VALUE_KEY_INFORMATION; typedef struct _REG_QUERY_KEY_INFORMATION { PVOID Object; // IN KEY_INFORMATION_CLASS KeyInformationClass; // IN PVOID KeyInformation; // IN ULONG Length; // IN PULONG ResultLength; // OUT } REG_QUERY_KEY_INFORMATION, *PREG_QUERY_KEY_INFORMATION; typedef struct _REG_QUERY_VALUE_KEY_INFORMATION { PVOID Object; // IN PUNICODE_STRING ValueName; // IN KEY_VALUE_INFORMATION_CLASS KeyValueInformationClass; // IN PVOID KeyValueInformation; // IN ULONG Length; // IN PULONG ResultLength; // OUT } REG_QUERY_VALUE_KEY_INFORMATION, *PREG_QUERY_VALUE_KEY_INFORMATION; typedef struct _REG_QUERY_MULTIPLE_VALUE_KEY_INFORMATION { PVOID Object; // IN PKEY_VALUE_ENTRY ValueEntries; // IN ULONG EntryCount; // IN PVOID ValueBuffer; // IN PULONG BufferLength; // IN OUT PULONG RequiredBufferLength; // OUT } REG_QUERY_MULTIPLE_VALUE_KEY_INFORMATION, *PREG_QUERY_MULTIPLE_VALUE_KEY_INFORMATION; typedef struct _REG_RENAME_KEY_INFORMATION { PVOID Object; // IN PUNICODE_STRING NewName; // IN } REG_RENAME_KEY_INFORMATION, *PREG_RENAME_KEY_INFORMATION; typedef struct _REG_PRE_CREATE_KEY_INFORMATION { PUNICODE_STRING CompleteName; // IN } REG_PRE_CREATE_KEY_INFORMATION, REG_PRE_OPEN_KEY_INFORMATION,*PREG_PRE_CREATE_KEY_INFORMATION, *PREG_PRE_OPEN_KEY_INFORMATION;; typedef struct _REG_POST_CREATE_KEY_INFORMATION { PUNICODE_STRING CompleteName; // IN PVOID Object; // IN NTSTATUS Status; // IN } REG_POST_CREATE_KEY_INFORMATION,REG_POST_OPEN_KEY_INFORMATION, *PREG_POST_CREATE_KEY_INFORMATION, *PREG_POST_OPEN_KEY_INFORMATION; typedef struct _REG_KEY_HANDLE_CLOSE_INFORMATION { PVOID Object; // IN } REG_KEY_HANDLE_CLOSE_INFORMATION, *PREG_KEY_HANDLE_CLOSE_INFORMATION; NTSTATUS CmRegisterCallback(IN PEX_CALLBACK_FUNCTION Function, IN PVOID Context, IN OUT PLARGE_INTEGER Cookie ); NTSTATUS CmUnRegisterCallback(IN LARGE_INTEGER Cookie); // // Priority increment definitions. The comment for each definition gives // the names of the system services that use the definition when satisfying // a wait. // // // Priority increment used when satisfying a wait on an executive event // (NtPulseEvent and NtSetEvent) // #define EVENT_INCREMENT 1 // // Priority increment when no I/O has been done. This is used by device // and file system drivers when completing an IRP (IoCompleteRequest). // #define IO_NO_INCREMENT 0 // // Priority increment for completing CD-ROM I/O. This is used by CD-ROM device // and file system drivers when completing an IRP (IoCompleteRequest) // #define IO_CD_ROM_INCREMENT 1 // // Priority increment for completing disk I/O. This is used by disk device // and file system drivers when completing an IRP (IoCompleteRequest) // #define IO_DISK_INCREMENT 1 // // Priority increment for completing keyboard I/O. This is used by keyboard // device drivers when completing an IRP (IoCompleteRequest) // #define IO_KEYBOARD_INCREMENT 6 // // Priority increment for completing mailslot I/O. This is used by the mail- // slot file system driver when completing an IRP (IoCompleteRequest). // #define IO_MAILSLOT_INCREMENT 2 // // Priority increment for completing mouse I/O. This is used by mouse device // drivers when completing an IRP (IoCompleteRequest) // #define IO_MOUSE_INCREMENT 6 // // Priority increment for completing named pipe I/O. This is used by the // named pipe file system driver when completing an IRP (IoCompleteRequest). // #define IO_NAMED_PIPE_INCREMENT 2 // // Priority increment for completing network I/O. This is used by network // device and network file system drivers when completing an IRP // (IoCompleteRequest). // #define IO_NETWORK_INCREMENT 2 // // Priority increment for completing parallel I/O. This is used by parallel // device drivers when completing an IRP (IoCompleteRequest) // #define IO_PARALLEL_INCREMENT 1 // // Priority increment for completing serial I/O. This is used by serial device // drivers when completing an IRP (IoCompleteRequest) // #define IO_SERIAL_INCREMENT 2 // // Priority increment for completing sound I/O. This is used by sound device // drivers when completing an IRP (IoCompleteRequest) // #define IO_SOUND_INCREMENT 8 // // Priority increment for completing video I/O. This is used by video device // drivers when completing an IRP (IoCompleteRequest) // #define IO_VIDEO_INCREMENT 1 // // Priority increment used when satisfying a wait on an executive semaphore // (NtReleaseSemaphore) // #define SEMAPHORE_INCREMENT 1 // // Indicates the system may do I/O to physical addresses above 4 GB. // extern PBOOLEAN Mm64BitPhysicalAddress; // // Define maximum disk transfer size to be used by MM and Cache Manager, // so that packet-oriented disk drivers can optimize their packet allocation // to this size. // #define MM_MAXIMUM_DISK_IO_SIZE (0x10000) //++ // // ULONG_PTR // ROUND_TO_PAGES ( // IN ULONG_PTR Size // ) // // Routine Description: // // The ROUND_TO_PAGES macro takes a size in bytes and rounds it up to a // multiple of the page size. // // NOTE: This macro fails for values 0xFFFFFFFF - (PAGE_SIZE - 1). // // Arguments: // // Size - Size in bytes to round up to a page multiple. // // Return Value: // // Returns the size rounded up to a multiple of the page size. // //-- #define ROUND_TO_PAGES(Size) (((ULONG_PTR)(Size) + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1)) //++ // // ULONG // BYTES_TO_PAGES ( // IN ULONG Size // ) // // Routine Description: // // The BYTES_TO_PAGES macro takes the size in bytes and calculates the // number of pages required to contain the bytes. // // Arguments: // // Size - Size in bytes. // // Return Value: // // Returns the number of pages required to contain the specified size. // //-- #define BYTES_TO_PAGES(Size) ((ULONG)((ULONG_PTR)(Size) >> PAGE_SHIFT) + \ (((ULONG)(Size) & (PAGE_SIZE - 1)) != 0)) //++ // // ULONG // BYTE_OFFSET ( // IN PVOID Va // ) // // Routine Description: // // The BYTE_OFFSET macro takes a virtual address and returns the byte offset // of that address within the page. // // Arguments: // // Va - Virtual address. // // Return Value: // // Returns the byte offset portion of the virtual address. // //-- #define BYTE_OFFSET(Va) ((ULONG)((LONG_PTR)(Va) & (PAGE_SIZE - 1))) //++ // // PVOID // PAGE_ALIGN ( // IN PVOID Va // ) // // Routine Description: // // The PAGE_ALIGN macro takes a virtual address and returns a page-aligned // virtual address for that page. // // Arguments: // // Va - Virtual address. // // Return Value: // // Returns the page aligned virtual address. // //-- #define PAGE_ALIGN(Va) ((PVOID)((ULONG_PTR)(Va) & ~(PAGE_SIZE - 1))) //++ // // ULONG // ADDRESS_AND_SIZE_TO_SPAN_PAGES ( // IN PVOID Va, // IN ULONG Size // ) // // Routine Description: // // The ADDRESS_AND_SIZE_TO_SPAN_PAGES macro takes a virtual address and // size and returns the number of pages spanned by the size. // // Arguments: // // Va - Virtual address. // // Size - Size in bytes. // // Return Value: // // Returns the number of pages spanned by the size. // //-- #define ADDRESS_AND_SIZE_TO_SPAN_PAGES(Va,Size) \ ((ULONG)((((ULONG_PTR)(Va) & (PAGE_SIZE -1)) + (Size) + (PAGE_SIZE - 1)) >> PAGE_SHIFT)) #if PRAGMA_DEPRECATED_DDK #pragma deprecated(COMPUTE_PAGES_SPANNED) // Use ADDRESS_AND_SIZE_TO_SPAN_PAGES #endif #define COMPUTE_PAGES_SPANNED(Va, Size) ADDRESS_AND_SIZE_TO_SPAN_PAGES(Va,Size) //++ // PPFN_NUMBER // MmGetMdlPfnArray ( // IN PMDL Mdl // ) // // Routine Description: // // The MmGetMdlPfnArray routine returns the virtual address of the // first element of the array of physical page numbers associated with // the MDL. // // Arguments: // // Mdl - Pointer to an MDL. // // Return Value: // // Returns the virtual address of the first element of the array of // physical page numbers associated with the MDL. // //-- #define MmGetMdlPfnArray(Mdl) ((PPFN_NUMBER)(Mdl + 1)) //++ // // PVOID // MmGetMdlVirtualAddress ( // IN PMDL Mdl // ) // // Routine Description: // // The MmGetMdlVirtualAddress returns the virtual address of the buffer // described by the Mdl. // // Arguments: // // Mdl - Pointer to an MDL. // // Return Value: // // Returns the virtual address of the buffer described by the Mdl // //-- #define MmGetMdlVirtualAddress(Mdl) \ ((PVOID) ((PCHAR) ((Mdl)->StartVa) + (Mdl)->ByteOffset)) //++ // // ULONG // MmGetMdlByteCount ( // IN PMDL Mdl // ) // // Routine Description: // // The MmGetMdlByteCount returns the length in bytes of the buffer // described by the Mdl. // // Arguments: // // Mdl - Pointer to an MDL. // // Return Value: // // Returns the byte count of the buffer described by the Mdl // //-- #define MmGetMdlByteCount(Mdl) ((Mdl)->ByteCount) //++ // // ULONG // MmGetMdlByteOffset ( // IN PMDL Mdl // ) // // Routine Description: // // The MmGetMdlByteOffset returns the byte offset within the page // of the buffer described by the Mdl. // // Arguments: // // Mdl - Pointer to an MDL. // // Return Value: // // Returns the byte offset within the page of the buffer described by the Mdl // //-- #define MmGetMdlByteOffset(Mdl) ((Mdl)->ByteOffset) //++ // // PVOID // MmGetMdlStartVa ( // IN PMDL Mdl // ) // // Routine Description: // // The MmGetMdlBaseVa returns the virtual address of the buffer // described by the Mdl rounded down to the nearest page. // // Arguments: // // Mdl - Pointer to an MDL. // // Return Value: // // Returns the returns the starting virtual address of the MDL. // // //-- #define MmGetMdlBaseVa(Mdl) ((Mdl)->StartVa) typedef enum _MM_SYSTEM_SIZE { MmSmallSystem, MmMediumSystem, MmLargeSystem } MM_SYSTEMSIZE; NTKERNELAPI MM_SYSTEMSIZE MmQuerySystemSize( VOID ); typedef enum _LOCK_OPERATION { IoReadAccess, IoWriteAccess, IoModifyAccess } LOCK_OPERATION; NTSTATUS MmIsVerifierEnabled ( OUT PULONG VerifierFlags ); NTSTATUS MmAddVerifierThunks ( IN PVOID ThunkBuffer, IN ULONG ThunkBufferSize ); NTKERNELAPI VOID MmProbeAndLockProcessPages ( IN OUT PMDL MemoryDescriptorList, IN PEPROCESS Process, IN KPROCESSOR_MODE AccessMode, IN LOCK_OPERATION Operation ); // // I/O support routines. // NTKERNELAPI VOID MmProbeAndLockPages ( IN OUT PMDL MemoryDescriptorList, IN KPROCESSOR_MODE AccessMode, IN LOCK_OPERATION Operation ); NTKERNELAPI VOID MmUnlockPages ( IN PMDL MemoryDescriptorList ); NTKERNELAPI VOID MmBuildMdlForNonPagedPool ( IN OUT PMDL MemoryDescriptorList ); NTKERNELAPI PVOID MmMapLockedPages ( IN PMDL MemoryDescriptorList, IN KPROCESSOR_MODE AccessMode ); NTKERNELAPI PVOID MmGetSystemRoutineAddress ( IN PUNICODE_STRING SystemRoutineName ); NTKERNELAPI NTSTATUS MmAdvanceMdl ( IN PMDL Mdl, IN ULONG NumberOfBytes ); NTKERNELAPI NTSTATUS MmProtectMdlSystemAddress ( IN PMDL MemoryDescriptorList, IN ULONG NewProtect ); // // _MM_PAGE_PRIORITY_ provides a method for the system to handle requests // intelligently in low resource conditions. // // LowPagePriority should be used when it is acceptable to the driver for the // mapping request to fail if the system is low on resources. An example of // this could be for a non-critical network connection where the driver can // handle the failure case when system resources are close to being depleted. // // NormalPagePriority should be used when it is acceptable to the driver for the // mapping request to fail if the system is very low on resources. An example // of this could be for a non-critical local filesystem request. // // HighPagePriority should be used when it is unacceptable to the driver for the // mapping request to fail unless the system is completely out of resources. // An example of this would be the paging file path in a driver. // typedef enum _MM_PAGE_PRIORITY { LowPagePriority, NormalPagePriority = 16, HighPagePriority = 32 } MM_PAGE_PRIORITY; // // Note: This function is not available in WDM 1.0 // NTKERNELAPI PVOID MmMapLockedPagesSpecifyCache ( IN PMDL MemoryDescriptorList, IN KPROCESSOR_MODE AccessMode, IN MEMORY_CACHING_TYPE CacheType, IN PVOID BaseAddress, IN ULONG BugCheckOnFailure, IN MM_PAGE_PRIORITY Priority ); NTKERNELAPI VOID MmUnmapLockedPages ( IN PVOID BaseAddress, IN PMDL MemoryDescriptorList ); PVOID MmAllocateMappingAddress ( IN SIZE_T NumberOfBytes, IN ULONG PoolTag ); VOID MmFreeMappingAddress ( IN PVOID BaseAddress, IN ULONG PoolTag ); PVOID MmMapLockedPagesWithReservedMapping ( IN PVOID MappingAddress, IN ULONG PoolTag, IN PMDL MemoryDescriptorList, IN MEMORY_CACHING_TYPE CacheType ); VOID MmUnmapReservedMapping ( IN PVOID BaseAddress, IN ULONG PoolTag, IN PMDL MemoryDescriptorList ); NTKERNELAPI PMDL MmAllocatePagesForMdl ( IN PHYSICAL_ADDRESS LowAddress, IN PHYSICAL_ADDRESS HighAddress, IN PHYSICAL_ADDRESS SkipBytes, IN SIZE_T TotalBytes ); NTKERNELAPI VOID MmFreePagesFromMdl ( IN PMDL MemoryDescriptorList ); NTKERNELAPI PVOID MmMapIoSpace ( IN PHYSICAL_ADDRESS PhysicalAddress, IN SIZE_T NumberOfBytes, IN MEMORY_CACHING_TYPE CacheType ); NTKERNELAPI VOID MmUnmapIoSpace ( IN PVOID BaseAddress, IN SIZE_T NumberOfBytes ); NTKERNELAPI SIZE_T MmSizeOfMdl( IN PVOID Base, IN SIZE_T Length ); DECLSPEC_DEPRECATED_DDK // Use IoCreateMdl NTKERNELAPI PMDL MmCreateMdl( IN PMDL MemoryDescriptorList OPTIONAL, IN PVOID Base, IN SIZE_T Length ); NTKERNELAPI PVOID MmLockPagableDataSection( IN PVOID AddressWithinSection ); NTKERNELAPI VOID MmResetDriverPaging ( IN PVOID AddressWithinSection ); NTKERNELAPI PVOID MmPageEntireDriver ( IN PVOID AddressWithinSection ); NTKERNELAPI VOID MmUnlockPagableImageSection( IN PVOID ImageSectionHandle ); //++ // // VOID // MmInitializeMdl ( // IN PMDL MemoryDescriptorList, // IN PVOID BaseVa, // IN SIZE_T Length // ) // // Routine Description: // // This routine initializes the header of a Memory Descriptor List (MDL). // // Arguments: // // MemoryDescriptorList - Pointer to the MDL to initialize. // // BaseVa - Base virtual address mapped by the MDL. // // Length - Length, in bytes, of the buffer mapped by the MDL. // // Return Value: // // None. // //-- #define MmInitializeMdl(MemoryDescriptorList, BaseVa, Length) { \ (MemoryDescriptorList)->Next = (PMDL) NULL; \ (MemoryDescriptorList)->Size = (CSHORT)(sizeof(MDL) + \ (sizeof(PFN_NUMBER) * ADDRESS_AND_SIZE_TO_SPAN_PAGES((BaseVa), (Length)))); \ (MemoryDescriptorList)->MdlFlags = 0; \ (MemoryDescriptorList)->StartVa = (PVOID) PAGE_ALIGN((BaseVa)); \ (MemoryDescriptorList)->ByteOffset = BYTE_OFFSET((BaseVa)); \ (MemoryDescriptorList)->ByteCount = (ULONG)(Length); \ } //++ // // PVOID // MmGetSystemAddressForMdlSafe ( // IN PMDL MDL, // IN MM_PAGE_PRIORITY PRIORITY // ) // // Routine Description: // // This routine returns the mapped address of an MDL. If the // Mdl is not already mapped or a system address, it is mapped. // // Arguments: // // MemoryDescriptorList - Pointer to the MDL to map. // // Priority - Supplies an indication as to how important it is that this // request succeed under low available PTE conditions. // // Return Value: // // Returns the base address where the pages are mapped. The base address // has the same offset as the virtual address in the MDL. // // Unlike MmGetSystemAddressForMdl, Safe guarantees that it will always // return NULL on failure instead of bugchecking the system. // // This macro is not usable by WDM 1.0 drivers as 1.0 did not include // MmMapLockedPagesSpecifyCache. The solution for WDM 1.0 drivers is to // provide synchronization and set/reset the MDL_MAPPING_CAN_FAIL bit. // //-- #define MmGetSystemAddressForMdlSafe(MDL, PRIORITY) \ (((MDL)->MdlFlags & (MDL_MAPPED_TO_SYSTEM_VA | \ MDL_SOURCE_IS_NONPAGED_POOL)) ? \ ((MDL)->MappedSystemVa) : \ (MmMapLockedPagesSpecifyCache((MDL), \ KernelMode, \ MmCached, \ NULL, \ FALSE, \ (PRIORITY)))) //++ // // PVOID // MmGetSystemAddressForMdl ( // IN PMDL MDL // ) // // Routine Description: // // This routine returns the mapped address of an MDL, if the // Mdl is not already mapped or a system address, it is mapped. // // Arguments: // // MemoryDescriptorList - Pointer to the MDL to map. // // Return Value: // // Returns the base address