/*++ Copyright (c) 1991 Microsoft Corporation Module Name: ntsetup.c Abstract: This module is the tail-end of the OS loader program. It performs all IA64 specific allocations and initialize. The OS loader invokes this this routine immediately before calling the loaded kernel image. Author: Allen Kay (akay) 19-May-1999 based on MIPS version by John Vert (jvert) 20-Jun-1991 Environment: Kernel mode Revision History: --*/ #include "bldr.h" #include "stdio.h" #include "bootia64.h" #include "sal.h" #include "efi.h" #include "fpswa.h" #include "extern.h" // // Define macro to round structure size to next 16-byte boundary // #undef ROUND_UP #define ROUND_UP(x) ((sizeof(x) + 15) & (~15)) #define MIN(_a,_b) (((_a) <= (_b)) ? (_a) : (_b)) #define MAX(_a,_b) (((_a) <= (_b)) ? (_b) : (_a)) // // Configuration Data Header // The following structure is copied from fw\mips\oli2msft.h // NOTE shielint - Somehow, this structure got incorporated into // firmware EISA configuration data. We need to know the size of the // header and remove it before writing eisa configuration data to // registry. // typedef struct _CONFIGURATION_DATA_HEADER { USHORT Version; USHORT Revision; PCHAR Type; PCHAR Vendor; PCHAR ProductName; PCHAR SerialNumber; } CONFIGURATION_DATA_HEADER; #define CONFIGURATION_DATA_HEADER_SIZE sizeof(CONFIGURATION_DATA_HEADER) // // Global Definition: This structure value is setup in sumain.c // TR_INFO ItrInfo[8], DtrInfo[8]; extern ULONGLONG MemoryMapKey; // // Internal function references // VOID BlQueryImplementationAndRevision ( OUT PULONG ProcessorId, OUT PULONG FloatingId ); VOID BlTrCleanUp ( ); ARC_STATUS BlSetupForNt( IN PLOADER_PARAMETER_BLOCK BlLoaderBlock ) /*++ Routine Description: This function initializes the IA64 specific kernel data structures required by the NT system. Arguments: BlLoaderBlock - Supplies the address of the loader parameter block. Return Value: ESUCCESS is returned if the setup is successfully complete. Otherwise, an unsuccessful status is returned. --*/ { PCONFIGURATION_COMPONENT_DATA ConfigEntry; ULONG FloatingId; CHAR Identifier[256]; ULONG KernelPage; ULONG LinesPerBlock; ULONG LineSize; PCHAR NewIdentifier; ULONGLONG PrcbPage; ULONG ProcessorId; ARC_STATUS Status; ULONG i; PULONG KernelStructureBase; PHARDWARE_PTE SelfMapPde; PHARDWARE_PTE Pde; PHARDWARE_PTE HalPT; PLIST_ENTRY NextMd; PMEMORY_ALLOCATION_DESCRIPTOR MemoryDescriptor; EFI_MEMORY_DESCRIPTOR * MemoryMap = NULL; ULONGLONG MemoryMapSize = 0; ULONGLONG MapKey; ULONGLONG DescriptorSize; ULONG DescriptorVersion; EFI_STATUS EfiStatus; EFI_GUID FpswaId = EFI_INTEL_FPSWA; EFI_HANDLE FpswaImage; FPSWA_INTERFACE *FpswaInterface; ULONGLONG BufferSize; BOOLEAN FpswaFound = FALSE; // // Allocate DPC stack pages for the boot processor. // Status = BlAllocateDescriptor(LoaderStartupDpcStack, 0, (KERNEL_BSTORE_SIZE + KERNEL_STACK_SIZE) >> PAGE_SHIFT, &KernelPage); if (Status != ESUCCESS) { return(Status); } BlLoaderBlock->u.Ia64.InterruptStack = (KSEG0_BASE | (KernelPage << PAGE_SHIFT)) + KERNEL_STACK_SIZE; // // Allocate kernel stack pages for the boot processor idle thread. // Status = BlAllocateDescriptor(LoaderStartupKernelStack, 0, (KERNEL_BSTORE_SIZE + KERNEL_STACK_SIZE) >> PAGE_SHIFT, &KernelPage); if (Status != ESUCCESS) { return(Status); } BlLoaderBlock->KernelStack = (KSEG0_BASE | (KernelPage << PAGE_SHIFT)) + KERNEL_STACK_SIZE; // // Allocate panic stack pages for the boot processor. // Status = BlAllocateDescriptor(LoaderStartupPanicStack, 0, (KERNEL_BSTORE_SIZE + KERNEL_STACK_SIZE) >> PAGE_SHIFT, &KernelPage); if (Status != ESUCCESS) { return(Status); } BlLoaderBlock->u.Ia64.PanicStack = (KSEG0_BASE | (KernelPage << PAGE_SHIFT)) + KERNEL_STACK_SIZE; // // Allocate and zero two pages for the PCR. // Status = BlAllocateDescriptor(LoaderStartupPcrPage, 0, 2, (PULONG) &BlLoaderBlock->u.Ia64.PcrPage); if (Status != ESUCCESS) { return(Status); } BlLoaderBlock->u.Ia64.PcrPage2 = BlLoaderBlock->u.Ia64.PcrPage + 1; RtlZeroMemory((PVOID)(KSEG0_BASE | (BlLoaderBlock->u.Ia64.PcrPage << PAGE_SHIFT)), PAGE_SIZE * 2); // // Allocate and zero four pages for the PDR and one page of memory for // the initial processor block, idle process, and idle thread structures. // Status = BlAllocateDescriptor(LoaderStartupPdrPage, 0, 3, (PULONG) &BlLoaderBlock->u.Ia64.PdrPage); if (Status != ESUCCESS) { return(Status); } RtlZeroMemory((PVOID)(KSEG0_BASE | (BlLoaderBlock->u.Ia64.PdrPage << PAGE_SHIFT)), PAGE_SIZE * 3); // // The storage for processor control block, the idle thread object, and // the idle thread process object are allocated from the third page of the // PDR allocation. The addresses of these data structures are computed // and stored in the loader parameter block and the memory is zeroed. // PrcbPage = BlLoaderBlock->u.Ia64.PdrPage + 1; if ((PAGE_SIZE * 2) >= (ROUND_UP(KPRCB) + ROUND_UP(EPROCESS) + ROUND_UP(ETHREAD))) { BlLoaderBlock->Prcb = KSEG0_BASE | (PrcbPage << PAGE_SHIFT); BlLoaderBlock->Process = BlLoaderBlock->Prcb + ROUND_UP(KPRCB); BlLoaderBlock->Thread = BlLoaderBlock->Process + ROUND_UP(EPROCESS); } else { return(ENOMEM); } Status = BlAllocateDescriptor(LoaderStartupPdrPage, 0, 1, &KernelPage); if (Status != ESUCCESS) { return(Status); } RtlZeroMemory((PVOID)(KSEG0_BASE | ((ULONGLONG) KernelPage << PAGE_SHIFT)), PAGE_SIZE * 1); // // Setup last two entries in the page directory table for HAL and // allocate page tables for them. // Pde = (PHARDWARE_PTE) (ULONG_PTR)( (BlLoaderBlock->u.Ia64.PdrPage) << PAGE_SHIFT); Pde[(KIPCR & 0xffffffff) >> PDI_SHIFT].PageFrameNumber = (ULONG) KernelPage; Pde[(KIPCR & 0xffffffff) >> PDI_SHIFT].Valid = 1; Pde[(KIPCR & 0xffffffff) >> PDI_SHIFT].Cache = 0; Pde[(KIPCR & 0xffffffff) >> PDI_SHIFT].Accessed = 1; Pde[(KIPCR & 0xffffffff) >> PDI_SHIFT].Dirty = 