/******************************Module*Header*******************************\ * Module Name: enable.c * * This module contains the functions that enable and disable the * driver, the pdev, and the surface. * * Copyright (c) 1992-1995 Microsoft Corporation \**************************************************************************/ #include "precomp.h" BOOL bGetChipIDandRev(HANDLE hDriver, PPDEV ppdev); BYTE* gpjBase; BYTE* gpjPorts; BYTE* gpjMmu0; /******************************Public*Structure****************************\ * GDIINFO ggdiDefault * * This contains the default GDIINFO fields that are passed back to GDI * during DrvEnablePDEV. * * NOTE: This structure defaults to values for an 8bpp palette device. * Some fields are overwritten for different colour depths. \**************************************************************************/ GDIINFO ggdiDefault = { GDI_DRIVER_VERSION, // ulVersion DT_RASDISPLAY, // ulTechnology 0, // ulHorzSize (filled in later) 0, // ulVertSize (filled in later) 0, // ulHorzRes (filled in later) 0, // ulVertRes (filled in later) 0, // cBitsPixel (filled in later) 0, // cPlanes (filled in later) 20, // ulNumColors (palette managed) 0, // flRaster (DDI reserved field) 0, // ulLogPixelsX (filled in later) 0, // ulLogPixelsY (filled in later) TC_RA_ABLE /* | TC_SCROLLBLT */, // flTextCaps -- // Setting TC_SCROLLBLT tells console to scroll // by repainting the entire window. Otherwise, // scrolls are done by calling the driver to // do screen to screen copies. 0, // ulDACRed (filled in later) 0, // ulDACGreen (filled in later) 0, // ulDACBlue (filled in later) 0x0024, // ulAspectX 0x0024, // ulAspectY 0x0033, // ulAspectXY (one-to-one aspect ratio) 1, // xStyleStep 1, // yStyleSte; 3, // denStyleStep -- Styles have a one-to-one aspect // ratio, and every 'dot' is 3 pixels long { 0, 0 }, // ptlPhysOffset { 0, 0 }, // szlPhysSize 256, // ulNumPalReg // These fields are for halftone initialization. The actual values are // a bit magic, but seem to work well on our display. { // ciDevice { 6700, 3300, 0 }, // Red { 2100, 7100, 0 }, // Green { 1400, 800, 0 }, // Blue { 1750, 3950, 0 }, // Cyan { 4050, 2050, 0 }, // Magenta { 4400, 5200, 0 }, // Yellow { 3127, 3290, 0 }, // AlignmentWhite 20000, // RedGamma 20000, // GreenGamma 20000, // BlueGamma 0, 0, 0, 0, 0, 0 // No dye correction for raster displays }, 0, // ulDevicePelsDPI (for printers only) PRIMARY_ORDER_CBA, // ulPrimaryOrder HT_PATSIZE_4x4_M, // ulHTPatternSize HT_FORMAT_8BPP, // ulHTOutputFormat HT_FLAG_ADDITIVE_PRIMS, // flHTFlags 0, // ulVRefresh 0, // ulBltAlignment 0, // ulPanningHorzRes 0, // ulPanningVertRes }; /******************************Public*Structure****************************\ * DEVINFO gdevinfoDefault * * This contains the default DEVINFO fields that are passed back to GDI * during DrvEnablePDEV. * * NOTE: This structure defaults to values for an 8bpp palette device. * Some fields are overwritten for different colour depths. \**************************************************************************/ #define SYSTM_LOGFONT {16,7,0,0,700,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\ CLIP_DEFAULT_PRECIS,DEFAULT_QUALITY,\ VARIABLE_PITCH | FF_DONTCARE,L"System"} #define HELVE_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\ CLIP_STROKE_PRECIS,PROOF_QUALITY,\ VARIABLE_PITCH | FF_DONTCARE,L"MS Sans Serif"} #define COURI_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\ CLIP_STROKE_PRECIS,PROOF_QUALITY,\ FIXED_PITCH | FF_DONTCARE, L"Courier"} DEVINFO gdevinfoDefault = { (GCAPS_OPAQUERECT | GCAPS_DITHERONREALIZE | GCAPS_PALMANAGED | GCAPS_MONO_DITHER | GCAPS_COLOR_DITHER | GCAPS_DIRECTDRAW | GCAPS_ASYNCMOVE ), // NOTE: Only enable ASYNCMOVE if your code // and hardware can handle DrvMovePointer // calls at any time, even while another // thread is in the middle of a drawing // call such as DrvBitBlt. // flGraphicsFlags SYSTM_LOGFONT, // lfDefaultFont HELVE_LOGFONT, // lfAnsiVarFont COURI_LOGFONT, // lfAnsiFixFont 0, // cFonts BMF_8BPP, // iDitherFormat 8, // cxDither 8, // cyDither 0 // hpalDefault (filled in later) }; /******************************Public*Structure****************************\ * DFVFN gadrvfn[] * * Build the driver function table gadrvfn with function index/address * pairs. This table tells GDI which DDI calls we support, and their * location (GDI does an indirect call through this table to call us). * * Why haven't we implemented DrvSaveScreenBits? To save code. * * When the driver doesn't hook DrvSaveScreenBits, USER simulates on- * the-fly by creating a temporary device-format-bitmap, and explicitly * calling DrvCopyBits to save/restore the bits. Since we already hook * DrvCreateDeviceBitmap, we'll end up using off-screen memory to store * the bits anyway (which would have been the main reason for implementing * DrvSaveScreenBits). So we may as well save some working set. \**************************************************************************/ DRVFN gadrvfn[] = { { INDEX_DrvEnablePDEV, (PFN) DrvEnablePDEV }, { INDEX_DrvCompletePDEV, (PFN) DrvCompletePDEV }, { INDEX_DrvDisablePDEV, (PFN) DrvDisablePDEV }, { INDEX_DrvEnableSurface, (PFN) DrvEnableSurface }, { INDEX_DrvDisableSurface, (PFN) DrvDisableSurface }, { INDEX_DrvAssertMode, (PFN) DrvAssertMode }, { INDEX_DrvCopyBits, (PFN) DrvCopyBits }, { INDEX_DrvBitBlt, (PFN) DrvBitBlt }, { INDEX_DrvTextOut, (PFN) DrvTextOut }, { INDEX_DrvGetModes, (PFN) DrvGetModes }, { INDEX_DrvStrokePath, (PFN) DrvStrokePath }, { INDEX_DrvSetPalette, (PFN) DrvSetPalette }, { INDEX_DrvDitherColor, (PFN) DrvDitherColor }, #if !DRIVER_PUNT_ALL { INDEX_DrvStretchBlt, (PFN) DrvStretchBlt }, { INDEX_DrvMovePointer, (PFN) DrvMovePointer }, { INDEX_DrvSetPointerShape, (PFN) DrvSetPointerShape }, { INDEX_DrvPaint, (PFN) DrvPaint }, { INDEX_DrvRealizeBrush, (PFN) DrvRealizeBrush }, { INDEX_DrvCreateDeviceBitmap, (PFN) DrvCreateDeviceBitmap }, { INDEX_DrvDeleteDeviceBitmap, (PFN) DrvDeleteDeviceBitmap }, { INDEX_DrvGetDirectDrawInfo, (PFN) DrvGetDirectDrawInfo }, { INDEX_DrvEnableDirectDraw, (PFN) DrvEnableDirectDraw }, { INDEX_DrvDisableDirectDraw, (PFN) DrvDisableDirectDraw }, #endif }; ULONG gcdrvfn = sizeof(gadrvfn) / sizeof(DRVFN); /******************************Public*Routine******************************\ * BOOL DrvEnableDriver * * Enables the driver by retrieving the drivers function table and version. * \**************************************************************************/ BOOL DrvEnableDriver( ULONG iEngineVersion, ULONG cj, DRVENABLEDATA* pded) { // Engine Version is passed down so future drivers can support previous // engine versions. A next generation driver can support both the old // and new engine conventions if told what version of engine it is // working with. For the first version the driver does nothing with it. DISPDBG((100, "DrvEnableDriver")); // Fill in as much as we can. if (cj >= sizeof(DRVENABLEDATA)) pded->pdrvfn = gadrvfn; if (cj >= (sizeof(ULONG) * 2)) pded->c = gcdrvfn; // DDI version this driver was targeted for is passed back to engine. // Future graphic's engine may break calls down to old driver format. if (cj >= sizeof(ULONG)) pded->iDriverVersion = DDI_DRIVER_VERSION_NT4; return(TRUE); } /******************************Public*Routine******************************\ * VOID DrvDisableDriver * * Tells the driver it is being disabled. Release any resources allocated in * DrvEnableDriver. * \**************************************************************************/ VOID DrvDisableDriver(VOID) { return; } /******************************Public*Routine******************************\ * DHPDEV DrvEnablePDEV * * Initializes a bunch of fields for GDI, based on the mode we've been asked * to do. This is the first thing called after DrvEnableDriver, when GDI * wants to get some information about us. * * (This function mostly returns back information; DrvEnableSurface is used * for initializing the hardware and driver components.) * \**************************************************************************/ DHPDEV DrvEnablePDEV( DEVMODEW* pdm, // Contains data pertaining to requested mode PWSTR pwszLogAddr, // Logical address ULONG cPat, // Count of standard patterns HSURF* phsurfPatterns, // Buffer for standard patterns ULONG cjCaps, // Size of buffer for device caps 'pdevcaps' ULONG* pdevcaps, // Buffer for device caps, also known as 'gdiinfo' ULONG cjDevInfo, // Number of bytes in device info 'pdi' DEVINFO* pdi, // Device information HDEV hdev, // HDEV, used for callbacks PWSTR pwszDeviceName, // Device name HANDLE hDriver) // Kernel driver handle { PDEV* ppdev; // Future versions of NT had better supply 'devcaps' and 'devinfo' // structures that are the same size or larger than the current // structures: DISPDBG((100, "DrvEnablePDEV")); if ((cjCaps < sizeof(GDIINFO)) || (cjDevInfo < sizeof(DEVINFO))) { DISPDBG((0, "DrvEnablePDEV - Buffer size too small")); goto ReturnFailure0; } // Allocate a physical device structure. Note that we definitely // rely on the zero initialization: ppdev = (PDEV*) EngAllocMem(0, sizeof(PDEV), ALLOC_TAG); if (ppdev == NULL) { DISPDBG((0, "DrvEnablePDEV - Failed EngAllocMem")); goto ReturnFailure0; } memset(ppdev, 0, sizeof(PDEV)); ppdev->hDriver = hDriver; if (!bGetChipIDandRev(hDriver, ppdev)) { // // This puppy wasn't recognized as a W32 // goto ReturnFailure1; } // Get the current screen mode information. Set up device caps and // devinfo: if (!bInitializeModeFields(ppdev, (GDIINFO*) pdevcaps, pdi, pdm)) { goto ReturnFailure1; } // Initialize palette information. if (!bInitializePalette(ppdev, pdi)) { DISPDBG((0, "DrvEnablePDEV - Failed bInitializePalette")); goto ReturnFailure1; } return((DHPDEV) ppdev); ReturnFailure1: DrvDisablePDEV((DHPDEV) ppdev); ReturnFailure0: DISPDBG((0, "Failed DrvEnablePDEV")); return(0); } /******************************Public*Routine******************************\ * DrvDisablePDEV * * Release the resources allocated in DrvEnablePDEV. If a surface has been * enabled DrvDisableSurface will have already been called. * * Note that this function will be called when previewing modes in the * Display Applet, but not at system shutdown. If you need to reset the * hardware at shutdown, you can do it in the miniport by providing a * 'HwResetHw' entry point in the VIDEO_HW_INITIALIZATION_DATA structure. * * Note: In an error, we may call this before DrvEnablePDEV is done. * \**************************************************************************/ VOID DrvDisablePDEV( DHPDEV dhpdev) { PDEV* ppdev; ppdev = (PDEV*) dhpdev; vUninitializePalette(ppdev); EngFreeMem(ppdev); } /******************************Public*Routine******************************\ * VOID DrvCompletePDEV * * Store the HPDEV, the engines handle for this PDEV, in the DHPDEV. * \**************************************************************************/ VOID DrvCompletePDEV( DHPDEV