where the pages are mapped. The base address // has the same offset as the virtual address in the MDL. // //-- //#define MmGetSystemAddressForMdl(MDL) // (((MDL)->MdlFlags & (MDL_MAPPED_TO_SYSTEM_VA)) ? // ((MDL)->MappedSystemVa) : // ((((MDL)->MdlFlags & (MDL_SOURCE_IS_NONPAGED_POOL)) ? // ((PVOID)((ULONG)(MDL)->StartVa | (MDL)->ByteOffset)) : // (MmMapLockedPages((MDL),KernelMode))))) #if PRAGMA_DEPRECATED_DDK #pragma deprecated(MmGetSystemAddressForMdl) // Use MmGetSystemAddressForMdlSafe #endif #define MmGetSystemAddressForMdl(MDL) \ (((MDL)->MdlFlags & (MDL_MAPPED_TO_SYSTEM_VA | \ MDL_SOURCE_IS_NONPAGED_POOL)) ? \ ((MDL)->MappedSystemVa) : \ (MmMapLockedPages((MDL),KernelMode))) //++ // // VOID // MmPrepareMdlForReuse ( // IN PMDL MDL // ) // // Routine Description: // // This routine will take all of the steps necessary to allow an MDL to be // re-used. // // Arguments: // // MemoryDescriptorList - Pointer to the MDL that will be re-used. // // Return Value: // // None. // //-- #define MmPrepareMdlForReuse(MDL) \ if (((MDL)->MdlFlags & MDL_PARTIAL_HAS_BEEN_MAPPED) != 0) { \ ASSERT(((MDL)->MdlFlags & MDL_PARTIAL) != 0); \ MmUnmapLockedPages( (MDL)->MappedSystemVa, (MDL) ); \ } else if (((MDL)->MdlFlags & MDL_PARTIAL) == 0) { \ ASSERT(((MDL)->MdlFlags & MDL_MAPPED_TO_SYSTEM_VA) == 0); \ } typedef NTSTATUS (*PMM_DLL_INITIALIZE)( IN PUNICODE_STRING RegistryPath ); typedef NTSTATUS (*PMM_DLL_UNLOAD)( VOID ); // // Define an empty typedef for the _DRIVER_OBJECT structure so it may be // referenced by function types before it is actually defined. // struct _DRIVER_OBJECT; NTKERNELAPI LOGICAL MmIsDriverVerifying ( IN struct _DRIVER_OBJECT *DriverObject ); // // Security operation codes // typedef enum _SECURITY_OPERATION_CODE { SetSecurityDescriptor, QuerySecurityDescriptor, DeleteSecurityDescriptor, AssignSecurityDescriptor } SECURITY_OPERATION_CODE, *PSECURITY_OPERATION_CODE; // // Data structure used to capture subject security context // for access validations and auditing. // // THE FIELDS OF THIS DATA STRUCTURE SHOULD BE CONSIDERED OPAQUE // BY ALL EXCEPT THE SECURITY ROUTINES. // typedef struct _SECURITY_SUBJECT_CONTEXT { PACCESS_TOKEN ClientToken; SECURITY_IMPERSONATION_LEVEL ImpersonationLevel; PACCESS_TOKEN PrimaryToken; PVOID ProcessAuditId; } SECURITY_SUBJECT_CONTEXT, *PSECURITY_SUBJECT_CONTEXT; /////////////////////////////////////////////////////////////////////////////// // // // ACCESS_STATE and related structures // // // /////////////////////////////////////////////////////////////////////////////// // // Initial Privilege Set - Room for three privileges, which should // be enough for most applications. This structure exists so that // it can be imbedded in an ACCESS_STATE structure. Use PRIVILEGE_SET // for all other references to Privilege sets. // #define INITIAL_PRIVILEGE_COUNT 3 typedef struct _INITIAL_PRIVILEGE_SET { ULONG PrivilegeCount; ULONG Control; LUID_AND_ATTRIBUTES Privilege[INITIAL_PRIVILEGE_COUNT]; } INITIAL_PRIVILEGE_SET, * PINITIAL_PRIVILEGE_SET; // // Combine the information that describes the state // of an access-in-progress into a single structure // typedef struct _ACCESS_STATE { LUID OperationID; BOOLEAN SecurityEvaluated; BOOLEAN GenerateAudit; BOOLEAN GenerateOnClose; BOOLEAN PrivilegesAllocated; ULONG Flags; ACCESS_MASK RemainingDesiredAccess; ACCESS_MASK PreviouslyGrantedAccess; ACCESS_MASK OriginalDesiredAccess; SECURITY_SUBJECT_CONTEXT SubjectSecurityContext; PSECURITY_DESCRIPTOR SecurityDescriptor; PVOID AuxData; union { INITIAL_PRIVILEGE_SET InitialPrivilegeSet; PRIVILEGE_SET PrivilegeSet; } Privileges; BOOLEAN AuditPrivileges; UNICODE_STRING ObjectName; UNICODE_STRING ObjectTypeName; } ACCESS_STATE, *PACCESS_STATE; NTKERNELAPI NTSTATUS SeAssignSecurity ( IN PSECURITY_DESCRIPTOR ParentDescriptor OPTIONAL, IN PSECURITY_DESCRIPTOR ExplicitDescriptor, OUT PSECURITY_DESCRIPTOR *NewDescriptor, IN BOOLEAN IsDirectoryObject, IN PSECURITY_SUBJECT_CONTEXT SubjectContext, IN PGENERIC_MAPPING GenericMapping, IN POOL_TYPE PoolType ); NTKERNELAPI NTSTATUS SeAssignSecurityEx ( IN PSECURITY_DESCRIPTOR ParentDescriptor OPTIONAL, IN PSECURITY_DESCRIPTOR ExplicitDescriptor OPTIONAL, OUT PSECURITY_DESCRIPTOR *NewDescriptor, IN GUID *ObjectType OPTIONAL, IN BOOLEAN IsDirectoryObject, IN ULONG AutoInheritFlags, IN PSECURITY_SUBJECT_CONTEXT SubjectContext, IN PGENERIC_MAPPING GenericMapping, IN POOL_TYPE PoolType ); NTKERNELAPI NTSTATUS SeDeassignSecurity ( IN OUT PSECURITY_DESCRIPTOR *SecurityDescriptor ); NTKERNELAPI BOOLEAN SeAccessCheck ( IN PSECURITY_DESCRIPTOR SecurityDescriptor, IN PSECURITY_SUBJECT_CONTEXT SubjectSecurityContext, IN BOOLEAN SubjectContextLocked, IN ACCESS_MASK DesiredAccess, IN ACCESS_MASK PreviouslyGrantedAccess, OUT PPRIVILEGE_SET *Privileges OPTIONAL, IN PGENERIC_MAPPING GenericMapping, IN KPROCESSOR_MODE AccessMode, OUT PACCESS_MASK GrantedAccess, OUT PNTSTATUS AccessStatus ); #ifdef SE_NTFS_WORLD_CACHE VOID SeGetWorldRights ( IN PSECURITY_DESCRIPTOR SecurityDescriptor, IN PGENERIC_MAPPING GenericMapping, OUT PACCESS_MASK GrantedAccess ); #endif NTKERNELAPI BOOLEAN SeValidSecurityDescriptor( IN ULONG Length, IN PSECURITY_DESCRIPTOR SecurityDescriptor ); // // System Thread and Process Creation and Termination // NTKERNELAPI NTSTATUS PsCreateSystemThread( OUT PHANDLE ThreadHandle, IN ULONG DesiredAccess, IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL, IN HANDLE ProcessHandle OPTIONAL, OUT PCLIENT_ID ClientId OPTIONAL, IN PKSTART_ROUTINE StartRoutine, IN PVOID StartContext ); NTKERNELAPI NTSTATUS PsTerminateSystemThread( IN NTSTATUS ExitStatus ); // // Define I/O system data structure type codes. Each major data structure in // the I/O system has a type code The type field in each structure is at the // same offset. The following values can be used to determine which type of // data structure a pointer refers to. // #define IO_TYPE_ADAPTER 0x00000001 #define IO_TYPE_CONTROLLER 0x00000002 #define IO_TYPE_DEVICE 0x00000003 #define IO_TYPE_DRIVER 0x00000004 #define IO_TYPE_FILE 0x00000005 #define IO_TYPE_IRP 0x00000006 #define IO_TYPE_MASTER_ADAPTER 0x00000007 #define IO_TYPE_OPEN_PACKET 0x00000008 #define IO_TYPE_TIMER 0x00000009 #define IO_TYPE_VPB 0x0000000a #define IO_TYPE_ERROR_LOG 0x0000000b #define IO_TYPE_ERROR_MESSAGE 0x0000000c #define IO_TYPE_DEVICE_OBJECT_EXTENSION 0x0000000d // // Define the major function codes for IRPs. // #define IRP_MJ_CREATE 0x00 #define IRP_MJ_CREATE_NAMED_PIPE 0x01 #define IRP_MJ_CLOSE 0x02 #define IRP_MJ_READ 0x03 #define IRP_MJ_WRITE 0x04 #define IRP_MJ_QUERY_INFORMATION 0x05 #define IRP_MJ_SET_INFORMATION 0x06 #define IRP_MJ_QUERY_EA 0x07 #define IRP_MJ_SET_EA 0x08 #define IRP_MJ_FLUSH_BUFFERS 0x09 #define IRP_MJ_QUERY_VOLUME_INFORMATION 0x0a #define IRP_MJ_SET_VOLUME_INFORMATION 0x0b #define IRP_MJ_DIRECTORY_CONTROL 0x0c #define IRP_MJ_FILE_SYSTEM_CONTROL 0x0d #define IRP_MJ_DEVICE_CONTROL 0x0e #define IRP_MJ_INTERNAL_DEVICE_CONTROL 0x0f #define IRP_MJ_SHUTDOWN 0x10 #define IRP_MJ_LOCK_CONTROL 0x11 #define IRP_MJ_CLEANUP 0x12 #define IRP_MJ_CREATE_MAILSLOT 0x13 #define IRP_MJ_QUERY_SECURITY 0x14 #define IRP_MJ_SET_SECURITY 0x15 #define IRP_MJ_POWER 0x16 #define IRP_MJ_SYSTEM_CONTROL 0x17 #define IRP_MJ_DEVICE_CHANGE 0x18 #define IRP_MJ_QUERY_QUOTA 0x19 #define IRP_MJ_SET_QUOTA 0x1a #define IRP_MJ_PNP 0x1b #define IRP_MJ_PNP_POWER IRP_MJ_PNP // Obsolete.... #define IRP_MJ_MAXIMUM_FUNCTION 0x1b // // Make the Scsi major code the same as internal device control. // #define IRP_MJ_SCSI IRP_MJ_INTERNAL_DEVICE_CONTROL // // Define the minor function codes for IRPs. The lower 128 codes, from 0x00 to // 0x7f are reserved to Microsoft. The upper 128 codes, from 0x80 to 0xff, are // reserved to customers of Microsoft. // // // Device Control Request minor function codes for SCSI support. Note that // user requests are assumed to be zero. // #define IRP_MN_SCSI_CLASS 0x01 // // PNP minor function codes. // #define IRP_MN_START_DEVICE 0x00 #define IRP_MN_QUERY_REMOVE_DEVICE 0x01 #define IRP_MN_REMOVE_DEVICE 0x02 #define IRP_MN_CANCEL_REMOVE_DEVICE 0x03 #define IRP_MN_STOP_DEVICE 0x04 #define IRP_MN_QUERY_STOP_DEVICE 0x05 #define IRP_MN_CANCEL_STOP_DEVICE 0x06 #define IRP_MN_QUERY_DEVICE_RELATIONS 0x07 #define IRP_MN_QUERY_INTERFACE 0x08 #define IRP_MN_QUERY_CAPABILITIES 0x09 #define IRP_MN_QUERY_RESOURCES 0x0A #define IRP_MN_QUERY_RESOURCE_REQUIREMENTS 0x0B #define IRP_MN_QUERY_DEVICE_TEXT 0x0C #define IRP_MN_FILTER_RESOURCE_REQUIREMENTS 0x0D #define IRP_MN_READ_CONFIG 0x0F #define IRP_MN_WRITE_CONFIG 0x10 #define IRP_MN_EJECT 0x11 #define IRP_MN_SET_LOCK 0x12 #define IRP_MN_QUERY_ID 0x13 #define IRP_MN_QUERY_PNP_DEVICE_STATE 0x14 #define IRP_MN_QUERY_BUS_INFORMATION 0x15 #define IRP_MN_DEVICE_USAGE_NOTIFICATION 0x16 #define IRP_MN_SURPRISE_REMOVAL 0x17 // // POWER minor function codes // #define IRP_MN_WAIT_WAKE 0x00 #define IRP_MN_POWER_SEQUENCE 0x01 #define IRP_MN_SET_POWER 0x02 #define IRP_MN_QUERY_POWER 0x03 // // WMI minor function codes under IRP_MJ_SYSTEM_CONTROL // #define IRP_MN_QUERY_ALL_DATA 0x00 #define IRP_MN_QUERY_SINGLE_INSTANCE 0x01 #define IRP_MN_CHANGE_SINGLE_INSTANCE 0x02 #define IRP_MN_CHANGE_SINGLE_ITEM 0x03 #define IRP_MN_ENABLE_EVENTS 0x04 #define IRP_MN_DISABLE_EVENTS 0x05 #define IRP_MN_ENABLE_COLLECTION 0x06 #define IRP_MN_DISABLE_COLLECTION 0x07 #define IRP_MN_REGINFO 0x08 #define IRP_MN_EXECUTE_METHOD 0x09 // Minor code 0x0a is reserved #define IRP_MN_REGINFO_EX 0x0b // // Define option flags for IoCreateFile. Note that these values must be // exactly the same as the SL_... flags for a create function. Note also // that there are flags that may be passed to IoCreateFile that are not // placed in the stack location for the create IRP. These flags start in // the next byte. // #define IO_FORCE_ACCESS_CHECK 0x0001 #define IO_NO_PARAMETER_CHECKING 0x0100 // // Define Information fields for whether or not a REPARSE or a REMOUNT has // occurred in the file system. // #define IO_REPARSE 0x0 #define IO_REMOUNT 0x1 // // Define the objects that can be created by IoCreateFile. // typedef enum _CREATE_FILE_TYPE { CreateFileTypeNone, CreateFileTypeNamedPipe, CreateFileTypeMailslot } CREATE_FILE_TYPE; // // Define the structures used by the I/O system // // // Define empty typedefs for the _IRP, _DEVICE_OBJECT, and _DRIVER_OBJECT // structures so they may be referenced by function types before they are // actually defined. // struct _DEVICE_DESCRIPTION; struct _DEVICE_OBJECT; struct _DMA_ADAPTER; struct _DRIVER_OBJECT; struct _DRIVE_LAYOUT_INFORMATION; struct _DISK_PARTITION; struct _FILE_OBJECT; struct _IRP; struct _SCSI_REQUEST_BLOCK; struct _SCATTER_GATHER_LIST; // // Define the I/O version of a DPC routine. // typedef VOID (*PIO_DPC_ROUTINE) ( IN PKDPC Dpc, IN struct _DEVICE_OBJECT *DeviceObject, IN struct _IRP *Irp, IN PVOID Context ); // // Define driver timer routine type. // typedef VOID (*PIO_TIMER_ROUTINE) ( IN struct _DEVICE_OBJECT *DeviceObject, IN PVOID Context ); // // Define driver initialization routine type. // typedef NTSTATUS (*PDRIVER_INITIALIZE) ( IN struct _DRIVER_OBJECT *DriverObject, IN PUNICODE_STRING RegistryPath ); // // Define driver cancel routine type. // typedef VOID (*PDRIVER_CANCEL) ( IN struct _DEVICE_OBJECT *DeviceObject, IN struct _IRP *Irp ); // // Define driver dispatch routine type. // typedef NTSTATUS (*PDRIVER_DISPATCH) ( IN struct _DEVICE_OBJECT *DeviceObject, IN struct _IRP *Irp ); // // Define driver start I/O routine type. // typedef VOID (*PDRIVER_STARTIO) ( IN struct _DEVICE_OBJECT *DeviceObject, IN struct _IRP *Irp ); // // Define driver unload routine type. // typedef VOID (*PDRIVER_UNLOAD) ( IN struct _DRIVER_OBJECT *DriverObject ); // // Define driver AddDevice routine type. // typedef NTSTATUS (*PDRIVER_ADD_DEVICE) ( IN struct _DRIVER_OBJECT *DriverObject, IN struct _DEVICE_OBJECT *PhysicalDeviceObject ); // // Define fast I/O procedure prototypes. // // Fast I/O read and write procedures. // typedef BOOLEAN (*PFAST_IO_CHECK_IF_POSSIBLE) ( IN struct _FILE_OBJECT *FileObject, IN PLARGE_INTEGER FileOffset, IN ULONG Length, IN BOOLEAN Wait, IN ULONG LockKey, IN BOOLEAN CheckForReadOperation, OUT PIO_STATUS_BLOCK IoStatus, IN struct _DEVICE_OBJECT *DeviceObject ); typedef BOOLEAN (*PFAST_IO_READ) ( IN struct _FILE_OBJECT *FileObject, IN PLARGE_INTEGER FileOffset, IN ULONG Length, IN BOOLEAN Wait, IN ULONG LockKey, OUT PVOID Buffer, OUT PIO_STATUS_BLOCK IoStatus, IN struct _DEVICE_OBJECT *DeviceObject ); typedef BOOLEAN (*PFAST_IO_WRITE) ( IN struct _FILE_OBJECT *FileObject, IN PLARGE_INTEGER FileOffset, IN ULONG Length, IN BOOLEAN Wait, IN ULONG LockKey, IN PVOID Buffer, OUT PIO_STATUS_BLOCK IoStatus, IN struct _DEVICE_OBJECT *DeviceObject ); // // Fast I/O query basic and standard information procedures. // typedef BOOLEAN (*PFAST_IO_QUERY_BASIC_INFO) ( IN struct _FILE_OBJECT *FileObject, IN BOOLEAN Wait, OUT PFILE_BASIC_INFORMATION Buffer, OUT PIO_STATUS_BLOCK IoStatus, IN struct _DEVICE_OBJECT *DeviceObject ); typedef BOOLEAN (*PFAST_IO_QUERY_STANDARD_INFO) ( IN struct _FILE_OBJECT *FileObject, IN BOOLEAN Wait, OUT PFILE_STANDARD_INFORMATION Buffer, OUT PIO_STATUS_BLOCK IoStatus, IN struct _DEVICE_OBJECT *DeviceObject ); // // Fast I/O lock and unlock procedures. // typedef BOOLEAN (*PFAST_IO_LOCK) ( IN struct _FILE_OBJECT *FileObject, IN PLARGE_INTEGER FileOffset, IN PLARGE_INTEGER Length, PEPROCESS ProcessId, ULONG Key, BOOLEAN FailImmediately, BOOLEAN ExclusiveLock, OUT PIO_STATUS_BLOCK IoStatus, IN struct _DEVICE_OBJECT *DeviceObject ); typedef BOOLEAN (*PFAST_IO_UNLOCK_SINGLE) ( IN struct _FILE_OBJECT *FileObject, IN PLARGE_INTEGER FileOffset, IN PLARGE_INTEGER Length, PEPROCESS ProcessId, ULONG Key, OUT PIO_STATUS_BLOCK IoStatus, IN struct _DEVICE_OBJECT *DeviceObject ); typedef BOOLEAN (*PFAST_IO_UNLOCK_ALL) ( IN struct _FILE_OBJECT *FileObject, PEPROCESS ProcessId, OUT PIO_STATUS_BLOCK IoStatus, IN struct _DEVICE_OBJECT *DeviceObject ); typedef BOOLEAN (*PFAST_IO_UNLOCK_ALL_BY_KEY) ( IN struct _FILE_OBJECT *FileObject, PVOID ProcessId, ULONG Key, OUT PIO_STATUS_BLOCK IoStatus, IN struct _DEVICE_OBJECT *DeviceObject ); // // Fast I/O device control procedure. // typedef BOOLEAN (*PFAST_IO_DEVICE_CONTROL) ( IN struct _FILE_OBJECT *FileObject, IN BOOLEAN Wait, IN PVOID InputBuffer OPTIONAL, IN ULONG InputBufferLength, OUT PVOID OutputBuffer OPTIONAL, IN ULONG OutputBufferLength, IN ULONG IoControlCode, OUT PIO_STATUS_BLOCK IoStatus, IN struct _DEVICE_OBJECT *DeviceObject ); // // Define callbacks for NtCreateSection to synchronize correctly with // the file system. It pre-acquires the resources that will be needed // when calling to query and set file/allocation size in the file system. // typedef VOID (*PFAST_IO_ACQUIRE_FILE) ( IN struct _FILE_OBJECT *FileObject ); typedef VOID (*PFAST_IO_RELEASE_FILE) ( IN struct _FILE_OBJECT *FileObject ); // // Define callback for drivers that have device objects attached to lower- // level drivers' device objects. This callback is made when the lower-level // driver is deleting its device object. // typedef VOID (*PFAST_IO_DETACH_DEVICE) ( IN struct _DEVICE_OBJECT *SourceDevice, IN struct _DEVICE_OBJECT *TargetDevice ); // // This structure is used by the server to quickly get the information needed // to service a server open call. It is takes what would be two fast io calls // one for basic information and the other for standard information and makes // it into one call. // typedef BOOLEAN (*PFAST_IO_QUERY_NETWORK_OPEN_INFO) ( IN struct _FILE_OBJECT *FileObject, IN BOOLEAN Wait, OUT struct _FILE_NETWORK_OPEN_INFORMATION *Buffer, OUT struct _IO_STATUS_BLOCK *IoStatus, IN struct _DEVICE_OBJECT *DeviceObject ); // // Define Mdl-based routines for the server to call // typedef BOOLEAN (*PFAST_IO_MDL_READ) ( IN struct _FILE_OBJECT *FileObject, IN PLARGE_INTEGER