/*++ Copyright (c) 1997-1999 Microsoft Corporation Module Name: chunkimpl.h Abstract: This routine will manage allocations of chunks of structures. It also contains a handy unicode to ansi conversion function Author: 16-Jan-1997 AlanWar Revision History: --*/ #if DBG BOOLEAN WmipLoggingEnabled = FALSE; #endif PENTRYHEADER WmipAllocEntry( PCHUNKINFO ChunkInfo ) /*++ Routine Description: This routine will allocate a single structure within a list of chunks of structures. Arguments: ChunkInfo describes the chunks of structures Return Value: Pointer to structure or NULL if one cannot be allocated. Entry returns with its refcount set to 1 --*/ { PLIST_ENTRY ChunkList, EntryList, FreeEntryHead; PCHUNKHEADER Chunk; PBYTE EntryPtr; ULONG EntryCount, ChunkSize; PENTRYHEADER Entry; ULONG i; #ifdef HEAPVALIDATION WmipAssert(RtlValidateProcessHeaps()); #endif WmipEnterCriticalSection(); ChunkList = ChunkInfo->ChunkHead.Flink; // // Loop over all chunks to see if any chunk has a free entry for us while(ChunkList != &ChunkInfo->ChunkHead) { Chunk = CONTAINING_RECORD(ChunkList, CHUNKHEADER, ChunkList); if (! IsListEmpty(&Chunk->FreeEntryHead)) { EntryList = RemoveHeadList(&Chunk->FreeEntryHead); Chunk->EntriesInUse++; WmipLeaveCriticalSection(); Entry = (CONTAINING_RECORD(EntryList, ENTRYHEADER, FreeEntryList)); WmipAssert(Entry->Flags & FLAG_ENTRY_ON_FREE_LIST); memset(Entry, 0, ChunkInfo->EntrySize); Entry->Chunk = Chunk; Entry->RefCount = 1; Entry->Flags = ChunkInfo->InitialFlags; Entry->Signature = ChunkInfo->Signature; #if DBG InterlockedIncrement(&ChunkInfo->AllocCount); #endif return(Entry); } ChunkList = ChunkList->Flink; } WmipLeaveCriticalSection(); // // There are no more free entries in any of the chunks. Allocate a new // chunk if we can ChunkSize = (ChunkInfo->EntrySize * ChunkInfo->EntriesPerChunk) + sizeof(CHUNKHEADER); Chunk = (PCHUNKHEADER)WmipAlloc(ChunkSize); if (Chunk != NULL) { // // Initialize the chunk by building the free list of entries within // it while also initializing each entry. memset(Chunk, 0, ChunkSize); FreeEntryHead = &Chunk->FreeEntryHead; InitializeListHead(FreeEntryHead); EntryPtr = (PBYTE)Chunk + sizeof(CHUNKHEADER); EntryCount = ChunkInfo->EntriesPerChunk - 1; for (i = 0; i < EntryCount; i++) { Entry = (PENTRYHEADER)EntryPtr; Entry->Chunk = Chunk; Entry->Flags = FLAG_ENTRY_ON_FREE_LIST; InsertHeadList(FreeEntryHead, &((PENTRYHEADER)EntryPtr)->FreeEntryList); EntryPtr = EntryPtr + ChunkInfo->EntrySize; } // // EntryPtr now points to the last entry in the chunk which has not // been placed on the free list. This will be the entry returned // to the caller. Entry = (PENTRYHEADER)EntryPtr; Entry->Chunk = Chunk; Entry->RefCount = 1; Entry->Flags = ChunkInfo->InitialFlags; Entry->Signature = ChunkInfo->Signature; Chunk->EntriesInUse = 1; // // Now place the newly allocated chunk onto the list of chunks WmipEnterCriticalSection(); InsertHeadList(&ChunkInfo->ChunkHead, &Chunk->ChunkList); WmipLeaveCriticalSection(); } else { WmipDebugPrint(("WMI: Could not allocate memory for new chunk %x\n", ChunkInfo)); Entry = NULL; } return(Entry); } void WmipFreeEntry( PCHUNKINFO ChunkInfo, PENTRYHEADER Entry ) /*++ Routine Description: This routine will free an entry within a chunk and if the chunk has no more allocated entries then the chunk will be returned to the pool. Arguments: ChunkInfo describes the chunks of structures Entry is the chunk entry to free Return