dhpdev, HDEV hdev) { ((PDEV*) dhpdev)->hdevEng = hdev; } /******************************Public*Routine******************************\ * HSURF DrvEnableSurface * * Creates the drawing surface, initializes the hardware, and initializes * driver components. This function is called after DrvEnablePDEV, and * performs the final device initialization. * \**************************************************************************/ HSURF DrvEnableSurface( DHPDEV dhpdev) { PDEV* ppdev; HSURF hsurf; SIZEL sizl; DSURF* pdsurf; VOID* pvTmpBuffer; ppdev = (PDEV*) dhpdev; ///////////////////////////////////////////////////////////////////// // First, enable all the subcomponents. // // Note that the order in which these 'Enable' functions are called // may be significant in low off-screen memory conditions, because // the off-screen heap manager may fail some of the later // allocations... if (!bEnableHardware(ppdev)) goto ReturnFailure; if (!bEnableBanking(ppdev)) goto ReturnFailure; if (!bEnableOffscreenHeap(ppdev)) goto ReturnFailure; if (!bEnablePointer(ppdev)) goto ReturnFailure; if (!bEnableText(ppdev)) goto ReturnFailure; if (!bEnableBrushCache(ppdev)) goto ReturnFailure; if (!bEnablePalette(ppdev)) goto ReturnFailure; if (!bEnableDirectDraw(ppdev)) goto ReturnFailure; ///////////////////////////////////////////////////////////////////// // Now create our private surface structure. // // Whenever we get a call to draw directly to the screen, we'll get // passed a pointer to a SURFOBJ whose 'dhpdev' field will point // to our PDEV structure, and whose 'dhsurf' field will point to the // following DSURF structure. // // Every device bitmap we create in DrvCreateDeviceBitmap will also // have its own unique DSURF structure allocated (but will share the // same PDEV). To make our code more polymorphic for handling drawing // to either the screen or an off-screen bitmap, we have the same // structure for both. pdsurf = EngAllocMem(FL_ZERO_MEMORY, sizeof(DSURF), ALLOC_TAG); if (pdsurf == NULL) { DISPDBG((0, "DrvEnableSurface - Failed pdsurf EngAllocMem")); goto ReturnFailure; } ppdev->pdsurfScreen = pdsurf; // Remember it for clean-up pdsurf->poh = ppdev->pohScreen; // The screen is a surface, too pdsurf->dt = DT_SCREEN; // Not to be confused with a DIB pdsurf->sizl.cx = ppdev->cxScreen; pdsurf->sizl.cy = ppdev->cyScreen; pdsurf->ppdev = ppdev; pdsurf->cBlt = 0; pdsurf->iUniq = 0; ///////////////////////////////////////////////////////////////////// // Next, have GDI create the actual SURFOBJ. // // Our drawing surface is going to be 'device-managed', meaning that // GDI cannot draw on the framebuffer bits directly, and as such we // create the surface via EngCreateDeviceSurface. By doing this, we ensure // that GDI will only ever access the bitmaps bits via the Drv calls // that we've HOOKed. // // If we could map the entire framebuffer linearly into main memory // (i.e., we didn't have to go through a 64k aperture), it would be // beneficial to create the surface via EngCreateBitmap, giving GDI a // pointer to the framebuffer bits. When we pass a call on to GDI // where it can't directly read/write to the surface bits because the // surface is device managed, it has to create a temporary bitmap and // call our DrvCopyBits routine to get/set a copy of the affected bits. // For example, the OpenGL component prefers to be able to write on the // framebuffer bits directly. sizl.cx = ppdev->cxScreen; sizl.cy = ppdev->cyScreen; if (ppdev->bAutoBanking) { HSURF hsurfFrameBuf; // Engine-managed surface: hsurfFrameBuf = (HSURF) EngCreateBitmap(sizl, ppdev->lDelta, ppdev->iBitmapFormat, BMF_TOPDOWN, ppdev->pjScreen); if (hsurfFrameBuf == 0) { DISPDBG((0, "DrvEnableSurface - Failed EngCreateBitmap")); goto ReturnFailure; } if (!EngAssociateSurface(hsurfFrameBuf, ppdev->hdevEng, 0)) { DISPDBG((0, "DrvEnableSurface - Failed EngAssociateSurface 1")); goto ReturnFailure; } ppdev->psoFrameBuffer = EngLockSurface(hsurfFrameBuf); if (ppdev->psoFrameBuffer == NULL) { DISPDBG((0, "DrvEnableSurface - Couldn't lock our surface")); goto ReturnFailure; } } hsurf = EngCreateDeviceSurface((DHSURF) pdsurf, sizl, ppdev->iBitmapFormat); if (hsurf == 0) { DISPDBG((0, "DrvEnableSurface - Failed EngCreateDeviceSurface")); goto ReturnFailure; } ppdev->hsurfScreen = hsurf; // Remember it for clean-up ppdev->bEnabled = TRUE; // We'll soon be in graphics mode ///////////////////////////////////////////////////////////////////// // Now associate the surface and the PDEV. // // We have to associate the surface we just created with our physical // device so that GDI can get information related to the PDEV when // it's drawing to the surface (such as, for example, the length of // styles on the device when simulating styled lines). // if (!EngAssociateSurface(hsurf, ppdev->hdevEng, ppdev->flHooks)) { DISPDBG((0, "DrvEnableSurface - Failed EngAssociateSurface 2")); goto ReturnFailure; } // Create our generic temporary buffer, which may be used by any // component. pvTmpBuffer = EngAllocMem(0, TMP_BUFFER_SIZE, ALLOC_TAG); if (pvTmpBuffer == NULL) { DISPDBG((0, "DrvEnableSurface - Failed VirtualAlloc")); goto ReturnFailure; } ppdev->pvTmpBuffer = pvTmpBuffer; DISPDBG((5, "Passed DrvEnableSurface")); return(hsurf); ReturnFailure: DrvDisableSurface((DHPDEV) ppdev); DISPDBG((0, "Failed DrvEnableSurface")); return(0); } /******************************Public*Routine******************************\ * VOID DrvDisableSurface * * Free resources allocated by DrvEnableSurface. Release the surface. * * Note that this function will be called when previewing modes in the * Display Applet, but not at system shutdown. If you need to reset the * hardware at shutdown, you can do it in the miniport by providing a * 'HwResetHw' entry point in the VIDEO_HW_INITIALIZATION_DATA structure. * * Note: In an error case, we may call this before DrvEnableSurface is * completely done. * \**************************************************************************/ VOID DrvDisableSurface( DHPDEV dhpdev) { PDEV* ppdev; ppdev = (PDEV*) dhpdev; // Note: In an error case, some of the following relies on the // fact that the PDEV is zero-initialized, so fields like // 'hsurfScreen' will be zero unless the surface has been // sucessfully initialized, and makes the assumption that // EngDeleteSurface can take '0' as a parameter. if (ppdev->bAutoBanking) { EngUnlockSurface(ppdev->psoFrameBuffer); } vDisableDirectDraw(ppdev); vDisablePalette(ppdev); vDisableBrushCache(ppdev); vDisableText(ppdev); vDisablePointer(ppdev); vDisableOffscreenHeap(ppdev); vDisableBanking(ppdev); vDisableHardware(ppdev); EngDeleteSurface(ppdev->hsurfScreen); if (ppdev->pvTmpBuffer) { EngFreeMem(ppdev->pvTmpBuffer); } if (ppdev->pdsurfScreen) { EngFreeMem(ppdev->pdsurfScreen); } } /******************************Public*Routine******************************\ * VOID DrvAssertMode * * This asks the device to reset itself to the mode of the pdev passed in. * \**************************************************************************/ BOOL DrvAssertMode( DHPDEV dhpdev, BOOL bEnable) { PDEV* ppdev; ppdev = (PDEV*) dhpdev; if (!bEnable) { ////////////////////////////////////////////////////////////// // Disable - Switch to full-screen mode vAssertModeDirectDraw(ppdev, FALSE); vAssertModePalette(ppdev, FALSE); vAssertModeBrushCache(ppdev, FALSE); vAssertModeText(ppdev, FALSE); vAssertModePointer(ppdev, FALSE); if (bAssertModeOffscreenHeap(ppdev, FALSE)) { vAssertModeBanking(ppdev, FALSE); if (bAssertModeHardware(ppdev, FALSE)) { ppdev->bEnabled = FALSE; return(TRUE); } ////////////////////////////////////////////////////////// // We failed to switch to full-screen. So undo everything: vAssertModeBanking(ppdev, TRUE); bAssertModeOffscreenHeap(ppdev, TRUE); // We don't need to check } // return code with TRUE vAssertModePointer(ppdev, TRUE); vAssertModeText(ppdev, TRUE); vAssertModeBrushCache(ppdev, TRUE); vAssertModePalette(ppdev, TRUE); } else { ////////////////////////////////////////////////////////////// // Enable - Switch back to graphics mode // We have to enable every subcomponent in the reverse order // in which it was disabled: if (bAssertModeHardware(ppdev, TRUE)) { vAssertModeBanking(ppdev, TRUE); bAssertModeOffscreenHeap(ppdev, TRUE); // We don't need to check // return code with TRUE vAssertModePointer(ppdev, TRUE); vAssertModeText(ppdev, TRUE); vAssertModeBrushCache(ppdev, TRUE); vAssertModePalette(ppdev, TRUE); ppdev->bEnabled = TRUE; return(TRUE); } } return(FALSE); } /******************************Public*Routine******************************\ * ULONG DrvGetModes * * Returns the list of available modes for the device. * \**************************************************************************/ ULONG DrvGetModes( HANDLE hDriver, ULONG cjSize, DEVMODEW* pdm) { DWORD cModes; DWORD cbOutputSize; PVIDEO_MODE_INFORMATION pVideoModeInformation; PVIDEO_MODE_INFORMATION pVideoTemp; DWORD cOutputModes = cjSize / (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE); DWORD cbModeSize; if (!bGetChipIDandRev(hDriver, NULL)) { // // This puppy wasn't recognized as a W32 // return(0); } cModes = getAvailableModes(hDriver, (PVIDEO_MODE_INFORMATION *) &pVideoModeInformation, &cbModeSize); if (cModes == 0) { DISPDBG((0, "DrvGetModes failed to get mode information")); return(0); } if (pdm == NULL) { cbOutputSize = cModes * (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE); } else { // // Now copy the information for the supported modes back into the // output buffer // cbOutputSize = 0; pVideoTemp = pVideoModeInformation; do { if (pVideoTemp->Length != 0) { if (cOutputModes == 0) { break; } // // Zero the entire structure to start off with. // memset(pdm, 0, sizeof(DEVMODEW)); // // Set the name of the device to the name of the DLL. // memcpy(pdm->dmDeviceName, DLL_NAME, sizeof(DLL_NAME)); pdm->dmSpecVersion = DM_SPECVERSION; pdm->dmDriverVersion = DM_SPECVERSION; pdm->dmSize = sizeof(DEVMODEW); pdm->dmDriverExtra = DRIVER_EXTRA_SIZE; pdm->dmBitsPerPel = pVideoTemp->NumberOfPlanes * pVideoTemp->BitsPerPlane; pdm->dmPelsWidth = pVideoTemp->VisScreenWidth; pdm->dmPelsHeight = pVideoTemp->VisScreenHeight; pdm->dmDisplayFrequency = pVideoTemp->Frequency; pdm->dmDisplayFlags = 0; pdm->dmFields = DM_BITSPERPEL | DM_PELSWIDTH | DM_PELSHEIGHT | DM_DISPLAYFREQUENCY | DM_DISPLAYFLAGS ; // // Go to the next DEVMODE entry in the buffer. // cOutputModes--; pdm = (LPDEVMODEW) ( ((ULONG_PTR)pdm) + sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE); cbOutputSize += (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE); } pVideoTemp = (PVIDEO_MODE_INFORMATION) (((PUCHAR)pVideoTemp) + cbModeSize); } while (--cModes); } EngFreeMem(pVideoModeInformation); return(cbOutputSize); } /******************************Public*Routine******************************\ * BOOL bAssertModeHardware * * Sets the