FileOffset, IN ULONG Length, IN ULONG LockKey, OUT PMDL *MdlChain, OUT PIO_STATUS_BLOCK IoStatus, IN struct _DEVICE_OBJECT *DeviceObject ); typedef BOOLEAN (*PFAST_IO_MDL_READ_COMPLETE) ( IN struct _FILE_OBJECT *FileObject, IN PMDL MdlChain, IN struct _DEVICE_OBJECT *DeviceObject ); typedef BOOLEAN (*PFAST_IO_PREPARE_MDL_WRITE) ( IN struct _FILE_OBJECT *FileObject, IN PLARGE_INTEGER FileOffset, IN ULONG Length, IN ULONG LockKey, OUT PMDL *MdlChain, OUT PIO_STATUS_BLOCK IoStatus, IN struct _DEVICE_OBJECT *DeviceObject ); typedef BOOLEAN (*PFAST_IO_MDL_WRITE_COMPLETE) ( IN struct _FILE_OBJECT *FileObject, IN PLARGE_INTEGER FileOffset, IN PMDL MdlChain, IN struct _DEVICE_OBJECT *DeviceObject ); // // If this routine is present, it will be called by FsRtl // to acquire the file for the mapped page writer. // typedef NTSTATUS (*PFAST_IO_ACQUIRE_FOR_MOD_WRITE) ( IN struct _FILE_OBJECT *FileObject, IN PLARGE_INTEGER EndingOffset, OUT struct _ERESOURCE **ResourceToRelease, IN struct _DEVICE_OBJECT *DeviceObject ); typedef NTSTATUS (*PFAST_IO_RELEASE_FOR_MOD_WRITE) ( IN struct _FILE_OBJECT *FileObject, IN struct _ERESOURCE *ResourceToRelease, IN struct _DEVICE_OBJECT *DeviceObject ); // // If this routine is present, it will be called by FsRtl // to acquire the file for the mapped page writer. // typedef NTSTATUS (*PFAST_IO_ACQUIRE_FOR_CCFLUSH) ( IN struct _FILE_OBJECT *FileObject, IN struct _DEVICE_OBJECT *DeviceObject ); typedef NTSTATUS (*PFAST_IO_RELEASE_FOR_CCFLUSH) ( IN struct _FILE_OBJECT *FileObject, IN struct _DEVICE_OBJECT *DeviceObject ); typedef BOOLEAN (*PFAST_IO_READ_COMPRESSED) ( IN struct _FILE_OBJECT *FileObject, IN PLARGE_INTEGER FileOffset, IN ULONG Length, IN ULONG LockKey, OUT PVOID Buffer, OUT PMDL *MdlChain, OUT PIO_STATUS_BLOCK IoStatus, OUT struct _COMPRESSED_DATA_INFO *CompressedDataInfo, IN ULONG CompressedDataInfoLength, IN struct _DEVICE_OBJECT *DeviceObject ); typedef BOOLEAN (*PFAST_IO_WRITE_COMPRESSED) ( IN struct _FILE_OBJECT *FileObject, IN PLARGE_INTEGER FileOffset, IN ULONG Length, IN ULONG LockKey, IN PVOID Buffer, OUT PMDL *MdlChain, OUT PIO_STATUS_BLOCK IoStatus, IN struct _COMPRESSED_DATA_INFO *CompressedDataInfo, IN ULONG CompressedDataInfoLength, IN struct _DEVICE_OBJECT *DeviceObject ); typedef BOOLEAN (*PFAST_IO_MDL_READ_COMPLETE_COMPRESSED) ( IN struct _FILE_OBJECT *FileObject, IN PMDL MdlChain, IN struct _DEVICE_OBJECT *DeviceObject ); typedef BOOLEAN (*PFAST_IO_MDL_WRITE_COMPLETE_COMPRESSED) ( IN struct _FILE_OBJECT *FileObject, IN PLARGE_INTEGER FileOffset, IN PMDL MdlChain, IN struct _DEVICE_OBJECT *DeviceObject ); typedef BOOLEAN (*PFAST_IO_QUERY_OPEN) ( IN struct _IRP *Irp, OUT PFILE_NETWORK_OPEN_INFORMATION NetworkInformation, IN struct _DEVICE_OBJECT *DeviceObject ); // // Define the structure to describe the Fast I/O dispatch routines. Any // additions made to this structure MUST be added monotonically to the end // of the structure, and fields CANNOT be removed from the middle. // typedef struct _FAST_IO_DISPATCH { ULONG SizeOfFastIoDispatch; PFAST_IO_CHECK_IF_POSSIBLE FastIoCheckIfPossible; PFAST_IO_READ FastIoRead; PFAST_IO_WRITE FastIoWrite; PFAST_IO_QUERY_BASIC_INFO FastIoQueryBasicInfo; PFAST_IO_QUERY_STANDARD_INFO FastIoQueryStandardInfo; PFAST_IO_LOCK FastIoLock; PFAST_IO_UNLOCK_SINGLE FastIoUnlockSingle; PFAST_IO_UNLOCK_ALL FastIoUnlockAll; PFAST_IO_UNLOCK_ALL_BY_KEY FastIoUnlockAllByKey; PFAST_IO_DEVICE_CONTROL FastIoDeviceControl; PFAST_IO_ACQUIRE_FILE AcquireFileForNtCreateSection; PFAST_IO_RELEASE_FILE ReleaseFileForNtCreateSection; PFAST_IO_DETACH_DEVICE FastIoDetachDevice; PFAST_IO_QUERY_NETWORK_OPEN_INFO FastIoQueryNetworkOpenInfo; PFAST_IO_ACQUIRE_FOR_MOD_WRITE AcquireForModWrite; PFAST_IO_MDL_READ MdlRead; PFAST_IO_MDL_READ_COMPLETE MdlReadComplete; PFAST_IO_PREPARE_MDL_WRITE PrepareMdlWrite; PFAST_IO_MDL_WRITE_COMPLETE MdlWriteComplete; PFAST_IO_READ_COMPRESSED FastIoReadCompressed; PFAST_IO_WRITE_COMPRESSED FastIoWriteCompressed; PFAST_IO_MDL_READ_COMPLETE_COMPRESSED MdlReadCompleteCompressed; PFAST_IO_MDL_WRITE_COMPLETE_COMPRESSED MdlWriteCompleteCompressed; PFAST_IO_QUERY_OPEN FastIoQueryOpen; PFAST_IO_RELEASE_FOR_MOD_WRITE ReleaseForModWrite; PFAST_IO_ACQUIRE_FOR_CCFLUSH AcquireForCcFlush; PFAST_IO_RELEASE_FOR_CCFLUSH ReleaseForCcFlush; } FAST_IO_DISPATCH, *PFAST_IO_DISPATCH; // // Define the actions that a driver execution routine may request of the // adapter/controller allocation routines upon return. // typedef enum _IO_ALLOCATION_ACTION { KeepObject = 1, DeallocateObject, DeallocateObjectKeepRegisters } IO_ALLOCATION_ACTION, *PIO_ALLOCATION_ACTION; // // Define device driver adapter/controller execution routine. // typedef IO_ALLOCATION_ACTION (*PDRIVER_CONTROL) ( IN struct _DEVICE_OBJECT *DeviceObject, IN struct _IRP *Irp, IN PVOID MapRegisterBase, IN PVOID Context ); // // Define the I/O system's security context type for use by file system's // when checking access to volumes, files, and directories. // typedef struct _IO_SECURITY_CONTEXT { PSECURITY_QUALITY_OF_SERVICE SecurityQos; PACCESS_STATE AccessState; ACCESS_MASK DesiredAccess; ULONG FullCreateOptions; } IO_SECURITY_CONTEXT, *PIO_SECURITY_CONTEXT; // // Define object type specific fields of various objects used by the I/O system // typedef struct _DMA_ADAPTER *PADAPTER_OBJECT; // // Define Wait Context Block (WCB) // typedef struct _WAIT_CONTEXT_BLOCK { KDEVICE_QUEUE_ENTRY WaitQueueEntry; PDRIVER_CONTROL DeviceRoutine; PVOID DeviceContext; ULONG NumberOfMapRegisters; PVOID DeviceObject; PVOID CurrentIrp; PKDPC BufferChainingDpc; } WAIT_CONTEXT_BLOCK, *PWAIT_CONTEXT_BLOCK; // // Define Device Object (DO) flags // #define DO_BUFFERED_IO 0x00000004 #define DO_EXCLUSIVE 0x00000008 #define DO_DIRECT_IO 0x00000010 #define DO_MAP_IO_BUFFER 0x00000020 #define DO_DEVICE_INITIALIZING 0x00000080 #define DO_SHUTDOWN_REGISTERED 0x00000800 #define DO_BUS_ENUMERATED_DEVICE 0x00001000 #define DO_POWER_PAGABLE 0x00002000 #define DO_POWER_INRUSH 0x00004000 // // Device Object structure definition // typedef struct DECLSPEC_ALIGN(MEMORY_ALLOCATION_ALIGNMENT) _DEVICE_OBJECT { CSHORT Type; USHORT Size; LONG ReferenceCount; struct _DRIVER_OBJECT *DriverObject; struct _DEVICE_OBJECT *NextDevice; struct _DEVICE_OBJECT *AttachedDevice; struct _IRP *CurrentIrp; PIO_TIMER Timer; ULONG Flags; // See above: DO_... ULONG Characteristics; // See ntioapi: FILE_... PVOID DoNotUse1; PVOID DeviceExtension; DEVICE_TYPE DeviceType; CCHAR StackSize; union { LIST_ENTRY ListEntry; WAIT_CONTEXT_BLOCK Wcb; } Queue; ULONG AlignmentRequirement; KDEVICE_QUEUE DeviceQueue; KDPC Dpc; // // The following field is for exclusive use by the filesystem to keep // track of the number of Fsp threads currently using the device // ULONG ActiveThreadCount; PSECURITY_DESCRIPTOR SecurityDescriptor; KEVENT DeviceLock; USHORT SectorSize; USHORT Spare1; struct _DEVOBJ_EXTENSION *DeviceObjectExtension; PVOID Reserved; } DEVICE_OBJECT; typedef struct _DEVICE_OBJECT *PDEVICE_OBJECT; struct _DEVICE_OBJECT_POWER_EXTENSION; typedef struct _DEVOBJ_EXTENSION { CSHORT Type; USHORT Size; // // Public part of the DeviceObjectExtension structure // PDEVICE_OBJECT DeviceObject; // owning device object } DEVOBJ_EXTENSION, *PDEVOBJ_EXTENSION; // // Define Driver Object (DRVO) flags // #define DRVO_UNLOAD_INVOKED 0x00000001 #define DRVO_LEGACY_DRIVER 0x00000002 #define DRVO_BUILTIN_DRIVER 0x00000004 // Driver objects for Hal, PnP Mgr typedef struct _DRIVER_EXTENSION { // // Back pointer to Driver Object // struct _DRIVER_OBJECT *DriverObject; // // The AddDevice entry point is called by the Plug & Play manager // to inform the driver when a new device instance arrives that this // driver must control. // PDRIVER_ADD_DEVICE AddDevice; // // The count field is used to count the number of times the driver has // had its registered reinitialization routine invoked. // ULONG Count; // // The service name field is used by the pnp manager to determine // where the driver related info is stored in the registry. // UNICODE_STRING ServiceKeyName; // // Note: any new shared fields get added here. // } DRIVER_EXTENSION, *PDRIVER_EXTENSION; typedef struct _DRIVER_OBJECT { CSHORT Type; CSHORT Size; // // The following links all of the devices created by a single driver // together on a list, and the Flags word provides an extensible flag // location for driver objects. // PDEVICE_OBJECT DeviceObject; ULONG Flags; // // The following section describes where the driver is loaded. The count // field is used to count the number of times the driver has had its // registered reinitialization routine invoked. // PVOID DriverStart; ULONG DriverSize; PVOID DriverSection; PDRIVER_EXTENSION DriverExtension; // // The driver name field is used by the error log thread // determine the name of the driver that an I/O request is/was bound. // UNICODE_STRING DriverName; // // The following section is for registry support. Thise is a pointer // to the path to the hardware information in the registry // PUNICODE_STRING HardwareDatabase; // // The following section contains the optional pointer to an array of // alternate entry points to a driver for "fast I/O" support. Fast I/O // is performed by invoking the driver routine directly with separate // parameters, rather than using the standard IRP call mechanism. Note // that these functions may only be used for synchronous I/O, and when // the file is cached. // PFAST_IO_DISPATCH FastIoDispatch; // // The following section describes the entry points to this particular // driver. Note that the major function dispatch table must be the last // field in the object so that it remains extensible. // PDRIVER_INITIALIZE DriverInit; PDRIVER_STARTIO DriverStartIo; PDRIVER_UNLOAD DriverUnload; PDRIVER_DISPATCH MajorFunction[IRP_MJ_MAXIMUM_FUNCTION + 1]; } DRIVER_OBJECT; typedef struct _DRIVER_OBJECT *PDRIVER_OBJECT; // // The following structure is pointed to by the SectionObject pointer field // of a file object, and is allocated by the various NT file systems. // typedef struct _SECTION_OBJECT_POINTERS { PVOID DataSectionObject; PVOID SharedCacheMap; PVOID ImageSectionObject; } SECTION_OBJECT_POINTERS; typedef SECTION_OBJECT_POINTERS *PSECTION_OBJECT_POINTERS; // // Define the format of a completion message. // typedef struct _IO_COMPLETION_CONTEXT { PVOID Port; PVOID Key; } IO_COMPLETION_CONTEXT, *PIO_COMPLETION_CONTEXT; // // Define File Object (FO) flags // #define FO_FILE_OPEN 0x00000001 #define FO_SYNCHRONOUS_IO 0x00000002 #define FO_ALERTABLE_IO 0x00000004 #define FO_NO_INTERMEDIATE_BUFFERING 0x00000008 #define FO_WRITE_THROUGH 0x00000010 #define FO_SEQUENTIAL_ONLY 0x00000020 #define FO_CACHE_SUPPORTED 0x00000040 #define FO_NAMED_PIPE 0x00000080 #define FO_STREAM_FILE 0x00000100 #define FO_MAILSLOT 0x00000200 #define FO_GENERATE_AUDIT_ON_CLOSE 0x00000400 #define FO_DIRECT_DEVICE_OPEN 0x00000800 #define FO_FILE_MODIFIED 0x00001000 #define FO_FILE_SIZE_CHANGED 0x00002000 #define FO_CLEANUP_COMPLETE 0x00004000 #define FO_TEMPORARY_FILE 0x00008000 #define FO_DELETE_ON_CLOSE 0x00010000 #define FO_OPENED_CASE_SENSITIVE 0x00020000 #define FO_HANDLE_CREATED 0x00040000 #define FO_FILE_FAST_IO_READ 0x00080000 #define FO_RANDOM_ACCESS 0x00100000 #define FO_FILE_OPEN_CANCELLED 0x00200000 #define FO_VOLUME_OPEN 0x00400000 #define FO_FILE_OBJECT_HAS_EXTENSION 0x00800000 #define FO_REMOTE_ORIGIN 0x01000000 typedef struct _FILE_OBJECT { CSHORT Type; CSHORT Size; PDEVICE_OBJECT DeviceObject; PVOID DoNotUse1; PVOID FsContext; PVOID FsContext2; PSECTION_OBJECT_POINTERS SectionObjectPointer; PVOID PrivateCacheMap; NTSTATUS FinalStatus; struct _FILE_OBJECT *RelatedFileObject; BOOLEAN LockOperation; BOOLEAN DeletePending; BOOLEAN ReadAccess; BOOLEAN WriteAccess; BOOLEAN DeleteAccess; BOOLEAN SharedRead; BOOLEAN SharedWrite; BOOLEAN SharedDelete; ULONG Flags; UNICODE_STRING FileName; LARGE_INTEGER CurrentByteOffset; ULONG Waiters; ULONG Busy; PVOID LastLock; KEVENT Lock; KEVENT Event; PIO_COMPLETION_CONTEXT CompletionContext; } FILE_OBJECT; typedef struct _FILE_OBJECT *PFILE_OBJECT; // // Define I/O Request Packet (IRP) flags // #define IRP_NOCACHE 0x00000001 #define IRP_PAGING_IO 0x00000002 #define IRP_MOUNT_COMPLETION 0x00000002 #define IRP_SYNCHRONOUS_API 0x00000004 #define IRP_ASSOCIATED_IRP 0x00000008 #define IRP_BUFFERED_IO 0x00000010 #define IRP_DEALLOCATE_BUFFER 0x00000020 #define IRP_INPUT_OPERATION 0x00000040 #define IRP_SYNCHRONOUS_PAGING_IO 0x00000040 #define IRP_CREATE_OPERATION 0x00000080 #define IRP_READ_OPERATION 0x00000100 #define IRP_WRITE_OPERATION 0x00000200 #define IRP_CLOSE_OPERATION 0x00000400 // // Define I/O request packet (IRP) alternate flags for allocation control. // #define IRP_QUOTA_CHARGED 0x01 #define IRP_ALLOCATED_MUST_SUCCEED 0x02 #define IRP_ALLOCATED_FIXED_SIZE 0x04 #define IRP_LOOKASIDE_ALLOCATION 0x08 // // I/O Request Packet (IRP) definition // typedef struct _IRP { CSHORT Type; USHORT Size; // // Define the common fields used to control the IRP. // // // Define a pointer to the Memory Descriptor List (MDL) for this I/O // request. This field is only used if the I/O is "direct I/O". // PMDL MdlAddress; // // Flags word - used to remember various flags. // ULONG Flags; // // The following union is used for one of three purposes: // // 1. This IRP is an associated IRP. The field is a pointer to a master // IRP. // // 2. This is the master IRP. The field is the count of the number of // IRPs which must complete (associated IRPs) before the master can // complete. // // 3. This operation is being buffered and the field is the address of // the system space buffer. // union { struct _IRP *MasterIrp; LONG IrpCount; PVOID SystemBuffer; } AssociatedIrp; // // Thread list entry - allows queueing the IRP to the thread pending I/O // request packet list. // LIST_ENTRY ThreadListEntry; // // I/O status - final status of operation. // IO_STATUS_BLOCK IoStatus; // // Requestor mode - mode of the original requestor of this operation. // KPROCESSOR_MODE RequestorMode; // // Pending returned - TRUE if pending was initially returned as the // status for this packet. // BOOLEAN PendingReturned; // // Stack state information. // CHAR StackCount; CHAR CurrentLocation; // // Cancel - packet has been canceled. // BOOLEAN Cancel; // // Cancel Irql - Irql at which the cancel spinlock was acquired. // KIRQL CancelIrql; // // ApcEnvironment - Used to save the APC environment at the time that the // packet was initialized. // CCHAR ApcEnvironment; // // Allocation control flags. // UCHAR AllocationFlags; // // User parameters. // PIO_STATUS_BLOCK UserIosb; PKEVENT UserEvent; union { struct { PIO_APC_ROUTINE UserApcRoutine; PVOID UserApcContext; } AsynchronousParameters; LARGE_INTEGER AllocationSize; } Overlay; // // CancelRoutine - Used to contain the address of a cancel routine supplied // by a device driver when the IRP is in a cancelable state. // PDRIVER_CANCEL CancelRoutine; // // Note that the UserBuffer parameter is outside of the stack so that I/O // completion can copy data back into the user's address space without // having to know exactly which service was being invoked. The length // of the copy is stored in the second half of the I/O status block. If // the UserBuffer field is NULL, then no copy is performed. // PVOID UserBuffer; // // Kernel structures // // The following section contains kernel structures which the IRP needs // in order to place various work information in kernel controller system // queues. Because the size and alignment cannot be controlled, they are // placed here at the end so they just hang off and do not affect the // alignment of other fields in the IRP. // union { struct { union { // // DeviceQueueEntry - The device queue entry field is used to // queue the IRP to the device driver device queue. // KDEVICE_QUEUE_ENTRY DeviceQueueEntry; struct { // // The following are