Value: --*/ { PCHUNKHEADER Chunk; WmipAssert(Entry != NULL); WmipAssert(! (Entry->Flags & FLAG_ENTRY_ON_FREE_LIST)) WmipAssert((Entry->Flags & FLAG_ENTRY_INVALID)) WmipAssert(Entry->RefCount == 0); WmipAssert(Entry->Signature == ChunkInfo->Signature); Chunk = Entry->Chunk; WmipAssert(Chunk->EntriesInUse > 0); WmipEnterCriticalSection(); if ((--Chunk->EntriesInUse == 0) && (ChunkInfo->ChunkHead.Blink != &Chunk->ChunkList)) { // // We return the chunks memory back to the heap if there are no // more entries within the chunk in use and the chunk was not the // first chunk to be allocated. RemoveEntryList(&Chunk->ChunkList); WmipLeaveCriticalSection(); WmipFree(Chunk); } else { // // Otherwise just mark the entry as free and put it back on the // chunks free list. #if DBG memset(Entry, 0xCCCCCCCC, ChunkInfo->EntrySize); #endif Entry->Flags = FLAG_ENTRY_ON_FREE_LIST; Entry->Signature = 0; InsertTailList(&Chunk->FreeEntryHead, &Entry->FreeEntryList); WmipLeaveCriticalSection(); } } ULONG WmipUnreferenceEntry( PCHUNKINFO ChunkInfo, PENTRYHEADER Entry ) /*+++ Routine Description: This routine will remove a reference count from the entry and if the reference count reaches zero then the entry is removed from its active list and then cleaned up and finally freed. Arguments: ChunkInfo points at structure that describes the entry Entry is the entry to unreference Return Value: New refcount of the entry ---*/ { ULONG RefCount; WmipAssert(Entry != NULL); WmipAssert(Entry->RefCount > 0); WmipAssert(Entry->Signature == ChunkInfo->Signature); WmipEnterCriticalSection(); InterlockedDecrement(&Entry->RefCount); RefCount = Entry->RefCount; if (RefCount == 0) { // // Entry has reached a ref count of 0 so mark it as invalid and remove // it from its active list. Entry->Flags |= FLAG_ENTRY_INVALID; if ((Entry->InUseEntryList.Flink != NULL) && (Entry->Flags & FLAG_ENTRY_REMOVE_LIST)) { RemoveEntryList(&Entry->InUseEntryList); } WmipLeaveCriticalSection(); if (ChunkInfo->EntryCleanup != NULL) { // // Call cleanup routine to free anything contained by the entry (*ChunkInfo->EntryCleanup)(ChunkInfo, Entry); } // // Place the entry back on its free list WmipFreeEntry(ChunkInfo, Entry); } else { WmipLeaveCriticalSection(); } return(RefCount); } ULONG AnsiSizeForUnicodeString( PWCHAR UnicodeString, ULONG *AnsiSizeInBytes ) /*++ Routine Description: This routine will return the length needed to represent the unicode string as ANSI Arguments: UnicodeString is the unicode string whose ansi length is returned Return Value: Number of bytes needed to represent unicode string as ANSI --*/ { WmipAssert(UnicodeString != NULL); try { *AnsiSizeInBytes = WideCharToMultiByte(CP_ACP, 0, UnicodeString, -1, NULL, 0, NULL, NULL) * sizeof(WCHAR); } except(EXCEPTION_EXECUTE_HANDLER) { return(ERROR_NOACCESS); } return((*AnsiSizeInBytes == 0) ? GetLastError() : ERROR_SUCCESS); } ULONG UnicodeToAnsi( LPCWSTR pszW, LPSTR * ppszA, ULONG *AnsiSizeInBytes OPTIONAL ) /*++ Routine Description: Convert Unicode string into its ansi equivalent Arguments: pszW is unicode string to convert *ppszA on entry has a pointer to a ansi string into which the answer is written. If NULL on entry then a buffer is allocated and returned in it. Return Value: Error code --*/ { ULONG cbAnsi, cCharacters; ULONG Status; ULONG cbAnsiUsed; BOOLEAN CallerReturnBuffer = (*ppszA != NULL); // // If input is null then just return the same. if (pszW == NULL) { *ppszA = NULL; return(ERROR_SUCCESS); } try { cCharacters = wcslen(pszW)+1; } except(EXCEPTION_EXECUTE_HANDLER) { WmipDebugPrint(("WMI: Bad pointer %x passed to UnicodeToAnsi\n", pszW)); return(ERROR_NOACCESS); } // Determine number of bytes to be allocated for ANSI string. An // ANSI string can have at most 2 bytes per character (for Double // Byte Character Strings.) cbAnsi = cCharacters*2; // Use of the OLE allocator is not required because the resultant // ANSI string will never be passed to another COM component. You // can use your own allocator. if (*ppszA == NULL) { *ppszA = (LPSTR) WmipAlloc(cbAnsi); if (NULL == *ppszA) { return(ERROR_NOT_ENOUGH_MEMORY); } } // Convert to ANSI. try { cbAnsiUsed = WideCharToMultiByte(CP_ACP, 0, pszW, cCharacters, *ppszA, cbAnsi, NULL, NULL); } except(EXCEPTION_EXECUTE_HANDLER) { if (! CallerReturnBuffer) { WmipFree(*ppszA); *ppszA = NULL; } return(ERROR_NOACCESS); } if (AnsiSizeInBytes != NULL) { *AnsiSizeInBytes = cbAnsiUsed; } if (0 == cbAnsiUsed) { Status = GetLastError(); if (! CallerReturnBuffer) { WmipFree(*ppszA); *ppszA = NULL; } return(Status); } return(ERROR_SUCCESS); } ULONG AnsiToUnicode( LPCSTR pszA, LPWSTR * ppszW ) /*++ Routine Description: Convert Ansi string into its Unicode equivalent Arguments: pszA is ansi string to convert *ppszW on entry has a pointer to a unicode string into which the answer is written. If NULL on entry then a buffer is allocated and returned in it. Return Value: Error code --*/ { ULONG cCharacters; ULONG Status; ULONG cbUnicodeUsed; BOOLEAN CallerReturnBuffer = (*ppszW != NULL); // // If input is null then just return the same. if (pszA == NULL) { *ppszW = NULL; return(ERROR_SUCCESS); } // // Determine the count of characters needed for Unicode string try { cCharacters = MultiByteToWideChar(CP_ACP, 0, pszA, -1, NULL, 0); } except(EXCEPTION_EXECUTE_HANDLER) { WmipDebugPrint(("WMI: Bad pointer %x passed to AnsiToUnicode\n", pszA)); return(ERROR_NOACCESS); } if (cCharacters == 0) { *ppszW = NULL; return(GetLastError()); } // Use of the OLE allocator is not required because the resultant // ANSI string will never be passed to another COM component. You // can use your own allocator. if (*ppszW == NULL) { *ppszW = (LPWSTR) WmipAlloc(cCharacters * sizeof(WCHAR)); } if (NULL == *ppszW) return(ERROR_NOT_ENOUGH_MEMORY); // Convert to Unicode try { cbUnicodeUsed = MultiByteToWideChar(CP_ACP, 0, pszA, -1, *ppszW, cCharacters); } except(EXCEPTION_EXECUTE_HANDLER) { if (! CallerReturnBuffer) { WmipFree(*ppszW); *ppszW = NULL; } return(ERROR_NOACCESS); } if (0 == cbUnicodeUsed) { Status = GetLastError(); if (! CallerReturnBuffer) { WmipFree(*ppszW); *ppszW = NULL; } return(Status); } return(ERROR_SUCCESS); } ULONG UnicodeSizeForAnsiString( LPCSTR pszA, ULONG *UnicodeSizeInBytes ) /*++ Routine Description: This routine will return the length needed to represent the ansi string as UNICODE Arguments: pszA is ansi string to convert Return Value: Error code --*/ { WmipAssert(pszA != NULL); // // Determine the count of characters needed for Unicode string try { *UnicodeSizeInBytes = MultiByteToWideChar(CP_ACP, 0, pszA, -1, NULL, 0) * sizeof(WCHAR); } except(EXCEPTION_EXECUTE_HANDLER) { return(ERROR_NOACCESS); } return((*UnicodeSizeInBytes == 0) ? GetLastError() : ERROR_SUCCESS); } #if 0 // TODO: Delete me ULONG WmipStaticInstanceNameSize( PWMIINSTANCEINFO WmiInstanceInfo ) /*+++ Routine Description: This