appropriate hardware state for graphics mode or full-screen. * \**************************************************************************/ BOOL bAssertModeHardware( PDEV* ppdev, BOOL bEnable) { DWORD ReturnedDataLength; ULONG ulReturn; VIDEO_MODE_INFORMATION VideoModeInfo; LONG cjEndOfFrameBuffer; LONG cjPointerOffset; LONG lDelta; ULONG ulMode; if (bEnable) { // Call the miniport via an IOCTL to set the graphics mode. ulMode = ppdev->ulMode; if (ppdev->bAutoBanking) { ulMode |= VIDEO_MODE_MAP_MEM_LINEAR; } if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_SET_CURRENT_MODE, &ulMode, // input buffer sizeof(DWORD), NULL, 0, &ReturnedDataLength)) { DISPDBG((0, "bAssertModeHardware - Failed VIDEO_SET_CURRENT_MODE")); goto ReturnFalse; } if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_QUERY_CURRENT_MODE, NULL, 0, &VideoModeInfo, sizeof(VideoModeInfo), &ReturnedDataLength)) { DISPDBG((0, "bAssertModeHardware - failed VIDEO_QUERY_CURRENT_MODE")); goto ReturnFalse; } #if DEBUG_HEAP VideoModeInfo.VideoMemoryBitmapWidth = VideoModeInfo.VisScreenWidth; VideoModeInfo.VideoMemoryBitmapHeight = VideoModeInfo.VisScreenHeight; #endif // The following variables are determined only after the initial // modeset: ppdev->lDelta = VideoModeInfo.ScreenStride; ppdev->flCaps = VideoModeInfo.AttributeFlags; ppdev->cxMemory = VideoModeInfo.VideoMemoryBitmapWidth; ppdev->cyMemory = VideoModeInfo.VideoMemoryBitmapHeight; DISPDBG((1,"ppdev->cxMemory = %d",ppdev->cxMemory)); DISPDBG((1,"ppdev->cyMemory = %d",ppdev->cyMemory)); #if DRIVER_PUNT_ALL // // Force SW cursor if PUNT_ALL // ppdev->flCaps |= CAPS_SW_POINTER; #endif if (ppdev->ulChipID != ET6000) { if ((ppdev->cBpp > 1) || (ppdev->cxScreen > 1024)) { ppdev->flCaps |= CAPS_SW_POINTER; } } if (ppdev->cxScreen < 512) { // The 320x240 and 320x200 modes can't use HW pointers ppdev->flCaps |= CAPS_SW_POINTER; } // If we're using the hardware pointer, reserve the last 1k of // the frame buffer to store the pointer shape: if (!(ppdev->flCaps & (CAPS_SW_POINTER))) { // Byte offset from start of frame buffer to end: cjEndOfFrameBuffer = ppdev->cyMemory * ppdev->lDelta; // We'll reserve the end of off-screen memory for the hardware // pointer shape. cjPointerOffset = (cjEndOfFrameBuffer - SPRITE_BUFFER_SIZE); // If we are using the ET6000 then we are going to round up to the // next 1K boundary. This is necessary because of the requirements // of the ET6000 sprite. if (ppdev->ulChipID == ET6000) { cjPointerOffset += 1023; cjPointerOffset &= 0xFFFFFC00; } // Figure out the coordinate where the pointer shape starts: lDelta = ppdev->lDelta; ppdev->cjPointerOffset = cjPointerOffset; ppdev->yPointerShape = (cjPointerOffset / lDelta); ppdev->xPointerShape = (cjPointerOffset % lDelta) / ppdev->cBpp; if (ppdev->yPointerShape >= ppdev->cyScreen) { // There's enough room for the pointer shape at the // bottom of off-screen memory; reserve its room by // lying about how much off-screen memory there is: ppdev->cyMemory = ppdev->yPointerShape; } else { // There's not enough room for the pointer shape in // off-screen memory; we'll have to simulate: ppdev->flCaps |= CAPS_SW_POINTER; } } { BYTE* pjBase = ppdev->pjBase; LONG lDeltaScreen; // Set the default state of the MMU Control Register so the ACL // can start. This must be done on pre W32p chips. if (ppdev->ulChipID != ET6000) { // Set a known state for all the MMU apertures, linear address, // non-accelerated. // Set MMU Aperture 2 so it will route its data to the ACL CP_MMU_CTRL(ppdev, pjBase, 0x70 | MMU_APERTURE_2_ACL_BIT); if (ppdev->ulChipID != W32P) { CP_STATE(ppdev, pjBase, 0x09); CP_X_POS_W32(ppdev, pjBase, 0); CP_Y_POS_W32(ppdev, pjBase, 0); } else { CP_X_POS_W32P(ppdev, pjBase, 0); CP_Y_POS_W32P(ppdev, pjBase, 0); } } // Set default values to the following registers. // These values should not change. If they are changed, it is the // responsiblity of the of the code that changed them to set them // back to the values they are set to here. CP_SRC_WRAP(ppdev, pjBase, NO_PATTERN_WRAP); if (ppdev->ulChipID == ET6000) { CP_ACL_CONFIG(ppdev, pjBase, 0x06); CP_ROUTING_CTRL(ppdev, pjBase, 0x33); } else { // Enable using wait-states to sync with the ACL QUEUE. CP_SYNC_ENABLE(ppdev, pjBase, 0x01); CP_ROUTING_CTRL(ppdev, pjBase, 0); } // Set the W32's source and destination offset registers. lDeltaScreen = ppdev->cxMemory; CP_SRC_Y_OFFSET(ppdev, pjBase, (lDeltaScreen - 1)); CP_DST_Y_OFFSET(ppdev, pjBase, (lDeltaScreen - 1)); // Set the default blit direction. CP_XY_DIR(ppdev, pjBase, 0); // The W32p overloads the Virtual Bus size register for use as the // ACL pixel depth register. // Set a default value for the ACL pixel depth to 1 byte. // This should be benign on the W32 and W32i. CP_BUS_SIZE(ppdev, pjBase, 0); // If this is a W32p then we must set ASEN in the OperationStateReg // the ACL can start. if ((ppdev->ulChipID == W32P) || (ppdev->ulChipID == ET6000)) { CP_STATE(ppdev, pjBase, 0x10); } // // The following MUST be done for all pre-W32p chips. It must // also be done for W32p rev A chips because the register still // exists (though undocumented). The operation is harmless on // later chips, so just do it. // CP_RELOAD_CTRL(ppdev, pjBase, 0); // // An outside source has told us that certain ET6000 cards will // not correctly be reset during reboot if the ACL Transfer // Disable Register is not cleared. The BIOS will normally clear // this register during boot, but if