available to the driver to use in // whatever manner is desired, while the driver owns the // packet. // PVOID DriverContext[4]; } ; } ; // // Thread - pointer to caller's Thread Control Block. // PETHREAD Thread; // // Auxiliary buffer - pointer to any auxiliary buffer that is // required to pass information to a driver that is not contained // in a normal buffer. // PCHAR AuxiliaryBuffer; // // The following unnamed structure must be exactly identical // to the unnamed structure used in the minipacket header used // for completion queue entries. // struct { // // List entry - used to queue the packet to completion queue, among // others. // LIST_ENTRY ListEntry; union { // // Current stack location - contains a pointer to the current // IO_STACK_LOCATION structure in the IRP stack. This field // should never be directly accessed by drivers. They should // use the standard functions. // struct _IO_STACK_LOCATION *CurrentStackLocation; // // Minipacket type. // ULONG PacketType; }; }; // // Original file object - pointer to the original file object // that was used to open the file. This field is owned by the // I/O system and should not be used by any other drivers. // PFILE_OBJECT OriginalFileObject; } Overlay; // // APC - This APC control block is used for the special kernel APC as // well as for the caller's APC, if one was specified in the original // argument list. If so, then the APC is reused for the normal APC for // whatever mode the caller was in and the "special" routine that is // invoked before the APC gets control simply deallocates the IRP. // KAPC Apc; // // CompletionKey - This is the key that is used to distinguish // individual I/O operations initiated on a single file handle. // PVOID CompletionKey; } Tail; } IRP, *PIRP; // // Define completion routine types for use in stack locations in an IRP // typedef NTSTATUS (*PIO_COMPLETION_ROUTINE) ( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp, IN PVOID Context ); // // Define stack location control flags // #define SL_PENDING_RETURNED 0x01 #define SL_INVOKE_ON_CANCEL 0x20 #define SL_INVOKE_ON_SUCCESS 0x40 #define SL_INVOKE_ON_ERROR 0x80 // // Define flags for various functions // // // Create / Create Named Pipe // // The following flags must exactly match those in the IoCreateFile call's // options. The case sensitive flag is added in later, by the parse routine, // and is not an actual option to open. Rather, it is part of the object // manager's attributes structure. // #define SL_FORCE_ACCESS_CHECK 0x01 #define SL_OPEN_PAGING_FILE 0x02 #define SL_OPEN_TARGET_DIRECTORY 0x04 #define SL_CASE_SENSITIVE 0x80 // // Read / Write // #define SL_KEY_SPECIFIED 0x01 #define SL_OVERRIDE_VERIFY_VOLUME 0x02 #define SL_WRITE_THROUGH 0x04 #define SL_FT_SEQUENTIAL_WRITE 0x08 // // Device I/O Control // // // Same SL_OVERRIDE_VERIFY_VOLUME as for read/write above. // #define SL_READ_ACCESS_GRANTED 0x01 #define SL_WRITE_ACCESS_GRANTED 0x04 // Gap for SL_OVERRIDE_VERIFY_VOLUME // // Lock // #define SL_FAIL_IMMEDIATELY 0x01 #define SL_EXCLUSIVE_LOCK 0x02 // // QueryDirectory / QueryEa / QueryQuota // #define SL_RESTART_SCAN 0x01 #define SL_RETURN_SINGLE_ENTRY 0x02 #define SL_INDEX_SPECIFIED 0x04 // // NotifyDirectory // #define SL_WATCH_TREE 0x01 // // FileSystemControl // // minor: mount/verify volume // #define SL_ALLOW_RAW_MOUNT 0x01 // // Define PNP/POWER types required by IRP_MJ_PNP/IRP_MJ_POWER. // typedef enum _DEVICE_RELATION_TYPE { BusRelations, EjectionRelations, PowerRelations, RemovalRelations, TargetDeviceRelation, SingleBusRelations } DEVICE_RELATION_TYPE, *PDEVICE_RELATION_TYPE; typedef struct _DEVICE_RELATIONS { ULONG Count; PDEVICE_OBJECT Objects[1]; // variable length } DEVICE_RELATIONS, *PDEVICE_RELATIONS; typedef enum _DEVICE_USAGE_NOTIFICATION_TYPE { DeviceUsageTypeUndefined, DeviceUsageTypePaging, DeviceUsageTypeHibernation, DeviceUsageTypeDumpFile } DEVICE_USAGE_NOTIFICATION_TYPE; // workaround overloaded definition (rpc generated headers all define INTERFACE // to match the class name). #undef INTERFACE typedef struct _INTERFACE { USHORT Size; USHORT Version; PVOID Context; PINTERFACE_REFERENCE InterfaceReference; PINTERFACE_DEREFERENCE InterfaceDereference; // interface specific entries go here } INTERFACE, *PINTERFACE; typedef struct _DEVICE_CAPABILITIES { USHORT Size; USHORT Version; // the version documented here is version 1 ULONG DeviceD1:1; ULONG DeviceD2:1; ULONG LockSupported:1; ULONG EjectSupported:1; // Ejectable in S0 ULONG Removable:1; ULONG DockDevice:1; ULONG UniqueID:1; ULONG SilentInstall:1; ULONG RawDeviceOK:1; ULONG SurpriseRemovalOK:1; ULONG WakeFromD0:1; ULONG WakeFromD1:1; ULONG WakeFromD2:1; ULONG WakeFromD3:1; ULONG HardwareDisabled:1; ULONG NonDynamic:1; ULONG WarmEjectSupported:1; ULONG NoDisplayInUI:1; ULONG Reserved:14; ULONG Address; ULONG UINumber; DEVICE_POWER_STATE DeviceState[POWER_SYSTEM_MAXIMUM]; SYSTEM_POWER_STATE SystemWake; DEVICE_POWER_STATE DeviceWake; ULONG D1Latency; ULONG D2Latency; ULONG D3Latency; } DEVICE_CAPABILITIES, *PDEVICE_CAPABILITIES; typedef struct _POWER_SEQUENCE { ULONG SequenceD1; ULONG SequenceD2; ULONG SequenceD3; } POWER_SEQUENCE, *PPOWER_SEQUENCE; typedef enum { BusQueryDeviceID = 0, // \ BusQueryHardwareIDs = 1, // Hardware ids BusQueryCompatibleIDs = 2, // compatible device ids BusQueryInstanceID = 3, // persistent id for this instance of the device BusQueryDeviceSerialNumber = 4 // serial number for this device } BUS_QUERY_ID_TYPE, *PBUS_QUERY_ID_TYPE; typedef ULONG PNP_DEVICE_STATE, *PPNP_DEVICE_STATE; #define PNP_DEVICE_DISABLED 0x00000001 #define PNP_DEVICE_DONT_DISPLAY_IN_UI 0x00000002 #define PNP_DEVICE_FAILED 0x00000004 #define PNP_DEVICE_REMOVED 0x00000008 #define PNP_DEVICE_RESOURCE_REQUIREMENTS_CHANGED 0x00000010 #define PNP_DEVICE_NOT_DISABLEABLE 0x00000020 typedef enum { DeviceTextDescription = 0, // DeviceDesc property DeviceTextLocationInformation = 1 // DeviceLocation property } DEVICE_TEXT_TYPE, *PDEVICE_TEXT_TYPE; // // Define I/O Request Packet (IRP) stack locations // #if !defined(_AMD64_) && !defined(_IA64_) #include "pshpack4.h" #endif #if defined(_WIN64) #define POINTER_ALIGNMENT DECLSPEC_ALIGN(8) #else #define POINTER_ALIGNMENT #endif typedef struct _IO_STACK_LOCATION { UCHAR MajorFunction; UCHAR MinorFunction; UCHAR Flags; UCHAR Control; // // The following user parameters are based on the service that is being // invoked. Drivers and file systems can determine which set to use based // on the above major and minor function codes. // union { // // System service parameters for: NtCreateFile // struct { PIO_SECURITY_CONTEXT SecurityContext; ULONG Options; USHORT POINTER_ALIGNMENT FileAttributes; USHORT ShareAccess; ULONG POINTER_ALIGNMENT EaLength; } Create; // // System service parameters for: NtReadFile // struct { ULONG Length; ULONG POINTER_ALIGNMENT Key; LARGE_INTEGER ByteOffset; } Read; // // System service parameters for: NtWriteFile // struct { ULONG Length; ULONG POINTER_ALIGNMENT Key; LARGE_INTEGER ByteOffset; } Write; // // System service parameters for: NtQueryInformationFile // struct { ULONG Length; FILE_INFORMATION_CLASS POINTER_ALIGNMENT FileInformationClass; } QueryFile; // // System service parameters for: NtSetInformationFile // struct { ULONG Length; FILE_INFORMATION_CLASS POINTER_ALIGNMENT FileInformationClass; PFILE_OBJECT FileObject; union { struct { BOOLEAN ReplaceIfExists; BOOLEAN AdvanceOnly; }; ULONG ClusterCount; HANDLE DeleteHandle; }; } SetFile; // // System service parameters for: NtQueryVolumeInformationFile // struct { ULONG Length; FS_INFORMATION_CLASS POINTER_ALIGNMENT FsInformationClass; } QueryVolume; // // System service parameters for: NtFlushBuffersFile // // No extra user-supplied parameters. // // // System service parameters for: NtDeviceIoControlFile // // Note that the user's output buffer is stored in the UserBuffer field // and the user's input buffer is stored in the SystemBuffer field. // struct { ULONG OutputBufferLength; ULONG POINTER_ALIGNMENT InputBufferLength; ULONG POINTER_ALIGNMENT IoControlCode; PVOID Type3InputBuffer; } DeviceIoControl; // // Non-system service parameters. // // Parameters for MountVolume // struct { PVOID DoNotUse1; PDEVICE_OBJECT DeviceObject; } MountVolume; // // Parameters for VerifyVolume // struct { PVOID DoNotUse1; PDEVICE_OBJECT DeviceObject; } VerifyVolume; // // Parameters for Scsi with internal device contorl. // struct { struct _SCSI_REQUEST_BLOCK *Srb; } Scsi; // // Parameters for IRP_MN_QUERY_DEVICE_RELATIONS // struct { DEVICE_RELATION_TYPE Type; } QueryDeviceRelations; // // Parameters for IRP_MN_QUERY_INTERFACE // struct { CONST GUID *InterfaceType; USHORT Size; USHORT Version; PINTERFACE Interface; PVOID InterfaceSpecificData; } QueryInterface; // // Parameters for IRP_MN_QUERY_CAPABILITIES // struct { PDEVICE_CAPABILITIES Capabilities; } DeviceCapabilities; // // Parameters for IRP_MN_FILTER_RESOURCE_REQUIREMENTS // struct { PIO_RESOURCE_REQUIREMENTS_LIST IoResourceRequirementList; } FilterResourceRequirements; // // Parameters for IRP_MN_READ_CONFIG and IRP_MN_WRITE_CONFIG // struct { ULONG WhichSpace; PVOID Buffer; ULONG Offset; ULONG POINTER_ALIGNMENT Length; } ReadWriteConfig; // // Parameters for IRP_MN_SET_LOCK // struct { BOOLEAN Lock; } SetLock; // // Parameters for IRP_MN_QUERY_ID // struct { BUS_QUERY_ID_TYPE IdType; } QueryId; // // Parameters for IRP_MN_QUERY_DEVICE_TEXT // struct { DEVICE_TEXT_TYPE DeviceTextType; LCID POINTER_ALIGNMENT LocaleId; } QueryDeviceText; // // Parameters for IRP_MN_DEVICE_USAGE_NOTIFICATION // struct { BOOLEAN InPath; BOOLEAN Reserved[3]; DEVICE_USAGE_NOTIFICATION_TYPE POINTER_ALIGNMENT Type; } UsageNotification; // // Parameters for IRP_MN_WAIT_WAKE // struct { SYSTEM_POWER_STATE PowerState; } WaitWake; // // Parameter for IRP_MN_POWER_SEQUENCE // struct { PPOWER_SEQUENCE PowerSequence; } PowerSequence; // // Parameters for IRP_MN_SET_POWER and IRP_MN_QUERY_POWER // struct { ULONG SystemContext; POWER_STATE_TYPE POINTER_ALIGNMENT Type; POWER_STATE POINTER_ALIGNMENT State; POWER_ACTION POINTER_ALIGNMENT ShutdownType; } Power; // // Parameters for StartDevice // struct { PCM_RESOURCE_LIST AllocatedResources; PCM_RESOURCE_LIST AllocatedResourcesTranslated; } StartDevice; // // Parameters for Cleanup // // No extra parameters supplied // // // WMI Irps // struct { ULONG_PTR ProviderId; PVOID DataPath; ULONG BufferSize; PVOID Buffer; } WMI; // // Others - driver-specific // struct { PVOID Argument1; PVOID Argument2; PVOID Argument3; PVOID Argument4; } Others; } Parameters; // // Save a pointer to this device driver's device object for this request // so it can be passed to the completion routine if needed. // PDEVICE_OBJECT DeviceObject; // // The following location contains a pointer to the file object for this // PFILE_OBJECT FileObject; // // The following routine is invoked depending on the flags in the above // flags field. // PIO_COMPLETION_ROUTINE CompletionRoutine; // // The following is used to store the address of the context parameter // that should be passed to the CompletionRoutine. // PVOID Context; } IO_STACK_LOCATION, *PIO_STACK_LOCATION; #if !defined(_AMD64_) && !defined(_IA64_) #include "poppack.h" #endif // // Define the share access structure used by file systems to determine // whether or not another accessor may open the file. // typedef struct _SHARE_ACCESS { ULONG OpenCount; ULONG Readers; ULONG Writers; ULONG Deleters; ULONG SharedRead; ULONG SharedWrite; ULONG SharedDelete; } SHARE_ACCESS, *PSHARE_ACCESS; // // Public I/O routine definitions // NTKERNELAPI VOID IoAcquireCancelSpinLock( OUT PKIRQL Irql ); NTKERNELAPI NTSTATUS IoAllocateDriverObjectExtension( IN PDRIVER_OBJECT DriverObject, IN PVOID ClientIdentificationAddress, IN ULONG DriverObjectExtensionSize, OUT PVOID *DriverObjectExtension ); NTKERNELAPI PVOID IoAllocateErrorLogEntry( IN PVOID IoObject, IN UCHAR EntrySize ); NTKERNELAPI PIRP IoAllocateIrp( IN CCHAR StackSize, IN BOOLEAN ChargeQuota ); NTKERNELAPI PMDL IoAllocateMdl( IN PVOID VirtualAddress, IN ULONG Length, IN BOOLEAN SecondaryBuffer, IN BOOLEAN ChargeQuota, IN OUT PIRP Irp OPTIONAL ); NTKERNELAPI NTSTATUS IoAttachDevice( IN PDEVICE_OBJECT SourceDevice, IN PUNICODE_STRING TargetDevice, OUT PDEVICE_OBJECT *AttachedDevice ); NTKERNELAPI PDEVICE_OBJECT IoAttachDeviceToDeviceStack( IN PDEVICE_OBJECT SourceDevice, IN PDEVICE_OBJECT TargetDevice ); NTKERNELAPI PIRP IoBuildAsynchronousFsdRequest( IN ULONG MajorFunction, IN PDEVICE_OBJECT DeviceObject, IN OUT PVOID Buffer OPTIONAL, IN ULONG Length OPTIONAL, IN PLARGE_INTEGER StartingOffset OPTIONAL, IN PIO_STATUS_BLOCK IoStatusBlock OPTIONAL ); NTKERNELAPI PIRP IoBuildDeviceIoControlRequest( IN ULONG IoControlCode, IN PDEVICE_OBJECT DeviceObject, IN PVOID InputBuffer OPTIONAL, IN ULONG InputBufferLength, OUT PVOID OutputBuffer OPTIONAL, IN ULONG OutputBufferLength, IN BOOLEAN InternalDeviceIoControl, IN PKEVENT Event, OUT PIO_STATUS_BLOCK IoStatusBlock ); NTKERNELAPI VOID IoBuildPartialMdl( IN PMDL SourceMdl, IN OUT PMDL TargetMdl, IN PVOID VirtualAddress, IN ULONG Length ); typedef struct _BOOTDISK_INFORMATION { LONGLONG BootPartitionOffset; LONGLONG SystemPartitionOffset; ULONG BootDeviceSignature; ULONG SystemDeviceSignature; } BOOTDISK_INFORMATION, *PBOOTDISK_INFORMATION; // // This structure should follow the previous structure field for field. // typedef struct _BOOTDISK_INFORMATION_EX { LONGLONG BootPartitionOffset; LONGLONG SystemPartitionOffset; ULONG BootDeviceSignature; ULONG SystemDeviceSignature; GUID BootDeviceGuid; GUID SystemDeviceGuid; BOOLEAN BootDeviceIsGpt; BOOLEAN SystemDeviceIsGpt; } BOOTDISK_INFORMATION_EX, *PBOOTDISK_INFORMATION_EX; NTKERNELAPI NTSTATUS IoGetBootDiskInformation( IN OUT PBOOTDISK_INFORMATION BootDiskInformation, IN ULONG Size ); NTKERNELAPI PIRP IoBuildSynchronousFsdRequest( IN ULONG MajorFunction, IN PDEVICE_OBJECT DeviceObject, IN OUT PVOID Buffer OPTIONAL, IN ULONG Length OPTIONAL, IN PLARGE_INTEGER StartingOffset OPTIONAL, IN PKEVENT Event, OUT PIO_STATUS_BLOCK IoStatusBlock ); NTKERNELAPI NTSTATUS FASTCALL IofCallDriver( IN PDEVICE_OBJECT DeviceObject, IN OUT PIRP Irp ); #define IoCallDriver(a,b) \ IofCallDriver(a,b) NTKERNELAPI BOOLEAN IoCancelIrp( IN PIRP Irp ); NTKERNELAPI NTSTATUS IoCheckShareAccess( IN ACCESS_MASK DesiredAccess, IN ULONG DesiredShareAccess, IN OUT PFILE_OBJECT FileObject, IN OUT PSHARE_ACCESS ShareAccess, IN BOOLEAN Update ); // // This value should be returned from completion routines to continue // completing the IRP upwards. Otherwise, STATUS_MORE_PROCESSING_REQUIRED // should be returned. // #define STATUS_CONTINUE_COMPLETION STATUS_SUCCESS // // Completion routines can also use this enumeration in place of status codes. // typedef enum _IO_COMPLETION_ROUTINE_RESULT { ContinueCompletion = STATUS_CONTINUE_COMPLETION, StopCompletion = STATUS_MORE_PROCESSING_REQUIRED } IO_COMPLETION_ROUTINE_RESULT, *PIO_COMPLETION_ROUTINE_RESULT; NTKERNELAPI VOID FASTCALL IofCompleteRequest( IN PIRP Irp, IN CCHAR PriorityBoost ); #define IoCompleteRequest(a,b) \ IofCompleteRequest(a,b) NTKERNELAPI NTSTATUS IoConnectInterrupt( OUT PKINTERRUPT *InterruptObject, IN PKSERVICE_ROUTINE ServiceRoutine, IN PVOID ServiceContext, IN PKSPIN_LOCK SpinLock OPTIONAL, IN ULONG Vector, IN KIRQL Irql, IN KIRQL SynchronizeIrql, IN KINTERRUPT_MODE InterruptMode, IN BOOLEAN ShareVector, IN KAFFINITY ProcessorEnableMask, IN BOOLEAN FloatingSave ); NTKERNELAPI NTSTATUS IoCreateDevice( IN PDRIVER_OBJECT DriverObject, IN ULONG DeviceExtensionSize, IN PUNICODE_STRING DeviceName OPTIONAL, IN DEVICE_TYPE DeviceType, IN ULONG DeviceCharacteristics, IN BOOLEAN Reserved, OUT PDEVICE_OBJECT *DeviceObject ); #define WDM_MAJORVERSION 0x01 #define WDM_MINORVERSION 0x20 NTKERNELAPI BOOLEAN IoIsWdmVersionAvailable( IN UCHAR MajorVersion, IN UCHAR MinorVersion ); NTKERNELAPI NTSTATUS IoCreateFile( OUT PHANDLE FileHandle, IN ACCESS_MASK DesiredAccess, IN POBJECT_ATTRIBUTES ObjectAttributes, OUT PIO_STATUS_BLOCK IoStatusBlock, IN PLARGE_INTEGER AllocationSize OPTIONAL, IN ULONG FileAttributes, IN ULONG ShareAccess, IN ULONG Disposition, IN ULONG CreateOptions, IN PVOID EaBuffer OPTIONAL, IN ULONG EaLength, IN CREATE_FILE_TYPE CreateFileType, IN PVOID ExtraCreateParameters OPTIONAL, IN ULONG Options ); NTKERNELAPI PKEVENT IoCreateNotificationEvent( IN PUNICODE_STRING EventName, OUT PHANDLE EventHandle ); NTKERNELAPI NTSTATUS IoCreateSymbolicLink( IN PUNICODE_STRING SymbolicLinkName, IN PUNICODE_STRING DeviceName ); NTKERNELAPI PKEVENT IoCreateSynchronizationEvent( IN PUNICODE_STRING EventName, OUT PHANDLE EventHandle ); NTKERNELAPI NTSTATUS IoCreateUnprotectedSymbolicLink( IN PUNICODE_STRING SymbolicLinkName, IN PUNICODE_STRING DeviceName ); NTKERNELAPI VOID IoDeleteDevice( IN PDEVICE_OBJECT DeviceObject ); NTKERNELAPI NTSTATUS IoDeleteSymbolicLink( IN PUNICODE_STRING SymbolicLinkName ); NTKERNELAPI VOID IoDetachDevice( IN OUT PDEVICE_OBJECT TargetDevice ); NTKERNELAPI VOID IoDisconnectInterrupt( IN PKINTERRUPT InterruptObject ); NTKERNELAPI VOID IoFreeIrp( IN PIRP Irp ); NTKERNELAPI VOID IoFreeMdl( IN PMDL Mdl ); NTKERNELAPI PDEVICE_OBJECT IoGetAttachedDeviceReference( IN PDEVICE_OBJECT DeviceObject ); //++ // // PIO_STACK_LOCATION // IoGetCurrentIrpStackLocation( // IN PIRP Irp // ) // // Routine Description: // // This routine is invoked to return a pointer to the current stack location // in an I/O Request Packet (IRP). // // Arguments: // // Irp - Pointer to the I/O Request Packet. // // Return Value: // // The function value is a pointer to the current stack location in the // packet. // //-- #define IoGetCurrentIrpStackLocation( Irp ) ( (Irp)->Tail.Overlay.CurrentStackLocation ) NTKERNELAPI PVOID IoGetDriverObjectExtension( IN PDRIVER_OBJECT DriverObject, IN PVOID ClientIdentificationAddress ); NTKERNELAPI PEPROCESS IoGetCurrentProcess( VOID ); NTKERNELAPI NTSTATUS IoGetDeviceObjectPointer( IN PUNICODE_STRING ObjectName, IN ACCESS_MASK DesiredAccess, OUT PFILE_OBJECT *FileObject, OUT PDEVICE_OBJECT *DeviceObject ); NTKERNELAPI struct _DMA_ADAPTER * IoGetDmaAdapter( IN PDEVICE_OBJECT PhysicalDeviceObject, IN struct _DEVICE_DESCRIPTION *DeviceDescription, IN OUT PULONG NumberOfMapRegisters ); NTKERNELAPI BOOLEAN IoForwardIrpSynchronously( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ); #define IoForwardAndCatchIrp IoForwardIrpSynchronously //++ // // ULONG // IoGetFunctionCodeFromCtlCode( // IN ULONG ControlCode // ) // // Routine Description: // // This routine extracts the function code from IOCTL and FSCTL function // control codes. // This routine should only be used by kernel mode code. // // Arguments: // // ControlCode - A function control code (IOCTL or FSCTL) from which the // function code must be extracted. // // Return Value: // // The extracted function code. // // Note: // // The CTL_CODE macro, used to create IOCTL and FSCTL function control // codes, is defined in ntioapi.h // //-- #define IoGetFunctionCodeFromCtlCode( ControlCode ) (\ ( ControlCode >> 2) & 0x00000FFF ) NTKERNELAPI PVOID IoGetInitialStack( VOID ); NTKERNELAPI VOID IoGetStackLimits ( OUT PULONG_PTR LowLimit, OUT PULONG_PTR HighLimit ); // // The following function is used to tell the caller how much stack is available // FORCEINLINE ULONG_PTR IoGetRemainingStackSize ( VOID ) { ULONG_PTR Top; ULONG_PTR Bottom; IoGetStackLimits( &Bottom, &Top ); return((ULONG_PTR)(&Top) - Bottom ); } //++ // // PIO_STACK_LOCATION // IoGetNextIrpStackLocation( // IN PIRP Irp // ) // // Routine Description: // // This routine is invoked to return a pointer to the next stack location // in an I/O Request Packet (IRP). // // Arguments: // // Irp - Pointer to the I/O Request Packet. // // Return Value: // // The function value is a pointer to the next stack location in the packet. // //-- #define IoGetNextIrpStackLocation( Irp ) (\ (Irp)->Tail.Overlay.CurrentStackLocation - 1 ) NTKERNELAPI PDEVICE_OBJECT IoGetRelatedDeviceObject( IN PFILE_OBJECT FileObject ); //++ // // VOID // IoInitializeDpcRequest( // IN PDEVICE_OBJECT DeviceObject, // IN PIO_DPC_ROUTINE DpcRoutine // ) // // Routine Description: // // This routine is invoked to initialize the DPC in a device object for a // device driver during its initialization routine. The DPC is used later // when the driver interrupt service routine requests that a DPC routine // be queued for later execution. // // Arguments: // // DeviceObject - Pointer to the device object that the request is for. // // DpcRoutine - Address of the driver's DPC routine to be executed when // the DPC is dequeued for processing. // // Return Value: // // None. // //-- #define IoInitializeDpcRequest( DeviceObject, DpcRoutine ) (\ KeInitializeDpc( &(DeviceObject)->Dpc, \ (PKDEFERRED_ROUTINE) (DpcRoutine), \ (DeviceObject) ) ) NTKERNELAPI VOID IoInitializeIrp( IN OUT PIRP Irp, IN USHORT PacketSize, IN CCHAR StackSize ); NTKERNELAPI NTSTATUS IoInitializeTimer( IN PDEVICE_OBJECT DeviceObject, IN PIO_TIMER_ROUTINE TimerRoutine, IN PVOID Context ); NTKERNELAPI VOID IoReuseIrp( IN OUT PIRP Irp, IN NTSTATUS Iostatus ); //++ // // BOOLEAN // IoIsErrorUserInduced( // IN NTSTATUS Status // ) // // Routine Description: // // This routine is invoked to determine if an error was as a // result of user actions. Typically these error are related // to removable media and will result in a pop-up. // // Arguments: // // Status - The status value to check. // // Return Value: // The function value is TRUE if the user induced the error, // otherwise FALSE is returned. // //-- #define IoIsErrorUserInduced( Status ) ((BOOLEAN) \ (((Status) == STATUS_DEVICE_NOT_READY) || \ ((Status) == STATUS_IO_TIMEOUT) || \ ((Status) == STATUS_MEDIA_WRITE_PROTECTED) || \ ((Status) == STATUS_NO_MEDIA_IN_DEVICE) || \ ((Status) == STATUS_VERIFY_REQUIRED) || \ ((Status) == STATUS_UNRECOGNIZED_MEDIA) || \ ((Status) == STATUS_WRONG_VOLUME))) //++ // // VOID // IoMarkIrpPending( // IN OUT PIRP Irp // ) // // Routine Description: // // This routine marks the specified I/O Request Packet (IRP) to indicate // that an initial status of STATUS_PENDING was returned to the caller. // This is used so that I/O completion can determine whether or not to // fully complete the I/O operation requested by the packet. // // Arguments: // // Irp - Pointer to the I/O Request Packet to be marked pending. // // Return Value: // // None. // //-- #define IoMarkIrpPending( Irp ) ( \ IoGetCurrentIrpStackLocation( (Irp) )->Control |= SL_PENDING_RETURNED ) NTKERNELAPI VOID IoReleaseCancelSpinLock( IN KIRQL Irql ); //++ // // VOID // IoRequestDpc( // IN PDEVICE_OBJECT DeviceObject, // IN PIRP Irp, // IN PVOID Context // ) // // Routine Description: // // This routine is invoked by the device driver's interrupt service routine // to request that a DPC routine be queued for later execution at a lower // IRQL. // // Arguments: // // DeviceObject - Device object for which the request is being processed. // // Irp - Pointer to the current I/O Request Packet (IRP) for the specified // device. // // Context - Provides a general context parameter to be passed to the // DPC routine. // // Return Value: // // None. // //-- #define IoRequestDpc( DeviceObject, Irp, Context ) ( \ KeInsertQueueDpc( &(DeviceObject)->Dpc, (Irp), (Context) ) ) //++ // // PDRIVER_CANCEL // IoSetCancelRoutine( // IN PIRP Irp, // IN PDRIVER_CANCEL CancelRoutine // ) // // Routine Description: // // This routine is invoked to set the address of a cancel routine which // is to be invoked when an I/O packet has been canceled. // // Arguments: // // Irp - Pointer to the I/O Request Packet itself. // // CancelRoutine - Address of the cancel routine that is to be invoked // if the IRP is cancelled. // // Return Value: // // Previous value of CancelRoutine field in the IRP. // //-- #define IoSetCancelRoutine( Irp, NewCancelRoutine ) ( \ (PDRIVER_CANCEL) InterlockedExchangePointer( (PVOID *) &(Irp)->CancelRoutine, (PVOID) (NewCancelRoutine) ) ) //++ // // VOID // IoSetCompletionRoutine( // IN PIRP Irp, // IN PIO_COMPLETION_ROUTINE CompletionRoutine, // IN PVOID Context, // IN BOOLEAN InvokeOnSuccess, // IN BOOLEAN InvokeOnError, // IN BOOLEAN InvokeOnCancel // ) // // Routine Description: // // This routine is invoked to set the address of a completion routine which // is to be invoked when an I/O packet has been completed by a lower-level // driver. // // Arguments: // // Irp - Pointer to the I/O Request Packet itself. // // CompletionRoutine - Address of the completion routine that is to be // invoked once the next level driver completes the packet. // // Context - Specifies a context parameter to be passed to the completion // routine. // // InvokeOnSuccess - Specifies that the completion routine is invoked when the // operation is successfully completed. // // InvokeOnError - Specifies that the completion routine is invoked when the // operation completes with an error status. // // InvokeOnCancel - Specifies that the completion routine is invoked when the // operation is being canceled. // // Return Value: // // None. // //-- #define IoSetCompletionRoutine( Irp, Routine, CompletionContext, Success, Error, Cancel ) { \ PIO_STACK_LOCATION __irpSp; \ ASSERT( (Success) | (Error) | (Cancel) ? (Routine) != NULL : TRUE ); \ __irpSp = IoGetNextIrpStackLocation( (Irp) ); \ __irpSp->CompletionRoutine = (Routine); \ __irpSp->Context = (CompletionContext); \ __irpSp->Control = 0; \ if ((Success)) { __irpSp->Control = SL_INVOKE_ON_SUCCESS; } \ if ((Error)) { __irpSp->Control |= SL_INVOKE_ON_ERROR; } \ if ((Cancel)) { __irpSp->Control |= SL_INVOKE_ON_CANCEL; } } NTSTATUS IoSetCompletionRoutineEx( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp, IN PIO_COMPLETION_ROUTINE CompletionRoutine, IN PVOID Context, IN BOOLEAN InvokeOnSuccess, IN BOOLEAN InvokeOnError, IN BOOLEAN InvokeOnCancel ); //++ // // VOID // IoSetNextIrpStackLocation ( // IN OUT PIRP Irp // ) // // Routine Description: // // This routine is invoked to set the current IRP stack location to // the next stack location, i.e. it "pushes" the stack. // // Arguments: // // Irp - Pointer to the I/O Request Packet (IRP). // // Return Value: // // None. // //-- #define IoSetNextIrpStackLocation( Irp ) { \ (Irp)->CurrentLocation--; \ (Irp)->Tail.Overlay.CurrentStackLocation--; } //++ // // VOID // IoCopyCurrentIrpStackLocationToNext( // IN PIRP Irp // ) // // Routine Description: // // This routine is invoked to copy the IRP stack arguments and file // pointer from the current IrpStackLocation to the next // in an I/O Request Packet (IRP). // // If the caller wants to call IoCallDriver with a completion routine // but does not wish to change the arguments otherwise, // the caller first calls IoCopyCurrentIrpStackLocationToNext, // then IoSetCompletionRoutine, then IoCallDriver. // // Arguments: // // Irp - Pointer to the I/O Request Packet. // // Return Value: // // None. // //-- #define IoCopyCurrentIrpStackLocationToNext( Irp ) { \ PIO_STACK_LOCATION __irpSp; \ PIO_STACK_LOCATION __nextIrpSp; \ __irpSp = IoGetCurrentIrpStackLocation( (Irp) ); \ __nextIrpSp = IoGetNextIrpStackLocation( (Irp) ); \ RtlCopyMemory( __nextIrpSp, __irpSp, FIELD_OFFSET(IO_STACK_LOCATION, CompletionRoutine)); \ __nextIrpSp->Control = 0; } //++ // // VOID // IoSkipCurrentIrpStackLocation ( // IN PIRP Irp // ) // // Routine Description: // // This routine is invoked to increment the current stack location of // a given IRP. // // If the caller wishes to call the next driver in a stack, and does not // wish to change the arguments, nor does he wish to set a completion // routine, then the caller first calls IoSkipCurrentIrpStackLocation // and the calls IoCallDriver. // // Arguments: // // Irp - Pointer to the I/O Request Packet. // // Return Value: // // None // //-- #define IoSkipCurrentIrpStackLocation( Irp ) { \ (Irp)->CurrentLocation++; \ (Irp)->Tail.Overlay.CurrentStackLocation++; } NTKERNELAPI VOID IoSetShareAccess( IN ACCESS_MASK DesiredAccess, IN ULONG DesiredShareAccess, IN OUT PFILE_OBJECT FileObject, OUT PSHARE_ACCESS ShareAccess ); typedef struct _IO_REMOVE_LOCK_TRACKING_BLOCK * PIO_REMOVE_LOCK_TRACKING_BLOCK; typedef struct _IO_REMOVE_LOCK_COMMON_BLOCK { BOOLEAN Removed; BOOLEAN Reserved [3]; LONG IoCount; KEVENT RemoveEvent; } IO_REMOVE_LOCK_COMMON_BLOCK; typedef struct _IO_REMOVE_LOCK_DBG_BLOCK { LONG Signature; LONG HighWatermark; LONGLONG MaxLockedTicks; LONG AllocateTag; LIST_ENTRY LockList; KSPIN_LOCK Spin; LONG LowMemoryCount; ULONG Reserved1[4]; PVOID Reserved2; PIO_REMOVE_LOCK_TRACKING_BLOCK Blocks; } IO_REMOVE_LOCK_DBG_BLOCK; typedef struct _IO_REMOVE_LOCK { IO_REMOVE_LOCK_COMMON_BLOCK Common; #if DBG IO_REMOVE_LOCK_DBG_BLOCK Dbg; #endif } IO_REMOVE_LOCK, *PIO_REMOVE_LOCK; #define IoInitializeRemoveLock(Lock, Tag, Maxmin, HighWater) \ IoInitializeRemoveLockEx (Lock, Tag, Maxmin, HighWater, sizeof (IO_REMOVE_LOCK)) NTSYSAPI VOID NTAPI IoInitializeRemoveLockEx( IN PIO_REMOVE_LOCK Lock, IN ULONG AllocateTag, // Used only on checked kernels IN ULONG MaxLockedMinutes, // Used only on checked kernels IN ULONG HighWatermark, // Used only on checked kernels IN ULONG RemlockSize // are we checked or free ); // // Initialize a remove lock. // // Note: Allocation for remove locks needs to be within the device extension, // so that the memory for this structure stays allocated until such time as the // device object itself is deallocated. // #define IoAcquireRemoveLock(RemoveLock, Tag) \ IoAcquireRemoveLockEx(RemoveLock, Tag, __FILE__, __LINE__, sizeof (IO_REMOVE_LOCK)) NTSYSAPI NTSTATUS NTAPI IoAcquireRemoveLockEx ( IN PIO_REMOVE_LOCK RemoveLock, IN OPTIONAL PVOID Tag, // Optional IN PCSTR File, IN ULONG Line, IN ULONG RemlockSize // are we checked or free ); // // Routine Description: // // This routine is called to acquire the remove lock for a device object. // While the lock is held, the caller can assume that no pending pnp REMOVE // requests will be completed. // // The lock should be acquired immediately upon entering a dispatch routine. // It should also be acquired before creating any new reference to the // device object if there's a chance of releasing the reference before the // new one is done, in addition to references to the driver code itself, // which is removed from memory when the last device object goes. // // Arguments: // // RemoveLock - A pointer to an initialized REMOVE_LOCK structure. // // Tag - Used for tracking lock allocation and release. The same tag // specified when acquiring the lock must be used to release the lock. // Tags are only checked in checked versions of the driver. // // File - set to __FILE__ as the location in the code where the lock was taken. // // Line - set to __LINE__. // // Return Value: // // Returns whether or not the remove lock was obtained. // If successful the caller should continue with work calling // IoReleaseRemoveLock when finished. // // If not successful the lock was not obtained. The caller should abort the // work but not call IoReleaseRemoveLock. // #define IoReleaseRemoveLock(RemoveLock, Tag) \ IoReleaseRemoveLockEx(RemoveLock, Tag, sizeof (IO_REMOVE_LOCK)) NTSYSAPI VOID NTAPI IoReleaseRemoveLockEx( IN PIO_REMOVE_LOCK RemoveLock, IN PVOID Tag, // Optional IN ULONG RemlockSize // are we checked or free ); // // // Routine Description: // // This routine is called to release the remove lock on the device object. It // must be called when finished using a previously locked reference to the // device object. If an Tag was specified when acquiring the lock then the // same Tag must be specified when releasing the lock. // // When the lock count reduces to zero, this routine will signal the waiting // event to release the waiting thread deleting the