/*++ Copyright (c) 1990 Microsoft Corporation Copyright (c) 1995 Intel Corporation Module Name: miia64.h Abstract: This module contains the private data structures and procedure prototypes for the hardware dependent portion of the memory management system. This module is specifically tailored for the IA64. Author: Lou Perazzoli (loup) 6-Jan-1990 Landy Wang (landyw) 2-June-1997 Koichi Yamada (kyamada) 9-Jan-1996 Revision History: --*/ /*++ Virtual Memory Layout on IA64 is: +------------------------------------+ 0000000000000000 | User mode addresses - 7tb - 16gb | UADDRESS_BASE | | | | 000006FBFFFEFFFF | | MM_HIGHEST_USER_ADDRESS +------------------------------------+ 000006FBFFFF0000 | 64k No Access Region | MM_USER_PROBE_ADDRESS +------------------------------------+ 000006FC00000000 | Alternate 4K-page mappings | ALT4KB_BASE | for x86 process emulation | 000006FC00400000 | Alternate 4K-page mappings | ALT4KB_END +------------------------------------+ 000006FC00800000 | HyperSpace - working set lists | HYPER_SPACE | and per process memory management | | structures mapped in this 16gb | 000006FFFFFFFFFF | region. | HYPER_SPACE_END +------------------------------------+ 0000070000000000 | | | Page table selfmapping structures | 000007FFFFFFFFFF | | +------------------------------------+ . . +------------------------------------+ 1FFFFF0000000000 | 8gb leaf level page table map | PTE_UBASE | for user space | 1FFFFF01FFFFFFFF | | PTE_UTOP +------------------------------------+ +------------------------------------+ 1FFFFFFFC0000000 | 8mb page directory (2nd level) | PDE_UBASE | table map for user space | 1FFFFFFFC07FFFFF | | PDE_UTOP +------------------------------------+ +------------------------------------+ 1FFFFFFFFFF00000 | 8KB parent directory (1st level) | PDE_UTBASE +------------------------------------+ . . +------------------------------------+ 2000000000000000 | 1. Win32k.sys | MM_SESSION_SPACE_DEFAULT | 2. Hydra - 8gb | | and per session memory management | | structures mapped in this 8gb | | region. | +------------------------------------+ . +------------------------------------+ 3FFFFF0000000000 | 8gb leaf level page table map | PTE_SBASE | for session space | 3FFFFF01FFFFFFFF | | PTE_STOP +------------------------------------+ +------------------------------------+ 3FFFFFFFC0000000 | 8mb page directory (2nd level) | PDE_SBASE | table map for session space | 3FFFFFFFC07FFFFF | | PDE_STOP +------------------------------------+ +------------------------------------+ 3FFFFFFFFFF00000 | 8KB parent directory (1st level) | PDE_STBASE +------------------------------------+ . +------------------------------------+ 8000000000000000 | physical addressable memory | KSEG3_BASE | for 44-bit of address space | 80000FFFFFFFFFFF | mapped by VHPT 64KB page | KSEG3_LIMIT +------------------------------------+ . +------------------------------------+ 9FFFFF00000000000| vhpt 64kb page for KSEG3 space | | (not used) | +------------------------------------+ . . +------------------------------------+ MM_SYSTEM_RANGE_START E000000000000000 | | KADDRESS_BASE +------------------------------------+ E000000080000000 | The HAL, kernel, initial drivers, | KSEG0_BASE | NLS data, and registry load in the | | first 16mb of this region which | | physically addresses memory. | | | | Kernel mode access only. | | | | Initial NonPaged Pool is within | | KSEG0 | | | KSEG2_BASE +------------------------------------+ E0000000FF000000 | Shared system page | KI_USER_SHARED_DATA +------------------------------------+ E0000000FF002000 | Reserved for the HAL. | | | | | E0000000FFFFFFFF | | +------------------------------------+ . . +------------------------------------+ E000000200000000 | | | | | | | | +------------------------------------+ E000000400000000 | The system cache working set | MM_SYSTEM_CACHE_WORKING_SET | | MM_SYSTEM_SPACE_START | information resides in this 8gb | | region. | +------------------------------------+ E000000600000000 | System cache resides here. | MM_SYSTEM_CACHE_START | Kernel mode access only. | | 1tb. | +------------------------------------+ E000010600000000 | Start of paged system area. | MM_PAGED_POOL_START | Kernel mode access only. | | 128gb. | +------------------------------------+ | System mapped views start just | | after paged pool. Default is | | 104MB, can be registry-overridden. | | 8GB maximum. | +------------------------------------+ | | . . In general, the next two areas (system PTE pool and nonpaged pool) will both be shifted upwards to conserve a PPE... . . +------------------------------------+ E000012600000000 | System PTE pool. | MM_LOWEST_NONPAGED_SYSTEM_START | Kernel mode access only. | | 128gb. | +------------------------------------+ E000014600000000 | NonPaged pool. | MM_NON_PAGED_POOL_START | Kernel mode access only. | | 128gb. | | | E0000165FFFFFFFF | NonPaged System area | MM_NONPAGED_POOL_END +------------------------------------+ . . E000040000000000 +------------------------------------+ MM_PFN_DATABASE_START | PFN Database space | | Kernel mode access only. | | 2tb. | E000060000000000 +------------------------------------+ MM_PFN_DATABASE_END . MM_SYSTEM_SPACE_END . . +------------------------------------+ FFFFFF0000000000 | 8gb leaf level page table map | PTE_KBASE | for kernel space | FFFFFF01FFFFFFFF | | PTE_KTOP +------------------------------------+ +------------------------------------+ FFFFFFFFC0000000 | 8mb page directory (2nd level) | PDE_KBASE | table map for kernel space | FFFFFFFFC07FFFFF | | PDE_KTOP +------------------------------------+ +------------------------------------+ FFFFFFFFFFF00000 | 8KB parent directory (1st level) | PDE_KTBASE +------------------------------------+ --*/ #define _MI_PAGING_LEVELS 3 #define _MI_MORE_THAN_4GB_ 1 #define IMAGE_FILE_MACHINE_NATIVE IMAGE_FILE_MACHINE_IA64 #define _MIALT4K_ 1 // // Define empty list markers. // #define MM_EMPTY_LIST ((ULONG_PTR)-1) // #define MM_EMPTY_PTE_LIST ((ULONG)0xFFFFFFFF) // N.B. tied to MMPTE definition #define MI_PTE_BASE_FOR_LOWEST_KERNEL_ADDRESS ((PMMPTE)PTE_KBASE) // // Define the session PTE base. // #define MI_PTE_BASE_FOR_LOWEST_SESSION_ADDRESS ((PMMPTE)PTE_SBASE) // // 43-Bit virtual address mask. // #define MASK_43 0x7FFFFFFFFFFUI64 // // // 44-Bit Physical address mask. // #define MASK_44 0xFFFFFFFFFFFUI64 #define MM_PAGES_IN_KSEG0 ((ULONG)((KSEG2_BASE - KSEG0_BASE) >> PAGE_SHIFT)) extern ULONG_PTR MmKseg2Frame; extern ULONGLONG MmPageSizeInfo; #define MM_USER_ADDRESS_RANGE_LIMIT (0xFFFFFFFFFFFFFFFFUI64) // user address range limit #define MM_MAXIMUM_ZERO_BITS 53 // maximum number of zero bits // // PAGE_SIZE for IA64 is 8k, virtual page is 20 bits with a PAGE_SHIFT // byte offset. // #define MM_VIRTUAL_PAGE_FILLER (PAGE_SHIFT - 12) #define MM_VIRTUAL_PAGE_SIZE (64-PAGE_SHIFT) // // Address space layout definitions. // #define CODE_START KSEG0_BASE #define CODE_END KSEG2_BASE #define MM_SYSTEM_SPACE_START (KADDRESS_BASE + 0x400000000UI64) #define MM_SYSTEM_SPACE_END (KADDRESS_BASE + 0x60000000000UI64) #define PDE_TOP PDE_UTOP #define PTE_TOP PTE_UTOP // // Define Alternate 4KB permission table space for X86 emulation mappings. // #define ALT4KB_PERMISSION_TABLE_START ((PVOID)(UADDRESS_BASE + 0x6FC00000000)) #define ALT4KB_PERMISSION_TABLE_END ((PVOID)(UADDRESS_BASE + 0x6FC00400000)) // // Define hyper space. // #define HYPER_SPACE ((PVOID)(UADDRESS_BASE + 0x6FC00800000)) #define HYPER_SPACE_END ((PVOID)(UADDRESS_BASE + 0x6FFFFFFFFFF)) // // Define area for mapping views into system space. // #define MM_SYSTEM_VIEW_SIZE (104*1024*1024) // // Hydra lives in region 1. // #define MM_SESSION_SPACE_DEFAULT (0x2000000000000000UI64) #define MM_SESSION_SPACE_DEFAULT_END (0x2000000200000000UI64) // // Define the start and maximum size for the system cache. // #define MM_SYSTEM_CACHE_WORKING_SET (KADDRESS_BASE + 0x400000000UI64) #define MM_SYSTEM_CACHE_START (KADDRESS_BASE + 0x600000000UI64) #define MM_SYSTEM_CACHE_END (KADDRESS_BASE + 0x1005FFFFFFFFUI64) #define MM_MAXIMUM_SYSTEM_CACHE_SIZE \ (((ULONG_PTR)MM_SYSTEM_CACHE_END - (ULONG_PTR)MM_SYSTEM_CACHE_START) >> PAGE_SHIFT) #define MM_PAGED_POOL_START ((PVOID)(KADDRESS_BASE + 0x10600000000UI64)) #define MM_LOWEST_NONPAGED_SYSTEM_START ((PVOID)(KADDRESS_BASE + 0x12600000000UI64)) #define MmProtopte_Base (KADDRESS_BASE) #define MM_NONPAGED_POOL_END ((PVOID)(KADDRESS_BASE + 0x16600000000UI64 - (16 * PAGE_SIZE))) #define MM_CRASH_DUMP_VA ((PVOID)(KADDRESS_BASE + 0xFF800000)) // EPC VA at 0xFFA00000 (see ntia64.h) #define MM_DEBUG_VA ((PVOID)(KADDRESS_BASE + 0xFF900000)) #define NON_PAGED_SYSTEM_END (KADDRESS_BASE + 0x16600000000UI64) //quadword aligned. #define MM_PFN_DATABASE_START (KADDRESS_BASE + 0x40000000000UI64) #define MM_PFN_DATABASE_END (KADDRESS_BASE + 0x60000000000UI64) extern ULONG MiMaximumSystemCacheSize; // // Define absolute minimum and maximum count for system ptes. // #define MM_MINIMUM_SYSTEM_PTES 7000 #define MM_MAXIMUM_SYSTEM_PTES (16*1024*1024) #define MM_DEFAULT_SYSTEM_PTES 11000 // // Pool limits // // // The maximum amount of nonpaged pool that can be initially created. // #define MM_MAX_INITIAL_NONPAGED_POOL ((SIZE_T)(128 * 1024 * 1024)) // // The total amount of nonpaged pool (initial pool + expansion + system PTEs). // #define MM_MAX_ADDITIONAL_NONPAGED_POOL (((SIZE_T)128 * 1024 * 1024 * 1024) - 16) // // The maximum amount of paged pool that can be created. // #define MM_MAX_PAGED_POOL ((SIZE_T)128 * 1024 * 1024 * 1024) // // Define the maximum default for pool (user specified 0 in registry). // #define MM_MAX_DEFAULT_NONPAGED_POOL ((SIZE_T)8 * 1024 * 1024 * 1024) // // Structure layout defintions. // #define MM_PROTO_PTE_ALIGNMENT ((ULONG)PAGE_SIZE) // // Define the address bits mapped by PPE and PDE entries. // // A PPE entry maps 10+10+13 = 33 bits of address space. // A PDE entry maps 10+13 = 23 bits of address space. // #define PAGE_DIRECTORY1_MASK (((ULONG_PTR)1 << PDI1_SHIFT) - 1) #define PAGE_DIRECTORY2_MASK (((ULONG_PTR)1 << PDI_SHIFT) -1) #define MM_VA_MAPPED_BY_PDE ((ULONG_PTR)1 << PDI_SHIFT) #define MM_VA_MAPPED_BY_PPE ((ULONG_PTR)1 << PDI1_SHIFT) #define LOWEST_IO_ADDRESS 0xa0000 // // The number of bits in a physical address. // #define PHYSICAL_ADDRESS_BITS 