the card gets hot, the // register isn't always cleared. We will clear it here just // to be sure. // if (ppdev->ulChipID == ET6000) { CP_XFER_DISABLE(ppdev, pjBase, 0); } } // Do some paramater checking on the values that the miniport // returned to us: ASSERTDD(ppdev->cxMemory >= ppdev->cxScreen, "Invalid cxMemory"); ASSERTDD(ppdev->cyMemory >= ppdev->cyScreen, "Invalid cyMemory"); } else { // Call the kernel driver to reset the device to a known state. // NTVDM will take things from there: if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_RESET_DEVICE, NULL, 0, NULL, 0, &ulReturn)) { DISPDBG((0, "bAssertModeHardware - Failed reset IOCTL")); goto ReturnFalse; } } DISPDBG((5, "Passed bAssertModeHardware")); return(TRUE); ReturnFalse: DISPDBG((0, "Failed bAssertModeHardware")); return(FALSE); } /******************************Public*Routine******************************\ * BOOL bEnableHardware * * Puts the hardware in the requested mode and initializes it. * * Note: Should be called before any access is done to the hardware from * the display driver. * \**************************************************************************/ BOOL bEnableHardware( PDEV* ppdev) { VIDEO_MEMORY VideoMemory; VIDEO_MEMORY_INFORMATION VideoMemoryInfo; DWORD ReturnedDataLength; DWORD uRet; VIDEO_PUBLIC_ACCESS_RANGES VideoAccessRange[3]; ULONG ulMode; ulMode = ppdev->ulMode | VIDEO_MODE_MAP_MEM_LINEAR; if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_SET_CURRENT_MODE, &ulMode, // input buffer sizeof(DWORD), NULL, 0, &ReturnedDataLength)) { ulMode &= ~VIDEO_MODE_MAP_MEM_LINEAR; if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_SET_CURRENT_MODE, &ulMode, // input buffer sizeof(DWORD), NULL, 0, &ReturnedDataLength)) { DISPDBG((0, "bEnableHardware - Failed VIDEO_SET_CURRENT_MODE")); goto ReturnFalse; } } ppdev->bAutoBanking = (ulMode & VIDEO_MODE_MAP_MEM_LINEAR) ? TRUE : FALSE; if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_QUERY_PUBLIC_ACCESS_RANGES, NULL, 0, (PVOID) &VideoAccessRange, sizeof (VideoAccessRange), &ReturnedDataLength) != NO_ERROR) { DISPDBG((0, "bEnableHardware - Error mapping access ranges.")); goto ReturnFalse; } ppdev->pjMmu0 = gpjMmu0 = VideoAccessRange[0].VirtualAddress; ppdev->pjMmu1 = ppdev->pjMmu0 + 1 * 0x2000; ppdev->pjMmu2 = ppdev->pjMmu0 + 2 * 0x2000; ppdev->pjBase = gpjBase = VideoAccessRange[1].VirtualAddress; ppdev->pjPorts = gpjPorts = VideoAccessRange[2].VirtualAddress; // Get the linear memory address range. VideoMemory.RequestedVirtualAddress = NULL; uRet = EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_MAP_VIDEO_MEMORY, &VideoMemory, // input buffer sizeof(VIDEO_MEMORY), &VideoMemoryInfo, // output buffer sizeof(VideoMemoryInfo), &ReturnedDataLength); if (uRet != NO_ERROR) { DISPDBG((0, "bEnableHardware - Error mapping video buffer")); goto ReturnFalse; } DISPDBG((1, "FrameBufferBase(ie. pjScreen) %lx", VideoMemoryInfo.FrameBufferBase)); DISPDBG((1, "FrameBufferLength %lx", VideoMemoryInfo.FrameBufferLength)); // Record the Frame Buffer Linear Address. ppdev->pjScreen = (BYTE*) VideoMemoryInfo.FrameBufferBase; ppdev->cjBank = VideoMemoryInfo.FrameBufferLength; //ppdev->bAutoBanking = (VideoMemoryInfo.VideoRamLength == // VideoMemoryInfo.FrameBufferLength)? // TRUE:FALSE; // // We've done the mapping for IO ports and memory space, so let's get // the pointer to the PCI config space. This is gotten from the CTRC // registers 21,22, & 23 on the ET6000. // if (ppdev->ulChipID == ET6000) { char a, b, c; OUTP(CRTC_INDEX, 0x23); a = INP(CRTC_DATA); OUTP(CRTC_INDEX, 0x22); b = INP(CRTC_DATA); OUTP(CRTC_INDEX, 0x21); c = INP(CRTC_DATA); ppdev->PCIConfigSpaceAddr = ((long) a << 24) | ((long) b << 16) | ((long) c << 8); } // Now we can set the mode and unlock the accelerator. if (!bAssertModeHardware(ppdev, TRUE)) goto ReturnFalse; // Can do memory-mapped IO: if (ppdev->ulChipID == ET6000) { ppdev->pfnXfer1bpp = vET6000SlowXfer1bpp; } else { ppdev->pfnXfer1bpp = vSlowXfer1bpp; } ppdev->pfnFillPat = vPatternFillScr; ppdev->pfnCopyBlt = vScrToScr; ppdev->pfnFastPatRealize = vFastPatRealize; ///////////////////////////////////////////////////////////// // Fill in pfns specific to color depth if (ppdev->cBpp == 3) { ppdev->pfnFillSolid = vSolidFillScr24; } else { ppdev->pfnFillSolid = vSolidFillScr; } ///////////////////////////////////////////////////////////// // Fill in pfns specific to linear vs banked frame buffer if (ppdev->bAutoBanking) { ppdev->pfnGetBits = vGetBitsLinear; ppdev->pfnPutBits = vPutBitsLinear; } else { ppdev->pfnGetBits = vGetBits; ppdev->pfnPutBits = vPutBits; } ///////////////////////////////////////////////////////////// // Fill in pfns specific to chip type if (ppdev->ulChipID == W32P) { ppdev->pfnXferNative = vXferBlt8p; } else if (ppdev->ulChipID == ET6000) { ppdev->pfnXferNative = vXferET6000; } else { ppdev->pfnXferNative = vXferBlt8i; } #if DBG { DISPDBG((1, "cjBank: %lx, cxMemory: %li, cyMemory: %li, lDelta: %li, Flags: %lx", ppdev->cjBank, ppdev->cxMemory, ppdev->cyMemory, ppdev->lDelta, ppdev->flCaps)); if (ppdev->flCaps & CAPS_SW_POINTER) { DISPDBG((0, "Using software pointer")); } else { DISPDBG((0, "Using hardware pointer")); } DISPDBG((0, "%d bpp mode", ppdev->cBpp * 8)); if(ppdev->bAutoBanking) { DISPDBG((0, "Linear Mode")); } else { DISPDBG((0, "Banked Mode")); } } #endif DISPDBG((5, "Passed bEnableHardware")); return(TRUE); ReturnFalse: DISPDBG((0, "Failed