device object protected // by this lock. // // Arguments: // // DeviceObject - the device object to lock // // Tag - The TAG (if any) specified when acquiring the lock. This is used // for lock tracking purposes // // Return Value: // // none // #define IoReleaseRemoveLockAndWait(RemoveLock, Tag) \ IoReleaseRemoveLockAndWaitEx(RemoveLock, Tag, sizeof (IO_REMOVE_LOCK)) NTSYSAPI VOID NTAPI IoReleaseRemoveLockAndWaitEx( IN PIO_REMOVE_LOCK RemoveLock, IN PVOID Tag, IN ULONG RemlockSize // are we checked or free ); // // // Routine Description: // // This routine is called when the client would like to delete the // remove-locked resource. This routine will block until all the remove // locks have released. // // This routine MUST be called after acquiring the lock. // // Arguments: // // RemoveLock // // Return Value: // // none // //++ // // USHORT // IoSizeOfIrp( // IN CCHAR StackSize // ) // // Routine Description: // // Determines the size of an IRP given the number of stack locations // the IRP will have. // // Arguments: // // StackSize - Number of stack locations for the IRP. // // Return Value: // // Size in bytes of the IRP. // //-- #define IoSizeOfIrp( StackSize ) \ ((USHORT) (sizeof( IRP ) + ((StackSize) * (sizeof( IO_STACK_LOCATION ))))) NTKERNELAPI VOID IoStartNextPacket( IN PDEVICE_OBJECT DeviceObject, IN BOOLEAN Cancelable ); NTKERNELAPI VOID IoStartNextPacketByKey( IN PDEVICE_OBJECT DeviceObject, IN BOOLEAN Cancelable, IN ULONG Key ); NTKERNELAPI VOID IoStartPacket( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp, IN PULONG Key OPTIONAL, IN PDRIVER_CANCEL CancelFunction OPTIONAL ); VOID IoSetStartIoAttributes( IN PDEVICE_OBJECT DeviceObject, IN BOOLEAN DeferredStartIo, IN BOOLEAN NonCancelable ); NTKERNELAPI VOID IoStartTimer( IN PDEVICE_OBJECT DeviceObject ); NTKERNELAPI VOID IoStopTimer( IN PDEVICE_OBJECT DeviceObject ); NTKERNELAPI VOID IoUnregisterShutdownNotification( IN PDEVICE_OBJECT DeviceObject ); NTKERNELAPI VOID IoWriteErrorLogEntry( IN PVOID ElEntry ); typedef struct _IO_WORKITEM *PIO_WORKITEM; typedef VOID (*PIO_WORKITEM_ROUTINE) ( IN PDEVICE_OBJECT DeviceObject, IN PVOID Context ); PIO_WORKITEM IoAllocateWorkItem( PDEVICE_OBJECT DeviceObject ); VOID IoFreeWorkItem( PIO_WORKITEM IoWorkItem ); VOID IoQueueWorkItem( IN PIO_WORKITEM IoWorkItem, IN PIO_WORKITEM_ROUTINE WorkerRoutine, IN WORK_QUEUE_TYPE QueueType, IN PVOID Context ); NTKERNELAPI NTSTATUS IoWMIRegistrationControl( IN PDEVICE_OBJECT DeviceObject, IN ULONG Action ); // // Action code for IoWMIRegistrationControl api // #define WMIREG_ACTION_REGISTER 1 #define WMIREG_ACTION_DEREGISTER 2 #define WMIREG_ACTION_REREGISTER 3 #define WMIREG_ACTION_UPDATE_GUIDS 4 #define WMIREG_ACTION_BLOCK_IRPS 5 // // Code passed in IRP_MN_REGINFO WMI irp // #define WMIREGISTER 0 #define WMIUPDATE 1 NTKERNELAPI NTSTATUS IoWMIAllocateInstanceIds( IN GUID *Guid, IN ULONG InstanceCount, OUT ULONG *FirstInstanceId ); NTKERNELAPI NTSTATUS IoWMISuggestInstanceName( IN PDEVICE_OBJECT PhysicalDeviceObject OPTIONAL, IN PUNICODE_STRING SymbolicLinkName OPTIONAL, IN BOOLEAN CombineNames, OUT PUNICODE_STRING SuggestedInstanceName ); NTKERNELAPI NTSTATUS IoWMIWriteEvent( IN PVOID WnodeEventItem ); #if defined(_WIN64) NTKERNELAPI ULONG IoWMIDeviceObjectToProviderId( PDEVICE_OBJECT DeviceObject ); #else #define IoWMIDeviceObjectToProviderId(DeviceObject) ((ULONG)(DeviceObject)) #endif NTKERNELAPI NTSTATUS IoWMIOpenBlock( IN GUID *DataBlockGuid, IN ULONG DesiredAccess, OUT PVOID *DataBlockObject ); NTKERNELAPI NTSTATUS IoWMIQueryAllData( IN PVOID DataBlockObject, IN OUT ULONG *InOutBufferSize, OUT /* non paged */ PVOID OutBuffer ); NTKERNELAPI NTSTATUS IoWMIQueryAllDataMultiple( IN PVOID *DataBlockObjectList, IN ULONG ObjectCount, IN OUT ULONG *InOutBufferSize, OUT /* non paged */ PVOID OutBuffer ); NTKERNELAPI NTSTATUS IoWMIQuerySingleInstance( IN PVOID DataBlockObject, IN PUNICODE_STRING InstanceName, IN OUT ULONG *InOutBufferSize, OUT /* non paged */ PVOID OutBuffer ); NTKERNELAPI NTSTATUS IoWMIQuerySingleInstanceMultiple( IN PVOID *DataBlockObjectList, IN PUNICODE_STRING InstanceNames, IN ULONG ObjectCount, IN OUT ULONG *InOutBufferSize, OUT /* non paged */ PVOID OutBuffer ); NTKERNELAPI NTSTATUS IoWMISetSingleInstance( IN PVOID DataBlockObject, IN PUNICODE_STRING InstanceName, IN ULONG Version, IN ULONG ValueBufferSize, IN PVOID ValueBuffer ); NTKERNELAPI NTSTATUS IoWMISetSingleItem( IN PVOID DataBlockObject, IN PUNICODE_STRING InstanceName, IN ULONG DataItemId, IN ULONG Version, IN ULONG ValueBufferSize, IN PVOID ValueBuffer ); NTKERNELAPI NTSTATUS IoWMIExecuteMethod( IN PVOID DataBlockObject, IN PUNICODE_STRING InstanceName, IN ULONG MethodId, IN ULONG InBufferSize, IN OUT PULONG OutBufferSize, IN OUT PUCHAR InOutBuffer ); typedef VOID (*WMI_NOTIFICATION_CALLBACK)( PVOID Wnode, PVOID Context ); NTKERNELAPI NTSTATUS IoWMISetNotificationCallback( IN PVOID Object, IN WMI_NOTIFICATION_CALLBACK Callback, IN PVOID Context ); NTKERNELAPI NTSTATUS IoWMIHandleToInstanceName( IN PVOID DataBlockObject, IN HANDLE FileHandle, OUT PUNICODE_STRING InstanceName ); NTKERNELAPI NTSTATUS IoWMIDeviceObjectToInstanceName( IN PVOID DataBlockObject, IN PDEVICE_OBJECT DeviceObject, OUT PUNICODE_STRING InstanceName ); #if defined(_WIN64) BOOLEAN IoIs32bitProcess( IN PIRP Irp ); #endif VOID IoFreeErrorLogEntry( PVOID ElEntry ); // Cancel SAFE API set start // // The following APIs are to help ease the pain of writing queue packages that // handle the cancellation race well. The idea of this set of APIs is to not // force a single queue data structure but allow the cancel logic to be hidden // from the drivers. A driver implements a queue and as part of its header // includes the IO_CSQ structure. In its initialization routine it calls // IoInitializeCsq. Then in the dispatch routine when the driver wants to // insert an IRP into the queue it calls IoCsqInsertIrp. When the driver wants // to remove something from the queue it calls IoCsqRemoveIrp. Note that Insert // can fail if the IRP was cancelled in the meantime. Remove can also fail if // the IRP was already cancelled. // // There are typically two modes where drivers queue IRPs. These two modes are // covered by the cancel safe queue API set. // // Mode 1: // One is where the driver queues the IRP and at some later // point in time dequeues an IRP and issues the IO request. // For this mode the driver should use IoCsqInsertIrp and IoCsqRemoveNextIrp. // The driver in this case is expected to pass NULL to the irp context // parameter in IoInsertIrp. // // Mode 2: // In this the driver queues theIRP, issues the IO request (like issuing a DMA // request or writing to a register) and when the IO request completes (either // using a DPC or timer) the driver dequeues the IRP and completes it. For this // mode the driver should use IoCsqInsertIrp and IoCsqRemoveIrp. In this case // the driver should allocate an IRP context and pass it in to IoCsqInsertIrp. // The cancel API code creates an association between the IRP and the context // and thus ensures that when the time comes to remove the IRP it can ascertain // correctly. // // Note that the cancel API set assumes that the field DriverContext[3] is // always available for use and that the driver does not use it. // // // Bookkeeping structure. This should be opaque to drivers. // Drivers typically include this as part of their queue headers. // Given a CSQ pointer the driver should be able to get its // queue header using CONTAINING_RECORD macro // typedef struct _IO_CSQ IO_CSQ, *PIO_CSQ; #define IO_TYPE_CSQ_IRP_CONTEXT 1 #define IO_TYPE_CSQ 2 // // IRP context structure. This structure is necessary if the driver is using // the second mode. // typedef struct _IO_CSQ_IRP_CONTEXT { ULONG Type; PIRP Irp; PIO_CSQ Csq; } IO_CSQ_IRP_CONTEXT, *PIO_CSQ_IRP_CONTEXT; // // Routines that insert/remove IRP // typedef VOID (*PIO_CSQ_INSERT_IRP)( IN struct _IO_CSQ *Csq, IN PIRP Irp ); typedef VOID (*PIO_CSQ_REMOVE_IRP)( IN PIO_CSQ Csq, IN PIRP Irp ); // // Retrieves next entry after Irp from the queue. // Returns NULL if there are no entries in the queue. // If Irp is NUL, returns the entry in the head of the queue. // This routine does not remove the IRP from the queue. // typedef PIRP (*PIO_CSQ_PEEK_NEXT_IRP)( IN PIO_CSQ Csq, IN PIRP Irp, IN PVOID PeekContext ); // // Lock routine that protects the cancel safe queue. // typedef VOID (*PIO_CSQ_ACQUIRE_LOCK)( IN PIO_CSQ Csq, OUT PKIRQL Irql ); typedef VOID (*PIO_CSQ_RELEASE_LOCK)( IN PIO_CSQ Csq, IN KIRQL Irql ); // // Completes the IRP with STATUS_CANCELLED. IRP is guaranteed to be valid // In most cases this routine just calls IoCompleteRequest(Irp, STATUS_CANCELLED); // typedef VOID (*PIO_CSQ_COMPLETE_CANCELED_IRP)( IN PIO_CSQ Csq, IN PIRP Irp ); // // Bookkeeping structure. This should be opaque to drivers. // Drivers typically include this as part of their queue headers. // Given a CSQ pointer the driver should be able to get its // queue header using CONTAINING_RECORD macro // typedef struct _IO_CSQ { ULONG Type; PIO_CSQ_INSERT_IRP CsqInsertIrp; PIO_CSQ_REMOVE_IRP CsqRemoveIrp; PIO_CSQ_PEEK_NEXT_IRP CsqPeekNextIrp; PIO_CSQ_ACQUIRE_LOCK CsqAcquireLock; PIO_CSQ_RELEASE_LOCK CsqReleaseLock; PIO_CSQ_COMPLETE_CANCELED_IRP CsqCompleteCanceledIrp; PVOID ReservePointer; // Future expansion } IO_CSQ, *PIO_CSQ; // // Initializes the cancel queue structure. // NTSTATUS IoCsqInitialize( IN PIO_CSQ Csq, IN PIO_CSQ_INSERT_IRP CsqInsertIrp, IN PIO_CSQ_REMOVE_IRP CsqRemoveIrp, IN PIO_CSQ_PEEK_NEXT_IRP CsqPeekNextIrp, IN PIO_CSQ_ACQUIRE_LOCK CsqAcquireLock, IN PIO_CSQ_RELEASE_LOCK CsqReleaseLock, IN PIO_CSQ_COMPLETE_CANCELED_IRP CsqCompleteCanceledIrp ); // // The caller calls this routine to insert the IRP and return STATUS_PENDING. // VOID IoCsqInsertIrp( IN PIO_CSQ Csq, IN PIRP Irp, IN PIO_CSQ_IRP_CONTEXT Context ); // // Returns an IRP if one can be found. NULL otherwise. // PIRP IoCsqRemoveNextIrp( IN PIO_CSQ Csq, IN PVOID PeekContext ); // // This routine is called from timeout or DPCs. // The context is presumably part of the DPC or timer context. // If succesfull returns the IRP associated with context. // PIRP IoCsqRemoveIrp( IN PIO_CSQ Csq, IN PIO_CSQ_IRP_CONTEXT Context ); // Cancel SAFE API set end #ifdef RUN_WPP #include #include #endif // #ifdef RUN_WPP #ifdef RUN_WPP NTKERNELAPI NTSTATUS WmiTraceMessage( IN TRACEHANDLE LoggerHandle, IN ULONG MessageFlags, IN LPGUID MessageGuid, IN USHORT MessageNumber, IN ... ); NTKERNELAPI NTSTATUS WmiTraceMessageVa( IN TRACEHANDLE LoggerHandle, IN ULONG MessageFlags, IN LPGUID MessageGuid, IN USHORT MessageNumber, IN va_list MessageArgList ); #endif // #ifdef RUN_WPP #ifndef TRACE_INFORMATION_CLASS_DEFINE typedef enum _TRACE_INFORMATION_CLASS { TraceIdClass, TraceHandleClass, TraceEnableFlagsClass, TraceEnableLevelClass, GlobalLoggerHandleClass, EventLoggerHandleClass, AllLoggerHandlesClass, TraceHandleByNameClass } TRACE_INFORMATION_CLASS; NTKERNELAPI NTSTATUS WmiQueryTraceInformation( IN TRACE_INFORMATION_CLASS TraceInformationClass, OUT PVOID TraceInformation, IN ULONG TraceInformationLength, OUT PULONG RequiredLength OPTIONAL, IN PVOID Buffer OPTIONAL ); #define TRACE_INFORMATION_CLASS_DEFINE #endif // TRACE_INFOPRMATION_CLASS_DEFINE // // Define PnP Device Property for IoGetDeviceProperty // typedef enum { DevicePropertyDeviceDescription, DevicePropertyHardwareID, DevicePropertyCompatibleIDs, DevicePropertyBootConfiguration, DevicePropertyBootConfigurationTranslated, DevicePropertyClassName, DevicePropertyClassGuid, DevicePropertyDriverKeyName, DevicePropertyManufacturer, DevicePropertyFriendlyName, DevicePropertyLocationInformation, DevicePropertyPhysicalDeviceObjectName, DevicePropertyBusTypeGuid, DevicePropertyLegacyBusType, DevicePropertyBusNumber, DevicePropertyEnumeratorName, DevicePropertyAddress, DevicePropertyUINumber, DevicePropertyInstallState, DevicePropertyRemovalPolicy } DEVICE_REGISTRY_PROPERTY; typedef BOOLEAN (*PTRANSLATE_BUS_ADDRESS)( IN PVOID Context, IN PHYSICAL_ADDRESS BusAddress, IN ULONG Length, IN OUT PULONG AddressSpace, OUT PPHYSICAL_ADDRESS TranslatedAddress ); typedef struct _DMA_ADAPTER *(*PGET_DMA_ADAPTER)( IN PVOID Context, IN struct _DEVICE_DESCRIPTION *DeviceDescriptor, OUT PULONG NumberOfMapRegisters ); typedef ULONG (*PGET_SET_DEVICE_DATA)( IN PVOID Context, IN ULONG DataType, IN PVOID Buffer, IN ULONG Offset, IN ULONG Length ); typedef enum _DEVICE_INSTALL_STATE { InstallStateInstalled, InstallStateNeedsReinstall, InstallStateFailedInstall, InstallStateFinishInstall } DEVICE_INSTALL_STATE, *PDEVICE_INSTALL_STATE; // // Define structure returned in response to IRP_MN_QUERY_BUS_INFORMATION by a // PDO indicating the type of bus the device exists on. // typedef struct _PNP_BUS_INFORMATION { GUID BusTypeGuid; INTERFACE_TYPE LegacyBusType; ULONG BusNumber; } PNP_BUS_INFORMATION, *PPNP_BUS_INFORMATION; // // Define structure returned in response to IRP_MN_QUERY_LEGACY_BUS_INFORMATION // by an FDO indicating the type of bus it is. This is normally the same bus // type as the device's children (i.e., as retrieved from the child PDO's via // IRP_MN_QUERY_BUS_INFORMATION) except for cases like CardBus, which can // support both 16-bit (PCMCIABus) and 32-bit (PCIBus) cards. // typedef struct _LEGACY_BUS_INFORMATION { GUID BusTypeGuid; INTERFACE_TYPE LegacyBusType; ULONG BusNumber; } LEGACY_BUS_INFORMATION, *PLEGACY_BUS_INFORMATION; // // Defines for IoGetDeviceProperty(DevicePropertyRemovalPolicy). // typedef enum _DEVICE_REMOVAL_POLICY { RemovalPolicyExpectNoRemoval = 1, RemovalPolicyExpectOrderlyRemoval = 2, RemovalPolicyExpectSurpriseRemoval = 3 } DEVICE_REMOVAL_POLICY, *PDEVICE_REMOVAL_POLICY; typedef struct _BUS_INTERFACE_STANDARD { // // generic interface header // USHORT Size; USHORT Version; PVOID Context; PINTERFACE_REFERENCE InterfaceReference; PINTERFACE_DEREFERENCE InterfaceDereference; // // standard bus interfaces // PTRANSLATE_BUS_ADDRESS TranslateBusAddress; PGET_DMA_ADAPTER GetDmaAdapter; PGET_SET_DEVICE_DATA SetBusData; PGET_SET_DEVICE_DATA GetBusData; } BUS_INTERFACE_STANDARD, *PBUS_INTERFACE_STANDARD; // // The following definitions are used in ACPI QueryInterface // typedef BOOLEAN (* PGPE_SERVICE_ROUTINE) ( PVOID, PVOID); typedef NTSTATUS (* PGPE_CONNECT_VECTOR) ( PDEVICE_OBJECT, ULONG, KINTERRUPT_MODE, BOOLEAN, PGPE_SERVICE_ROUTINE, PVOID, PVOID); typedef NTSTATUS (* PGPE_DISCONNECT_VECTOR) ( PVOID); typedef NTSTATUS (* PGPE_ENABLE_EVENT) ( PDEVICE_OBJECT, PVOID); typedef NTSTATUS (* PGPE_DISABLE_EVENT) ( PDEVICE_OBJECT, PVOID); typedef NTSTATUS (* PGPE_CLEAR_STATUS) ( PDEVICE_OBJECT, PVOID); typedef VOID (* PDEVICE_NOTIFY_CALLBACK) ( PVOID, ULONG); typedef NTSTATUS (* PREGISTER_FOR_DEVICE_NOTIFICATIONS) ( PDEVICE_OBJECT, PDEVICE_NOTIFY_CALLBACK, PVOID); typedef void (* PUNREGISTER_FOR_DEVICE_NOTIFICATIONS) ( PDEVICE_OBJECT, PDEVICE_NOTIFY_CALLBACK); typedef struct _ACPI_INTERFACE_STANDARD { // // Generic interface header // USHORT Size; USHORT Version; PVOID Context; PINTERFACE_REFERENCE InterfaceReference; PINTERFACE_DEREFERENCE InterfaceDereference; // // ACPI interfaces // PGPE_CONNECT_VECTOR GpeConnectVector; PGPE_DISCONNECT_VECTOR GpeDisconnectVector; PGPE_ENABLE_EVENT GpeEnableEvent; PGPE_DISABLE_EVENT GpeDisableEvent; PGPE_CLEAR_STATUS GpeClearStatus; PREGISTER_FOR_DEVICE_NOTIFICATIONS RegisterForDeviceNotifications; PUNREGISTER_FOR_DEVICE_NOTIFICATIONS UnregisterForDeviceNotifications; } ACPI_INTERFACE_STANDARD, *PACPI_INTERFACE_STANDARD; NTKERNELAPI VOID IoInvalidateDeviceRelations( IN PDEVICE_OBJECT DeviceObject, IN DEVICE_RELATION_TYPE Type ); NTKERNELAPI VOID IoRequestDeviceEject( IN PDEVICE_OBJECT PhysicalDeviceObject ); NTKERNELAPI NTSTATUS IoGetDeviceProperty( IN PDEVICE_OBJECT DeviceObject, IN DEVICE_REGISTRY_PROPERTY DeviceProperty, IN ULONG BufferLength, OUT PVOID PropertyBuffer, OUT