/*++ Copyright (c) 1990 Microsoft Corporation Module Name: hanfnc.c Abstract: Default handlers for HAL functions which don't get handlers installed by the HAL. Author: Ken Reneris (kenr) 19-July-1994 Revision History: --*/ #include "ntos.h" #include "haldisp.h" HAL_DISPATCH HalDispatchTable = { HAL_DISPATCH_VERSION, xHalQuerySystemInformation, xHalSetSystemInformation, xHalQueryBusSlots, 0, HalExamineMBR, IoAssignDriveLetters, IoReadPartitionTable, IoSetPartitionInformation, IoWritePartitionTable, xHalHandlerForBus, // HalReferenceHandlerByBus xHalReferenceHandler, // HalReferenceBusHandler xHalReferenceHandler, // HalDereferenceBusHandler xHalInitPnpDriver, xHalInitPowerManagement, 0, xHalGetInterruptTranslator, xHalStartMirroring, xHalEndMirroring, xHalMirrorPhysicalMemory, xHalEndOfBoot, xHalMirrorVerify }; HAL_PRIVATE_DISPATCH HalPrivateDispatchTable = { HAL_PRIVATE_DISPATCH_VERSION, xHalHandlerForBus, xHalHandlerForBus, xHalLocateHiberRanges, xHalRegisterBusHandler, xHalSetWakeEnable, xHalSetWakeAlarm, xHalTranslateBusAddress, xHalAssignSlotResources, xHalHaltSystem, (NULL), // HalFindBusAddressTranslation (NULL), // HalResetDisplay xKdSetupPciDeviceForDebugging, xKdReleasePciDeviceForDebugging, xKdGetAcpiTablePhase0, xKdCheckPowerButton, xHalVectorToIDTEntry, xKdMapPhysicalMemory64, xKdUnmapVirtualAddress, }; #if 0 DMA_OPERATIONS HalPrivateDmaOperations = { sizeof(DMA_OPERATIONS), xHalPutDmaAdapter, xHalAllocateCommonBuffer, xHalFreeCommonBuffer, xHalAllocateAdapterChannel, xHalFlushAdapterBuffers, xHalFreeAdapterChannel, xHalFreeMapRegisters, xHalMapTransfer, xHalGetDmaAlignment, xHalReadDmaCounter, xHalGetScatterGatherList, xHalPutScatterGatherList }; #endif #ifdef ALLOC_PRAGMA #pragma alloc_text(PAGE, xHalLocateHiberRanges) #pragma alloc_text(PAGE, xHalQuerySystemInformation) #pragma alloc_text(PAGE, xHalSetSystemInformation) #pragma alloc_text(PAGE, xHalQueryBusSlots) #pragma alloc_text(PAGE, xHalRegisterBusHandler) #pragma alloc_text(PAGE, xHalStartMirroring) #pragma alloc_text(PAGE, xHalEndOfBoot) #pragma alloc_text(PAGELK, xHalSetWakeEnable) #pragma alloc_text(PAGELK, xHalSetWakeAlarm) #endif // // Global dispatch table for HAL apis // // // Stub handlers for HALs which don't provide the above functions // NTSTATUS xHalQuerySystemInformation( IN HAL_QUERY_INFORMATION_CLASS InformationClass, IN ULONG BufferSize, OUT PVOID Buffer, OUT PULONG ReturnedLength ) { PAGED_CODE (); return STATUS_INVALID_LEVEL; } NTSTATUS xHalSetSystemInformation( IN HAL_SET_INFORMATION_CLASS InformationClass, IN ULONG BufferSize, OUT PVOID Buffer ) { PAGED_CODE (); return STATUS_INVALID_LEVEL; } NTSTATUS xHalQueryBusSlots( IN PBUS_HANDLER BusHandler, IN ULONG BufferSize, OUT PULONG SlotNumbers, OUT PULONG ReturnedLength ) { PAGED_CODE (); return STATUS_NOT_SUPPORTED; } NTSTATUS xHalRegisterBusHandler( IN INTERFACE_TYPE InterfaceType, IN BUS_DATA_TYPE ConfigurationSpace, IN ULONG BusNumber, IN INTERFACE_TYPE ParentBusType, IN ULONG ParentBusNumber, IN ULONG SizeofBusExtensionData, IN PINSTALL_BUS_HANDLER InstallBusHandler, OUT PBUS_HANDLER *BusHandler ) { PAGED_CODE (); return STATUS_NOT_SUPPORTED; } VOID xHalSetWakeEnable( IN BOOLEAN Enable ) { } VOID xHalSetWakeAlarm( IN ULONGLONG WakeTime, IN PTIME_FIELDS WakeTimeFields ) { } VOID xHalLocateHiberRanges ( IN PVOID MemoryMap ) { } PBUS_HANDLER FASTCALL xHalHandlerForBus ( IN INTERFACE_TYPE InterfaceType, IN ULONG BusNumber ) { return NULL; } VOID FASTCALL xHalReferenceHandler ( IN PBUS_HANDLER Handler ) { } NTSTATUS xHalInitPnpDriver( VOID ) { return STATUS_NOT_SUPPORTED; } NTSTATUS xHalInitPowerManagement( IN PPM_DISPATCH_TABLE PmDriverDispatchTable, IN OUT PPM_DISPATCH_TABLE *PmHalDispatchTable ) { return STATUS_NOT_SUPPORTED; } NTSTATUS xHalStartMirroring( VOID ) { PAGED_CODE (); return STATUS_NOT_SUPPORTED; } NTSTATUS xHalEndMirroring( IN ULONG PassNumber ) { UNREFERENCED_PARAMETER (PassNumber); return STATUS_NOT_SUPPORTED; } NTSTATUS xHalMirrorPhysicalMemory( IN PHYSICAL_ADDRESS PhysicalAddress, IN LARGE_INTEGER NumberOfBytes ) { return STATUS_NOT_SUPPORTED; } NTSTATUS xHalMirrorVerify( IN PHYSICAL_ADDRESS PhysicalAddress, IN LARGE_INTEGER NumberOfBytes ) { return STATUS_NOT_SUPPORTED; } #if 0 PDMA_ADAPTER xHalGetDmaAdapter ( IN PVOID Context, IN struct _DEVICE_DESCRIPTION *DeviceDescriptor, OUT PULONG NumberOfMapRegisters ) { PADAPTER_OBJECT AdapterObject; AdapterObject = ExAllocatePoolWithTag( NonPagedPool, sizeof( ADAPTER_OBJECT ), ' laH'); if (AdapterObject == NULL) { return NULL; } AdapterObject->DmaAdapter.Size = sizeof( ADAPTER_OBJECT ); AdapterObject->DmaAdapter.Version = 1; AdapterObject->DmaAdapter.DmaOperations = &HalPrivateDmaOperations; AdapterObject->RealAdapterObject = HalGetAdapter( DeviceDescriptor, NumberOfMapRegisters ); if (AdapterObject->RealAdapterObject == NULL) { // // No adapter object was returned. Just return NULL to the caller. // ExFreePool( AdapterObject ); return NULL; } return &AdapterObject->DmaAdapter; } VOID xHalPutDmaAdapter ( PDMA_ADAPTER DmaAdapter ) { ExFreePool( DmaAdapter ); } PVOID xHalAllocateCommonBuffer ( IN PDMA_ADAPTER DmaAdapter, IN ULONG Length, OUT PPHYSICAL_ADDRESS LogicalAddress, IN BOOLEAN CacheEnabled ) { return HalAllocateCommonBuffer( ((PADAPTER_OBJECT) DmaAdapter)->RealAdapterObject, Length, LogicalAddress, CacheEnabled ); } VOID xHalFreeCommonBuffer ( IN PDMA_ADAPTER DmaAdapter, IN ULONG Length, IN PHYSICAL_ADDRESS LogicalAddress, IN PVOID VirtualAddress, IN BOOLEAN CacheEnabled ) { HalFreeCommonBuffer( ((PADAPTER_OBJECT) DmaAdapter)->RealAdapterObject, Length, LogicalAddress, VirtualAddress, CacheEnabled ); } NTSTATUS xHalAllocateAdapterChannel ( IN PDMA_ADAPTER DmaAdapter, IN PDEVICE_OBJECT DeviceObject, IN ULONG NumberOfMapRegisters, IN PDRIVER_CONTROL ExecutionRoutine, IN PVOID Context ) { return IoAllocateAdapterChannel( ((PADAPTER_OBJECT) DmaAdapter)->RealAdapterObject, DeviceObject, NumberOfMapRegisters, ExecutionRoutine, Context ); } BOOLEAN xHalFlushAdapterBuffers ( IN PDMA_ADAPTER DmaAdapter, IN PMDL Mdl, IN PVOID MapRegisterBase, IN PVOID CurrentVa, IN ULONG Length, IN BOOLEAN WriteToDevice ) { return IoFlushAdapterBuffers( ((PADAPTER_OBJECT) DmaAdapter)->RealAdapterObject, Mdl, MapRegisterBase, CurrentVa, Length, WriteToDevice ); } VOID xHalFreeAdapterChannel ( IN PDMA_ADAPTER DmaAdapter ) { IoFreeAdapterChannel( ((PADAPTER_OBJECT) DmaAdapter)->RealAdapterObject ); } VOID xHalFreeMapRegisters ( IN PDMA_ADAPTER DmaAdapter, PVOID MapRegisterBase, ULONG NumberOfMapRegisters ) { IoFreeMapRegisters( ((PADAPTER_OBJECT) DmaAdapter)->RealAdapterObject, MapRegisterBase, NumberOfMapRegisters ); } PHYSICAL_ADDRESS xHalMapTransfer ( IN PDMA_ADAPTER DmaAdapter, IN PMDL Mdl, IN PVOID MapRegisterBase, IN PVOID CurrentVa, IN OUT PULONG Length, IN BOOLEAN WriteToDevice ) { return IoMapTransfer( ((PADAPTER_OBJECT) DmaAdapter)->RealAdapterObject, Mdl, MapRegisterBase, CurrentVa, Length, WriteToDevice ); } ULONG xHalGetDmaAlignment ( IN PDMA_ADAPTER DmaAdapter ) { return HalGetDmaAlignmentRequirement(); } ULONG xHalReadDmaCounter ( IN PDMA_ADAPTER DmaAdapter ) { return HalReadDmaCounter( ((PADAPTER_OBJECT) DmaAdapter)->RealAdapterObject ); } NTSTATUS xHalGetScatterGatherList ( IN PDMA_ADAPTER DmaAdapter, IN PDEVICE_OBJECT DeviceObject, IN PMDL Mdl, IN PVOID CurrentVa, IN ULONG Length, IN PDRIVER_LIST_CONTROL ExecutionRoutine, IN PVOID Context, IN BOOLEAN WriteToDevice ) /*++ Routine Description: This routine allocates the adapter channel specified by the adapter object. Next a scatter/gather list is built based on the MDL, the CurrentVa and the requested Length. Finally the driver's execution function is called with the scatter/gather list. The adapter is released after the execution function returns. The scatter/gather list is freed by calling PutScatterGatherList. Arguments: DmaAdapter - Pointer to the adapter control object to allocate for the driver. DeviceObject - Pointer to the device object that is allocating the adapter. Mdl - Pointer to the MDL that describes the pages of memory that are being read or written. CurrentVa - Current virtual address in the buffer described by the MDL that the transfer is being done to or from. Length - Supplies the length of the transfer. ExecutionRoutine - The address of the driver's execution routine that is invoked once the adapter channel (and possibly map registers) have been allocated. Context - An untyped longword context parameter passed to the driver's execution routine. WriteToDevice - Supplies the value that indicates whether this is a write to the device from memory (TRUE), or vice versa. Return Value: Returns STATUS_SUCCESS unless too many map registers are requested or memory for the scatter/gather list could not be allocated. Notes: Note that this routine MUST be invoked at DISPATCH_LEVEL or above. The data in the buffer cannot be accessed until the put scatter/gather function has been called. --*/ { PXHAL_WAIT_CONTEXT_BLOCK WaitBlock; PWAIT_CONTEXT_BLOCK Wcb; PMDL TempMdl; ULONG NumberOfMapRegisters; ULONG ContextSize; ULONG TransferLength; ULONG MdlLength; ULONG MdlCount; PUCHAR MdlVa; NTSTATUS Status; MdlVa = MmGetMdlVirtualAddress(Mdl); // // Calculate the number of required map registers. // TempMdl = Mdl; TransferLength = TempMdl->ByteCount - (ULONG)((PUCHAR) CurrentVa - MdlVa); MdlLength = TransferLength; MdlVa = (PUCHAR) BYTE_OFFSET(CurrentVa); NumberOfMapRegisters = 0; MdlCount = 1; // // Loop through the any chained MDLs accumulating the required // number of map registers. // while (TransferLength < Length && TempMdl->Next != NULL) { NumberOfMapRegisters += (ULONG)(((ULONG_PTR) MdlVa + MdlLength + PAGE_SIZE - 1) >> PAGE_SHIFT); TempMdl = TempMdl->Next; MdlVa = (PUCHAR) TempMdl->ByteOffset; MdlLength = TempMdl->ByteCount; TransferLength += MdlLength; MdlCount++; } if (TransferLength + PAGE_SIZE < (ULONG_PTR)(Length + MdlVa) ) { ASSERT(TransferLength >= Length); return(STATUS_BUFFER_TOO_SMALL); } // // Calculate the last number of map registers based on the requested // length - not the length of the last MDL. // ASSERT( TransferLength <= MdlLength + Length ); NumberOfMapRegisters += (ULONG)(((ULONG_PTR) MdlVa + Length + MdlLength - TransferLength + PAGE_SIZE - 1) >> PAGE_SHIFT); // // Calculate how much memory is required for the context structure. This // this actually laid out as follows: // // XHAL_WAIT_CONTEXT_BLOCK; // MapRegisterBase[ MdlCount ]; // union { // WAIT_CONTEXT_BLOCK[ MdlCount ]; // SCATTER_GATHER_LIST [ NumberOfMapRegisters ]; // }; // ContextSize = NumberOfMapRegisters * sizeof( SCATTER_GATHER_ELEMENT ) + sizeof( SCATTER_GATHER_LIST ); // // For each Mdl a separate Wcb is required since a separate map // register base must be allocated. // if (ContextSize < sizeof( WAIT_CONTEXT_BLOCK ) * MdlCount) { ContextSize = sizeof( WAIT_CONTEXT_BLOCK ) * MdlCount; } ContextSize += sizeof( XHAL_WAIT_CONTEXT_BLOCK ) + MdlCount * sizeof( PVOID ); WaitBlock = ExAllocatePoolWithTag( NonPagedPool, ContextSize, ' laH' ); if (WaitBlock == NULL) { return( STATUS_INSUFFICIENT_RESOURCES ); } // // Store the wait context block at the end of our block. // All of the information in the wait block can be overwritten // by the scatter/gather list. // Wcb = (PWAIT_CONTEXT_BLOCK) ((PVOID *) (WaitBlock + 1) + MdlCount); // // Save the interesting data in the wait block. // WaitBlock->Mdl = Mdl; WaitBlock->CurrentVa = CurrentVa; WaitBlock->Length = Length; WaitBlock->RealAdapterObject = ((PADAPTER_OBJECT) DmaAdapter)->RealAdapterObject; WaitBlock->DriverExecutionRoutine = ExecutionRoutine; WaitBlock->DriverContext = Context; WaitBlock->CurrentIrp = DeviceObject->CurrentIrp; WaitBlock->MapRegisterLock = MdlCount; WaitBlock->WriteToDevice = WriteToDevice; WaitBlock->MdlCount = (UCHAR) MdlCount; // // Loop through each of the required MDLs, calling // IoAllocateAdapterChannel. // MdlCount = 0; TempMdl = Mdl; TransferLength = Length; MdlLength = TempMdl->ByteCount - (ULONG)((PUCHAR) CurrentVa - (PUCHAR) MmGetMdlVirtualAddress(Mdl)); MdlVa = (PUCHAR) BYTE_OFFSET(CurrentVa); NumberOfMapRegisters = 0; // // Loop through the chained MDLs accumulating the required // number of map registers. // while (TransferLength > 0) { if (MdlLength > TransferLength) { MdlLength = TransferLength; } TransferLength -= MdlLength; NumberOfMapRegisters = (ULONG)(((ULONG_PTR) MdlVa + MdlLength + PAGE_SIZE - 1) >> PAGE_SHIFT); Wcb->DeviceContext = WaitBlock; Wcb->DeviceObject = DeviceObject; // // Store the map register index in the IRP pointer. // Wcb->CurrentIrp = (PVOID) MdlCount; // // Call the HAL to allocate the adapter channel. // xHalpAllocateAdapterCallback will fill in the scatter/gather list. // Status = HalAllocateAdapterChannel( ((PADAPTER_OBJECT) DmaAdapter)->RealAdapterObject, Wcb, NumberOfMapRegisters, xHalpAllocateAdapterCallback ); if (TempMdl->Next == NULL) { break; } // // Advance to next MDL. // TempMdl = TempMdl->Next; MdlVa = (PUCHAR) TempMdl->ByteOffset; MdlLength = TempMdl->ByteCount; MdlCount++; Wcb++; } // // If HalAllocateAdapterChannel failed then free the wait block. // if (!NT_SUCCESS( Status)) { ExFreePool( WaitBlock ); } return( Status ); } VOID xHalPutScatterGatherList ( IN PDMA_ADAPTER DmaAdapter, IN PSCATTER_GATHER_LIST