44 #define MM_MAXIMUM_NUMBER_OF_COLORS (1) // // IA64 does not require support for colored pages. // #define MM_NUMBER_OF_COLORS (1) // // Mask for obtaining color from a physical page number. // #define MM_COLOR_MASK (0) // // Boundary for aligned pages of like color upon. // #define MM_COLOR_ALIGNMENT (0) // // Mask for isolating color from virtual address. // #define MM_COLOR_MASK_VIRTUAL (0) // // Define 256k worth of secondary colors. // #define MM_SECONDARY_COLORS_DEFAULT (64) #define MM_SECONDARY_COLORS_MIN (2) #define MM_SECONDARY_COLORS_MAX (1024) // // Maximum number of paging files. // #define MAX_PAGE_FILES 16 // // Hyper space definitions. // #define FIRST_MAPPING_PTE ((PMMPTE)HYPER_SPACE) #define NUMBER_OF_MAPPING_PTES 253 #define LAST_MAPPING_PTE \ ((PVOID)((ULONG_PTR)FIRST_MAPPING_PTE + (NUMBER_OF_MAPPING_PTES * PAGE_SIZE))) #define COMPRESSION_MAPPING_PTE ((PMMPTE)((ULONG_PTR)LAST_MAPPING_PTE + PAGE_SIZE)) #define IMAGE_MAPPING_PTE ((PMMPTE)((ULONG_PTR)COMPRESSION_MAPPING_PTE + PAGE_SIZE)) #define NUMBER_OF_ZEROING_PTES 32 #define VAD_BITMAP_SPACE ((PVOID)((ULONG_PTR)IMAGE_MAPPING_PTE + PAGE_SIZE)) #define WORKING_SET_LIST ((PVOID)((ULONG_PTR)VAD_BITMAP_SPACE + PAGE_SIZE)) #define MM_MAXIMUM_WORKING_SET (((ULONG_PTR)(HYPER_SPACE)) >> PAGE_SHIFT) #define MmWorkingSetList ((PMMWSL)WORKING_SET_LIST) #define MmWsle ((PMMWSLE)((PUCHAR)WORKING_SET_LIST + sizeof(MMWSL))) #define MM_WORKING_SET_END (UADDRESS_BASE + 0x3FFFFFFFFFFUI64) // // Define memory attributes fields within PTE. // #define MM_PTE_TB_MA_WB (0x0 << 2) // cacheable, write-back #define MM_PTE_TB_MA_UC (0x4 << 2) // uncacheable #define MM_PTE_TB_MA_UCE (0x5 << 2) // uncacheable, exporting fetchadd #define MM_PTE_TB_MA_WC (0x6 << 2) // uncacheable, coalescing #define MM_PTE_TB_MA_NATPAGE (0x7 << 2) // Nat Page // // Define masks for the PTE cache attributes. // #define MM_PTE_CACHE_ENABLED 0 // WB #define MM_PTE_CACHE_DISABLED 4 // UC #define MM_PTE_CACHE_DISPLAY 6 // WC #define MM_PTE_CACHE_RESERVED 1 // special encoding to cause a TLB miss // // Define masks for fields within the PTE. // #define MM_PTE_OWNER_MASK 0x0180 #define MM_PTE_VALID_MASK 1 #define MM_PTE_CACHE_DISABLE_MASK MM_PTE_TB_MA_UC #define MM_PTE_ACCESS_MASK 0x0020 #define MM_PTE_DIRTY_MASK 0x0040 #define MM_PTE_EXECUTE_MASK 0x0200 #define MM_PTE_WRITE_MASK 0x0400 #define MM_PTE_LARGE_PAGE_MASK 0 #define MM_PTE_COPY_ON_WRITE_MASK ((ULONG)1 << (PAGE_SHIFT-1)) #define MM_PTE_PROTOTYPE_MASK 0x0002 #define MM_PTE_TRANSITION_MASK 0x0080 // // Bit fields to or into PTE to make a PTE valid based on the // protection field of the invalid PTE. // #define MM_PTE_NOACCESS 0x0 #define MM_PTE_READONLY 0x0 #define MM_PTE_READWRITE MM_PTE_WRITE_MASK #define MM_PTE_WRITECOPY MM_PTE_COPY_ON_WRITE_MASK #define MM_PTE_EXECUTE MM_PTE_EXECUTE_MASK #define MM_PTE_EXECUTE_READ MM_PTE_EXECUTE_MASK #define MM_PTE_EXECUTE_READWRITE MM_PTE_EXECUTE_MASK | MM_PTE_WRITE_MASK #define MM_PTE_EXECUTE_WRITECOPY MM_PTE_EXECUTE_MASK | MM_PTE_COPY_ON_WRITE_MASK #define MM_PTE_GUARD 0x0 #define MM_PTE_CACHE MM_PTE_TB_MA_WB #define MM_PTE_NOCACHE MM_PTE_CACHE // PAGE_NOCACHE is cached #define MM_PTE_EXC_DEFER 0x10000000000000 // defer exception #define MM_PROTECT_FIELD_SHIFT 2 // // Define masks for fields within the IA64 TB entry. // #define MM_PTE_TB_VALID 0x0001 #define MM_PTE_TB_ACCESSED 0x0020 #define MM_PTE_TB_MODIFIED 0x0040 #define MM_PTE_TB_WRITE 0x0400 #define MM_PTE_TB_EXECUTE 0x0200 // read/execute #define MM_PTE_TB_EXC_DEFER 0x10000000000000 // defer exception // // Define the number of VHPT pages. // #define MM_VHPT_PAGES 32 // // Bits available for the software working set index within the hardware PTE. // #define MI_MAXIMUM_PTE_WORKING_SET_INDEX (1 << _HARDWARE_PTE_WORKING_SET_BITS) // // Zero PTE. // #define MM_ZERO_PTE 0 // // Zero Kernel PTE. // #define MM_ZERO_KERNEL_PTE 0 // // A demand zero PTE with a protection of PAGE_READWRITE. // #define MM_DEMAND_ZERO_WRITE_PTE ((ULONGLONG)MM_READWRITE << MM_PROTECT_FIELD_SHIFT) // // A demand zero PTE with a protection of PAGE_READWRITE for system space. // #define MM_KERNEL_DEMAND_ZERO_PTE ((ULONGLONG)MM_READWRITE << MM_PROTECT_FIELD_SHIFT) // // A no access PTE for system space. // #define MM_KERNEL_NOACCESS_PTE ((ULONGLONG)MM_NOACCESS << MM_PROTECT_FIELD_SHIFT) // // Kernel stack alignment requirements. // #define MM_STACK_ALIGNMENT 0x0 #define MM_STACK_OFFSET 0x0 #define PDE_PER_PAGE ((ULONG)(PAGE_SIZE/(1 << PTE_SHIFT))) #define PTE_PER_PAGE ((ULONG)(PAGE_SIZE/(1 << PTE_SHIFT))) #define PTE_PER_PAGE_BITS 11 // This handles the case where the page is full #if PTE_PER_PAGE_BITS > 32 error - too many bits to fit into MMPTE_SOFTWARE or MMPFN.u1 #endif // // Number of page table pages for user addresses. // #define MM_USER_PAGE_TABLE_PAGES ((ULONG_PTR)MI_SYSTEM_RANGE_START / (PTE_PER_PAGE * PAGE_SIZE)) #define MM_USER_PAGE_DIRECTORY_PAGES ((ULONG_PTR)MI_SYSTEM_RANGE_START / ((ULONG_PTR)PDE_PER_PAGE * PTE_PER_PAGE * PAGE_SIZE)) //++ //VOID //MI_MAKE_VALID_PTE ( // OUT OUTPTE, // IN FRAME, // IN PMASK, // IN PPTE // ); // // Routine Description: // // This macro makes a valid PTE from a page frame number, protection mask, // and owner. // // Arguments: // // OUTPTE - Supplies the PTE in which to build the transition PTE. // // FRAME - Supplies the page frame number for the PTE. // // PMASK - Supplies the protection to set in the transition PTE. // // PPTE - Supplies a pointer to the PTE which is being made valid. // For prototype PTEs NULL should be specified. // // Return Value: // // None. // //-- #define _ALTPERM_BITMAP_MASK ((MM_MAX_WOW64_ADDRESS - 1) >> PTI_SHIFT) #if defined(_MIALT4K_) extern PVOID MiMaxWow64Pte; #define MI_SET_VALID_PTE_BITS(OUTPTE,PMASK,PPTE) { \ PWOW64_PROCESS _Wow64Process; \ if ((PPTE >= (PMMPTE)PTE_UBASE) && (PPTE < (PMMPTE)MiMaxWow64Pte)) { \ _Wow64Process = PsGetCurrentProcess()->Wow64Process; \ if (_Wow64Process != NULL) { \ if (MI_CHECK_BIT(_Wow64Process->AltPermBitmap, \ ((ULONG_PTR)PPTE >> PTE_SHIFT) & _ALTPERM_BITMAP_MASK) != 0) { \ (OUTPTE).u.Long |= (MmProtectToPteMaskForSplit[PMASK]); \ } \ else { \ (OUTPTE).u.Long |= (MmProtectToPteMaskForIA32[PMASK]); \ (OUTPTE).u.Hard.Accessed = 1; \ } \ } \ else { \ (OUTPTE).u.Hard.Accessed = 1; \ (OUTPTE).u.Long |= (MmProtectToPteMask[PMASK]); \ } \ } \ else { \ (OUTPTE).u.Hard.Accessed = 1; \ (OUTPTE).u.Long |= (MmProtectToPteMask[PMASK]); \ } \ } #else #define MI_SET_VALID_PTE_BITS(OUTPTE,PMASK,PPTE) { \ (OUTPTE).u.Hard.Accessed = 1; \ (OUTPTE).u.Long |= (MmProtectToPteMask[PMASK]); } #endif #define MI_MAKE_VALID_PTE(OUTPTE,FRAME,PMASK,PPTE) \ (OUTPTE).u.Long = 0; \ (OUTPTE).u.Hard.Valid = 1; \ (OUTPTE).u.Hard.Cache = MM_PTE_CACHE_ENABLED; \ (OUTPTE).u.Hard.Exception = 1; \ (OUTPTE).u.Hard.PageFrameNumber = FRAME; \ (OUTPTE).u.Hard.Owner = MI_DETERMINE_OWNER(PPTE); \ MI_SET_VALID_PTE_BITS(OUTPTE,PMASK,PPTE) //++ //VOID //MI_MAKE_VALID_PTE_TRANSITION ( // IN OUT OUTPTE // IN PROTECT // ); // // Routine Description: // // This macro takes a valid PTE and turns it into a transition PTE. // // Arguments: // // OUTPTE - Supplies the current valid PTE. This PTE is then // modified into a transition PTE. // // PROTECT - Supplies the protection to set in the transition PTE. // // Return Value: // // None. // //-- #define MI_MAKE_VALID_PTE_TRANSITION(OUTPTE,PROTECT) \ (OUTPTE).u.Soft.Transition = 1; \ (OUTPTE).u.Soft.Valid = 0; \ (OUTPTE).u.Soft.Prototype = 0; \ (OUTPTE).u.Soft.Protection = PROTECT; //++ //VOID //MI_MAKE_TRANSITION_PTE ( // OUT OUTPTE, // IN PAGE, // IN PROTECT, // IN PPTE // ); // // Routine Description: // // This macro takes a valid PTE and turns it into a transition PTE. // // Arguments: // // OUTPTE - Supplies the PTE in which to build the transition PTE. // // PAGE - Supplies the page frame number for the PTE. // // PROTECT - Supplies the protection to set in the transition PTE. // // PPTE - Supplies a pointer to the PTE, this is used to determine // the owner of the PTE. // // Return Value: // // None. // //-- #define MI_MAKE_TRANSITION_PTE(OUTPTE,PAGE,PROTECT,PPTE) \ (OUTPTE).u.Long = 0; \ (OUTPTE).u.Trans.PageFrameNumber = PAGE; \ (OUTPTE).u.Trans.Transition = 1; \ (OUTPTE).u.Trans.Protection = PROTECT; //++ //VOID //MI_MAKE_TRANSITION_PTE_VALID ( // OUT OUTPTE, // IN PPTE // ); // // Routine Description: // // This macro takes a transition PTE and makes it a valid PTE. // // Arguments: // // OUTPTE - Supplies the PTE in which to build the valid PTE. // // PPTE - Supplies a pointer to the transition PTE. // // Return Value: // // None. // //-- #define MI_MAKE_TRANSITION_PTE_VALID(OUTPTE,PPTE) { \ ASSERT (((PPTE)->u.Hard.Valid == 0) && \ ((PPTE)->u.Trans.Prototype == 0) && \ ((PPTE)->u.Trans.Transition == 1)); \ (OUTPTE).u.Long = (PPTE)->u.Long & 0x1FFFFFFFE000; \ (OUTPTE).u.Hard.Valid = 1; \ (OUTPTE).u.Hard.Cache = MM_PTE_CACHE_ENABLED; \ (OUTPTE).u.Hard.Exception = 1; \ (OUTPTE).u.Hard.Owner = MI_DETERMINE_OWNER(PPTE); \ MI_SET_VALID_PTE_BITS(OUTPTE,(PPTE)->u.Trans.Protection,PPTE) \ } #define MI_FAULT_STATUS_INDICATES_EXECUTION(_FaultStatus) (_FaultStatus & 0x2) #define MI_FAULT_STATUS_INDICATES_WRITE(_FaultStatus) (_FaultStatus & 0x1) #define MI_CLEAR_FAULT_STATUS(_FaultStatus) (_FaultStatus = 0) #define MI_IS_PTE_EXECUTABLE(_TempPte) ((_TempPte)->u.Hard.Execute != 0) //++ //VOID //MI_SET_PTE_IN_WORKING_SET ( // OUT PMMPTE PTE, // IN ULONG WSINDEX // ); // // Routine Description: // // This macro inserts the specified working set index into the argument PTE. // // No TB invalidation is needed for other processors (or this one) even // though the entry may already be in a TB - it's just a software field // update and doesn't affect miss resolution. // // Arguments // // OUTPTE - Supplies the PTE in which to insert the working set index. // // WSINDEX - Supplies the working set index for the PTE. // // Return Value: // // None. // //-- #define MI_SET_PTE_IN_WORKING_SET(PTE, WSINDEX) { \ MMPTE _TempPte; \ _TempPte = *(PTE); \ _TempPte.u.Hard.SoftwareWsIndex = (WSINDEX); \ *(PTE) = _TempPte; \ } //++ //ULONG WsIndex //MI_GET_WORKING_SET_FROM_PTE( // IN PMMPTE PTE // ); // // Routine Description: // // This macro returns the working set index from the argument PTE. // // Arguments // // PTE - Supplies the PTE to extract the working set index from. // // Return Value: // // This macro returns the working set index for the argument PTE. // //-- #define MI_GET_WORKING_SET_FROM_PTE(PTE) (ULONG)(PTE)->u.Hard.SoftwareWsIndex extern BOOLEAN MiWriteCombiningPtes; //++ //VOID //MI_SET_PTE_WRITE_COMBINE ( // IN MMPTE PTE // ); // // Routine Description: // // This macro sets the write combined bit(s) in the specified PTE. // // Arguments // // PTE - Supplies the PTE to set dirty. // // Return Value: // // None. // //-- #define MI_SET_PTE_WRITE_COMBINE(PTE) \ ((PTE).u.Hard.Cache = MM_PTE_CACHE_DISABLED) #define MI_SET_PTE_WRITE_COMBINE2(PTE) \ if (MiWriteCombiningPtes == TRUE) { \ (PTE).u.Hard.Cache = MM_PTE_CACHE_DISPLAY; \ } \ else { \ (PTE).u.Hard.Cache = MM_PTE_CACHE_DISABLED; \ } //++ //VOID //MI_PREPARE_FOR_NONCACHED ( // IN MI_PFN_CACHE_ATTRIBUTE CacheAttribute // ); // // Routine Description: // // This macro prepares the system prior to noncached PTEs being created. // // Note the entire TB must be flushed on all processors because there may // be stale system PTE (or hyperspace or zeropage) mappings in the TB which // may refer to the same physical page but with a different cache attribute. // // Arguments // // CacheAttribute - Supplies the cache attribute the PTEs will be filled // with. // // Return Value: // // None. // //-- #define MI_PREPARE_FOR_NONCACHED(_CacheAttribute) \ if (_CacheAttribute != MiCached) { \ KeFlushEntireTb(FALSE, TRUE); \ } //++ //VOID //MI_SWEEP_CACHE ( // IN MI_PFN_CACHE_ATTRIBUTE CacheAttribute, // IN PVOID StartVa, // IN ULONG NumberOfBytes // ); // // Routine Description: // // This macro prepares the system prior to noncached PTEs being created. // // Arguments // // CacheAttribute - Supplies the cache attribute the PTEs were filled with. // // StartVa - Supplies the starting address that's been mapped. // // NumberOfBytes - Supplies the number of bytes that have been mapped. // // Return Value: // // None. // //-- #define MI_SWEEP_CACHE(_CacheAttribute,_StartVa,_NumberOfBytes) \ if (_CacheAttribute != MiCached) { \ MiSweepCacheMachineDependent (_StartVa, \ _NumberOfBytes, \ (ULONG)(_CacheAttribute)); \ } LOGICAL MiPageFrameIndexMustBeCached ( IN PFN_NUMBER PageFrameIndex ); #define MI_PAGE_FRAME_INDEX_MUST_BE_CACHED(PageFrameIndex) \ MiPageFrameIndexMustBeCached(PageFrameIndex) //++ //VOID //MI_SET_PTE_DIRTY ( // IN MMPTE PTE // ); // // Routine Description: // // This macro sets the dirty bit(s) in the specified PTE. // // Arguments: // // PTE - Supplies the PTE to set dirty. // // Return Value: // // None. // //-- #define MI_SET_PTE_DIRTY(PTE) (PTE).u.Hard.Dirty = 1 //++ //VOID //MI_SET_PTE_CLEAN ( // IN MMPTE PTE // ); // // Routine Description: // // This macro clears the dirty bit(s) in the specified PTE. // // Arguments: // // PTE - Supplies the PTE to set clear. // // Return Value: // // None. // //-- #define MI_SET_PTE_CLEAN(PTE) (PTE).u.Hard.Dirty = 0 //++ //VOID //MI_IS_PTE_DIRTY ( // IN MMPTE PTE // ); // // Routine Description: // // This macro checks the dirty bit(s) in the specified PTE. // // Arguments: // // PTE - Supplies the PTE to check. // // Return Value: // // TRUE if the page is dirty (modified), FALSE otherwise. // //-- #define MI_IS_PTE_DIRTY(PTE) ((PTE).u.Hard.Dirty != 0) //++ //VOID //MI_SET_GLOBAL_BIT_IF_SYSTEM ( // OUT OUTPTE, // IN PPTE // ); // // Routine Description: // // This macro sets the global bit if the pointer PTE is within // system space. // // Arguments: // // OUTPTE - Supplies the PTE in which to build the valid PTE. // // PPTE - Supplies a pointer to the PTE becoming valid. // // Return Value: // // None. // //-- #define MI_SET_GLOBAL_BIT_IF_SYSTEM(OUTPTE,PPTE) //++ //VOID //MI_SET_GLOBAL_STATE ( // IN MMPTE PTE, // IN ULONG STATE // ); // // Routine Description: // // This macro sets the global bit in the PTE. if the pointer PTE is within // // Arguments: // // PTE - Supplies the PTE to set global state into. // // STATE - Supplies 1 if global, 0 if not. // // Return Value: // // None. // //-- #define MI_SET_GLOBAL_STATE(PTE,STATE) //++ //VOID //MI_ENABLE_CACHING ( // IN MMPTE PTE // ); // // Routine Description: // // This macro takes a valid PTE and sets the caching state to be // enabled. // // Arguments: // // PTE - Supplies a valid PTE. // // Return Value: // // None. // //-- #define MI_ENABLE_CACHING(PTE) ((PTE).u.Hard.Cache = MM_PTE_CACHE_ENABLED) //++ //VOID //MI_DISABLE_CACHING ( // IN MMPTE PTE // ); // // Routine Description: // // This macro takes a valid PTE and sets the caching state to be // disabled. // // Arguments: // // PTE - Supplies a pointer to the valid PTE. // // Return Value: // // None. // //-- #define MI_DISABLE_CACHING(PTE) ((PTE).u.Hard.Cache = MM_PTE_CACHE_DISABLED) //++ //BOOLEAN //MI_IS_CACHING_DISABLED ( // IN PMMPTE PPTE // ); // // Routine Description: // // This macro takes a valid PTE and returns TRUE if caching is // disabled. // // Arguments: // // PPTE - Supplies a pointer to the valid PTE. // // Return Value: // // TRUE if caching is disabled, FALSE if it is enabled. // //-- #define MI_IS_CACHING_DISABLED(PPTE) \ ((PPTE)->u.Hard.Cache == MM_PTE_CACHE_DISABLED) //++ //VOID //MI_SET_PFN_DELETED ( // IN PMMPFN PPFN // ); // // Routine Description: // // This macro takes a pointer to a PFN element and indicates that // the PFN is no longer in use. // // Arguments: // // PPTE - Supplies a pointer to the PFN element. // // Return Value: // // none. // //-- #define MI_SET_PFN_DELETED(PPFN) \ (PPFN)->PteAddress = (PMMPTE)((ULONG_PTR)PPFN->PteAddress | 0x1); //++ //VOID //MI_MARK_PFN_UNDELETED ( // IN PMMPFN PPFN // ); // // Routine Description: // // This macro takes a pointer to a deleted PFN element and mark that // the PFN is not deleted. // // Arguments // // PPTE - Supplies a pointer to the PFN element. // // Return Value: // // none. // //-- #define MI_MARK_PFN_UNDELETED(PPFN) \ PPFN->PteAddress = (PMMPTE)((ULONG_PTR)PPFN->PteAddress & ~0x1); //++ //BOOLEAN //MI_IS_PFN_DELETED ( // IN PMMPFN PPFN // ); // // Routine Description: // // This macro takes a pointer to a PFN element and determines if // the PFN is no longer in use. // // Arguments: // // PPTE - Supplies a pointer to the PFN element. // // Return Value: // // TRUE if PFN is no longer used, FALSE if it is still being used. // //-- #define MI_IS_PFN_DELETED(PPFN) \ ((ULONG_PTR)(PPFN)->PteAddress & 0x1) //++ //VOID //MI_CHECK_PAGE_ALIGNMENT ( // IN ULONG PAGE, // IN PMMPTE PPTE // ); // // Routine Description: // // This macro takes a PFN element number (Page) and checks to see // if the virtual alignment for the previous address of the page // is compatable with the new address of the page. If they are // not compatible, the D cache is flushed. // // Arguments: // // PAGE - Supplies the PFN element. // PPTE - Supplies a pointer to the new PTE which will contain the page. // // Return Value: // // none. // //-- // does nothing on IA64. #define MI_CHECK_PAGE_ALIGNMENT(PAGE,PPTE) //++ //VOID //MI_INITIALIZE_HYPERSPACE_MAP ( // VOID // ); // // Routine Description: // // This macro initializes the PTEs reserved for double mapping within // hyperspace. // // Arguments: // // None. // // Return Value: // // None. // //-- // does nothing on IA64. #define MI_INITIALIZE_HYPERSPACE_MAP(INDEX) //++ //ULONG //MI_GET_PAGE_COLOR_FROM_PTE ( // IN PMMPTE PTEADDRESS // ); // // Routine Description: // // This macro determines the pages color based on the PTE address // that maps the page. // // Arguments: // // PTEADDRESS - Supplies the PTE address the page is (or was) mapped at. // // Return Value: // // The pages color. // //-- #define MI_GET_PAGE_COLOR_FROM_PTE(PTEADDRESS) \ (((ULONG)((MI_SYSTEM_PAGE_COLOR++) & MmSecondaryColorMask)) | MI_CURRENT_NODE_COLOR) //++ //ULONG //MI_GET_PAGE_COLOR_FROM_VA ( // IN PVOID ADDRESS // ); // // Routine Description: // // This macro determines the pages color based on the PTE address // that maps the page. // // Arguments: // // ADDRESS - Supplies the address the page is (or was) mapped at. // // Return Value: // // The pages color. // //-- #define MI_GET_PAGE_COLOR_FROM_VA(ADDRESS) \ (((ULONG)((MI_SYSTEM_PAGE_COLOR++) & MmSecondaryColorMask)) | MI_CURRENT_NODE_COLOR) //++ //ULONG //MI_GET_PAGE_COLOR_FROM_SESSION ( // IN PMM_SESSION_SPACE SessionSpace // ); // // Routine Description: // // This macro determines the page's color based on the PTE address // that maps the page. // // Arguments // // SessionSpace - Supplies the session space the page will be mapped into. // // Return Value: // // The page's color. // //-- #define MI_GET_PAGE_COLOR_FROM_SESSION(_SessionSpace) \ (((ULONG)((_SessionSpace->Color++) & MmSecondaryColorMask)) | MI_CURRENT_NODE_COLOR) //++ //ULONG //MI_PAGE_COLOR_PTE_PROCESS ( // IN PMMPTE PTE, // IN PUSHORT COLOR // ); // // Routine Description: // // Select page color for this process. // // Arguments // // PTE Not used. // COLOR Value from which color is determined. This // variable is incremented. // // Return Value: // // Page color. // //-- #define MI_PAGE_COLOR_PTE_PROCESS(PTE,COLOR) \ (((ULONG)((*(COLOR))++) & MmSecondaryColorMask) | MI_CURRENT_NODE_COLOR) //++ //ULONG //MI_PAGE_COLOR_VA_PROCESS ( // IN PVOID ADDRESS, // IN PEPROCESS COLOR // ); // // Routine Description: // // This macro determines the pages color based on the PTE address // that maps the page. // // Arguments: // // ADDRESS - Supplies the address the page is (or was) mapped at. // // Return Value: // // The pages color. // //-- #define MI_PAGE_COLOR_VA_PROCESS(ADDRESS,COLOR) \ (((ULONG)((*(COLOR))++) & MmSecondaryColorMask) | MI_CURRENT_NODE_COLOR) //++ //ULONG //MI_GET_NEXT_COLOR ( // IN ULONG COLOR // ); // // Routine Description: // // This macro returns the next color in the sequence. // // Arguments: // // COLOR - Supplies the color to return the next of. // // Return Value: // // Next color in sequence. // //-- #define MI_GET_NEXT_COLOR(COLOR) ((COLOR + 1) & MM_COLOR_MASK) //++ //ULONG //MI_GET_PREVIOUS_COLOR ( // IN ULONG COLOR // ); // // Routine Description: // // This macro returns the previous color in the sequence. // // Arguments: // // COLOR - Supplies the color to return the previous of. // // Return Value: // // Previous