routine will calculate the size needed to place instance names in a WNODE_ALL_DATA Arguments: WmiInstanceInfo describes to instance set whose instance name size is to be calculated Return Value: Size needed to place instance names in a WNODE_ALL_DATA plus 3. The extra 3 bytes are added in case the OffsetInstanceNameOffsets need to be padded since they must be on a 4 byte boundry. ---*/ { ULONG NameSize; ULONG i; ULONG SuffixLen; // // If we already computed this then just return the results if (WmiInstanceInfo->InstanceNameSize != 0) { return(WmiInstanceInfo->InstanceNameSize); } // // Start with a name size of 3 in case the OffsetInstanceNameOffset will // need to be padded so that it starts on a 4 byte boundry. NameSize = 3; if (WmiInstanceInfo->Flags & IS_INSTANCE_BASENAME) { // // For static base names we assume that there will never be more than // 999999 instances of a guid. SuffixLen = MAXBASENAMESUFFIXSIZE * sizeof(WCHAR); WmipAssert((WmiInstanceInfo->BaseIndex + WmiInstanceInfo->InstanceCount) < 999999); NameSize += ((wcslen(WmiInstanceInfo->BaseName) * sizeof(WCHAR)) + 2 + SuffixLen + sizeof(ULONG)) * WmiInstanceInfo->InstanceCount; } else if (WmiInstanceInfo->Flags & IS_INSTANCE_STATICNAMES) { // // Count up each size of the static instance names in the list for (i = 0; i < WmiInstanceInfo->InstanceCount; i++) { NameSize += (wcslen(WmiInstanceInfo->StaticNamePtr[i]) + 2) * sizeof(WCHAR) + sizeof(ULONG); } } WmiInstanceInfo->InstanceNameSize = NameSize; return(NameSize); } void WmipInsertStaticNames( PWNODE_ALL_DATA Wnode, ULONG MaxWnodeSize, PWMIINSTANCEINFO WmiInstanceInfo ) /*+++ Routine Description: This routine will copy into the WNODE_ALL_DATA instance names for a static instance name set. If the Wnode_All_data is too small then it is converted to a WNODE_TOO_SMALL Arguments: Wnode points at the WNODE_ALL_DATA MaxWnodeSize is the maximum size of the Wnode WmiInstanceInfo is the Instance Info Return Value: ---*/ { PWCHAR NamePtr; PULONG NameOffsetPtr; ULONG InstanceCount; ULONG i; WCHAR Index[7]; PWCHAR StaticName; ULONG SizeNeeded; ULONG NameLen; USHORT Len; ULONG PaddedBufferSize; if ((WmiInstanceInfo->Flags & (IS_INSTANCE_BASENAME | IS_INSTANCE_STATICNAMES)) == 0) { WmipDebugPrint(("WMI: Try to setup static names for dynamic guid\n")); return; } InstanceCount = WmiInstanceInfo->InstanceCount; // // Pad out the size of the buffer to a 4 byte boundry since the // OffsetInstanceNameOffsets must be on a 4 byte boundry PaddedBufferSize = (Wnode->WnodeHeader.BufferSize + 3) & ~3; // // Compute size needed to write instance names. SizeNeeded = (InstanceCount * sizeof(ULONG)) + WmipStaticInstanceNameSize(WmiInstanceInfo) + Wnode->WnodeHeader.BufferSize; if (SizeNeeded > MaxWnodeSize) { // // If not enough space left then change into a WNODE_TOO_SMALL Wnode->WnodeHeader.BufferSize = sizeof(WNODE_TOO_SMALL); Wnode->WnodeHeader.Flags = WNODE_FLAG_TOO_SMALL; ((PWNODE_TOO_SMALL)Wnode)->SizeNeeded = SizeNeeded; return; } // // Build the array of offsets to instance names NameOffsetPtr = (PULONG)((PBYTE)Wnode + PaddedBufferSize); Wnode->OffsetInstanceNameOffsets = (ULONG)((PBYTE)NameOffsetPtr - (PBYTE)Wnode); NamePtr = (PWCHAR)(NameOffsetPtr + InstanceCount); if (WmiInstanceInfo->Flags & IS_INSTANCE_BASENAME) { if (WmiInstanceInfo->Flags & IS_PDO_INSTANCENAME) { Wnode->WnodeHeader.Flags |= WNODE_FLAG_PDO_INSTANCE_NAMES; } for (i = 0; i < InstanceCount; i++) { *NameOffsetPtr++ = (ULONG)((PBYTE)NamePtr - (PBYTE)Wnode); wcscpy(NamePtr+1, WmiInstanceInfo->BaseName); swprintf(Index, L"%d", WmiInstanceInfo->BaseIndex+i); wcscat(NamePtr+1, Index); NameLen = wcslen(NamePtr+1) + 1; *NamePtr = (USHORT)NameLen * sizeof(WCHAR); NamePtr += NameLen + 1; } } else if (WmiInstanceInfo->Flags & IS_INSTANCE_STATICNAMES) { for (i = 0; i < InstanceCount; i++) { *NameOffsetPtr++ = (ULONG)((PBYTE)NamePtr - (PBYTE)Wnode); StaticName = WmiInstanceInfo->StaticNamePtr[i]; Len = (wcslen(StaticName)+1) * sizeof(WCHAR); *NamePtr++ = Len; wcscpy(NamePtr, StaticName); NamePtr += Len / sizeof(WCHAR); } } Wnode->WnodeHeader.BufferSize = SizeNeeded; } #endif #ifdef HEAPVALIDATION PVOID WmipAlloc( ULONG Size ) { PVOID p; WmipAssert(RtlValidateProcessHeaps()); p = RtlAllocateHeap(WmipProcessHeap, 0, Size); WmipDebugPrint(("WMI: WmipAlloc %x (%x)\n", p, Size)); return(p); } void WmipFree( PVOID p ) { WmipDebugPrint(("WMI: WmipFree %x\n", p)); WmipAssert(p != NULL); WmipAssert(RtlValidateProcessHeaps()); RtlFreeHeap(WmipProcessHeap, 0, p); } #endif #ifdef MEMPHIS void __cdecl DebugOut(char *Format, ...) { char Buffer[1024]; va_list pArg; ULONG i; va_start(pArg, Format); i = _vsnprintf(Buffer, sizeof(Buffer), Format, pArg); OutputDebugString(Buffer); } #else void __cdecl DebugOut(char *Format, ...) { char Buffer[1024]; va_list pArg; ULONG i; i = sprintf(Buffer, "[%d] - ", GetTickCount()); va_start(pArg, Format); i = _vsnprintf(&Buffer[i], sizeof(Buffer), Format, pArg); DbgPrint(Buffer); } #endif #ifndef MEMPHIS ULONG WmipCheckGuidAccess( LPGUID Guid, ACCESS_MASK DesiredAccess ) { HANDLE Handle; ULONG Status; Status = WmipOpenKernelGuid(Guid, DesiredAccess, &Handle, IOCTL_WMI_OPEN_GUID ); if (Status == ERROR_SUCCESS) { CloseHandle(Handle); } return(Status); } ULONG WmipBuildGuidObjectAttributes( IN LPGUID Guid, OUT POBJECT_ATTRIBUTES ObjectAttributes, OUT PUNICODE_STRING GuidString, OUT PWCHAR GuidObjectName ) { WCHAR GuidChar[37]; WmipAssert(Guid != NULL); // // Build up guid name into the ObjectAttributes // swprintf(GuidChar, L"%08lX-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X", Guid->Data1, Guid->Data2, Guid->Data3, Guid->Data4[0], Guid->Data4[1], Guid->Data4[2], Guid->Data4[3], Guid->Data4[4], Guid->Data4[5], Guid->Data4[6], Guid->Data4[7]); WmipAssert(wcslen(GuidChar) == 36); wcscpy(GuidObjectName, WmiGuidObjectDirectory); wcscat(GuidObjectName, GuidChar); RtlInitUnicodeString(GuidString, GuidObjectName); memset(ObjectAttributes, 0, sizeof(OBJECT_ATTRIBUTES)); ObjectAttributes->Length = sizeof(OBJECT_ATTRIBUTES); ObjectAttributes->ObjectName = GuidString; return(ERROR_SUCCESS); } ULONG WmipOpenKernelGuid( LPGUID Guid, ACCESS_MASK DesiredAccess, PHANDLE Handle, ULONG Ioctl ) { WMIOPENGUIDBLOCK WmiOpenGuidBlock; UNICODE_STRING GuidString; ULONG ReturnSize; ULONG Status; WCHAR GuidObjectName[WmiGuidObjectNameLength+1]; OBJECT_ATTRIBUTES ObjectAttributes; Status = WmipBuildGuidObjectAttributes(Guid, &ObjectAttributes, &GuidString, GuidObjectName); if (Status == ERROR_SUCCESS) { WmiOpenGuidBlock.ObjectAttributes = &ObjectAttributes; WmiOpenGuidBlock.DesiredAccess = DesiredAccess; Status = WmipSendWmiKMRequest(NULL, Ioctl, (PVOID)&WmiOpenGuidBlock, sizeof(WMIOPENGUIDBLOCK), (PVOID)&WmiOpenGuidBlock, sizeof(WMIOPENGUIDBLOCK), &ReturnSize, NULL); if (Status == ERROR_SUCCESS) { *Handle = WmiOpenGuidBlock.Handle.Handle; } else { *Handle = NULL; } } return(Status); } #endif