ScatterGather, IN BOOLEAN WriteToDevice ) { PXHAL_WAIT_CONTEXT_BLOCK WaitBlock = (PVOID) ScatterGather->Reserved; ULONG TransferLength; ULONG MdlLength; ULONG MdlCount = 0; PMDL Mdl; PUCHAR CurrentVa; // // Setup for the first MDL. We expect the MDL pointer to be pointing // at the first used MDL. // Mdl = WaitBlock->Mdl; CurrentVa = WaitBlock->CurrentVa; ASSERT( CurrentVa >= (PUCHAR) MmGetMdlVirtualAddress(Mdl) && CurrentVa < (PUCHAR) MmGetMdlVirtualAddress(Mdl) + Mdl->ByteCount ); MdlLength = Mdl->ByteCount - (ULONG)(CurrentVa - (PUCHAR) MmGetMdlVirtualAddress(Mdl)); TransferLength = WaitBlock->Length; // // Loop through the used MDLs calling IoFlushAdapterBuffers. // while (TransferLength > 0) { if (MdlLength > TransferLength) { MdlLength = TransferLength; } TransferLength -= MdlLength; IoFlushAdapterBuffers( WaitBlock->RealAdapterObject, Mdl, WaitBlock->MapRegisterBase[MdlCount], CurrentVa, MdlLength, WriteToDevice ); if (Mdl->Next == NULL) { break; } // // Advance to the next MDL. Update the current VA and the MdlLength. // Mdl = Mdl->Next; CurrentVa = MmGetMdlVirtualAddress(Mdl); MdlLength = Mdl->ByteCount; MdlCount++; } ExFreePool( WaitBlock ); } IO_ALLOCATION_ACTION xHalpAllocateAdapterCallback ( IN struct _DEVICE_OBJECT *DeviceObject, IN struct _IRP *Irp, IN PVOID MapRegisterBase, IN PVOID Context ) /*++ Routine Description: This routine is called when the adapter object and map registers are available for the data transfer. This routine saves the map register base away. If all of the required bases have not been saved then it returns. Otherwise it builds the entire scatter/gather list by calling IoMapTransfer. After the list is built, it is passed to the driver. Arguments: DeviceObject - Pointer to the device object that is allocating the adapter. Irp - Supplies the map register offset assigned for this callback. MapRegisterBase - Supplies the map register base for use by the adapter routines. Context - Supplies a pointer to the xhal wait control block. Return Value: Returns DeallocateObjectKeepRegisters. --*/ { PXHAL_WAIT_CONTEXT_BLOCK WaitBlock = Context; PVOID *MapRegisterBasePtr; ULONG TransferLength; LONG MdlLength; PMDL Mdl; PUCHAR CurrentVa; PSCATTER_GATHER_LIST ScatterGather; PSCATTER_GATHER_ELEMENT Element; // // Save the map register base in the appropriate slot. // WaitBlock->MapRegisterBase[ (ULONG_PTR) Irp ] = MapRegisterBase; // // See if this is the last callback. // if (InterlockedDecrement( &WaitBlock->MapRegisterLock ) != 0) { // // More to come, wait for the rest. // return( DeallocateObjectKeepRegisters ); } // // Put the scatter gather list after wait block. Add a back pointer to // the beginning of the wait block. // MapRegisterBasePtr = (PVOID *) (WaitBlock + 1); ScatterGather = (PSCATTER_GATHER_LIST) (MapRegisterBasePtr + WaitBlock->MdlCount); ScatterGather->Reserved = (ULONG_PTR) WaitBlock; Element = ScatterGather->Elements; // // Setup for the first MDL. We expect the MDL pointer to be pointing // at the first used MDL. // Mdl = WaitBlock->Mdl; CurrentVa = WaitBlock->CurrentVa; ASSERT( CurrentVa >= (PUCHAR) MmGetMdlVirtualAddress(Mdl) && CurrentVa < (PUCHAR) MmGetMdlVirtualAddress(Mdl) + Mdl->ByteCount ); MdlLength = Mdl->ByteCount - (ULONG)(CurrentVa - (PUCHAR) MmGetMdlVirtualAddress(Mdl)); TransferLength = WaitBlock->Length; // // Loop build the list for each MDL. // while (TransferLength > 0) { if ((ULONG) MdlLength > TransferLength) { MdlLength = TransferLength; } TransferLength -= MdlLength; // // Loop building the list for the elements within an MDL. // while (MdlLength > 0) { Element->Length = MdlLength; Element->Address = IoMapTransfer( WaitBlock->RealAdapterObject, Mdl, *MapRegisterBasePtr, CurrentVa, &Element->Length, WaitBlock->WriteToDevice ); ASSERT( (ULONG) MdlLength >= Element->Length ); MdlLength -= Element->Length; CurrentVa += Element->Length; Element++; } if (Mdl->Next == NULL) { // // There are a few cases where the buffer described by the MDL // is less than the transfer length. This occurs when the // file system is transfering the last page of the file and MM // defines the MDL to be file size and the file system rounds // the write up to a sector. This extra amount should never // cross a page boundary. Add this extra to the length of the // last element. // ASSERT(((Element - 1)->Length & (PAGE_SIZE - 1)) + TransferLength <= PAGE_SIZE ); (Element - 1)->Length += TransferLength; break; } // // Advance to the next MDL. Update the current VA and the MdlLength. // Mdl = Mdl->Next; CurrentVa = MmGetMdlVirtualAddress(Mdl); MdlLength = Mdl->ByteCount; MapRegisterBasePtr++; } // // Set the number of elements actually used. // ScatterGather->NumberOfElements = (ULONG)(Element - ScatterGather->Elements); // // Call the driver with the scatter/gather list. // WaitBlock->DriverExecutionRoutine( DeviceObject, WaitBlock->CurrentIrp, ScatterGather, WaitBlock->DriverContext ); return( DeallocateObjectKeepRegisters ); } #endif BOOLEAN xHalTranslateBusAddress( IN INTERFACE_TYPE InterfaceType, IN ULONG BusNumber, IN PHYSICAL_ADDRESS BusAddress, IN OUT PULONG AddressSpace, OUT PPHYSICAL_ADDRESS TranslatedAddress ) { // // If the HAL fails to override this function, then // the HAL has clearly failed to initialize. // KeBugCheckEx(HAL_INITIALIZATION_FAILED, 0, 0, 0, 7); return FALSE; } NTSTATUS xHalAssignSlotResources ( IN PUNICODE_STRING RegistryPath, IN PUNICODE_STRING DriverClassName OPTIONAL, IN PDRIVER_OBJECT DriverObject, IN PDEVICE_OBJECT DeviceObject OPTIONAL, IN INTERFACE_TYPE BusType, IN ULONG BusNumber, IN ULONG SlotNumber, IN OUT PCM_RESOURCE_LIST *AllocatedResources ) { // // If the HAL fails to override this function, then // the HAL has clearly failed to initialize. // KeBugCheckEx(HAL_INITIALIZATION_FAILED, 0, 0, 0, 7); return STATUS_NOT_IMPLEMENTED; } VOID xHalHaltSystem( VOID ) { for (;;) ; } NTSTATUS xKdSetupPciDeviceForDebugging( IN PVOID LoaderBlock, OPTIONAL IN OUT PDEBUG_DEVICE_DESCRIPTOR PciDevice ) { return STATUS_NOT_IMPLEMENTED; } NTSTATUS xKdReleasePciDeviceForDebugging( IN OUT PDEBUG_DEVICE_DESCRIPTOR PciDevice ) { return STATUS_NOT_IMPLEMENTED; } PVOID xKdGetAcpiTablePhase0( IN PLOADER_PARAMETER_BLOCK LoaderBlock, IN ULONG Signature ) { return NULL; } VOID xKdCheckPowerButton( VOID ) { return; } VOID xHalEndOfBoot( VOID ) { PAGED_CODE(); return; } UCHAR xHalVectorToIDTEntry( ULONG Vector ) { return (UCHAR)Vector; } PVOID xKdMapPhysicalMemory64( IN PHYSICAL_ADDRESS PhysicalAddress, IN ULONG NumberPages ) { return NULL; } VOID xKdUnmapVirtualAddress( IN PVOID VirtualAddress, IN ULONG NumberPages ) { return; }