color in sequence. // //-- #define MI_GET_PREVIOUS_COLOR(COLOR) (0) #define MI_GET_SECONDARY_COLOR(PAGE,PFN) (PAGE & MmSecondaryColorMask) #define MI_GET_COLOR_FROM_SECONDARY(SECONDARY_COLOR) (0) //++ //VOID //MI_GET_MODIFIED_PAGE_BY_COLOR ( // OUT ULONG PAGE, // IN ULONG COLOR // ); // // Routine Description: // // This macro returns the first page destined for a paging // file with the desired color. It does NOT remove the page // from its list. // // Arguments: // // PAGE - Returns the page located, the value MM_EMPTY_LIST is // returned if there is no page of the specified color. // // COLOR - Supplies the color of page to locate. // // Return Value: // // none. // //-- #define MI_GET_MODIFIED_PAGE_BY_COLOR(PAGE,COLOR) \ PAGE = MmModifiedPageListByColor[COLOR].Flink //++ //VOID //MI_GET_MODIFIED_PAGE_ANY_COLOR ( // OUT ULONG PAGE, // IN OUT ULONG COLOR // ); // // Routine Description: // // This macro returns the first page destined for a paging // file with the desired color. If not page of the desired // color exists, all colored lists are searched for a page. // It does NOT remove the page from its list. // // Arguments: // // PAGE - Returns the page located, the value MM_EMPTY_LIST is // returned if there is no page of the specified color. // // COLOR - Supplies the color of page to locate and returns the // color of the page located. // // Return Value: // // none. // //-- #define MI_GET_MODIFIED_PAGE_ANY_COLOR(PAGE,COLOR) \ { \ if (MmTotalPagesForPagingFile == 0) { \ PAGE = MM_EMPTY_LIST; \ } else { \ PAGE = MmModifiedPageListByColor[COLOR].Flink; \ } \ } //++ //VOID //MI_MAKE_VALID_PTE_WRITE_COPY ( // IN OUT PMMPTE PTE // ); // // Routine Description: // // This macro checks to see if the PTE indicates that the // page is writable and if so it clears the write bit and // sets the copy-on-write bit. // // Arguments: // // PTE - Supplies the PTE to operate upon. // // Return Value: // // None. // //-- #define MI_MAKE_VALID_PTE_WRITE_COPY(PPTE) \ if ((PPTE)->u.Hard.Write == 1) { \ (PPTE)->u.Hard.CopyOnWrite = 1; \ (PPTE)->u.Hard.Write = 0; \ } //++ //ULONG //MI_DETERMINE_OWNER ( // IN MMPTE PPTE // ); // // Routine Description: // // This macro examines the virtual address of the PTE and determines // if the PTE resides in system space or user space. // // Arguments: // // PTE - Supplies the PTE to operate upon. // // Return Value: // // 3 if the owner is USER_MODE, 0 if the owner is KERNEL_MODE. // //-- #if defined(_MIALT4K_) #define MI_DETERMINE_OWNER(PPTE) \ ((((((PPTE) >= (PMMPTE)PTE_UBASE) && ((PPTE) <= MiHighestUserPte))) || \ (MI_IS_ALT_PAGE_TABLE_ADDRESS(PPTE))) ? 3 : 0) #else #define MI_DETERMINE_OWNER(PPTE) \ ((((PPTE) >= (PMMPTE)PTE_UBASE) && \ ((PPTE) <= MiHighestUserPte)) ? 3 : 0) #endif //++ //VOID //MI_SET_ACCESSED_IN_PTE ( // IN OUT MMPTE PPTE, // IN ULONG ACCESSED // ); // // Routine Description: // // This macro sets the ACCESSED field in the PTE. Note that this must // not be cleared in PPEs or PDEs as they are not checked for this in // memory management before referencing the hierarchy beneath them. // // Arguments: // // PTE - Supplies the PTE to operate upon. // // Return Value: // // None. // //-- #define MI_SET_ACCESSED_IN_PTE(PPTE,ACCESSED) { \ PWOW64_PROCESS _Wow64Process; \ if (ACCESSED == 0) { \ if (MI_IS_PTE_ADDRESS(PPTE)) { \ (PPTE)->u.Hard.Accessed = 0; \ } \ } \ else if ((PPTE >= (PMMPTE)PTE_UBASE) && (PPTE < (PMMPTE)MiMaxWow64Pte)) { \ _Wow64Process = PsGetCurrentProcess()->Wow64Process; \ if (_Wow64Process != NULL) { \ if (MI_CHECK_BIT(_Wow64Process->AltPermBitmap, \ ((ULONG_PTR)PPTE >> PTE_SHIFT) & _ALTPERM_BITMAP_MASK) != 0) { \ NOTHING; \ } \ else { \ (PPTE)->u.Hard.Accessed = 1; \ } \ } \ else { \ (PPTE)->u.Hard.Accessed = 1; \ } \ } \ else { \ (PPTE)->u.Hard.Accessed = 1; \ } \ } //++ //ULONG //MI_GET_ACCESSED_IN_PTE ( // IN OUT MMPTE PPTE // ); // // Routine Description: // // This macro returns the state of the ACCESSED field in the PTE. // // Arguments: // // PTE - Supplies the PTE to operate upon. // // Return Value: // // The state of the ACCESSED field. // //-- #define MI_GET_ACCESSED_IN_PTE(PPTE) ((PPTE)->u.Hard.Accessed) //++ //VOID //MI_SET_OWNER_IN_PTE ( // IN PMMPTE PPTE // IN ULONG OWNER // ); // // Routine Description: // // This macro sets the owner field in the PTE. // // Arguments: // // PTE - Supplies the PTE to operate upon. // // Return Value: // // None. // //-- #define MI_SET_OWNER_IN_PTE(PPTE,OWNER) //++ //ULONG //MI_GET_OWNER_IN_PTE ( // IN PMMPTE PPTE // ); // // Routine Description: // // This macro gets the owner field from the PTE. // // Arguments: // // PTE - Supplies the PTE to operate upon. // // Return Value: // // The state of the OWNER field. // //-- #define MI_GET_OWNER_IN_PTE(PPTE) KernelMode //++ //VOID //MI_SET_PAGING_FILE_INFO ( // OUT MMPTE OUTPTE, // IN MMPTE PPTE, // IN ULONG FILEINFO, // IN ULONG OFFSET // ); // // Routine Description: // // This macro sets into the specified PTE the supplied information // to indicate where the backing store for the page is located. // // Arguments: // // OUTPTE - Supplies the PTE in which to store the result. // // PTE - Supplies the PTE to operate upon. // // FILEINFO - Supplies the number of the paging file. // // OFFSET - Supplies the offset into the paging file. // // Return Value: // // None. // //-- #define MI_SET_PAGING_FILE_INFO(OUTPTE,PTE,FILEINFO,OFFSET) \ (OUTPTE).u.Long = (((PTE).u.Soft.Protection << MM_PROTECT_FIELD_SHIFT) | \ ((ULONGLONG)(FILEINFO) << _MM_PAGING_FILE_LOW_SHIFT) | \ ((ULONGLONG)(OFFSET) << _MM_PAGING_FILE_HIGH_SHIFT)); //++ //PMMPTE //MiPteToProto ( // IN OUT MMPTE PPTE, // IN ULONG FILEINFO, // IN ULONG OFFSET // ); // // Routine Description: // // This macro returns the address of the corresponding prototype which // was encoded earlier into the supplied PTE. // // Arguments: // // lpte - Supplies the PTE to operate upon. // // Return Value: // // Pointer to the prototype PTE that backs this PTE. // //-- #define MiPteToProto(lpte) \ ((PMMPTE) ((ULONG_PTR)((lpte)->u.Proto.ProtoAddress) + MmProtopte_Base)) //++ //ULONG_PTR //MiProtoAddressForPte ( // IN PMMPTE proto_va // ); // // Routine Description: // // This macro sets into the specified PTE the supplied information // to indicate where the backing store for the page is located. // MiProtoAddressForPte returns the bit field to OR into the PTE to // reference a prototype PTE. // // And set the protoPTE MM_PTE_PROTOTYPE_MASK bit. // // Arguments: // // proto_va - Supplies the address of the prototype PTE. // // Return Value: // // Mask to set into the PTE. // //-- #define MiProtoAddressForPte(proto_va) \ (( (ULONGLONG)((ULONG_PTR)proto_va - MmProtopte_Base) << \ (_MM_PROTO_ADDRESS_SHIFT)) | MM_PTE_PROTOTYPE_MASK) #define MISetProtoAddressForPte(PTE, proto_va) \ (PTE).u.Long = 0; \ (PTE).u.Proto.Prototype = 1; \ (PTE).u.Proto.ProtoAddress = (ULONG_PTR)proto_va - MmProtopte_Base; //++ //ULONG_PTR //MiProtoAddressForKernelPte ( // IN PMMPTE proto_va // ); // // Routine Description: // // This macro sets into the specified PTE the supplied information // to indicate where the backing store for the page is located. // MiProtoAddressForPte returns the bit field to OR into the PTE to // reference a prototype PTE. And set the protoPTE bit, // MM_PTE_PROTOTYPE_MASK. // // This macro also sets any other information (such as global bits) // required for kernel mode PTEs. // // Arguments: // // proto_va - Supplies the address of the prototype PTE. // // Return Value: // // Mask to set into the PTE. // //-- // not different on IA64. #define MiProtoAddressForKernelPte(proto_va) MiProtoAddressForPte(proto_va) #define MM_SUBSECTION_MAP (128*1024*1024) //++ //PSUBSECTION //MiGetSubsectionAddress ( // IN PMMPTE lpte // ); // // Routine Description: // // This macro takes a PTE and returns the address of the subsection that // the PTE refers to. Subsections are quadword structures allocated // from nonpaged pool. // // Arguments: // // lpte - Supplies the PTE to operate upon. // // Return Value: // // A pointer to the subsection referred to by the supplied PTE. // //-- #define MiGetSubsectionAddress(lpte) \ (((lpte)->u.Subsect.WhichPool == 1) ? \ ((PSUBSECTION)((ULONG_PTR)MmSubsectionBase + \ ((ULONG_PTR)(lpte)->u.Subsect.SubsectionAddress))) \ : \ ((PSUBSECTION)((ULONG_PTR)MM_NONPAGED_POOL_END - \ ((ULONG_PTR)(lpte)->u.Subsect.SubsectionAddress)))) //++ //ULONGLONG //MiGetSubsectionAddressForPte ( // IN PSUBSECTION VA // ); // // Routine Description: // // This macro takes the address of a subsection and encodes it for use // in a PTE. // // NOTE - THE SUBSECTION ADDRESS MUST BE QUADWORD ALIGNED! // // Arguments: // // VA - Supplies a pointer to the subsection to encode. // // Return Value: // // The mask to set into the PTE to make it reference the supplied // subsetion. // //-- #define MiGetSubsectionAddressForPte(VA) \ ( ((ULONG_PTR)(VA) < (ULONG_PTR)KSEG2_BASE) ? \ ( ((ULONGLONG)((ULONG_PTR)VA - (ULONG_PTR)MmSubsectionBase) \ << (_MM_PTE_SUBSECTION_ADDRESS_SHIFT)) | 0x80) \ : \ ((ULONGLONG)((ULONG_PTR)MM_NONPAGED_POOL_END - (ULONG_PTR)VA) \ << (_MM_PTE_SUBSECTION_ADDRESS_SHIFT)) ) //++ //ULONG //MiGetPpeOffset ( // IN PVOID va // ); // // Routine Description: // // MiGetPpeOffset returns the offset into a page directory parent for a // given virtual address. // // Arguments // // Va - Supplies the virtual address to locate the offset for. // // Return Value: // // The offset into the page root table the corresponding PPE is at. // //-- #define MiGetPpeOffset(va) \ ((((ULONG_PTR)(va) & PDE_TBASE) == PDE_TBASE) ? \ ((PDE_SELFMAP & ((sizeof(MMPTE)*PTE_PER_PAGE) - 1))/sizeof(MMPTE)) : \ ((ULONG)(((ULONG_PTR)(va) >> PDI1_SHIFT) & PDI_MASK))) //++ //ULONG //MiGetPpeIndex ( // IN PVOID va // ); // // Routine Description: // // MiGetPpeIndex returns the page directory parent index // for a given virtual address. // // N.B. This does not mask off PXE bits. // // Arguments // // Va - Supplies the virtual address to locate the index for. // // Return Value: // // The index into the page directory parent - ie: the virtual page directory // number. This is different from the page directory parent offset because // this spans page directory parents on supported