/* -------------------------------------------------------------------- Microsoft OS/2 LAN Manager Copyright(c) Microsoft Corp., 1990 RPC - Written by Dov Harel This file contains the implementation for splay tree self adjusting binary trees -------------------------------------------------------------------- */ #if 0 #include "objidl.h" #include "common.h" #endif // 0 #include "precomp.hxx" // handly macros used to define common tree operations #define ROTATELEFT tmp=t->right; t->right=tmp->left; tmp->left =t; t=tmp #define ROTATERIGHT tmp=t->left; t->left =tmp->right; tmp->right=t; t=tmp #define LINKLEFT tmp=t; t = t->right; l = l->right = tmp #define LINKRIGHT tmp=t; t = t->left; r = r->left = tmp #define ASSEMBLE r->left = t->right; l->right = t->left; \ t->left = Dummy->right; t->right = Dummy->left TreeNode Dumbo(Nil); static TreeNode *Dummy = &Dumbo; // a global dummy node TreeNode * GetGlobalTreeNode() { return( &Dumbo ); } // initialize the memory allocator for TreeNode //************************************************************************* //***** Core functions (internal) ***** //************************************************************************* long // return last comparision Dictionary::SplayUserType( // general top down splay pUserType keyItem // pointer to a "key item" searched for ) //-----------------------------------------------------------------------// { TreeNode* t; // current search point TreeNode* l; // root of "left subtree" < keyItem TreeNode* r; // root of "right subtree" > keyItem long kcmp; // cash comparison results TreeNode* tmp; if ((fCompare = Compare(keyItem, root->item)) == 0) return (fCompare); Dummy = l = r = &Dumbo; Dumbo.left = Dumbo.right = Nil; t = root; do { if ( fCompare < 0 ) { if ( t->left == Nil ) break; if ( (kcmp = Compare(keyItem, t->left->item)) == 0 ) { LINKRIGHT; } else if ( kcmp < 0 ) { ROTATERIGHT; if ( t->left != Nil ) { LINKRIGHT; } } else { // keyItem > t->left->item LINKRIGHT; if ( t->right != Nil ) { LINKLEFT; } } } else { // keyItem > t->item if ( t->right == Nil ) break; if ( (kcmp = Compare(keyItem, t->right->item)) == 0 ) { LINKLEFT; } else if ( kcmp > 0 ) { ROTATELEFT; if ( t->right != Nil ) { LINKLEFT; } } else { // keyItem < t->right->item LINKLEFT; if ( t->left != Nil ) { LINKRIGHT; } } } } while ( (fCompare = Compare(keyItem, t->item)) != 0 ); ASSEMBLE; // if (fCompare != Compare(keyItem, t->item)) // printf("Dictionary error!"); root = t; return(fCompare); } TreeNode* SplayLeft( TreeNode* t // root of tree & current "search" point ) //-----------------------------------------------------------------------// { TreeNode* l=Dummy; // root of "left subtree" < keyItem TreeNode* r=Dummy; // root of "right subtree" > keyItem TreeNode* tmp; if (t == Nil || t->left == Nil) return(t); if (t->left->left == Nil) { ROTATERIGHT; return(t); } Dummy->left = Dummy->right = Nil; while ( t->left != Nil ) { ROTATERIGHT; if ( t->left != Nil ) { LINKRIGHT; } } ASSEMBLE; return(t); } #ifndef DICT_NOPREV TreeNode* SplayRight( TreeNode* t // root of tree & current "search" point ) //-----------------------------------------------------------------------// { TreeNode* l=Dummy; // root of "left subtree" < keyItem TreeNode* r=Dummy; // root of "right subtree" > keyItem TreeNode* tmp; if (t == Nil || t->right == Nil) return(t); Dummy->left = Dummy->right = Nil; while ( t->right != Nil ) { ROTATELEFT; if ( t->right != Nil ) { LINKLEFT; } } ASSEMBLE; return(t); } #endif // Class methods for Splay Tree Dict_Status Dictionary::Dict_Find( // return a item that matches pUserType itemI // this value // Returns: // itemCur - Nil if at not in Dict, else found item ) //-----------------------------------------------------------------------// { itemCur = Nil; if (root == Nil) return (EMPTY_DICTIONARY); if (itemI == Nil) return (NULL_ITEM); if (SplayUserType (itemI) == 0){ itemCur = root->item; return(SUCCESS); } // printf("After NotFound %ld: (", this); PrintItem(itemI); printf(")\n"); Dict_Print(); return(ITEM_NOT_FOUND); } #ifndef DICT_NONEXT Dict_Status Dictionary::Dict_Next( // return the next item pUserType itemI // of a key greater then this // Returns: // itemCur - Nil if at end of Dict, else current item ) //-----------------------------------------------------------------------// { TreeNode* t; itemCur = Nil; if (root == Nil) return (EMPTY_DICTIONARY); if (itemI == Nil) { // no arg, return first record root = SplayLeft (root); itemCur = root->item; return (SUCCESS); } if (itemI != root->item) if (SplayUserType (itemI) > 0) { itemCur = root->item; return (SUCCESS); } if (root->right == Nil) return (LAST_ITEM); t = root; root = SplayLeft (root->right); root->left = t; t->right = Nil; itemCur = root->item; return (SUCCESS); } #endif // DICT_NONEXT #ifndef DICT_NOPREV Dict_Status Dictionary::Dict_Prev( // return the previous item pUserType itemI // of a key less then this // Returns: // itemCur - Nil if at begining of Dict, else current item ) //-----------------------------------------------------------------------// { TreeNode* t; itemCur = Nil; if (root == Nil) return (EMPTY_DICTIONARY); if (itemI == Nil) { // no arg, return last record root = SplayRight (root); itemCur = root->item; return (SUCCESS); } if (itemI != root->item) if (SplayUserType (itemI) < 0) { itemCur = root->item; return (SUCCESS); } if (root->left == Nil) return (LAST_ITEM); t = root; root = SplayRight (root->left); root->right = t; t->left = Nil; itemCur = root->item; return (SUCCESS); } #endif // DICT_NOPREV Dict_Status Dictionary::Dict_Insert( // insert the given item into the tree pUserType itemI // the item to be inserted // Returns: // itemCur - point to new item ) //-----------------------------------------------------------------------// { TreeNode *newNode, *t; if ((itemCur = itemI) == Nil) return (NULL_ITEM); if (root == Nil) { root = new TreeNode(itemI); size++; return (SUCCESS); } if (SplayUserType (itemI) == 0) return (ITEM_ALREADY_PRESENT); newNode = new TreeNode(itemI); size++; t = root; if (fCompare > 0) { newNode->right = t->right; // item >= t->item newNode->left = t; t->right = Nil; } else { newNode->left = t->left; newNode->right = t; t->left = Nil; } root = newNode; // printf("After Insert %ld: (", this); PrintItem(itemI); printf(")\n"); Dict_Print(); return (SUCCESS); } Dict_Status Dictionary::Dict_Delete( // delete the given item from the tree pUserType *itemI // points to the (key) item to be deleted // Returns: // itemCur is Nil - undefined ) //-----------------------------------------------------------------------// { TreeNode *t, *r; itemCur = Nil; if (root == Nil) return (EMPTY_DICTIONARY); if (itemI == Nil) return (NULL_ITEM); if (itemI != root->item) { if (SplayUserType (*itemI) != 0) return(ITEM_NOT_FOUND); } *itemI = root->item; t = root; if (t->left == Nil) root = t->right; else if ( (r = t->right) == Nil) root = t->left; else { r = SplayLeft (r); r->left = t->left; // at this point r->left == Nil root = r; } delete t; size--; return (SUCCESS); } pUserType Dictionary::Dict_Delete_One() { TreeNode * pCurrent = root; TreeNode * pPrev = NULL; // NULL indicates prev is root pUserType pResult; int fLeft; while ( pCurrent ) { if ( pCurrent->left ) { pPrev = pCurrent; pCurrent = pCurrent->left; fLeft = 1; continue; } if ( pCurrent->right ) { pPrev = pCurrent; pCurrent = pCurrent->right; fLeft = 0; continue; } // found a leaf break; } // we are now at a leaf (or tree empty) if ( !pCurrent ) return NULL; // unhook from parent if ( pPrev ) { if ( fLeft ) pPrev->left = NULL; else pPrev->right = NULL; } else root = NULL; // return the item, and delete the treenode pResult = pCurrent->item; delete pCurrent; size--; return pResult; } // Utility functions to print of a tree #ifndef DICT_NOPRINT static indentCur; static PrintFN printCur; static char spaces[] = " "; void Dictionary::PrinTree( // recursively print out a tree int lmargin, // current depth & margen TreeNode *np // subtree to print ) //-----------------------------------------------------------------------// { #if 0 if (np == Nil) return; PrinTree(lmargin+indentCur, np->right); if (lmargin > sizeof(spaces)) lmargin = sizeof(spaces);; spaces[lmargin] = 0; printf(spaces); spaces[lmargin] = ' '; Print(np->item); printf("\n"); PrinTree(lmargin+indentCur, np->left); #endif // 0 } void Dictionary::Dict_Print( long indent // prints the binary tree (indented right subtree, // followed by the root, followed by the indented right dubtree) ) //-----------------------------------------------------------------------// { indentCur = indent; PrinTree(0, root); } #endif // DICT_PRINT