1; Pde[(KIPCR & 0xffffffff) >> PDI_SHIFT].Execute = 1; Pde[(KIPCR & 0xffffffff) >> PDI_SHIFT].Write = 1; Pde[(KIPCR & 0xffffffff) >> PDI_SHIFT].CopyOnWrite = 1; // // 0xFFC00000 is the starting virtual address of Pde[2046]. // HalPT = (PHARDWARE_PTE)((ULONG_PTR) KernelPage << PAGE_SHIFT); HalPT[GetPteOffset(KI_USER_SHARED_DATA)].PageFrameNumber = BlLoaderBlock->u.Ia64.PcrPage2; HalPT[GetPteOffset(KI_USER_SHARED_DATA)].Valid = 1; HalPT[GetPteOffset(KI_USER_SHARED_DATA)].Cache = 0; HalPT[GetPteOffset(KI_USER_SHARED_DATA)].Accessed = 1; HalPT[GetPteOffset(KI_USER_SHARED_DATA)].Dirty = 1; HalPT[GetPteOffset(KI_USER_SHARED_DATA)].Execute = 1; HalPT[GetPteOffset(KI_USER_SHARED_DATA)].Write = 1; HalPT[GetPteOffset(KI_USER_SHARED_DATA)].CopyOnWrite = 1; // // Fill in the rest of the loader block fields. // BlLoaderBlock->u.Ia64.AcpiRsdt = (ULONG_PTR) AcpiTable; // // Fill the ItrInfo and DtrInfo fields // BlLoaderBlock->u.Ia64.EfiSystemTable = (ULONG_PTR) EfiST; BlLoaderBlock->u.Ia64.PalProcVirtual = (ULONG_PTR) PalProcVirtual; // // Fill in ItrInfo and DtrInfo for DRIVER0 // BlLoaderBlock->u.Ia64.ItrInfo[ITR_DRIVER0_INDEX].Index = ITR_DRIVER0_INDEX; BlLoaderBlock->u.Ia64.ItrInfo[ITR_DRIVER0_INDEX].PageSize = PS_16M; BlLoaderBlock->u.Ia64.ItrInfo[ITR_DRIVER0_INDEX].VirtualAddress = KSEG0_BASE + BL_16M; BlLoaderBlock->u.Ia64.ItrInfo[ITR_DRIVER0_INDEX].PhysicalAddress = BL_16M; BlLoaderBlock->u.Ia64.DtrInfo[DTR_DRIVER0_INDEX].Index = DTR_DRIVER0_INDEX; BlLoaderBlock->u.Ia64.DtrInfo[DTR_DRIVER0_INDEX].PageSize = PS_16M; BlLoaderBlock->u.Ia64.DtrInfo[DTR_DRIVER0_INDEX].VirtualAddress = KSEG0_BASE + BL_16M; BlLoaderBlock->u.Ia64.DtrInfo[DTR_DRIVER0_INDEX].PhysicalAddress = BL_16M; // // Fill in ItrInfo and DtrInfo for DRIVER1 // BlLoaderBlock->u.Ia64.ItrInfo[ITR_DRIVER1_INDEX].Index = ITR_DRIVER1_INDEX; BlLoaderBlock->u.Ia64.ItrInfo[ITR_DRIVER1_INDEX].PageSize = PS_16M; BlLoaderBlock->u.Ia64.ItrInfo[ITR_DRIVER1_INDEX].VirtualAddress = KSEG0_BASE + BL_32M; BlLoaderBlock->u.Ia64.ItrInfo[ITR_DRIVER1_INDEX].PhysicalAddress = BL_32M; BlLoaderBlock->u.Ia64.DtrInfo[DTR_DRIVER1_INDEX].Index = DTR_DRIVER1_INDEX; BlLoaderBlock->u.Ia64.DtrInfo[DTR_DRIVER1_INDEX].PageSize = PS_16M; BlLoaderBlock->u.Ia64.DtrInfo[DTR_DRIVER1_INDEX].VirtualAddress = KSEG0_BASE + BL_32M; BlLoaderBlock->u.Ia64.DtrInfo[DTR_DRIVER1_INDEX].PhysicalAddress = BL_32M; // // Fill in ItrInfo and DtrInfo for KERNEL // BlLoaderBlock->u.Ia64.ItrInfo[ITR_KERNEL_INDEX].Index = ITR_KERNEL_INDEX; BlLoaderBlock->u.Ia64.ItrInfo[ITR_KERNEL_INDEX].PageSize = PS_16M; BlLoaderBlock->u.Ia64.ItrInfo[ITR_KERNEL_INDEX].VirtualAddress = KSEG0_BASE + BL_48M; BlLoaderBlock->u.Ia64.ItrInfo[ITR_KERNEL_INDEX].PhysicalAddress = BL_48M; BlLoaderBlock->u.Ia64.DtrInfo[DTR_KERNEL_INDEX].Index = DTR_KERNEL_INDEX; BlLoaderBlock->u.Ia64.DtrInfo[DTR_KERNEL_INDEX].PageSize = PS_16M; BlLoaderBlock->u.Ia64.DtrInfo[DTR_KERNEL_INDEX].VirtualAddress = KSEG0_BASE + BL_48M; BlLoaderBlock->u.Ia64.DtrInfo[DTR_KERNEL_INDEX].PhysicalAddress = BL_48M; // // Fill in ItrInfo and DtrInfo for PAL // BlLoaderBlock->u.Ia64.ItrInfo[ITR_PAL_INDEX].Index = ITR_PAL_INDEX; BlLoaderBlock->u.Ia64.ItrInfo[ITR_PAL_INDEX].PageSize = (ULONG) PalTrPs; BlLoaderBlock->u.Ia64.ItrInfo[ITR_PAL_INDEX].VirtualAddress = VIRTUAL_PAL_BASE; BlLoaderBlock->u.Ia64.ItrInfo[ITR_PAL_INDEX].PhysicalAddress = PalPhysicalBase; BlLoaderBlock->u.Ia64.DtrInfo[DTR_PAL_INDEX].Index = DTR_PAL_INDEX; BlLoaderBlock->u.Ia64.DtrInfo[DTR_PAL_INDEX].PageSize = (ULONG) PalTrPs; BlLoaderBlock->u.Ia64.DtrInfo[DTR_PAL_INDEX].VirtualAddress = VIRTUAL_PAL_BASE; BlLoaderBlock->u.Ia64.DtrInfo[DTR_PAL_INDEX].PhysicalAddress = PalPhysicalBase; // // Fill in ItrInfo and DtrInfo for IO port // BlLoaderBlock->u.Ia64.DtrInfo[DTR_IO_PORT_INDEX].Index = DTR_IO_PORT_INDEX; BlLoaderBlock->u.Ia64.DtrInfo[DTR_IO_PORT_INDEX].PageSize = (ULONG) IoPortTrPs; BlLoaderBlock->u.Ia64.DtrInfo[DTR_IO_PORT_INDEX].VirtualAddress = VIRTUAL_IO_BASE; BlLoaderBlock->u.Ia64.DtrInfo[DTR_IO_PORT_INDEX].PhysicalAddress = IoPortPhysicalBase; // // Flush all caches. // if (SYSTEM_BLOCK->FirmwareVectorLength > (sizeof(PVOID) * FlushAllCachesRoutine)) { ArcFlushAllCaches(); } // // make memory map by TR's unavailable for kernel use. // NextMd = BlLoaderBlock->MemoryDescriptorListHead.Flink; while (NextMd != &BlLoaderBlock->MemoryDescriptorListHead) { MemoryDescriptor = CONTAINING_RECORD(NextMd, MEMORY_ALLOCATION_DESCRIPTOR, ListEntry); // // lock down pages we don't want the kernel to use. // NB. The only reason we need to lock down LoaderLoadedProgram because // there is static data in the loader image that the kernel uses. // if ((MemoryDescriptor->MemoryType == LoaderLoadedProgram) || (MemoryDescriptor->MemoryType == LoaderOsloaderStack)) { MemoryDescriptor->MemoryType = LoaderFirmwarePermanent; } // // we've marked lots of memory as off limits to trick our allocator // into allocating memory at a specific location (which is necessary to // get hte kernel loaded at the right location, etc.). We do this by // marking the page type as LoaderSystemBlock. Now that we're done // allocating memory, we can restore all of the LoaderSystemBlock pages // to LoaderFree, so that the kernel can use this memory. // if (MemoryDescriptor->MemoryType == LoaderSystemBlock) { MemoryDescriptor->MemoryType = LoaderFree; } NextMd = MemoryDescriptor->ListEntry.Flink; } // // Go to physical mode before making EFI calls. // FlipToPhysical(); // // Get processor configuration information // ReadProcessorConfigInfo( &BlLoaderBlock->u.Ia64.ProcessorConfigInfo ); // // Get FP assist handle // BufferSize = sizeof(FpswaImage); EfiStatus = EfiBS->LocateHandle(ByProtocol, &FpswaId, NULL, &BufferSize, &FpswaImage ); if (!EFI_ERROR(EfiStatus)) { // // Get FP assist protocol interface. // EfiStatus = EfiBS->HandleProtocol(FpswaImage, &FpswaId, &FpswaInterface); if (EFI_ERROR(EfiStatus)) { EfiST->ConOut->OutputString( EfiST->ConOut, L"BlSetupForNt: Could not get FP assist entry point\n" ); EfiBS->Exit(EfiImageHandle, EfiStatus, 0, 0); } FpswaFound = TRUE; } #if 1 // // The following code must be fixed to handle ExitBootServices() failing // because the memory map has changed in between calls to GetMemoryMap and // the call to ExitBootServices(). We should also walk the EFI memory map // and correlate it against the MemoryDescriptorList to ensure that all of // the memory is properly accounted for. // // // Get memory map info from EFI firmware // EfiStatus = EfiBS->GetMemoryMap ( &MemoryMapSize, MemoryMap, &MapKey, &DescriptorSize, &DescriptorVersion ); if (EfiStatus != EFI_BUFFER_TOO_SMALL) { EfiST->ConOut->OutputString(EfiST->ConOut, L"BlSetupForNt: GetMemoryMap failed\r\n"); EfiBS->Exit(EfiImageHandle, EfiStatus, 0, 0); } FlipToVirtual(); #if DBG DbgPrint( "About to call BlAllocateAlignedDescriptor for %x\r\n", MAX((MemoryMapSize >> 16), 1)); #endif Status = BlAllocateAlignedDescriptor( LoaderOsloaderHeap, 0, (ULONG)(MAX((MemoryMapSize >> 16), 1)), 0, &KernelPage); if (Status != ESUCCESS) { return(Status); } FlipToPhysical(); // // We need a physical address for EFI, and the hal expects a physical // address as well. // MemoryMap = (PVOID)(ULONGLONG)((ULONGLONG)KernelPage << PAGE_SHIFT); EfiStatus = EfiBS->GetMemoryMap ( &MemoryMapSize, MemoryMap, &MapKey, &DescriptorSize, &DescriptorVersion ); if (EFI_ERROR(EfiStatus)) { EfiST->ConOut->OutputString(EfiST->ConOut, L"BlSetupForNt: GetMemoryMap failed\r\n"); EfiBS->Exit(EfiImageHandle, EfiStatus, 0, 0); } // // Call EFI exit boot services. No more Efi calls to boot services // API's will be called beyond this point. // EfiStatus = EfiBS->ExitBootServices ( EfiImageHandle, MapKey ); if (EFI_ERROR(EfiStatus)) { EfiST->ConOut->OutputString(EfiST->ConOut, L"BlSetupForNt: ExitBootServices failed\r\n"); EfiBS->Exit(EfiImageHandle, EfiStatus, 0, 0); } #endif // // Go back to virtual mode. // FlipToVirtual(); // // Pass EFI memory descriptor Parameters to kernel through OS // loader block. // BlLoaderBlock->u.Ia64.EfiMemMapParam.MemoryMapSize = MemoryMapSize; BlLoaderBlock->u.Ia64.EfiMemMapParam.MemoryMap = (PUCHAR) MemoryMap; BlLoaderBlock->u.Ia64.EfiMemMapParam.MapKey = MapKey; BlLoaderBlock->u.Ia64.EfiMemMapParam.DescriptorSize = DescriptorSize; BlLoaderBlock->u.Ia64.EfiMemMapParam.DescriptorVersion = DescriptorVersion; if (FpswaFound) { BlLoaderBlock->u.Ia64.FpswaInterface = (ULONG_PTR) FpswaInterface; } else { BlLoaderBlock->u.Ia64.FpswaInterface = (ULONG_PTR) NULL; } // // Clean up TR's used by boot loader but not needed by ntoskrnl. // BlTrCleanUp(); // // Flush the memory range where kernel, hal, and the drivers are // loaded into. // PioICacheFlush(KSEG0_BASE+BL_16M, BL_48M); return(ESUCCESS); }