platforms. // // N.B. This macro only works on user addresses - the region ID bits // are not masked off ! //-- #define MiGetPpeIndex(va) ((ULONG)((ULONG_PTR)(va) >> PDI1_SHIFT)) //++ //ULONG_PTR //MiGetPdeOffset ( // IN PVOID va // ); // // Routine Description: // // MiGetPdeOffset returns the offset into a page directory // for a given virtual address. // // Arguments: // // Va - Supplies the virtual address to locate the offset for. // // Return Value: // // The offset into the page directory table the corresponding PDE is at. // //-- #define MiGetPdeOffset(va) ((ULONG) (((ULONG_PTR)(va) >> PDI_SHIFT) & PDI_MASK)) //++ //ULONG //MiGetPdeIndex ( // IN PVOID va // ); // // Routine Description: // // MiGetPdeIndex returns the page directory index // for a given virtual address. // // N.B. This does not mask off PPE bits. // // Arguments // // Va - Supplies the virtual address to locate the index for. // // Return Value: // // The index into the page directory - ie: the virtual page table number. // This is different from the page directory offset because this spans // page directories on supported platforms. // // N.B. This macro only works on user addresses - the region ID bits // are not masked off ! // //-- #define MiGetPdeIndex(va) ((ULONG) ((ULONG_PTR)(va) >> PDI_SHIFT)) //++ //ULONG_PTR //MiGetPteOffset ( // IN PVOID va // ); // // Routine Description: // // MiGetPteOffset returns the offset into a page table page // for a given virtual address. // // Arguments: // // Va - Supplies the virtual address to locate the offset for. // // Return Value: // // The offset into the page table page table the corresponding PTE is at. // //-- #define MiGetPteOffset(va) ((ULONG) (((ULONG_PTR)(va) >> PTI_SHIFT) & PDI_MASK)) //++ //++ //PVOID //MiGetVirtualAddressMappedByPpe ( // IN PMMPTE PTE // ); // // Routine Description: // // MiGetVirtualAddressMappedByPpe returns the virtual address // which is mapped by a given PPE address. // // Arguments // // PPE - Supplies the PPE to get the virtual address for. // // Return Value: // // Virtual address mapped by the PPE. // //-- #define MiGetVirtualAddressMappedByPpe(PPE) \ MiGetVirtualAddressMappedByPte(MiGetVirtualAddressMappedByPde(PPE)) //++ //PVOID //MiGetVirtualAddressMappedByPde ( // IN PMMPTE PDE // ); // // Routine Description: // // MiGetVirtualAddressMappedByPde returns the virtual address // which is mapped by a given PDE address. // // Arguments // // PDE - Supplies the PDE to get the virtual address for. // // Return Value: // // Virtual address mapped by the PDE. // //-- #define MiGetVirtualAddressMappedByPde(Pde) \ MiGetVirtualAddressMappedByPte(MiGetVirtualAddressMappedByPte(Pde)) //++ //PVOID //MiGetVirtualAddressMappedByPte ( // IN PMMPTE PTE // ); // // Routine Description: // // MiGetVirtualAddressMappedByPte returns the virtual address // which is mapped by a given PTE address. // // Arguments: // // PTE - Supplies the PTE to get the virtual address for. // // Return Value: // // Virtual address mapped by the PTE. // //-- #define MiGetVirtualAddressMappedByPte(PTE) \ (((ULONG_PTR)(PTE) & PTA_SIGN) ? \ (PVOID)(((ULONG_PTR)(PTE) & VRN_MASK) | VA_FILL | \ (((ULONG_PTR)(PTE)-PTE_BASE) << (PAGE_SHIFT - PTE_SHIFT))) : \ (PVOID)(((ULONG_PTR)(PTE) & VRN_MASK) | (((ULONG_PTR)(PTE)-PTE_BASE) << (PAGE_SHIFT - PTE_SHIFT)))) //++ //LOGICAL //MiIsVirtualAddressOnPpeBoundary ( // IN PVOID VA // ); // // Routine Description: // // MiIsVirtualAddressOnPpeBoundary returns TRUE if the virtual address is // on a page directory entry boundary. // // Arguments // // VA - Supplies the virtual address to check. // // Return Value: // // TRUE if on a boundary, FALSE if not. // //-- #define MiIsVirtualAddressOnPpeBoundary(VA) (((ULONG_PTR)(VA) & PAGE_DIRECTORY1_MASK) == 0) //++ //LOGICAL //MiIsVirtualAddressOnPdeBoundary ( // IN PVOID VA // ); // // Routine Description: // // MiIsVirtualAddressOnPdeBoundary returns TRUE if the virtual address is // on a page directory entry boundary. // // Arguments // // VA - Supplies the virtual address to check. // // Return Value: // // TRUE if on an 8MB PDE boundary, FALSE if not. // //-- #define MiIsVirtualAddressOnPdeBoundary(VA) (((ULONG_PTR)(VA) & PAGE_DIRECTORY2_MASK) == 0) //++ //LOGICAL //MiIsPteOnPpeBoundary ( // IN PVOID VA // ); // // Routine Description: // // MiIsPteOnPpeBoundary returns TRUE if the PTE is // on a page directory parent entry boundary. // // Arguments // // VA - Supplies the virtual address to check. // // Return Value: // // TRUE if on a boundary, FALSE if not. // //-- #define MiIsPteOnPpeBoundary(PTE) (((ULONG_PTR)(PTE) & (MM_VA_MAPPED_BY_PDE - 1)) == 0) //++ //LOGICAL //MiIsPteOnPdeBoundary ( // IN PVOID PTE // ); // // Routine Description: // // MiIsPteOnPdeBoundary returns TRUE if the PTE is // on a page directory entry boundary. // // Arguments // // PTE - Supplies the PTE to check. // // Return Value: // // TRUE if on a 8MB PDE boundary, FALSE if not. // //-- #define MiIsPteOnPdeBoundary(PTE) (((ULONG_PTR)(PTE) & (PAGE_SIZE - 1)) == 0) //++ //ULONG //GET_PAGING_FILE_NUMBER ( // IN MMPTE PTE // ); // // Routine Description: // // This macro extracts the paging file number from a PTE. // // Arguments: // // PTE - Supplies the PTE to operate upon. // // Return Value: // // The paging file number. // //-- #define GET_PAGING_FILE_NUMBER(PTE) ((ULONG) (PTE).u.Soft.PageFileLow) //++ //ULONG //GET_PAGING_FILE_OFFSET ( // IN MMPTE PTE // ); // // Routine Description: // // This macro extracts the offset into the paging file from a PTE. // // Arguments: // // PTE - Supplies the PTE to operate upon. // // Return Value: // // The paging file offset. // //-- #define GET_PAGING_FILE_OFFSET(PTE) ((ULONG) (PTE).u.Soft.PageFileHigh) //++ //ULONG_PTR //IS_PTE_NOT_DEMAND_ZERO ( // IN PMMPTE PPTE // ); // // Routine Description: // // This macro checks to see if a given PTE is NOT a demand zero PTE. // // Arguments: // // PTE - Supplies the PTE to operate upon. // // Return Value: // // Returns 0 if the PTE is demand zero, non-zero otherwise. // //-- #define IS_PTE_NOT_DEMAND_ZERO(PTE) \ ((PTE).u.Long & ((ULONG_PTR)0xFFFFFFFFF0000000 | \ MM_PTE_VALID_MASK | \ MM_PTE_PROTOTYPE_MASK | \ MM_PTE_TRANSITION_MASK)) //++ //VOID //MI_MAKING_VALID_PTE_INVALID( // IN PMMPTE PPTE // ); // // Routine Description: // // Prepare to make a single valid PTE invalid. // No action is required on IA64. // // Arguments: // // SYSTEM_WIDE - Supplies TRUE if this will happen on all processors. // // Return Value: // // None. // //-- #define MI_MAKING_VALID_PTE_INVALID(SYSTEM_WIDE) //++ //VOID //MI_MAKING_VALID_MULTIPLE_PTES_INVALID( // IN PMMPTE PPTE // ); // // Routine Description: // // Prepare to make multiple valid PTEs invalid. // No action is required on IA64. // // Arguments: // // SYSTEM_WIDE - Supplies TRUE if this will happen on all processors. // // Return Value: // // None. // //-- #define MI_MAKING_MULTIPLE_PTES_INVALID(SYSTEM_WIDE) //++ //VOID //MI_MAKE_PROTECT_WRITE_COPY ( // IN OUT MMPTE PPTE // ); // // Routine Description: // // This macro makes a writable PTE a writeable-copy PTE. // // Arguments: // // PTE - Supplies the PTE to operate upon. // // Return Value: // // NONE // //-- #define MI_MAKE_PROTECT_WRITE_COPY(PTE) \ if ((PTE).u.Soft.Protection & MM_PROTECTION_WRITE_MASK) { \ (PTE).u.Long |= MM_PROTECTION_COPY_MASK << MM_PROTECT_FIELD_SHIFT; \ } //++ //VOID //MI_SET_PAGE_DIRTY( // IN PMMPTE PPTE, // IN PVOID VA, // IN PVOID PFNHELD // ); // // Routine Description: // // This macro sets the dirty bit (and release page file space). // // Arguments: // // TEMP - Supplies a temporary for usage. // // PPTE - Supplies a pointer to the PTE that corresponds to VA. // // VA - Supplies a the virtual address of the page fault. // // PFNHELD - Supplies TRUE if the PFN lock is held. // // Return Value: // // None. // //-- #define MI_SET_PAGE_DIRTY(PPTE,VA,PFNHELD) \ if ((PPTE)->u.Hard.Dirty == 1) { \ MiSetDirtyBit ((VA),(PPTE),(PFNHELD)); \ } //++ //VOID //MI_NO_FAULT_FOUND( // IN FAULTSTATUS, // IN PMMPTE PPTE, // IN PVOID VA, // IN PVOID PFNHELD // ); // // Routine Description: // // This macro handles the case when a page fault is taken and no // PTE with the valid bit clear is found. // // Arguments: // // FAULTSTATUS - Supplies the fault status. // // PPTE - Supplies a pointer to the PTE that corresponds to VA. // // VA - Supplies a the virtual address of the page fault. // // PFNHELD - Supplies TRUE if the PFN lock is held. // // Return Value: // // None. // //-- #define MI_NO_FAULT_FOUND(FAULTSTATUS,PPTE,VA,PFNHELD) \ if ((MI_FAULT_STATUS_INDICATES_WRITE(FAULTSTATUS)) && ((PPTE)->u.Hard.Dirty == 0)) { \ MiSetDirtyBit ((VA),(PPTE),(PFNHELD)); \ } else { \ MMPTE TempPte; \ TempPte = *(PPTE); \ MI_SET_ACCESSED_IN_PTE (&TempPte, 1); \ MI_WRITE_VALID_PTE_NEW_PROTECTION((PPTE), TempPte); \ KiFlushSingleTb(0, (VA)); \ } //++ //ULONG_PTR //MI_CAPTURE_DIRTY_BIT_TO_PFN ( // IN PMMPTE PPTE, // IN PMMPFN PPFN // ); // // Routine Description: // // This macro gets captures the state of the dirty bit to the PFN // and frees any associated page file space if the PTE has been // modified element. // // NOTE - THE PFN LOCK MUST BE HELD! // // Arguments: // // PPTE - Supplies the PTE to operate upon. // // PPFN - Supplies a pointer to the PFN database element that corresponds // to the page mapped by the PTE. // // Return Value: // // None. // //-- #define MI_CAPTURE_DIRTY_BIT_TO_PFN(PPTE,PPFN) \ ASSERT (KeGetCurrentIrql() > APC_LEVEL); \ if (((PPFN)->u3.e1.Modified == 0) && \ ((PPTE)->u.Hard.Dirty != 0)) { \ MI_SET_MODIFIED (PPFN, 1, 0x18); \ if (((PPFN)->OriginalPte.u.Soft.Prototype == 0) && \ ((PPFN)->u3.e1.WriteInProgress == 0)) { \ MiReleasePageFileSpace ((PPFN)->OriginalPte); \ (PPFN)->OriginalPte.u.Soft.PageFileHigh = 0; \ } \ } //++ //BOOLEAN //MI_IS_PHYSICAL_ADDRESS ( // IN PVOID VA // ); // // Routine Description: // // This macro determines if a given virtual address is really a // physical address. // // Arguments: // // VA - Supplies the virtual address. // // Return Value: // // FALSE if it is not a physical address, TRUE if it is. // //-- #define MI_IS_PHYSICAL_ADDRESS(Va) \ ((((ULONG_PTR)(Va) >= KSEG3_BASE) && ((ULONG_PTR)(Va) < KSEG3_LIMIT)) || \ (((ULONG_PTR)(Va) >= KSEG4_BASE) && ((ULONG_PTR)(Va) < KSEG4_LIMIT)) || \ (((ULONG_PTR)Va >= KSEG0_BASE) && ((ULONG_PTR)Va < KSEG2_BASE))) //++ //ULONG_PTR //MI_CONVERT_PHYSICAL_TO_PFN ( // IN PVOID VA // ); // // Routine Description: // // This macro converts a physical address (see MI_IS_PHYSICAL_ADDRESS) // to its corresponding physical frame number. // // Arguments: // // VA - Supplies a pointer to the physical address. // // Return Value: // // Returns the PFN for the page. // //-- PVOID KiGetPhysicalAddress( IN PVOID VirtualAddress ); #define MI_CONVERT_PHYSICAL_TO_PFN(Va) \ (((ULONG_PTR)(Va) >= KSEG0_BASE) ? \ ((PFN_NUMBER)(((ULONG_PTR)KiGetPhysicalAddress(Va)) >> PAGE_SHIFT)) :\ ((PFN_NUMBER)(((ULONG_PTR)(Va) & ~VRN_MASK) >> PAGE_SHIFT))) typedef struct _MMCOLOR_TABLES { PFN_NUMBER Flink; PVOID Blink; PFN_NUMBER Count; } MMCOLOR_TABLES, *PMMCOLOR_TABLES; #if MM_MAXIMUM_NUMBER_OF_COLORS > 1 extern MMPFNLIST MmFreePagesByPrimaryColor[2][MM_MAXIMUM_NUMBER_OF_COLORS]; #endif extern PMMCOLOR_TABLES MmFreePagesByColor[2]; extern PFN_NUMBER MmTotalPagesForPagingFile; // // A VALID Page Table Entry on the IA64 has the following definition. // #define _MM_PAGING_FILE_LOW_SHIFT 28 #define _MM_PAGING_FILE_HIGH_SHIFT 32 #define MI_MAXIMUM_PAGEFILE_SIZE (((UINT64)4 * 1024 * 1024 * 1024 - 1) * PAGE_SIZE) #define MI_PTE_LOOKUP_NEEDED ((ULONG64)0xffffffff) typedef struct _MMPTE_SOFTWARE { ULONGLONG Valid : 1; ULONGLONG Prototype : 1; ULONGLONG Protection : 5; ULONGLONG Transition : 1; ULONGLONG UsedPageTableEntries : PTE_PER_PAGE_BITS; ULONGLONG Reserved : 20 - PTE_PER_PAGE_BITS; ULONGLONG PageFileLow: 4; ULONGLONG PageFileHigh : 32; } MMPTE_SOFTWARE; typedef struct _MMPTE_TRANSITION { ULONGLONG Valid : 1; ULONGLONG Prototype : 1; ULONGLONG Protection : 5; ULONGLONG Transition : 1; ULONGLONG Rsvd0 : PAGE_SHIFT - 8; ULONGLONG PageFrameNumber : 50 - PAGE_SHIFT; ULONGLONG Rsvd1 : 14; } MMPTE_TRANSITION; #define _MM_PROTO_ADDRESS_SHIFT 12 typedef struct _MMPTE_PROTOTYPE { ULONGLONG Valid : 1; ULONGLONG Prototype : 1; ULONGLONG ReadOnly : 1; // if set allow read only access. ULONGLONG Rsvd : 9; ULONGLONG ProtoAddress : 52; } MMPTE_PROTOTYPE; #define _MM_PTE_SUBSECTION_ADDRESS_SHIFT 12 typedef struct _MMPTE_SUBSECTION { ULONGLONG Valid : 1; ULONGLONG Prototype : 1; ULONGLONG Protection : 5; ULONGLONG WhichPool : 1; ULONGLONG Rsvd : 4; ULONGLONG SubsectionAddress : 52; } MMPTE_SUBSECTION; typedef struct _MMPTE_LIST { ULONGLONG Valid : 1; // // Note the Prototype bit must not be used for lists like freed nonpaged // pool because lookaside pops can legitimately reference bogus addresses // (since the pop is unsynchronized) and the fault handler must be able to // distinguish lists from protos so a retry status can be returned (vs a // fatal bugcheck). // // The same caveat applies to both the Transition and the Protection // fields as they are similarly examined in the fault handler and would // be misinterpreted if ever nonzero in the freed nonpaged pool chains. // ULONGLONG Prototype : 1; // MUST BE ZERO as per above comment. ULONGLONG Protection : 5; ULONGLONG Transition : 1; ULONGLONG OneEntry : 1; ULONGLONG filler10 : 23; ULONGLONG NextEntry : 32; } MMPTE_LIST; // // A Page Table Entry on the IA64 has the following definition. // #define _HARDWARE_PTE_WORKING_SET_BITS 11 typedef struct _MMPTE_HARDWARE { ULONGLONG Valid : 1; ULONGLONG Rsvd0 : 1; ULONGLONG Cache : 3; ULONGLONG Accessed : 1; ULONGLONG Dirty : 1; ULONGLONG Owner : 2; ULONGLONG Execute : 1; ULONGLONG Write : 1; ULONGLONG Rsvd1 : PAGE_SHIFT - 12; ULONGLONG CopyOnWrite : 1; ULONGLONG PageFrameNumber : 50 - PAGE_SHIFT; ULONGLONG Rsvd2 : 2; ULONGLONG Exception : 1; ULONGLONG SoftwareWsIndex : _HARDWARE_PTE_WORKING_SET_BITS; } MMPTE_HARDWARE, *PMMPTE_HARDWARE; typedef struct _MMPTE_LARGEPAGE { ULONGLONG Valid : 1; ULONGLONG Rsvd0 : 1; ULONGLONG Cache : 3; ULONGLONG Accessed : 1; ULONGLONG Dirty : 1; ULONGLONG Owner : 2; ULONGLONG Execute : 1; ULONGLONG Write : 1; ULONGLONG Rsvd1 : PAGE_SHIFT - 12; ULONGLONG CopyOnWrite : 1; ULONGLONG PageFrameNumber : 50 - PAGE_SHIFT; ULONGLONG Rsvd2 : 2; ULONGLONG Exception : 1; ULONGLONG Rsvd3 : 1; ULONGLONG LargePage : 1; ULONGLONG PageSize : 6; ULONGLONG Rsvd4 : 3; } MMPTE_LARGEPAGE, *PMMPTE_LARGEPAGE; typedef struct _ALT_4KPTE { ULONGLONG Commit : 1; ULONGLONG Rsvd0 : 1; ULONGLONG Cache : 3; ULONGLONG Accessed : 1; ULONGLONG InPageInProgress : 1; ULONGLONG Owner : 2; ULONGLONG Execute : 1; ULONGLONG Write : 1; ULONGLONG Rsvd1 : 1; ULONGLONG PteOffset : 32; ULONGLONG Rsvd2 : 8; ULONGLONG Exception : 1; ULONGLONG Protection : 5; ULONGLONG Lock : 1; ULONGLONG FillZero : 1; ULONGLONG NoAccess : 1; ULONGLONG CopyOnWrite : 1; ULONGLONG PteIndirect : 1; ULONGLONG Private : 1; } ALT_4KPTE, *PALT_4KPTE; #define MI_GET_PAGE_FRAME_FROM_PTE(PTE) ((ULONG)((PTE)->u.Hard.PageFrameNumber)) #define MI_GET_PAGE_FRAME_FROM_TRANSITION_PTE(PTE) ((ULONG)((PTE)->u.Trans.PageFrameNumber)) #define MI_GET_PROTECTION_FROM_SOFT_PTE(PTE) ((ULONG)((PTE)->u.Soft.Protection)) #define MI_GET_PROTECTION_FROM_TRANSITION_PTE(PTE) ((ULONG)((PTE)->u.Trans.Protection)) typedef struct _MMPTE { union { ULONGLONG Long; MMPTE_HARDWARE Hard; MMPTE_LARGEPAGE Large; HARDWARE_PTE Flush; MMPTE_PROTOTYPE Proto; MMPTE_SOFTWARE Soft; MMPTE_TRANSITION Trans; MMPTE_SUBSECTION Subsect; MMPTE_LIST List; ALT_4KPTE Alt; } u; } MMPTE; typedef MMPTE *PMMPTE; extern PMMPTE MiFirstReservedZeroingPte; #define InterlockedCompareExchangePte(_PointerPte, _NewContents, _OldContents) \ InterlockedCompareExchange64 ((PLONGLONG)(_PointerPte), (LONGLONG)(_NewContents), (LONGLONG)(_OldContents)) //++ //VOID //MI_WRITE_VALID_PTE ( // IN PMMPTE PointerPte, // IN MMPTE PteContents // ); // // Routine Description: // // MI_WRITE_VALID_PTE fills in the specified PTE making it valid with the // specified contents. // // Arguments // // PointerPte - Supplies a PTE to fill. // // PteContents - Supplies the contents to put in the PTE. // // Return Value: // // None. // //-- #define MI_WRITE_VALID_PTE(_PointerPte, _PteContents) \ (*((volatile MMPTE *)(_PointerPte)) = (_PteContents)) //++ //VOID //MI_WRITE_INVALID_PTE ( // IN PMMPTE PointerPte, // IN MMPTE PteContents // ); // // Routine Description: // // MI_WRITE_INVALID_PTE fills in the specified PTE making it invalid with the // specified contents. // // Arguments // // PointerPte - Supplies a PTE to fill. // // PteContents - Supplies the contents to put in the PTE. // // Return Value: // // None. // //-- #define MI_WRITE_INVALID_PTE(_PointerPte, _PteContents) \ (*(_PointerPte) = (_PteContents)) //++ //VOID //MI_WRITE_VALID_PTE_NEW_PROTECTION ( // IN PMMPTE PointerPte, // IN MMPTE PteContents // ); // // Routine Description: // // MI_WRITE_VALID_PTE_NEW_PROTECTION fills in the specified PTE (which was // already valid) changing only the protection or the dirty bit. // // Arguments // // PointerPte - Supplies a PTE to fill. // // PteContents - Supplies the contents to put in the PTE. // // Return Value: // // None. // //-- #define MI_WRITE_VALID_PTE_NEW_PROTECTION(_PointerPte, _PteContents) \ (*(_PointerPte) = (_PteContents)) //++ //VOID //MiFillMemoryPte ( // IN PMMPTE Destination, // IN ULONGULONG Length, // IN MMPTE Pattern // }; // // Routine Description: // // This function fills memory with the specified PTE pattern. // // Arguments // // Destination - Supplies a pointer to the memory to fill. // // Length - Supplies the length, in bytes, of the memory to be // filled. // // Pattern - Supplies the PTE fill pattern. // // Return Value: // // None. // //-- #define MiFillMemoryPte(Destination, Length, Pattern) \ RtlFillMemoryUlonglong ((Destination), (Length), (Pattern)) #define KiWbInvalidateCache //++ //BOOLEAN //MI_IS_PAGE_TABLE_ADDRESS ( // IN PVOID VA // ); // // Routine Description: // // This macro determines if a given virtual address is really a // page table address (PTE, PDE, PPE). // // Arguments // // VA - Supplies the virtual address. // // Return Value: // // FALSE if it is not a page table address, TRUE if it is. // //-- #if defined(_MIALT4K_) #define MI_IS_PAGE_TABLE_ADDRESS(VA) \ ((((ULONG_PTR)VA >= PTE_UBASE) && ((ULONG_PTR)VA <= (PDE_UTBASE + PAGE_SIZE))) || \ (((ULONG_PTR)VA >= PTE_KBASE) && ((ULONG_PTR)VA <= (PDE_KTBASE + PAGE_SIZE))) || \ (((ULONG_PTR)VA >= PTE_SBASE) && ((ULONG_PTR)VA <= (PDE_STBASE + PAGE_SIZE))) || \ (((ULONG_PTR)VA >= (ULONG_PTR)ALT4KB_PERMISSION_TABLE_START) && \ ((ULONG_PTR)VA <= (ULONG_PTR)ALT4KB_PERMISSION_TABLE_END))) #else #define MI_IS_PAGE_TABLE_ADDRESS(VA) \ ((((ULONG_PTR)VA >= PTE_UBASE) && ((ULONG_PTR)VA <= (PDE_UTBASE + PAGE_SIZE))) || \ (((ULONG_PTR)VA >= PTE_KBASE) && ((ULONG_PTR)VA <= (PDE_KTBASE + PAGE_SIZE))) || \ (((ULONG_PTR)VA >= PTE_SBASE) && ((ULONG_PTR)VA <= (PDE_STBASE + PAGE_SIZE)))) #endif //++ //BOOLEAN //MI_IS_HYPER_SPACE_ADDRESS ( // IN PVOID VA // ); // // Routine Description: // // This macro determines if a given virtual address resides in // hyperspace. // // Arguments // // VA - Supplies the virtual address. // // Return Value: // // FALSE if it is not a hyperspace address, TRUE if it is. // //-- #define MI_IS_HYPER_SPACE_ADDRESS(VA) \ (((PVOID)VA >= HYPER_SPACE) && ((PVOID)VA <= HYPER_SPACE_END)) //++ //BOOLEAN //MI_IS_PTE_ADDRESS ( // IN PMMPTE PTE // ); // // Routine Description: // // This macro determines if a given virtual address is really a // page table page (PTE) address. // // Arguments // // PTE - Supplies the PTE virtual address. // // Return Value: // // FALSE if it is not a PTE address, TRUE if it is. // //-- #define MI_IS_PTE_ADDRESS(PTE) \ (((PTE >= (PMMPTE)PTE_UBASE) && (PTE <= (PMMPTE)PTE_UTOP)) || \ ((PTE >= (PMMPTE)PTE_KBASE) && (PTE <= (PMMPTE)PTE_KTOP)) || \ ((PTE >= (PMMPTE)PTE_SBASE) && (PTE <= (PMMPTE)PTE_STOP))) #define MI_IS_PPE_ADDRESS(PTE) \ (((PTE >= (PMMPTE)PDE_UTBASE) && (PTE <= (PMMPTE)(PDE_UTBASE + PAGE_SIZE))) || \ ((PTE >= (PMMPTE)PDE_KTBASE) && (PTE <= (PMMPTE)(PDE_KTBASE + PAGE_SIZE))) || \ ((PTE >= (PMMPTE)PDE_STBASE) && (PTE <= (PMMPTE)(PDE_STBASE + PAGE_SIZE)))) //++ //BOOLEAN //MI_IS_KERNEL_PTE_ADDRESS ( // IN PMMPTE PTE // ); // // Routine Description: // // This macro determines if a given virtual address is really a // kernel page table page (PTE) address. // // Arguments // // PTE - Supplies the PTE virtual address. // // Return Value: // // FALSE if it is not a kernel PTE address, TRUE if it is. // //-- #define MI_IS_KERNEL_PTE_ADDRESS(PTE) \ (((PMMPTE)PTE >= (PMMPTE)PTE_KBASE) && ((PMMPTE)PTE <= (PMMPTE)PTE_KTOP)) //++ //BOOLEAN //MI_IS_USER_PTE_ADDRESS ( // IN PMMPTE PTE // ); // // Routine Description: // // This macro determines if a given virtual address is really a // page table page (PTE) address. // // Arguments // // PTE - Supplies the PTE virtual address. // // Return Value: // // FALSE if it is not a PTE address, TRUE if it is. // //-- #define MI_IS_USER_PTE_ADDRESS(PTE) \ ((PTE >= (PMMPTE)PTE_UBASE) && (PTE <= (PMMPTE)PTE_UTOP)) //++ //BOOLEAN //MI_IS_PAGE_DIRECTORY_ADDRESS ( // IN PMMPTE PDE // ); // // Routine Description: // // This macro determines if a given virtual address is really a // page directory page (PDE) address. // // Arguments // // PDE - Supplies the virtual address. // // Return Value: // // FALSE if it is not a PDE address, TRUE if it is. // //-- #define MI_IS_PAGE_DIRECTORY_ADDRESS(PDE) \ (((PDE >= (PMMPTE)PDE_UBASE) && (PDE <= (PMMPTE)PDE_UTOP)) || \ ((PDE >= (PMMPTE)PDE_KBASE) && (PDE <= (PMMPTE)PDE_KTOP)) || \ ((PDE >= (PMMPTE)PDE_SBASE) && (PDE <= (PMMPTE)PDE_STOP))) //++ //BOOLEAN //MI_IS_USER_PDE_ADDRESS ( // IN PMMPTE PDE // ); // // Routine Description: // // This macro determines if a given virtual address is really a // user page directory page (PDE) address. // // Arguments // // PDE - Supplies the PDE virtual address. // // Return Value: // // FALSE if it is not a user PDE address, TRUE if it is. // //-- #define MI_IS_USER_PDE_ADDRESS(PDE) \ ((PDE >= (PMMPTE)PDE_UBASE) && (PDE <= (PMMPTE)PDE_UTOP)) //++ //BOOLEAN //MI_IS_KERNEL_PDE_ADDRESS ( // IN PMMPTE PDE // ); // // Routine Description: // // This macro determines if a given virtual address is really a // kernel page directory page (PDE) address. // // Arguments // // PDE - Supplies the PDE virtual address. // // Return Value: // // FALSE if it is not a user PDE address, TRUE if it is. // //-- #define MI_IS_KERNEL_PDE_ADDRESS(PDE) \ ((PDE >= (PMMPTE)PDE_KBASE) && (PDE <= (PMMPTE)PDE_KTOP)) //++ //BOOLEAN //MI_IS_PROCESS_SPACE_ADDRESS ( // IN PVOID VA // ); // // Routine Description: // // This macro determines if a given virtual address resides in // the per-process space. // // Arguments // // VA - Supplies the virtual address. // // Return Value: // // FALSE if it is not a per-process address, TRUE if it is. // //-- #define MI_IS_PROCESS_SPACE_ADDRESS(VA) (((ULONG_PTR)VA >> 61) == UREGION_INDEX) //++ //BOOLEAN //MI_IS_SYSTEM_ADDRESS ( // IN PVOID VA // ); // // Routine Description: // // This macro determines if a given virtual address resides in // the system (global) space. // // Arguments // // VA - Supplies the virtual address. // // Return Value: // // FALSE if it is not a system (global) address, TRUE if it is. // //-- #define MI_IS_SYSTEM_ADDRESS(VA) (((ULONG_PTR)VA >> 61) == KREGION_INDEX) // //++ //PVOID //KSEG0_ADDRESS ( // IN PFN_NUMBER PAGE // ); // // Routine Description: // // This macro returns a KSEG0 virtual address which maps the page. // // Arguments: // // PAGE - Supplies the physical page frame number. // // Return Value: // // The KSEG0 virtual address. // //-- #define KSEG0_ADDRESS(PAGE) \ (PVOID)(KSEG0_BASE | ((PAGE) << PAGE_SHIFT)) extern MMPTE ValidPpePte; //++ //PMMPTE //MiGetPpeAddress ( // IN PVOID va // ); // // Routine Description: // // MiGetPpeAddress returns the address of the page directory parent entry // which maps the given virtual address. This is one level above the // page directory. // // Arguments // // Va - Supplies the virtual address to locate the PPE for. // // Return Value: // // The address of the PPE. // //-- __forceinline PMMPTE MiGetPpeAddress( IN PVOID Va ) { if ((((ULONG_PTR)(Va) & PTE_BASE) == PTE_BASE) && ((((ULONG_PTR)(Va)) & ~(VRN_MASK|PTE_BASE)) < (ULONG_PTR)PDE_PER_PAGE * PTE_PER_PAGE * PAGE_SIZE)) { return (PMMPTE) (((ULONG_PTR)Va & VRN_MASK) | (PDE_TBASE + PAGE_SIZE - sizeof(MMPTE))); } if (((((ULONG_PTR)(Va)) & PDE_BASE) == PDE_BASE) && ((((ULONG_PTR)(Va)) & ~(VRN_MASK|PDE_BASE)) < PDE_PER_PAGE * PAGE_SIZE)) { return (PMMPTE) ((((ULONG_PTR)(Va)) & VRN_MASK) | (PDE_TBASE + PAGE_SIZE - sizeof(MMPTE))); } if (((((ULONG_PTR)(Va)) & PDE_TBASE) == PDE_TBASE) && ((((ULONG_PTR)(Va)) & ~(VRN_MASK|PDE_TBASE)) < PAGE_SIZE)) { return (PMMPTE) ((((ULONG_PTR)(Va)) & VRN_MASK) | (PDE_TBASE + PAGE_SIZE - sizeof(MMPTE))); } return (PMMPTE) (((((ULONG_PTR)(Va)) & VRN_MASK)) | ((((((ULONG_PTR)(Va)) >> PDI1_SHIFT) << PTE_SHIFT) & (~(PDE_TBASE|VRN_MASK)) ) + PDE_TBASE)); } //MiGetPdeAddress ( // IN PVOID va // ); // // Routine Description: // // MiGetPdeAddress returns the address of the PDE which maps the // given virtual address. // // Arguments: // // Va - Supplies the virtual address to locate the PDE for. // // Return Value: // // The address of the PDE. // //-- __forceinline PMMPTE MiGetPdeAddress( IN PVOID Va ) { if (((((ULONG_PTR)(Va)) & PDE_BASE) == PDE_BASE) && ((((ULONG_PTR)(Va)) & ~(VRN_MASK|PDE_BASE)) < PDE_PER_PAGE * PAGE_SIZE)) { return (PMMPTE) ((((ULONG_PTR)(Va)) & VRN_MASK) | (PDE_TBASE + PAGE_SIZE - sizeof(MMPTE))); } if (((((ULONG_PTR)(Va)) & PDE_TBASE) == PDE_TBASE) && ((((ULONG_PTR)(Va)) & ~(VRN_MASK|PDE_TBASE)) < PAGE_SIZE)) { return (PMMPTE) ((((ULONG_PTR)(Va)) & VRN_MASK) | (PDE_TBASE + PAGE_SIZE - sizeof(MMPTE))); } return (PMMPTE) (((((ULONG_PTR)(Va)) & VRN_MASK)) | ((((((ULONG_PTR)(Va)) >> PDI_SHIFT) << PTE_SHIFT) & (~(PDE_BASE|VRN_MASK))) + PDE_BASE)); } //++ //PMMPTE //MiGetPteAddress ( // IN PVOID va // ); // // Routine Description: // // MiGetPteAddress returns the address of the PTE which maps the // given virtual address. // // Arguments: // // Va - Supplies the virtual address to locate the PTE for. // // Return Value: // // The address of the PTE. // //-- __forceinline PMMPTE MiGetPteAddress( IN PVOID Va ) { if (((((ULONG_PTR)(Va)) & PDE_TBASE) == PDE_TBASE) && ((((ULONG_PTR)(Va)) & ~(VRN_MASK|PDE_TBASE)) < PAGE_SIZE)) { return (PMMPTE) ((((ULONG_PTR)(Va)) & VRN_MASK) | (PDE_TBASE + PAGE_SIZE - sizeof(MMPTE))); } return (PMMPTE) (((((ULONG_PTR)(Va)) & VRN_MASK)) | ((((((ULONG_PTR)(Va)) >> PTI_SHIFT) << PTE_SHIFT) & (~(PTE_BASE|VRN_MASK))) + PTE_BASE)); } #define MI_IS_PTE_PROTOTYPE(PointerPte) (!MI_IS_USER_PTE_ADDRESS (PointerPte)) //++ //BOOLEAN //MI_IS_SYSTEM_CACHE_ADDRESS ( // IN PVOID VA // ); // // Routine Description: // // This macro takes a virtual address and determines if // it is a system cache address. // // Arguments // // VA - Supplies a virtual address. // // Return Value: // // TRUE if the address is in the system cache, FALSE if not. // //-- #define MI_IS_SYSTEM_CACHE_ADDRESS(VA) \ (((PVOID)(VA) >= (PVOID)MmSystemCacheStart && \ (PVOID)(VA) <= (PVOID)MmSystemCacheEnd)) #if defined(_MIALT4K_) // // Define constants and macros for the alternate 4kb table. // // These are constants and defines that mimic the PAGE_SIZE constant but are // hard coded to use 4K page values. // #define PAGE_4K 4096 #define PAGE_4K_SHIFT 12 #define PAGE_4K_MASK (PAGE_4K - 1) #define PAGE_4K_ALIGN(Va) ((PVOID)((ULONG_PTR)(Va) & ~(PAGE_4K - 1))) #define ROUND_TO_4K_PAGES(Size) (((ULONG_PTR)(Size) + PAGE_4K - 1) & ~(PAGE_4K - 1)) #define PAGE_NEXT_ALIGN(Va) ((PVOID)(PAGE_ALIGN((ULONG_PTR)Va + PAGE_SIZE - 1))) #define BYTES_TO_4K_PAGES(Size) ((ULONG)((ULONG_PTR)(Size) >> PAGE_4K_SHIFT) + \ (((ULONG)(Size) & (PAGE_4K - 1)) != 0)) // // Relative constants between native pages and 4K pages. // #define SPLITS_PER_PAGE (PAGE_SIZE / PAGE_4K) #define PAGE_SHIFT_DIFF (PAGE_SHIFT - PAGE_4K_SHIFT) #define ALT_PTE_SHIFT 3 #define ALT_PROTECTION_MASK (MM_PTE_EXECUTE_MASK|MM_PTE_WRITE_MASK) #define MiGetAltPteAddress(VA) \ ((PMMPTE) ((ULONG_PTR)ALT4KB_PERMISSION_TABLE_START + \ ((((ULONG_PTR) (VA)) >> PAGE_4K_SHIFT) << ALT_PTE_SHIFT))) // // Alternate 4k table flags. // #define MI_ALTFLG_FLUSH2G 0x0000000000000001 // // MiProtectFor4kPage flags. // #define ALT_ALLOCATE 1 #define ALT_COMMIT 2 #define ALT_CHANGE 4 // // ATE (Alternate PTE) protection bits. // #define MM_ATE_COMMIT 0x0000000000000001 #define MM_ATE_ACCESS 0x0000000000000020 #define MM_ATE_READONLY 0x0000000000000200 #define MM_ATE_EXECUTE 0x0400000000000200 #define MM_ATE_EXECUTE_READ 0x0400000000000200 #define MM_ATE_READWRITE 0x0000000000000600 #define MM_ATE_WRITECOPY 0x0020000000000200 #define MM_ATE_EXECUTE_READWRITE 0x0400000000000600 #define MM_ATE_EXECUTE_WRITECOPY 0x0420000000000400 #define MM_ATE_ZEROFILL 0x0800000000000000 #define MM_ATE_NOACCESS 0x1000000000000000 #define MM_ATE_COPY_ON_WRITE 0x2000000000000000 #define MM_ATE_PRIVATE 0x8000000000000000 #define MM_ATE_PROTO_MASK 0x0000000000000621 NTSTATUS MmX86Fault ( IN ULONG_PTR FaultStatus, IN PVOID VirtualAddress, IN KPROCESSOR_MODE PreviousMode, IN PVOID TrapInformation ); VOID MiProtectFor4kPage( IN PVOID Base, IN SIZE_T Size, IN ULONG NewProtect, IN ULONG Flags, IN PEPROCESS Process ); VOID MiProtectMapFileFor4kPage( IN PVOID Base, IN SIZE_T Size, IN ULONG NewProtect, IN SIZE_T CommitSize, IN PMMPTE PointerPte, IN PMMPTE LastPte, IN PEPROCESS Process ); VOID MiProtectImageFileFor4kPage( IN PVOID Base, IN SIZE_T Size, IN PMMPTE PointerPte, IN PEPROCESS Process ); VOID MiReleaseFor4kPage( IN PVOID StartVirtual, IN PVOID EndVirtual, IN PEPROCESS Process ); VOID MiDecommitFor4kPage( IN PVOID StartVirtual, IN PVOID EndVirtual, IN PEPROCESS Process ); VOID MiDeleteFor4kPage( IN PVOID StartVirtual, IN PVOID EndVirtual, IN PEPROCESS Process ); VOID MiQueryRegionFor4kPage ( IN PVOID BaseAddress, IN PVOID EndAddress, IN OUT PSIZE_T RegionSize, IN OUT PULONG RegionState, IN OUT PULONG RegionProtect, IN PEPROCESS Process ); ULONG MiQueryProtectionFor4kPage ( IN PVOID BaseAddress, IN PEPROCESS Process ); NTSTATUS MiInitializeAlternateTable ( PEPROCESS Process ); VOID MiDuplicateAlternateTable ( PEPROCESS CurrentProcess, PEPROCESS ProcessToInitialize ); VOID MiDeleteAlternateTable ( PEPROCESS Process ); VOID MiLockFor4kPage ( PVOID CapturedBase, SIZE_T CapturedRegionSize, PEPROCESS Process ); NTSTATUS MiUnlockFor4kPage ( PVOID CapturedBase, SIZE_T CapturedRegionSize, PEPROCESS Process ); LOGICAL MiShouldBeUnlockedFor4kPage ( PVOID VirtualAddress, PEPROCESS