bEnableHardware")); return(FALSE); } /******************************Public*Routine******************************\ * VOID vDisableHardware * * Undoes anything done in bEnableHardware. * * Note: In an error case, we may call this before bEnableHardware is * completely done. * \**************************************************************************/ VOID vDisableHardware( PDEV* ppdev) { DWORD ReturnedDataLength; VIDEO_MEMORY VideoMemory[2]; VideoMemory[0].RequestedVirtualAddress = ppdev->pjScreen; if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_UNMAP_VIDEO_MEMORY, VideoMemory, sizeof(VIDEO_MEMORY), NULL, 0, &ReturnedDataLength)) { DISPDBG((0, "vDisableHardware failed IOCTL_VIDEO_UNMAP_VIDEO")); } VideoMemory[0].RequestedVirtualAddress = ppdev->w32MmuInfo.pvMemoryBufferVirtualAddr; if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_FREE_PUBLIC_ACCESS_RANGES, VideoMemory, sizeof(VideoMemory), NULL, 0, &ReturnedDataLength)) { DISPDBG((0, "vDisableHardware failed IOCTL_VIDEO_FREE_PUBLIC_ACCESS 1")); } VideoMemory[0].RequestedVirtualAddress = ppdev->w32MmuInfo.pvPortsVirtualAddr; if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_FREE_PUBLIC_ACCESS_RANGES, VideoMemory, sizeof(VideoMemory), NULL, 0, &ReturnedDataLength)) { DISPDBG((0, "vDisableHardware failed IOCTL_VIDEO_FREE_PUBLIC_ACCESS 2")); } } /******************************Public*Routine******************************\ * BOOL bInitializeModeFields * * Initializes a bunch of fields in the pdev, devcaps (aka gdiinfo), and * devinfo based on the requested mode. * \**************************************************************************/ BOOL bInitializeModeFields( PDEV* ppdev, GDIINFO* pgdi, DEVINFO* pdi, DEVMODEW* pdm) { ULONG cModes; PVIDEO_MODE_INFORMATION pVideoBuffer; PVIDEO_MODE_INFORMATION pVideoModeSelected; PVIDEO_MODE_INFORMATION pVideoTemp; BOOL bSelectDefault; VIDEO_MODE_INFORMATION VideoModeInformation; ULONG cbModeSize; // Call the miniport to get mode information cModes = getAvailableModes(ppdev->hDriver, &pVideoBuffer, &cbModeSize); if (cModes == 0) goto ReturnFalse; // Now see if the requested mode has a match in that table. pVideoModeSelected = NULL; pVideoTemp = pVideoBuffer; if ((pdm->dmPelsWidth == 0) && (pdm->dmPelsHeight == 0) && (pdm->dmBitsPerPel == 0) && (pdm->dmDisplayFrequency == 0)) { DISPDBG((1, "Default mode requested")); bSelectDefault = TRUE; } else { DISPDBG((1, "Requested mode...")); DISPDBG((1, " Screen width -- %li", pdm->dmPelsWidth)); DISPDBG((1, " Screen height -- %li", pdm->dmPelsHeight)); DISPDBG((1, " Bits per pel -- %li", pdm->dmBitsPerPel)); DISPDBG((1, " Frequency -- %li", pdm->dmDisplayFrequency)); bSelectDefault = FALSE; } while (cModes--) { if (pVideoTemp->Length != 0) { DISPDBG((2, " Checking against miniport mode:")); DISPDBG((2, " Screen width -- %li", pVideoTemp->VisScreenWidth)); DISPDBG((2, " Screen height -- %li", pVideoTemp->VisScreenHeight)); DISPDBG((2, " Bits per pel -- %li", pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes)); DISPDBG((2, " Frequency -- %li", pVideoTemp->Frequency)); if (bSelectDefault || ((pVideoTemp->VisScreenWidth == pdm->dmPelsWidth) && (pVideoTemp->VisScreenHeight == pdm->dmPelsHeight) && (pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes == pdm->dmBitsPerPel) && (pVideoTemp->Frequency == pdm->dmDisplayFrequency))) { pVideoModeSelected = pVideoTemp; DISPDBG((1, "...Found a mode match!")); break; } } pVideoTemp = (PVIDEO_MODE_INFORMATION) (((PUCHAR)pVideoTemp) + cbModeSize); } // If no mode has been found, return an error if (pVideoModeSelected == NULL) { DISPDBG((1, "...Couldn't find a mode match!")); EngFreeMem(pVideoBuffer); goto ReturnFalse; } // We have chosen the one we want. Save it in a stack buffer and // get rid of allocated memory before we forget to free it. VideoModeInformation = *pVideoModeSelected; EngFreeMem(pVideoBuffer); #if DEBUG_HEAP VideoModeInformation.VisScreenWidth = 640; VideoModeInformation.VisScreenHeight = 480; #endif // Set up screen information from the mini-port: ppdev->ulMode = VideoModeInformation.ModeIndex; ppdev->cxScreen = VideoModeInformation.VisScreenWidth; ppdev->cyScreen = VideoModeInformation.VisScreenHeight; DISPDBG((1, "ScreenStride: %lx", VideoModeInformation.ScreenStride)); ppdev->flHooks = (HOOK_BITBLT | HOOK_TEXTOUT | HOOK_COPYBITS | HOOK_STROKEPATH #if !DRIVER_PUNT_ALL | HOOK_PAINT | HOOK_STRETCHBLT #endif ); // Fill in the GDIINFO data structure with the default 8bpp values: *pgdi = ggdiDefault; // Now overwrite the defaults with the relevant information returned // from the kernel driver: pgdi->ulHorzSize = VideoModeInformation.XMillimeter; pgdi->ulVertSize = VideoModeInformation.YMillimeter; pgdi->ulHorzRes = VideoModeInformation.VisScreenWidth; pgdi->ulVertRes = VideoModeInformation.VisScreenHeight; pgdi->ulPanningHorzRes = VideoModeInformation.VisScreenWidth; pgdi->ulPanningVertRes = VideoModeInformation.VisScreenHeight; pgdi->cBitsPixel = VideoModeInformation.BitsPerPlane; pgdi->cPlanes = VideoModeInformation.NumberOfPlanes; pgdi->ulVRefresh = VideoModeInformation.Frequency; pgdi->ulDACRed = VideoModeInformation.NumberRedBits; pgdi->ulDACGreen = VideoModeInformation.NumberGreenBits; pgdi->ulDACBlue = VideoModeInformation.NumberBlueBits; pgdi->ulLogPixelsX = pdm->dmLogPixels; pgdi->ulLogPixelsY = pdm->dmLogPixels; // Fill in the devinfo structure with the default 8bpp values: *pdi = gdevinfoDefault; if (VideoModeInformation.BitsPerPlane == 