PULONG ResultLength ); // // The following definitions are used in IoOpenDeviceRegistryKey // #define PLUGPLAY_REGKEY_DEVICE 1 #define PLUGPLAY_REGKEY_DRIVER 2 #define PLUGPLAY_REGKEY_CURRENT_HWPROFILE 4 NTKERNELAPI NTSTATUS IoOpenDeviceRegistryKey( IN PDEVICE_OBJECT DeviceObject, IN ULONG DevInstKeyType, IN ACCESS_MASK DesiredAccess, OUT PHANDLE DevInstRegKey ); NTKERNELAPI NTSTATUS NTAPI IoRegisterDeviceInterface( IN PDEVICE_OBJECT PhysicalDeviceObject, IN CONST GUID *InterfaceClassGuid, IN PUNICODE_STRING ReferenceString, OPTIONAL OUT PUNICODE_STRING SymbolicLinkName ); NTKERNELAPI NTSTATUS IoOpenDeviceInterfaceRegistryKey( IN PUNICODE_STRING SymbolicLinkName, IN ACCESS_MASK DesiredAccess, OUT PHANDLE DeviceInterfaceKey ); NTKERNELAPI NTSTATUS IoSetDeviceInterfaceState( IN PUNICODE_STRING SymbolicLinkName, IN BOOLEAN Enable ); NTKERNELAPI NTSTATUS NTAPI IoGetDeviceInterfaces( IN CONST GUID *InterfaceClassGuid, IN PDEVICE_OBJECT PhysicalDeviceObject OPTIONAL, IN ULONG Flags, OUT PWSTR *SymbolicLinkList ); #define DEVICE_INTERFACE_INCLUDE_NONACTIVE 0x00000001 NTKERNELAPI NTSTATUS NTAPI IoGetDeviceInterfaceAlias( IN PUNICODE_STRING SymbolicLinkName, IN CONST GUID *AliasInterfaceClassGuid, OUT PUNICODE_STRING AliasSymbolicLinkName ); // // Define PnP notification event categories // typedef enum _IO_NOTIFICATION_EVENT_CATEGORY { EventCategoryReserved, EventCategoryHardwareProfileChange, EventCategoryDeviceInterfaceChange, EventCategoryTargetDeviceChange } IO_NOTIFICATION_EVENT_CATEGORY; // // Define flags that modify the behavior of IoRegisterPlugPlayNotification // for the various event categories... // #define PNPNOTIFY_DEVICE_INTERFACE_INCLUDE_EXISTING_INTERFACES 0x00000001 typedef NTSTATUS (*PDRIVER_NOTIFICATION_CALLBACK_ROUTINE) ( IN PVOID NotificationStructure, IN PVOID Context ); NTKERNELAPI NTSTATUS IoRegisterPlugPlayNotification( IN IO_NOTIFICATION_EVENT_CATEGORY EventCategory, IN ULONG EventCategoryFlags, IN PVOID EventCategoryData OPTIONAL, IN PDRIVER_OBJECT DriverObject, IN PDRIVER_NOTIFICATION_CALLBACK_ROUTINE CallbackRoutine, IN PVOID Context, OUT PVOID *NotificationEntry ); NTKERNELAPI NTSTATUS IoUnregisterPlugPlayNotification( IN PVOID NotificationEntry ); NTKERNELAPI NTSTATUS IoReportTargetDeviceChange( IN PDEVICE_OBJECT PhysicalDeviceObject, IN PVOID NotificationStructure // always begins with a PLUGPLAY_NOTIFICATION_HEADER ); typedef VOID (*PDEVICE_CHANGE_COMPLETE_CALLBACK)( IN PVOID Context ); NTKERNELAPI VOID IoInvalidateDeviceState( IN PDEVICE_OBJECT PhysicalDeviceObject ); #define IoAdjustPagingPathCount(_count_,_paging_) { \ if (_paging_) { \ InterlockedIncrement(_count_); \ } else { \ InterlockedDecrement(_count_); \ } \ } NTKERNELAPI NTSTATUS IoReportTargetDeviceChangeAsynchronous( IN PDEVICE_OBJECT PhysicalDeviceObject, IN PVOID NotificationStructure, // always begins with a PLUGPLAY_NOTIFICATION_HEADER IN PDEVICE_CHANGE_COMPLETE_CALLBACK Callback, OPTIONAL IN PVOID Context OPTIONAL ); // // Header structure for all Plug&Play notification events... // typedef struct _PLUGPLAY_NOTIFICATION_HEADER { USHORT Version; // presently at version 1. USHORT Size; // size (in bytes) of header + event-specific data. GUID Event; // // Event-specific stuff starts here. // } PLUGPLAY_NOTIFICATION_HEADER, *PPLUGPLAY_NOTIFICATION_HEADER; // // Notification structure for all EventCategoryHardwareProfileChange events... // typedef struct _HWPROFILE_CHANGE_NOTIFICATION { USHORT Version; USHORT Size; GUID Event; // // (No event-specific data) // } HWPROFILE_CHANGE_NOTIFICATION, *PHWPROFILE_CHANGE_NOTIFICATION; // // Notification structure for all EventCategoryDeviceInterfaceChange events... // typedef struct _DEVICE_INTERFACE_CHANGE_NOTIFICATION { USHORT Version; USHORT Size; GUID Event; // // Event-specific data // GUID InterfaceClassGuid; PUNICODE_STRING SymbolicLinkName; } DEVICE_INTERFACE_CHANGE_NOTIFICATION, *PDEVICE_INTERFACE_CHANGE_NOTIFICATION; // // Notification structures for EventCategoryTargetDeviceChange... // // // The following structure is used for TargetDeviceQueryRemove, // TargetDeviceRemoveCancelled, and TargetDeviceRemoveComplete: // typedef struct _TARGET_DEVICE_REMOVAL_NOTIFICATION { USHORT Version; USHORT Size; GUID Event; // // Event-specific data // PFILE_OBJECT FileObject; } TARGET_DEVICE_REMOVAL_NOTIFICATION, *PTARGET_DEVICE_REMOVAL_NOTIFICATION; // // The following structure header is used for all other (i.e., 3rd-party) // target device change events. The structure accommodates both a // variable-length binary data buffer, and a variable-length unicode text // buffer. The header must indicate where the text buffer begins, so that // the data can be delivered in the appropriate format (ANSI or Unicode) // to user-mode recipients (i.e., that have registered for handle-based // notification via RegisterDeviceNotification). // typedef struct _TARGET_DEVICE_CUSTOM_NOTIFICATION { USHORT Version; USHORT Size; GUID Event; // // Event-specific data // PFILE_OBJECT FileObject; // This field must be set to NULL by callers of // IoReportTargetDeviceChange. Clients that // have registered for target device change // notification on the affected PDO will be // called with this field set to the file object // they specified during registration. // LONG NameBufferOffset; // offset (in bytes) from beginning of // CustomDataBuffer where text begins (-1 if none) // UCHAR CustomDataBuffer[1]; // variable-length buffer, containing (optionally) // a binary data at the start of the buffer, // followed by an optional unicode text buffer // (word-aligned). // } TARGET_DEVICE_CUSTOM_NOTIFICATION, *PTARGET_DEVICE_CUSTOM_NOTIFICATION; // // Define the device description structure. // typedef struct _DEVICE_DESCRIPTION { ULONG Version; BOOLEAN Master; BOOLEAN ScatterGather; BOOLEAN DemandMode; BOOLEAN AutoInitialize; BOOLEAN Dma32BitAddresses; BOOLEAN IgnoreCount; BOOLEAN Reserved1; // must be false BOOLEAN Dma64BitAddresses; ULONG DoNotUse2; ULONG DmaChannel; INTERFACE_TYPE InterfaceType; DMA_WIDTH DmaWidth; DMA_SPEED DmaSpeed; ULONG MaximumLength; ULONG DmaPort; } DEVICE_DESCRIPTION, *PDEVICE_DESCRIPTION; // // Define the supported version numbers for the device description structure. // #define DEVICE_DESCRIPTION_VERSION 0 #define DEVICE_DESCRIPTION_VERSION1 1 #define DEVICE_DESCRIPTION_VERSION2 2 NTHALAPI VOID KeFlushWriteBuffer ( VOID ); // // Performance counter function. // NTHALAPI LARGE_INTEGER KeQueryPerformanceCounter ( OUT PLARGE_INTEGER PerformanceFrequency OPTIONAL ); // // Stall processor execution function. // NTHALAPI VOID KeStallExecutionProcessor ( IN ULONG MicroSeconds ); typedef struct _SCATTER_GATHER_ELEMENT { PHYSICAL_ADDRESS Address; ULONG Length; ULONG_PTR Reserved; } SCATTER_GATHER_ELEMENT, *PSCATTER_GATHER_ELEMENT; #pragma warning(disable:4200) typedef struct _SCATTER_GATHER_LIST { ULONG NumberOfElements; ULONG_PTR Reserved; SCATTER_GATHER_ELEMENT Elements[]; } SCATTER_GATHER_LIST, *PSCATTER_GATHER_LIST; #pragma warning(default:4200) typedef struct _DMA_OPERATIONS *PDMA_OPERATIONS; typedef struct _DMA_ADAPTER { USHORT Version; USHORT Size; PDMA_OPERATIONS DmaOperations; // Private Bus Device Driver data follows, } DMA_ADAPTER, *PDMA_ADAPTER; typedef VOID (*PPUT_DMA_ADAPTER)( PDMA_ADAPTER DmaAdapter ); typedef PVOID (*PALLOCATE_COMMON_BUFFER)( IN PDMA_ADAPTER DmaAdapter, IN ULONG Length, OUT PPHYSICAL_ADDRESS LogicalAddress, IN BOOLEAN CacheEnabled ); typedef VOID (*PFREE_COMMON_BUFFER)( IN PDMA_ADAPTER DmaAdapter, IN ULONG Length, IN PHYSICAL_ADDRESS LogicalAddress, IN PVOID VirtualAddress, IN BOOLEAN CacheEnabled ); typedef NTSTATUS (*PALLOCATE_ADAPTER_CHANNEL)( IN PDMA_ADAPTER DmaAdapter, IN PDEVICE_OBJECT DeviceObject, IN ULONG NumberOfMapRegisters, IN PDRIVER_CONTROL ExecutionRoutine, IN PVOID Context ); typedef BOOLEAN (*PFLUSH_ADAPTER_BUFFERS)( IN PDMA_ADAPTER DmaAdapter, IN PMDL Mdl, IN PVOID MapRegisterBase, IN PVOID CurrentVa, IN ULONG Length, IN BOOLEAN WriteToDevice ); typedef VOID (*PFREE_ADAPTER_CHANNEL)( IN PDMA_ADAPTER DmaAdapter ); typedef VOID (*PFREE_MAP_REGISTERS)( IN PDMA_ADAPTER DmaAdapter, PVOID MapRegisterBase, ULONG NumberOfMapRegisters ); typedef PHYSICAL_ADDRESS (*PMAP_TRANSFER)( IN PDMA_ADAPTER DmaAdapter, IN PMDL Mdl, IN PVOID MapRegisterBase, IN PVOID CurrentVa, IN OUT PULONG Length, IN BOOLEAN WriteToDevice ); typedef ULONG (*PGET_DMA_ALIGNMENT)( IN PDMA_ADAPTER DmaAdapter ); typedef ULONG (*PREAD_DMA_COUNTER)( IN PDMA_ADAPTER DmaAdapter ); typedef VOID (*PDRIVER_LIST_CONTROL)( IN struct _DEVICE_OBJECT *DeviceObject, IN struct _IRP *Irp, IN PSCATTER_GATHER_LIST ScatterGather, IN PVOID Context ); typedef NTSTATUS (*PGET_SCATTER_GATHER_LIST)( IN PDMA_ADAPTER DmaAdapter, IN PDEVICE_OBJECT DeviceObject, IN PMDL Mdl, IN PVOID CurrentVa, IN ULONG Length, IN PDRIVER_LIST_CONTROL ExecutionRoutine, IN PVOID Context, IN BOOLEAN WriteToDevice ); typedef VOID (*PPUT_SCATTER_GATHER_LIST)( IN PDMA_ADAPTER DmaAdapter, IN PSCATTER_GATHER_LIST ScatterGather, IN BOOLEAN WriteToDevice ); typedef NTSTATUS (*PCALCULATE_SCATTER_GATHER_LIST_SIZE)( IN PDMA_ADAPTER DmaAdapter, IN OPTIONAL PMDL Mdl, IN PVOID CurrentVa, IN ULONG Length, OUT PULONG ScatterGatherListSize, OUT OPTIONAL PULONG pNumberOfMapRegisters ); typedef NTSTATUS (*PBUILD_SCATTER_GATHER_LIST)( IN PDMA_ADAPTER DmaAdapter, IN PDEVICE_OBJECT DeviceObject, IN PMDL Mdl, IN PVOID CurrentVa, IN ULONG Length, IN PDRIVER_LIST_CONTROL ExecutionRoutine, IN PVOID Context, IN BOOLEAN WriteToDevice, IN PVOID ScatterGatherBuffer, IN ULONG ScatterGatherLength ); typedef NTSTATUS (*PBUILD_MDL_FROM_SCATTER_GATHER_LIST)( IN PDMA_ADAPTER DmaAdapter, IN PSCATTER_GATHER_LIST ScatterGather, IN PMDL OriginalMdl, OUT PMDL *TargetMdl ); typedef struct _DMA_OPERATIONS { ULONG Size; PPUT_DMA_ADAPTER PutDmaAdapter; PALLOCATE_COMMON_BUFFER AllocateCommonBuffer; PFREE_COMMON_BUFFER FreeCommonBuffer; PALLOCATE_ADAPTER_CHANNEL AllocateAdapterChannel; PFLUSH_ADAPTER_BUFFERS FlushAdapterBuffers; PFREE_ADAPTER_CHANNEL FreeAdapterChannel; PFREE_MAP_REGISTERS FreeMapRegisters; PMAP_TRANSFER MapTransfer; PGET_DMA_ALIGNMENT GetDmaAlignment; PREAD_DMA_COUNTER ReadDmaCounter; PGET_SCATTER_GATHER_LIST GetScatterGatherList; PPUT_SCATTER_GATHER_LIST PutScatterGatherList; PCALCULATE_SCATTER_GATHER_LIST_SIZE CalculateScatterGatherList; PBUILD_SCATTER_GATHER_LIST BuildScatterGatherList; PBUILD_MDL_FROM_SCATTER_GATHER_LIST BuildMdlFromScatterGatherList; } DMA_OPERATIONS; DECLSPEC_DEPRECATED_DDK // Use AllocateCommonBuffer FORCEINLINE PVOID HalAllocateCommonBuffer( IN PDMA_ADAPTER DmaAdapter, IN ULONG Length, OUT PPHYSICAL_ADDRESS LogicalAddress, IN BOOLEAN CacheEnabled ){ PALLOCATE_COMMON_BUFFER allocateCommonBuffer; PVOID commonBuffer; allocateCommonBuffer = *(DmaAdapter)->DmaOperations->AllocateCommonBuffer; ASSERT( allocateCommonBuffer != NULL ); commonBuffer = allocateCommonBuffer( DmaAdapter, Length, LogicalAddress, CacheEnabled ); return commonBuffer; } DECLSPEC_DEPRECATED_DDK // Use FreeCommonBuffer FORCEINLINE VOID HalFreeCommonBuffer( IN PDMA_ADAPTER DmaAdapter, IN ULONG Length, IN PHYSICAL_ADDRESS LogicalAddress, IN PVOID VirtualAddress, IN BOOLEAN CacheEnabled ){ PFREE_COMMON_BUFFER freeCommonBuffer; freeCommonBuffer = *(DmaAdapter)->DmaOperations->FreeCommonBuffer; ASSERT( freeCommonBuffer != NULL ); freeCommonBuffer( DmaAdapter, Length, LogicalAddress, VirtualAddress, CacheEnabled ); } DECLSPEC_DEPRECATED_DDK // Use AllocateAdapterChannel FORCEINLINE NTSTATUS IoAllocateAdapterChannel( IN PDMA_ADAPTER DmaAdapter, IN PDEVICE_OBJECT DeviceObject, IN ULONG NumberOfMapRegisters, IN PDRIVER_CONTROL ExecutionRoutine, IN PVOID Context ){ PALLOCATE_ADAPTER_CHANNEL allocateAdapterChannel; NTSTATUS status; allocateAdapterChannel = *(DmaAdapter)->DmaOperations->AllocateAdapterChannel; ASSERT( allocateAdapterChannel != NULL ); status = allocateAdapterChannel( DmaAdapter, DeviceObject, NumberOfMapRegisters, ExecutionRoutine, Context ); return status; } DECLSPEC_DEPRECATED_DDK // Use FlushAdapterBuffers FORCEINLINE BOOLEAN IoFlushAdapterBuffers( IN PDMA_ADAPTER DmaAdapter, IN PMDL Mdl, IN PVOID MapRegisterBase, IN PVOID CurrentVa, IN ULONG Length, IN BOOLEAN WriteToDevice ){ PFLUSH_ADAPTER_BUFFERS flushAdapterBuffers; BOOLEAN result; flushAdapterBuffers = *(DmaAdapter)->DmaOperations->FlushAdapterBuffers; ASSERT( flushAdapterBuffers != NULL ); result = flushAdapterBuffers( DmaAdapter, Mdl, MapRegisterBase, CurrentVa, Length, WriteToDevice ); return result; } DECLSPEC_DEPRECATED_DDK // Use FreeAdapterChannel FORCEINLINE VOID IoFreeAdapterChannel( IN PDMA_ADAPTER DmaAdapter ){ PFREE_ADAPTER_CHANNEL freeAdapterChannel; freeAdapterChannel = *(DmaAdapter)->DmaOperations->FreeAdapterChannel; ASSERT( freeAdapterChannel != NULL ); freeAdapterChannel( DmaAdapter ); } DECLSPEC_DEPRECATED_DDK // Use FreeMapRegisters FORCEINLINE VOID IoFreeMapRegisters( IN PDMA_ADAPTER DmaAdapter, IN PVOID MapRegisterBase, IN ULONG NumberOfMapRegisters ){ PFREE_MAP_REGISTERS freeMapRegisters; freeMapRegisters = *(DmaAdapter)->DmaOperations->FreeMapRegisters; ASSERT( freeMapRegisters != NULL ); freeMapRegisters( DmaAdapter, MapRegisterBase, NumberOfMapRegisters ); } DECLSPEC_DEPRECATED_DDK // Use MapTransfer FORCEINLINE PHYSICAL_ADDRESS IoMapTransfer( IN PDMA_ADAPTER DmaAdapter, IN PMDL Mdl, IN PVOID MapRegisterBase, IN PVOID CurrentVa, IN OUT PULONG Length, IN BOOLEAN WriteToDevice ){ PHYSICAL_ADDRESS physicalAddress; PMAP_TRANSFER mapTransfer; mapTransfer = *(DmaAdapter)->DmaOperations->MapTransfer; ASSERT( mapTransfer != NULL ); physicalAddress = mapTransfer( DmaAdapter, Mdl, MapRegisterBase, CurrentVa, Length, WriteToDevice ); return physicalAddress; } DECLSPEC_DEPRECATED_DDK // Use GetDmaAlignment FORCEINLINE ULONG HalGetDmaAlignment( IN PDMA_ADAPTER DmaAdapter ) { PGET_DMA_ALIGNMENT getDmaAlignment; ULONG alignment; getDmaAlignment = *(DmaAdapter)->DmaOperations->GetDmaAlignment; ASSERT( getDmaAlignment != NULL ); alignment = getDmaAlignment( DmaAdapter ); return alignment; } DECLSPEC_DEPRECATED_DDK // Use ReadDmaCounter FORCEINLINE ULONG HalReadDmaCounter( IN PDMA_ADAPTER DmaAdapter ) { PREAD_DMA_COUNTER readDmaCounter; ULONG counter; readDmaCounter = *(DmaAdapter)->DmaOperations->ReadDmaCounter; ASSERT( readDmaCounter != NULL ); counter = readDmaCounter( DmaAdapter ); return counter; } NTKERNELAPI VOID PoSetSystemState ( IN EXECUTION_STATE Flags ); NTKERNELAPI PVOID PoRegisterSystemState ( IN PVOID StateHandle, IN EXECUTION_STATE Flags ); typedef VOID (*PREQUEST_POWER_COMPLETE) ( IN PDEVICE_OBJECT DeviceObject, IN UCHAR MinorFunction, IN POWER_STATE PowerState, IN PVOID Context, IN PIO_STATUS_BLOCK IoStatus ); NTKERNELAPI NTSTATUS PoRequestPowerIrp ( IN PDEVICE_OBJECT DeviceObject, IN UCHAR MinorFunction, IN POWER_STATE PowerState, IN PREQUEST_POWER_COMPLETE CompletionFunction, IN PVOID Context, OUT PIRP *Irp OPTIONAL ); NTKERNELAPI NTSTATUS PoRequestShutdownEvent ( OUT PVOID *Event ); NTKERNELAPI NTSTATUS PoRequestShutdownWait ( IN PETHREAD Thread ); NTKERNELAPI VOID PoUnregisterSystemState ( IN PVOID StateHandle ); NTKERNELAPI POWER_STATE PoSetPowerState ( IN PDEVICE_OBJECT DeviceObject, IN POWER_STATE_TYPE Type, IN POWER_STATE State ); NTKERNELAPI NTSTATUS PoCallDriver ( IN PDEVICE_OBJECT DeviceObject, IN OUT PIRP Irp ); NTKERNELAPI VOID PoStartNextPowerIrp( IN PIRP Irp ); NTKERNELAPI PULONG PoRegisterDeviceForIdleDetection ( IN PDEVICE_OBJECT DeviceObject, IN ULONG ConservationIdleTime, IN ULONG PerformanceIdleTime, IN DEVICE_POWER_STATE State ); #define PoSetDeviceBusy(IdlePointer) \ *IdlePointer = 0 // // \Callback\PowerState values // #define PO_CB_SYSTEM_POWER_POLICY 0 #define PO_CB_AC_STATUS 1 #define PO_CB_BUTTON_COLLISION 2 #define PO_CB_SYSTEM_STATE_LOCK 3 #define PO_CB_LID_SWITCH_STATE 4 #define PO_CB_PROCESSOR_POWER_POLICY 5 // // Object Manager types // typedef struct _OBJECT_HANDLE_INFORMATION { ULONG