Process ); ULONG MiMakeProtectForNativePage ( IN PVOID VirtualAddress, IN ULONG NewProtect, IN PEPROCESS Process ); LOGICAL MiArePreceding4kPagesAllocated ( IN PVOID VirtualAddress ); LOGICAL MiAreFollowing4kPagesAllocated ( IN PVOID VirtualAddress ); extern ULONG MmProtectToPteMaskForIA32[32]; extern ULONG MmProtectToPteMaskForSplit[32]; extern ULONGLONG MmProtectToAteMask[32]; #define MiMakeProtectionAteMask(NewProtect) MmProtectToAteMask[NewProtect] #define LOCK_ALTERNATE_TABLE_UNSAFE(PWOW64) \ ASSERT (KeGetCurrentIrql() == APC_LEVEL); \ ExAcquireFastMutexUnsafe (&(PWOW64)->AlternateTableLock); \ (PWOW64)->AlternateTableAcquiredUnsafe = MI_MUTEX_ACQUIRED_UNSAFE; #define UNLOCK_ALTERNATE_TABLE_UNSAFE(PWOW64) \ ASSERT (KeGetCurrentIrql() == APC_LEVEL); \ ASSERT ((PWOW64)->AlternateTableAcquiredUnsafe == MI_MUTEX_ACQUIRED_UNSAFE); \ ExReleaseFastMutexUnsafe (&(PWOW64)->AlternateTableLock); \ ASSERT (KeGetCurrentIrql() == APC_LEVEL); #define LOCK_ALTERNATE_TABLE(PWOW64) \ ExAcquireFastMutex( &(PWOW64)->AlternateTableLock) #define UNLOCK_ALTERNATE_TABLE(PWOW64) \ ExReleaseFastMutex(&(PWOW64)->AlternateTableLock) #define MI_IS_ALT_PAGE_TABLE_ADDRESS(PPTE) \ (((PPTE) >= (PMMPTE)ALT4KB_PERMISSION_TABLE_START) && \ ((PPTE) < (PMMPTE)ALT4KB_PERMISSION_TABLE_END)) #endif #define MI_ALT_PTE_IN_PAGE_IN_PROGRESS(AltPte) \ AltPte->u.Alt.InPageInProgress //++ //VOID //MI_BARRIER_SYNCHRONIZE ( // IN ULONG TimeStamp // ); // // Routine Description: // // MI_BARRIER_SYNCHRONIZE compares the argument timestamp against the // current IPI barrier sequence stamp. When equal, all processors will // issue memory barriers to ensure that newly created pages remain coherent. // // When a page is put in the zeroed or free page list the current // barrier sequence stamp is read (interlocked - this is necessary // to get the correct value - memory barriers won't do the trick) // and stored in the pfn entry for the page. The current barrier // sequence stamp is maintained by the IPI send logic and is // incremented (interlocked) when the target set of an IPI send // includes all processors, but the one doing the send. When a page // is needed its sequence number is compared against the current // barrier sequence number. If it is equal, then the contents of // the page may not be coherent on all processors, and an IPI must // be sent to all processors to ensure a memory barrier is // executed (generic call can be used for this). Sending the IPI // automatically updates the barrier sequence number. The compare // is for equality as this is the only value that requires the IPI // (i.e., the sequence number wraps, values in both directions are // older). When a page is removed in this fashion and either found // to be coherent or made coherent, it cannot be modified between // that time and writing the PTE. If the page is modified between // these times, then an IPI must be sent. // // Arguments // // TimeStamp - Supplies the timestamp at the time when the page was zeroed. // // Return Value: // // None. // //-- #define MI_BARRIER_SYNCHRONIZE(TimeStamp) NOTHING //++ //VOID //MI_BARRIER_STAMP_ZEROED_PAGE ( // IN PULONG PointerTimeStamp // ); // // Routine Description: // // MI_BARRIER_STAMP_ZEROED_PAGE issues an interlocked read to get the // current IPI barrier sequence stamp. This is called AFTER a page is // zeroed. // // Arguments // // PointerTimeStamp - Supplies a timestamp pointer to fill with the // current IPI barrier sequence stamp. // // Return Value: // // None. // //-- #define MI_BARRIER_STAMP_ZEROED_PAGE(PointerTimeStamp) NOTHING //++ //VOID //MI_FLUSH_SINGLE_SESSION_TB ( // IN PVOID Virtual, // IN ULONG Invalid, // IN LOGICAL AllProcessors, // IN PMMPTE PtePointer, // IN MMPTE PteValue, // IN MMPTE PreviousPte // ); // // Routine Description: // // MI_FLUSH_SINGLE_SESSION_TB flushes the requested single address // translation from the TB. // // Since IA64 supports ASNs and session space doesn't have one, the entire // TB needs to be flushed. // // Arguments // // Virtual - Supplies the virtual address to invalidate. // // Invalid - TRUE if invalidating. // // AllProcessors - TRUE if all processors need to be IPI'd. // // PtePointer - Supplies the PTE to invalidate. // // PteValue - Supplies the new PTE value. // // PreviousPte - The previous PTE value is returned here. // // Return Value: // // None. // //-- #define MI_FLUSH_SINGLE_SESSION_TB(Virtual, Invalid, AllProcessors, PtePointer, PteValue, PreviousPte) \ PreviousPte.u.Flush = *PtePointer; \ *PtePointer = PteValue; \ KeFlushEntireTb (TRUE, TRUE); //++ //VOID //MI_FLUSH_ENTIRE_SESSION_TB ( // IN ULONG Invalid, // IN LOGICAL AllProcessors // ); // // Routine Description: // // MI_FLUSH_ENTIRE_SESSION_TB flushes the entire TB on IA64 since // the IA64 supports ASNs. // // Arguments // // Invalid - TRUE if invalidating. // // AllProcessors - TRUE if all processors need to be IPI'd. // // Return Value: // // None. // #define MI_FLUSH_ENTIRE_SESSION_TB(Invalid, AllProcessors) \ KeFlushEntireTb (Invalid, AllProcessors); VOID MiSweepCacheMachineDependent ( IN PVOID VirtualAddress, IN SIZE_T Size, IN ULONG CacheAttribute ); extern LOGICAL MiMappingsInitialized; extern BOOLEAN MiKseg0Mapping; extern PVOID MiKseg0Start; extern PVOID MiKseg0End; VOID MiEliminateDriverTrEntries ( VOID ); LOGICAL MiIsVirtualAddressMappedByTr ( IN PVOID VirtualAddress ); //++ //LOGICAL //MI_RESERVED_BITS_CANONICAL ( // IN PVOID VirtualAddress // ); // // Routine Description: // // This routine checks whether all of the reserved bits are correct. // // The processor implements at least 51 bits of VA (in addition to the 3 // bits of VRN) - this is greater than the 43 bits of VA decode implemented // by memory management so the VA is checked against 43 bits to prevent // bogus address crashes which would not be caught by the processor. // // Arguments // // VirtualAddress - Supplies the virtual address to check. // // Return Value: // // TRUE if the address is ok, FALSE if not. // LOGICAL __forceinline MI_RESERVED_BITS_CANONICAL ( IN PVOID VirtualAddress ) { LONG_PTR ReservedBits; ULONG_PTR ImplVirtualMsb; PMMPTE PointerPte; LOGICAL ReservedBitsOn; // // The address must be validated as NT-canonical. Note this is different // than being processor-canonical (which must also be done as well). Of // course if the NT validation is stricter then it is sufficient for both. // Note however, there are certain addresses used by memory management for // internal purposes (ie: McKinley page table VHPT space) which are never // made visible to any external components and are thus allowed to violate // the NT-canonical rule because it is not possible for anyone else to // use them and thus they cannot encode values into them. (We don't want // anyone trying to encode unused bits because if we ever expand the // virtual address space, they will break). // // NT uses 43 bits of virtual address (not including VRN bits) and Merced // has 51 while McKinley has 61. All valid Merced addresses can be // validated via the 43 bit NT checking. However, McKinley VHPT addresses // begin at 0x1FF8.0000.0000.0000, so they need to be checked separately. // ImplVirtualMsb = 43; ReservedBitsOn = FALSE; if ((ULONG_PTR)VirtualAddress & ((ULONG_PTR)1 << ImplVirtualMsb)) { // // All the reserved bits (not including the VRN) must also be set // unless this is a special memory management-internal address. // ReservedBits = (LONG_PTR) VirtualAddress | VRN_MASK; ReservedBits >>= (ImplVirtualMsb + 1); if (ReservedBits != (LONG_PTR)-1) { ReservedBitsOn = TRUE; } } else { // // All the reserved bits (not including the VRN) must also be clear // unless this is a special memory management-internal address. // ReservedBits = (LONG_PTR) VirtualAddress & ~VRN_MASK; ReservedBits >>= (ImplVirtualMsb + 1); if (ReservedBits != 0) { ReservedBitsOn = TRUE; } } // // Note region registers are initialized for all regions so the VRN bits // are stripped now for speed (ie: only the region 0 PTE ranges need to // be checked below). // VirtualAddress = (PVOID) ((LONG_PTR) VirtualAddress & ~VRN_MASK); if (ReservedBitsOn == FALSE) { // // No reserved bits were on, ensure that the virtual address is // okay by ensuring the PPE/PDE/PTE are within bounds. // PointerPte = MiGetPteAddress (VirtualAddress); } else { // // Some reserved bits are on. This better be an internal address // (ie: the McKinley VHPT), otherwise it's a bogus address. // // Note the Merced VHPT is NT-canonical so the checks below are // no-ops on that processor, but this would be an error path on // Merced anyway so the slight overhead is not critical. // PointerPte = (PMMPTE) VirtualAddress; } // // Because the IA64 VHPT must cover the number of virtual address bits // implemented by the processor and it must be on a natural boundary, the // following window exists and must be explicitly checked for here. // // The initial Merced implementation supports 50 bits of virtual address. // Hence the VHPT must cover 50-PAGE_SHIFT+PTE_SHIFT == 40 bits. // // However, NT uses PPE_PER_PAGE+PDE_PER_PAGE+PTE_PER_PAGE+PTE_SHIFT == // 33 bits. // // This seven bit difference between what the VHPT actually covers and // what NT actually handles is what must be explicitly checked. // // Depending on what the VirtualAddress really represents, the PTE below // may really be a PPE or PDE so check for all cases. // if ((PointerPte >= (PMMPTE)PTE_BASE) && (PointerPte < (PMMPTE)(PTE_BASE + (ULONG_PTR)PDE_PER_PAGE * PTE_PER_PAGE * PAGE_SIZE))) { return TRUE; } if ((PointerPte >= (PMMPTE)PDE_BASE) && (PointerPte < (PMMPTE)(PDE_BASE + PDE_PER_PAGE * PAGE_SIZE))) { return TRUE; } if ((PointerPte >= (PMMPTE)PDE_TBASE) && (PointerPte < (PMMPTE)(PDE_TBASE + PAGE_SIZE))) { return TRUE; } return FALSE; } //++ //VOID //MI_DISPLAY_TRAP_INFORMATION ( // IN PVOID TrapInformation // ); // // Routine Description: // // Display any relevant trap information to aid debugging. // // Arguments // // TrapInformation - Supplies a pointer to a trap frame. // // Return Value: // // None. // #define MI_DISPLAY_TRAP_INFORMATION(TrapInformation) \ KdPrint(("MM:***IIP %p, IIPA %p\n", \ ((PKTRAP_FRAME) (TrapInformation))->StIIP, \ ((PKTRAP_FRAME) (TrapInformation))->StIIPA));