8) { ppdev->w32PatternWrap = PATTERN_WRAP_8x8; ppdev->cPelSize = 0; ppdev->cBpp = 1; ppdev->iBitmapFormat = BMF_8BPP; ppdev->ulWhite = 0xff; } else if ((VideoModeInformation.BitsPerPlane == 16) || (VideoModeInformation.BitsPerPlane == 15)) { ppdev->w32PatternWrap = PATTERN_WRAP_16x8; ppdev->cPelSize = 1; ppdev->cBpp = 2; ppdev->iBitmapFormat = BMF_16BPP; ppdev->ulWhite = 0xffff; ppdev->flRed = VideoModeInformation.RedMask; ppdev->flGreen = VideoModeInformation.GreenMask; ppdev->flBlue = VideoModeInformation.BlueMask; pgdi->ulNumColors = (ULONG) -1; pgdi->ulNumPalReg = 0; pgdi->ulHTOutputFormat = HT_FORMAT_16BPP; pdi->iDitherFormat = BMF_16BPP; pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER); } else { ASSERTDD(VideoModeInformation.BitsPerPlane == 24, "This driver supports only 8, 16 and 24bpp"); ppdev->w32PatternWrap = PATTERN_WRAP_32x8; ppdev->cPelSize = 2; ppdev->cBpp = 3; ppdev->iBitmapFormat = BMF_24BPP; ppdev->ulWhite = 0xffffff; ppdev->flRed = VideoModeInformation.RedMask; ppdev->flGreen = VideoModeInformation.GreenMask; ppdev->flBlue = VideoModeInformation.BlueMask; pgdi->ulNumColors = (ULONG) -1; pgdi->ulNumPalReg = 0; pgdi->ulHTOutputFormat = HT_FORMAT_24BPP; pdi->iDitherFormat = BMF_24BPP; pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER); } DISPDBG((5, "Passed bInitializeModeFields")); return(TRUE); ReturnFalse: DISPDBG((0, "Failed bInitializeModeFields")); return(FALSE); } /******************************Public*Routine******************************\ * DWORD getAvailableModes * * Calls the miniport to get the list of modes supported by the kernel driver, * and returns the list of modes supported by the diplay driver among those * * returns the number of entries in the videomode buffer. * 0 means no modes are supported by the miniport or that an error occured. * * NOTE: the buffer must be freed up by the caller. * \**************************************************************************/ DWORD getAvailableModes( HANDLE hDriver, PVIDEO_MODE_INFORMATION* modeInformation, DWORD* cbModeSize) { ULONG ulTemp; VIDEO_NUM_MODES modes; PVIDEO_MODE_INFORMATION pVideoTemp; // // Get the number of modes supported by the mini-port // if (EngDeviceIoControl(hDriver, IOCTL_VIDEO_QUERY_NUM_AVAIL_MODES, NULL, 0, &modes, sizeof(VIDEO_NUM_MODES), &ulTemp)) { DISPDBG((0, "getAvailableModes - Failed VIDEO_QUERY_NUM_AVAIL_MODES")); return(0); } *cbModeSize = modes.ModeInformationLength; // // Allocate the buffer for the mini-port to write the modes in. // *modeInformation = (PVIDEO_MODE_INFORMATION) EngAllocMem(0, modes.NumModes * modes.ModeInformationLength, ALLOC_TAG); if (*modeInformation == (PVIDEO_MODE_INFORMATION) NULL) { DISPDBG((0, "getAvailableModes - Failed EngAllocMem")); return 0; } // // Ask the mini-port to fill in the available modes. // if (EngDeviceIoControl(hDriver, IOCTL_VIDEO_QUERY_AVAIL_MODES, NULL, 0, *modeInformation, modes.NumModes * modes.ModeInformationLength, &ulTemp)) { DISPDBG((0, "getAvailableModes - Failed VIDEO_QUERY_AVAIL_MODES")); EngFreeMem(*modeInformation); *modeInformation = (PVIDEO_MODE_INFORMATION) NULL; return(0); } // // Now see which of these modes are supported by the display driver. // As an internal mechanism, set the length to 0 for the modes we // DO NOT support. // ulTemp = modes.NumModes; pVideoTemp = *modeInformation; // // Mode is rejected if it is not one plane, or not graphics, or is not // one of 8, 15, 16 or 24 bits per pel. // while (ulTemp--) { if ((pVideoTemp->NumberOfPlanes != 1 ) || !(pVideoTemp->AttributeFlags & VIDEO_MODE_GRAPHICS) || ((pVideoTemp->BitsPerPlane != 8) && (pVideoTemp->BitsPerPlane != 15) && (pVideoTemp->BitsPerPlane != 16) && (pVideoTemp->BitsPerPlane != 24) // !!! will this work )) { DISPDBG((2, "Rejecting miniport mode:")); DISPDBG((2, " Screen width -- %li", pVideoTemp->VisScreenWidth)); DISPDBG((2, " Screen height -- %li", pVideoTemp->VisScreenHeight)); DISPDBG((2, " Bits per pel -- %li", pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes)); DISPDBG((2, " Frequency -- %li", pVideoTemp->Frequency)); pVideoTemp->Length = 0; } pVideoTemp = (PVIDEO_MODE_INFORMATION) (((PUCHAR)pVideoTemp) + modes.ModeInformationLength); } return(modes.NumModes); } /******************************Public*Routine******************************\ * BOOL bGetChipIDandRev * * Initializes a bunch of fields in the pdev, devcaps (aka gdiinfo), and * devinfo based on the requested mode. * * If bRetInfo is TRUE then pChipIDandRev is filled in. * * Returns TRUE if chip is one of the W32 family, FALSE otherwise * \**************************************************************************/ BOOL bGetChipIDandRev(HANDLE hDriver, PPDEV ppdev) { BYTE jChipID; BOOL bRet = TRUE; VIDEO_COPROCESSOR_INFORMATION VideoCoprocessorInfo; DWORD ReturnedDataLength; // // Get information about the video card. // if (EngDeviceIoControl(hDriver, IOCTL_VIDEO_GET_VIDEO_CARD_INFO, NULL, 0, &VideoCoprocessorInfo, sizeof(VIDEO_COPROCESSOR_INFORMATION), &ReturnedDataLength)) { RIP("bGetChipIDandRev - Couldn't get video card info"); bRet = FALSE; goto ReturnStatus; } if (VideoCoprocessorInfo.ulChipID < W32) { bRet = FALSE; goto ReturnStatus; } if (ppdev) { ppdev->ulChipID = VideoCoprocessorInfo.ulChipID; ppdev->ulRevLevel = VideoCoprocessorInfo.ulRevLevel; } DISPDBG((1, "ulChipID = %d", VideoCoprocessorInfo.ulChipID)); DISPDBG((1, "ulRevLevel = %d", VideoCoprocessorInfo.ulRevLevel)); ReturnStatus: return (bRet); }