HandleAttributes; ACCESS_MASK GrantedAccess; } OBJECT_HANDLE_INFORMATION, *POBJECT_HANDLE_INFORMATION; NTKERNELAPI NTSTATUS ObReferenceObjectByHandle( IN HANDLE Handle, IN ACCESS_MASK DesiredAccess, IN POBJECT_TYPE ObjectType OPTIONAL, IN KPROCESSOR_MODE AccessMode, OUT PVOID *Object, OUT POBJECT_HANDLE_INFORMATION HandleInformation OPTIONAL ); #define ObDereferenceObject(a) \ ObfDereferenceObject(a) #define ObReferenceObject(Object) ObfReferenceObject(Object) NTKERNELAPI LONG FASTCALL ObfReferenceObject( IN PVOID Object ); NTKERNELAPI NTSTATUS ObReferenceObjectByPointer( IN PVOID Object, IN ACCESS_MASK DesiredAccess, IN POBJECT_TYPE ObjectType, IN KPROCESSOR_MODE AccessMode ); NTKERNELAPI LONG FASTCALL ObfDereferenceObject( IN PVOID Object ); NTSTATUS ObGetObjectSecurity( IN PVOID Object, OUT PSECURITY_DESCRIPTOR *SecurityDescriptor, OUT PBOOLEAN MemoryAllocated ); VOID ObReleaseObjectSecurity( IN PSECURITY_DESCRIPTOR SecurityDescriptor, IN BOOLEAN MemoryAllocated ); typedef struct _PCI_SLOT_NUMBER { union { struct { ULONG DeviceNumber:5; ULONG FunctionNumber:3; ULONG Reserved:24; } bits; ULONG AsULONG; } u; } PCI_SLOT_NUMBER, *PPCI_SLOT_NUMBER; #define PCI_TYPE0_ADDRESSES 6 #define PCI_TYPE1_ADDRESSES 2 #define PCI_TYPE2_ADDRESSES 5 typedef struct _PCI_COMMON_CONFIG { USHORT VendorID; // (ro) USHORT DeviceID; // (ro) USHORT Command; // Device control USHORT Status; UCHAR RevisionID; // (ro) UCHAR ProgIf; // (ro) UCHAR SubClass; // (ro) UCHAR BaseClass; // (ro) UCHAR CacheLineSize; // (ro+) UCHAR LatencyTimer; // (ro+) UCHAR HeaderType; // (ro) UCHAR BIST; // Built in self test union { struct _PCI_HEADER_TYPE_0 { ULONG BaseAddresses[PCI_TYPE0_ADDRESSES]; ULONG CIS; USHORT SubVendorID; USHORT SubSystemID; ULONG ROMBaseAddress; UCHAR CapabilitiesPtr; UCHAR Reserved1[3]; ULONG Reserved2; UCHAR InterruptLine; // UCHAR InterruptPin; // (ro) UCHAR MinimumGrant; // (ro) UCHAR MaximumLatency; // (ro) } type0; } u; UCHAR DeviceSpecific[192]; } PCI_COMMON_CONFIG, *PPCI_COMMON_CONFIG; #define PCI_COMMON_HDR_LENGTH (FIELD_OFFSET (PCI_COMMON_CONFIG, DeviceSpecific)) #define PCI_MAX_DEVICES 32 #define PCI_MAX_FUNCTION 8 #define PCI_MAX_BRIDGE_NUMBER 0xFF #define PCI_INVALID_VENDORID 0xFFFF // // Bit encodings for PCI_COMMON_CONFIG.HeaderType // #define PCI_MULTIFUNCTION 0x80 #define PCI_DEVICE_TYPE 0x00 #define PCI_BRIDGE_TYPE 0x01 #define PCI_CARDBUS_BRIDGE_TYPE 0x02 #define PCI_CONFIGURATION_TYPE(PciData) \ (((PPCI_COMMON_CONFIG)(PciData))->HeaderType & ~PCI_MULTIFUNCTION) #define PCI_MULTIFUNCTION_DEVICE(PciData) \ ((((PPCI_COMMON_CONFIG)(PciData))->HeaderType & PCI_MULTIFUNCTION) != 0) // // Bit encodings for PCI_COMMON_CONFIG.Command // #define PCI_ENABLE_IO_SPACE 0x0001 #define PCI_ENABLE_MEMORY_SPACE 0x0002 #define PCI_ENABLE_BUS_MASTER 0x0004 #define PCI_ENABLE_SPECIAL_CYCLES 0x0008 #define PCI_ENABLE_WRITE_AND_INVALIDATE 0x0010 #define PCI_ENABLE_VGA_COMPATIBLE_PALETTE 0x0020 #define PCI_ENABLE_PARITY 0x0040 // (ro+) #define PCI_ENABLE_WAIT_CYCLE 0x0080 // (ro+) #define PCI_ENABLE_SERR 0x0100 // (ro+) #define PCI_ENABLE_FAST_BACK_TO_BACK 0x0200 // (ro) // // Bit encodings for PCI_COMMON_CONFIG.Status // #define PCI_STATUS_CAPABILITIES_LIST 0x0010 // (ro) #define PCI_STATUS_66MHZ_CAPABLE 0x0020 // (ro) #define PCI_STATUS_UDF_SUPPORTED 0x0040 // (ro) #define PCI_STATUS_FAST_BACK_TO_BACK 0x0080 // (ro) #define PCI_STATUS_DATA_PARITY_DETECTED 0x0100 #define PCI_STATUS_DEVSEL 0x0600 // 2 bits wide #define PCI_STATUS_SIGNALED_TARGET_ABORT 0x0800 #define PCI_STATUS_RECEIVED_TARGET_ABORT 0x1000 #define PCI_STATUS_RECEIVED_MASTER_ABORT 0x2000 #define PCI_STATUS_SIGNALED_SYSTEM_ERROR 0x4000 #define PCI_STATUS_DETECTED_PARITY_ERROR 0x8000 // // The NT PCI Driver uses a WhichSpace parameter on its CONFIG_READ/WRITE // routines. The following values are defined- // #define PCI_WHICHSPACE_CONFIG 0x0 #define PCI_WHICHSPACE_ROM 0x52696350 // // Base Class Code encodings for Base Class (from PCI spec rev 2.1). // #define PCI_CLASS_PRE_20 0x00 #define PCI_CLASS_MASS_STORAGE_CTLR 0x01 #define PCI_CLASS_NETWORK_CTLR 0x02 #define PCI_CLASS_DISPLAY_CTLR 0x03 #define PCI_CLASS_MULTIMEDIA_DEV 0x04 #define PCI_CLASS_MEMORY_CTLR 0x05 #define PCI_CLASS_BRIDGE_DEV 0x06 #define PCI_CLASS_SIMPLE_COMMS_CTLR 0x07 #define PCI_CLASS_BASE_SYSTEM_DEV 0x08 #define PCI_CLASS_INPUT_DEV 0x09 #define PCI_CLASS_DOCKING_STATION 0x0a #define PCI_CLASS_PROCESSOR 0x0b #define PCI_CLASS_SERIAL_BUS_CTLR 0x0c #define PCI_CLASS_WIRELESS_CTLR 0x0d #define PCI_CLASS_INTELLIGENT_IO_CTLR 0x0e #define PCI_CLASS_SATELLITE_COMMS_CTLR 0x0f #define PCI_CLASS_ENCRYPTION_DECRYPTION 0x10 #define PCI_CLASS_DATA_ACQ_SIGNAL_PROC 0x11 // 0d thru fe reserved #define PCI_CLASS_NOT_DEFINED 0xff // // Sub Class Code encodings (PCI rev 2.1). // // Class 00 - PCI_CLASS_PRE_20 #define PCI_SUBCLASS_PRE_20_NON_VGA 0x00 #define PCI_SUBCLASS_PRE_20_VGA 0x01 // Class 01 - PCI_CLASS_MASS_STORAGE_CTLR #define PCI_SUBCLASS_MSC_SCSI_BUS_CTLR 0x00 #define PCI_SUBCLASS_MSC_IDE_CTLR 0x01 #define PCI_SUBCLASS_MSC_FLOPPY_CTLR 0x02 #define PCI_SUBCLASS_MSC_IPI_CTLR 0x03 #define PCI_SUBCLASS_MSC_RAID_CTLR 0x04 #define PCI_SUBCLASS_MSC_OTHER 0x80 // Class 02 - PCI_CLASS_NETWORK_CTLR #define PCI_SUBCLASS_NET_ETHERNET_CTLR 0x00 #define PCI_SUBCLASS_NET_TOKEN_RING_CTLR 0x01 #define PCI_SUBCLASS_NET_FDDI_CTLR 0x02 #define PCI_SUBCLASS_NET_ATM_CTLR 0x03 #define PCI_SUBCLASS_NET_ISDN_CTLR 0x04 #define PCI_SUBCLASS_NET_OTHER 0x80 // Class 03 - PCI_CLASS_DISPLAY_CTLR // N.B. Sub Class 00 could be VGA or 8514 depending on Interface byte #define PCI_SUBCLASS_VID_VGA_CTLR 0x00 #define PCI_SUBCLASS_VID_XGA_CTLR 0x01 #define PCI_SUBLCASS_VID_3D_CTLR 0x02 #define PCI_SUBCLASS_VID_OTHER 0x80 // Class 04 - PCI_CLASS_MULTIMEDIA_DEV #define PCI_SUBCLASS_MM_VIDEO_DEV 0x00 #define PCI_SUBCLASS_MM_AUDIO_DEV 0x01 #define PCI_SUBCLASS_MM_TELEPHONY_DEV 0x02 #define PCI_SUBCLASS_MM_OTHER 0x80 // Class 05 - PCI_CLASS_MEMORY_CTLR #define PCI_SUBCLASS_MEM_RAM 0x00 #define PCI_SUBCLASS_MEM_FLASH 0x01 #define PCI_SUBCLASS_MEM_OTHER 0x80 // Class 06 - PCI_CLASS_BRIDGE_DEV #define PCI_SUBCLASS_BR_HOST 0x00 #define PCI_SUBCLASS_BR_ISA 0x01 #define PCI_SUBCLASS_BR_EISA 0x02 #define PCI_SUBCLASS_BR_MCA 0x03 #define PCI_SUBCLASS_BR_PCI_TO_PCI 0x04 #define PCI_SUBCLASS_BR_PCMCIA 0x05 #define PCI_SUBCLASS_BR_NUBUS 0x06 #define PCI_SUBCLASS_BR_CARDBUS 0x07 #define PCI_SUBCLASS_BR_RACEWAY 0x08 #define PCI_SUBCLASS_BR_OTHER 0x80 // Class 07 - PCI_CLASS_SIMPLE_COMMS_CTLR // N.B. Sub Class 00 and 01 additional info in Interface byte #define PCI_SUBCLASS_COM_SERIAL 0x00 #define PCI_SUBCLASS_COM_PARALLEL 0x01 #define PCI_SUBCLASS_COM_MULTIPORT 0x02 #define PCI_SUBCLASS_COM_MODEM 0x03 #define PCI_SUBCLASS_COM_OTHER 0x80 // Class 08 - PCI_CLASS_BASE_SYSTEM_DEV // N.B. See Interface byte for additional info. #define PCI_SUBCLASS_SYS_INTERRUPT_CTLR 0x00 #define PCI_SUBCLASS_SYS_DMA_CTLR 0x01 #define PCI_SUBCLASS_SYS_SYSTEM_TIMER 0x02 #define PCI_SUBCLASS_SYS_REAL_TIME_CLOCK 0x03 #define PCI_SUBCLASS_SYS_GEN_HOTPLUG_CTLR 0x04 #define PCI_SUBCLASS_SYS_OTHER 0x80 // Class 09 - PCI_CLASS_INPUT_DEV #define PCI_SUBCLASS_INP_KEYBOARD 0x00 #define PCI_SUBCLASS_INP_DIGITIZER 0x01 #define PCI_SUBCLASS_INP_MOUSE 0x02 #define PCI_SUBCLASS_INP_SCANNER 0x03 #define PCI_SUBCLASS_INP_GAMEPORT 0x04 #define PCI_SUBCLASS_INP_OTHER 0x80 // Class 0a - PCI_CLASS_DOCKING_STATION #define PCI_SUBCLASS_DOC_GENERIC 0x00 #define PCI_SUBCLASS_DOC_OTHER 0x80 // Class 0b - PCI_CLASS_PROCESSOR #define PCI_SUBCLASS_PROC_386 0x00 #define PCI_SUBCLASS_PROC_486 0x01 #define PCI_SUBCLASS_PROC_PENTIUM 0x02 #define PCI_SUBCLASS_PROC_ALPHA 0x10 #define PCI_SUBCLASS_PROC_POWERPC 0x20 #define PCI_SUBCLASS_PROC_COPROCESSOR 0x40 // Class 0c - PCI_CLASS_SERIAL_BUS_CTLR #define PCI_SUBCLASS_SB_IEEE1394 0x00 #define PCI_SUBCLASS_SB_ACCESS 0x01 #define PCI_SUBCLASS_SB_SSA 0x02 #define PCI_SUBCLASS_SB_USB 0x03 #define PCI_SUBCLASS_SB_FIBRE_CHANNEL 0x04 #define PCI_SUBCLASS_SB_SMBUS 0x05 // Class 0d - PCI_CLASS_WIRELESS_CTLR #define PCI_SUBCLASS_WIRELESS_IRDA 0x00 #define PCI_SUBCLASS_WIRELESS_CON_IR 0x01 #define PCI_SUBCLASS_WIRELESS_RF 0x10 #define PCI_SUBCLASS_WIRELESS_OTHER 0x80 // Class 0e - PCI_CLASS_INTELLIGENT_IO_CTLR #define PCI_SUBCLASS_INTIO_I2O 0x00 // Class 0f - PCI_CLASS_SATELLITE_CTLR #define PCI_SUBCLASS_SAT_TV 0x01 #define PCI_SUBCLASS_SAT_AUDIO 0x02 #define PCI_SUBCLASS_SAT_VOICE 0x03 #define PCI_SUBCLASS_SAT_DATA 0x04 // Class 10 - PCI_CLASS_ENCRYPTION_DECRYPTION #define PCI_SUBCLASS_CRYPTO_NET_COMP 0x00 #define PCI_SUBCLASS_CRYPTO_ENTERTAINMENT 0x10 #define PCI_SUBCLASS_CRYPTO_OTHER 0x80 // Class 11 - PCI_CLASS_DATA_ACQ_SIGNAL_PROC #define PCI_SUBCLASS_DASP_DPIO 0x00 #define PCI_SUBCLASS_DASP_OTHER 0x80 // // Bit encodes for PCI_COMMON_CONFIG.u.type0.BaseAddresses // #define PCI_ADDRESS_IO_SPACE 0x00000001 // (ro) #define PCI_ADDRESS_MEMORY_TYPE_MASK 0x00000006 // (ro) #define PCI_ADDRESS_MEMORY_PREFETCHABLE 0x00000008 // (ro) #define PCI_ADDRESS_IO_ADDRESS_MASK 0xfffffffc #define PCI_ADDRESS_MEMORY_ADDRESS_MASK 0xfffffff0 #define PCI_ADDRESS_ROM_ADDRESS_MASK 0xfffff800 #define PCI_TYPE_32BIT 0 #define PCI_TYPE_20BIT 2 #define PCI_TYPE_64BIT 4 // // Bit encodes for PCI_COMMON_CONFIG.u.type0.ROMBaseAddresses // #define PCI_ROMADDRESS_ENABLED 0x00000001 // // Reference notes for PCI configuration fields: // // ro these field are read only. changes to these fields are ignored // // ro+ these field are intended to be read only and should be initialized // by the system to their proper values. However, driver may change // these settings. // // --- // // All resources comsumed by a PCI device start as unitialized // under NT. An uninitialized memory or I/O base address can be // determined by checking it's corrisponding enabled bit in the // PCI_COMMON_CONFIG.Command value. An InterruptLine is unitialized // if it contains the value of -1. // #define PCI_DEVICE_PRESENT_INTERFACE_VERSION 1 // // Flags for PCI_DEVICE_PRESENCE_PARAMETERS // #define PCI_USE_SUBSYSTEM_IDS 0x00000001 #define PCI_USE_REVISION 0x00000002 // The following flags are only valid for IsDevicePresentEx #define PCI_USE_VENDEV_IDS 0x00000004 #define PCI_USE_CLASS_SUBCLASS 0x00000008 #define PCI_USE_PROGIF 0x00000010 #define PCI_USE_LOCAL_BUS 0x00000020 #define PCI_USE_LOCAL_DEVICE 0x00000040 // // Search parameters structure for IsDevicePresentEx // typedef struct _PCI_DEVICE_PRESENCE_PARAMETERS { ULONG Size; ULONG Flags; USHORT VendorID; USHORT DeviceID; UCHAR RevisionID; USHORT SubVendorID; USHORT SubSystemID; UCHAR BaseClass; UCHAR SubClass; UCHAR ProgIf; } PCI_DEVICE_PRESENCE_PARAMETERS, *PPCI_DEVICE_PRESENCE_PARAMETERS; typedef BOOLEAN (*PPCI_IS_DEVICE_PRESENT) ( IN USHORT VendorID, IN USHORT DeviceID, IN UCHAR RevisionID, IN USHORT SubVendorID, IN USHORT SubSystemID, IN ULONG Flags ); typedef BOOLEAN (*PPCI_IS_DEVICE_PRESENT_EX) ( IN PVOID Context, IN PPCI_DEVICE_PRESENCE_PARAMETERS Parameters ); typedef struct _PCI_DEVICE_PRESENT_INTERFACE { // // generic interface header // USHORT Size; USHORT Version; PVOID Context; PINTERFACE_REFERENCE InterfaceReference; PINTERFACE_DEREFERENCE InterfaceDereference; // // pci device info // PPCI_IS_DEVICE_PRESENT IsDevicePresent; PPCI_IS_DEVICE_PRESENT_EX IsDevicePresentEx; } PCI_DEVICE_PRESENT_INTERFACE, *PPCI_DEVICE_PRESENT_INTERFACE; #ifdef POOL_TAGGING #define ExAllocatePool(a,b) ExAllocatePoolWithTag(a,b,' mdW') #define ExAllocatePoolWithQuota(a,b) ExAllocatePoolWithQuotaTag(a,b,' kdD') #endif extern POBJECT_TYPE *IoFileObjectType; extern POBJECT_TYPE *ExEventObjectType; extern POBJECT_TYPE *ExSemaphoreObjectType; // // Define exported ZwXxx routines to device drivers. // NTSYSAPI NTSTATUS NTAPI ZwCreateFile( OUT PHANDLE FileHandle, IN ACCESS_MASK DesiredAccess, IN POBJECT_ATTRIBUTES ObjectAttributes, OUT PIO_STATUS_BLOCK IoStatusBlock, IN PLARGE_INTEGER AllocationSize OPTIONAL, IN ULONG FileAttributes, IN ULONG ShareAccess, IN ULONG CreateDisposition, IN ULONG CreateOptions, IN PVOID EaBuffer OPTIONAL, IN ULONG EaLength ); NTSYSAPI NTSTATUS NTAPI ZwOpenFile( OUT PHANDLE FileHandle, IN ACCESS_MASK DesiredAccess, IN POBJECT_ATTRIBUTES ObjectAttributes, OUT PIO_STATUS_BLOCK IoStatusBlock, IN ULONG ShareAccess, IN ULONG OpenOptions ); NTSYSAPI NTSTATUS NTAPI ZwQueryInformationFile( IN HANDLE FileHandle, OUT PIO_STATUS_BLOCK IoStatusBlock, OUT PVOID FileInformation, IN ULONG Length, IN FILE_INFORMATION_CLASS FileInformationClass ); NTSYSAPI NTSTATUS NTAPI ZwSetInformationFile( IN HANDLE FileHandle, OUT PIO_STATUS_BLOCK IoStatusBlock, IN PVOID FileInformation, IN ULONG Length, IN FILE_INFORMATION_CLASS FileInformationClass ); NTSYSAPI NTSTATUS NTAPI ZwReadFile( IN HANDLE FileHandle, IN HANDLE Event OPTIONAL, IN PIO_APC_ROUTINE ApcRoutine OPTIONAL, IN PVOID ApcContext OPTIONAL, OUT PIO_STATUS_BLOCK IoStatusBlock, OUT PVOID Buffer, IN ULONG Length, IN PLARGE_INTEGER ByteOffset OPTIONAL, IN PULONG Key OPTIONAL ); NTSYSAPI NTSTATUS NTAPI ZwWriteFile( IN HANDLE FileHandle, IN HANDLE Event OPTIONAL, IN PIO_APC_ROUTINE ApcRoutine OPTIONAL, IN PVOID ApcContext OPTIONAL, OUT PIO_STATUS_BLOCK IoStatusBlock, IN PVOID Buffer, IN ULONG Length, IN PLARGE_INTEGER ByteOffset OPTIONAL, IN PULONG Key OPTIONAL ); NTSYSAPI NTSTATUS NTAPI ZwClose( IN HANDLE Handle ); NTSYSAPI NTSTATUS NTAPI ZwCreateDirectoryObject( OUT PHANDLE DirectoryHandle, IN ACCESS_MASK DesiredAccess, IN POBJECT_ATTRIBUTES ObjectAttributes ); NTSYSAPI NTSTATUS NTAPI ZwMakeTemporaryObject( IN HANDLE Handle ); NTSYSAPI NTSTATUS NTAPI ZwOpenSection( OUT PHANDLE SectionHandle, IN ACCESS_MASK DesiredAccess, IN POBJECT_ATTRIBUTES ObjectAttributes ); NTSYSAPI NTSTATUS NTAPI ZwMapViewOfSection( IN HANDLE SectionHandle, IN HANDLE ProcessHandle, IN OUT PVOID *BaseAddress, IN ULONG ZeroBits, IN ULONG CommitSize, IN OUT PLARGE_INTEGER SectionOffset OPTIONAL, IN OUT PSIZE_T ViewSize, IN SECTION_INHERIT InheritDisposition, IN ULONG AllocationType, IN ULONG Protect ); NTSYSAPI NTSTATUS NTAPI ZwUnmapViewOfSection( IN HANDLE ProcessHandle, IN PVOID BaseAddress ); NTSYSAPI NTSTATUS NTAPI ZwCreateKey( OUT PHANDLE KeyHandle, IN ACCESS_MASK DesiredAccess, IN POBJECT_ATTRIBUTES ObjectAttributes, IN ULONG TitleIndex, IN PUNICODE_STRING Class OPTIONAL, IN ULONG CreateOptions, OUT PULONG Disposition OPTIONAL ); NTSYSAPI NTSTATUS NTAPI ZwOpenKey( OUT PHANDLE KeyHandle, IN ACCESS_MASK DesiredAccess, IN POBJECT_ATTRIBUTES ObjectAttributes ); NTSYSAPI NTSTATUS NTAPI ZwDeleteKey( IN HANDLE KeyHandle ); NTSYSAPI NTSTATUS NTAPI ZwDeleteValueKey( IN HANDLE KeyHandle, IN PUNICODE_STRING ValueName ); NTSYSAPI NTSTATUS NTAPI ZwEnumerateKey( IN HANDLE KeyHandle, IN ULONG Index, IN KEY_INFORMATION_CLASS KeyInformationClass, OUT PVOID KeyInformation, IN ULONG Length, OUT PULONG ResultLength ); NTSYSAPI NTSTATUS NTAPI ZwEnumerateValueKey( IN HANDLE KeyHandle, IN ULONG Index, IN KEY_VALUE_INFORMATION_CLASS KeyValueInformationClass, OUT PVOID KeyValueInformation, IN ULONG Length, OUT PULONG ResultLength ); NTSYSAPI NTSTATUS NTAPI ZwFlushKey( IN HANDLE KeyHandle ); NTSYSAPI NTSTATUS NTAPI ZwQueryKey( IN HANDLE KeyHandle, IN KEY_INFORMATION_CLASS KeyInformationClass, OUT PVOID KeyInformation, IN ULONG Length, OUT PULONG ResultLength ); NTSYSAPI NTSTATUS NTAPI ZwQueryValueKey( IN HANDLE KeyHandle, IN PUNICODE_STRING ValueName, IN KEY_VALUE_INFORMATION_CLASS KeyValueInformationClass, OUT PVOID KeyValueInformation, IN ULONG Length, OUT PULONG ResultLength ); NTSYSAPI NTSTATUS NTAPI ZwSetValueKey( IN HANDLE KeyHandle, IN PUNICODE_STRING ValueName, IN ULONG TitleIndex OPTIONAL, IN ULONG Type, IN PVOID Data, IN ULONG DataSize ); NTSYSAPI NTSTATUS NTAPI ZwOpenSymbolicLinkObject( OUT PHANDLE LinkHandle, IN ACCESS_MASK DesiredAccess, IN POBJECT_ATTRIBUTES ObjectAttributes ); NTSYSAPI NTSTATUS NTAPI ZwQuerySymbolicLinkObject( IN HANDLE LinkHandle, IN OUT PUNICODE_STRING LinkTarget, OUT PULONG ReturnedLength OPTIONAL ); #endif // _WDMDDK_