/*++ Copyright (c) 1989 Microsoft Corporation Module Name: queryvm.c Abstract: This module contains the routines which implement the NtQueryVirtualMemory service. Author: Lou Perazzoli (loup) 21-Aug-1989 Landy Wang (landyw) 02-June-1997 Revision History: --*/ #include "mi.h" extern POBJECT_TYPE IoFileObjectType; NTSTATUS MiGetWorkingSetInfo ( IN PMEMORY_WORKING_SET_INFORMATION WorkingSetInfo, IN SIZE_T Length, IN PEPROCESS Process ); MMPTE MiCaptureSystemPte ( IN PMMPTE PointerProtoPte, IN PEPROCESS Process ); #if DBG PEPROCESS MmWatchProcess; #endif // DBG ULONG MiQueryAddressState ( IN PVOID Va, IN PMMVAD Vad, IN PEPROCESS TargetProcess, OUT PULONG ReturnedProtect, OUT PVOID *NextVaToQuery ); #ifdef ALLOC_PRAGMA #pragma alloc_text(PAGE,NtQueryVirtualMemory) #pragma alloc_text(PAGE,MiQueryAddressState) #pragma alloc_text(PAGE,MiGetWorkingSetInfo) #endif NTSTATUS NtQueryVirtualMemory ( IN HANDLE ProcessHandle, IN PVOID BaseAddress, IN MEMORY_INFORMATION_CLASS MemoryInformationClass, OUT PVOID MemoryInformation, IN SIZE_T MemoryInformationLength, OUT PSIZE_T ReturnLength OPTIONAL ) /*++ Routine Description: This function provides the capability to determine the state, protection, and type of a region of pages within the virtual address space of the subject process. The state of the first page within the region is determined and then subsequent entries in the process address map are scanned from the base address upward until either the entire range of pages has been scanned or until a page with a nonmatching set of attributes is encountered. The region attributes, the length of the region of pages with matching attributes, and an appropriate status value are returned. If the entire region of pages does not have a matching set of attributes, then the returned length parameter value can be used to calculate the address and length of the region of pages that was not scanned. Arguments: ProcessHandle - An open handle to a process object. BaseAddress - The base address of the region of pages to be queried. This value is rounded down to the next host-page- address boundary. MemoryInformationClass - The memory information class about which to retrieve information. MemoryInformation - A pointer to a buffer that receives the specified information. The format and content of the buffer depend on the specified information class. MemoryBasicInformation - Data type is PMEMORY_BASIC_INFORMATION. MEMORY_BASIC_INFORMATION Structure ULONG RegionSize - The size of the region in bytes beginning at the base address in which all pages have identical attributes. ULONG State - The state of the pages within the region. State Values MEM_COMMIT - The state of the pages within the region is committed. MEM_FREE - The state of the pages within the region is free. MEM_RESERVE - The state of the pages within the region is reserved. ULONG Protect - The protection of the pages within the region. Protect Values PAGE_NOACCESS - No access to the region of pages is allowed. An attempt to read, write, or execute within the region results in an access violation. PAGE_EXECUTE - Execute access to the region of pages is allowed. An attempt to read or write within the region results in an access violation. PAGE_READONLY - Read-only and execute access to the region of pages is allowed. An attempt to write within the region results in an access violation. PAGE_READWRITE - Read, write, and execute access to the region of pages is allowed. If write access to the underlying section is allowed, then a single copy of the pages are shared. Otherwise, the pages are shared read-only/copy-on-write. PAGE_GUARD - Read, write, and execute access to the region of pages is allowed; however, access to the region causes a "guard region entered" condition to be raised in the subject process. PAGE_NOCACHE - Disable the placement of committed pages into the data cache. ULONG Type - The type of pages within the region. Type Values MEM_PRIVATE - The pages within the region are private. MEM_MAPPED - The pages within the region are mapped into the view of a section. MEM_IMAGE - The pages within the region are mapped into the view of an image section. MemoryInformationLength - Specifies the length in bytes of the memory information buffer. ReturnLength - An optional pointer which, if specified, receives the number of bytes placed in the process information buffer. Return Value: NTSTATUS. Environment: Kernel mode. --*/ { KPROCESSOR_MODE PreviousMode; PEPROCESS TargetProcess; NTSTATUS Status; PMMVAD Vad; PVOID Va; PVOID NextVaToQuery; LOGICAL Found; SIZE_T TheRegionSize; ULONG NewProtect; ULONG NewState; PVOID FilePointer; ULONG_PTR BaseVpn; MEMORY_BASIC_INFORMATION Info; PMEMORY_BASIC_INFORMATION BasicInfo; LOGICAL Attached; LOGICAL Leaped; ULONG MemoryInformationLengthUlong; KAPC_STATE ApcState; PETHREAD CurrentThread; Found = FALSE; Leaped = TRUE; FilePointer = NULL; // // Make sure the user's buffer is large enough for the requested operation. // // Check argument validity. // switch (MemoryInformationClass) { case MemoryBasicInformation: if (MemoryInformationLength < sizeof(MEMORY_BASIC_INFORMATION)) { return STATUS_INFO_LENGTH_MISMATCH; } break; case MemoryWorkingSetInformation: if (MemoryInformationLength < sizeof(ULONG_PTR)) { return STATUS_INFO_LENGTH_MISMATCH; } break; case MemoryMappedFilenameInformation: break; default: return STATUS_INVALID_INFO_CLASS; } CurrentThread = PsGetCurrentThread (); PreviousMode = KeGetPreviousModeByThread(&CurrentThread->Tcb); if (PreviousMode != KernelMode) { // // Check arguments. // try { ProbeForWrite(MemoryInformation, MemoryInformationLength, sizeof(ULONG_PTR)); if (ARGUMENT_PRESENT(ReturnLength)) { ProbeForWriteUlong_ptr(ReturnLength); } } except (EXCEPTION_EXECUTE_HANDLER) { // // If an exception occurs during the probe or capture // of the initial values, then handle the exception and // return the exception code as the status value. // return GetExceptionCode(); } } if (BaseAddress > MM_HIGHEST_USER_ADDRESS) { return STATUS_INVALID_PARAMETER; } if ((BaseAddress >= MM_HIGHEST_VAD_ADDRESS) #if defined(MM_SHARED_USER_DATA_VA) || (PAGE_ALIGN(BaseAddress) == (PVOID)MM_SHARED_USER_DATA_VA) #endif ) { // // Indicate a reserved area from this point on. // if (MemoryInformationClass == MemoryBasicInformation) { try { ((PMEMORY_BASIC_INFORMATION)MemoryInformation)->AllocationBase = (PCHAR) MM_HIGHEST_VAD_ADDRESS + 1; ((PMEMORY_BASIC_INFORMATION)MemoryInformation)->AllocationProtect = PAGE_READONLY; ((PMEMORY_BASIC_INFORMATION)MemoryInformation)->BaseAddress = PAGE_ALIGN(BaseAddress); ((PMEMORY_BASIC_INFORMATION)MemoryInformation)->RegionSize = ((PCHAR)MM_HIGHEST_USER_ADDRESS + 1) - (PCHAR)PAGE_ALIGN(BaseAddress); ((PMEMORY_BASIC_INFORMATION)MemoryInformation)->State = MEM_RESERVE; ((PMEMORY_BASIC_INFORMATION)MemoryInformation)->Protect = PAGE_NOACCESS; ((PMEMORY_BASIC_INFORMATION)MemoryInformation)->Type = MEM_PRIVATE; if (ARGUMENT_PRESENT(ReturnLength)) { *ReturnLength = sizeof(MEMORY_BASIC_INFORMATION); } #if defined(MM_SHARED_USER_DATA_VA) if (PAGE_ALIGN(BaseAddress) == (PVOID)MM_SHARED_USER_DATA_VA) { // // This is the page that is double mapped between // user mode and kernel mode. // ((PMEMORY_BASIC_INFORMATION)MemoryInformation)->AllocationBase = (PVOID)MM_SHARED_USER_DATA_VA; ((PMEMORY_BASIC_INFORMATION)MemoryInformation)->Protect = PAGE_READONLY; ((PMEMORY_BASIC_INFORMATION)MemoryInformation)->RegionSize = PAGE_SIZE; ((PMEMORY_BASIC_INFORMATION)MemoryInformation)->State = MEM_COMMIT; } #endif } except (EXCEPTION_EXECUTE_HANDLER) { // // Just return success. // } return STATUS_SUCCESS; } else { return STATUS_INVALID_ADDRESS; } } if (ProcessHandle == NtCurrentProcess()) { TargetProcess = PsGetCurrentProcessByThread(CurrentThread); } else { Status = ObReferenceObjectByHandle (ProcessHandle, PROCESS_QUERY_INFORMATION, PsProcessType, PreviousMode, (PVOID *)&TargetProcess, NULL); if (!NT_SUCCESS(Status)) { return Status; } } if (MemoryInformationClass == MemoryWorkingSetInformation) { Status = MiGetWorkingSetInfo ( (PMEMORY_WORKING_SET_INFORMATION) MemoryInformation, MemoryInformationLength, TargetProcess); if (ProcessHandle != NtCurrentProcess()) { ObDereferenceObject (TargetProcess); } // // If MiGetWorkingSetInfo failed then inform the caller. // if (!NT_SUCCESS(Status)) { return Status; } try { if (ARGUMENT_PRESENT(ReturnLength)) { *ReturnLength = ((((PMEMORY_WORKING_SET_INFORMATION) MemoryInformation)->NumberOfEntries - 1) * sizeof(ULONG)) + sizeof(MEMORY_WORKING_SET_INFORMATION); } } except (EXCEPTION_EXECUTE_HANDLER) { } return STATUS_SUCCESS; } // // If the specified process is not the current process, attach // to the specified process. // if (ProcessHandle != NtCurrentProcess()) { KeStackAttachProcess (&TargetProcess->Pcb, &ApcState); Attached = TRUE; } else { Attached = FALSE; } // // Get working set mutex and block APCs. // LOCK_ADDRESS_SPACE (TargetProcess); // // Make sure the address space was not deleted, if so, return an error. // if (TargetProcess->Flags & PS_PROCESS_FLAGS_VM_DELETED) { UNLOCK_ADDRESS_SPACE (TargetProcess); if (Attached == TRUE) { KeUnstackDetachProcess (&ApcState); ObDereferenceObject (TargetProcess); } return STATUS_PROCESS_IS_TERMINATING; } // // Locate the VAD that contains the base address or the VAD // which follows the base address. // Vad = TargetProcess->VadRoot; BaseVpn = MI_VA_TO_VPN (BaseAddress); for (;;) { if (Vad == NULL) { break; } if ((BaseVpn >= Vad->StartingVpn) && (BaseVpn <= Vad->EndingVpn)) { Found = TRUE; break; } if (BaseVpn < Vad->StartingVpn) { if (Vad->LeftChild == NULL) { break; } Vad = Vad->LeftChild; } else { if (BaseVpn < Vad->EndingVpn) { break; } if (Vad->RightChild == NULL) { break; } Vad = Vad->RightChild; } } if (!Found) { // // There is no virtual address allocated at the base // address. Return the size of the hole starting at // the base address. // if (Vad == NULL) { TheRegionSize = ((PCHAR)MM_HIGHEST_VAD_ADDRESS + 1) - (PCHAR)PAGE_ALIGN(BaseAddress); } else { if (Vad->StartingVpn < BaseVpn) { // // We are looking at the Vad which occupies the range // just before the desired range. Get the next Vad. // Vad = MiGetNextVad (Vad); if (Vad == NULL) { TheRegionSize = ((PCHAR)MM_HIGHEST_VAD_ADDRESS + 1) - (PCHAR)PAGE_ALIGN(BaseAddress); } else { TheRegionSize = (PCHAR)MI_VPN_TO_VA (Vad->StartingVpn) - (PCHAR)PAGE_ALIGN(BaseAddress); } } else { TheRegionSize = (PCHAR)MI_VPN_TO_VA (Vad->StartingVpn) - (PCHAR)PAGE_ALIGN(BaseAddress); } } UNLOCK_ADDRESS_SPACE (TargetProcess); if (Attached == TRUE) { KeUnstackDetachProcess (&ApcState); ObDereferenceObject (TargetProcess); } // // Establish an exception handler and write the information and // returned length. // if (MemoryInformationClass == MemoryBasicInformation) { BasicInfo = (PMEMORY_BASIC_INFORMATION) MemoryInformation; Found = FALSE; try { BasicInfo->AllocationBase = NULL; BasicInfo->AllocationProtect = 0; BasicInfo->BaseAddress = PAGE_ALIGN(BaseAddress); BasicInfo->RegionSize = TheRegionSize; BasicInfo->State = MEM_FREE; BasicInfo->Protect = PAGE_NOACCESS; BasicInfo->Type = 0; Found = TRUE; if (ARGUMENT_PRESENT(ReturnLength)) { *ReturnLength = sizeof(MEMORY_BASIC_INFORMATION); } } except (EXCEPTION_EXECUTE_HANDLER) { // // Just return success if the BasicInfo was successfully // filled in. // if (Found == FALSE) { return GetExceptionCode (); } } return STATUS_SUCCESS; } return STATUS_INVALID_ADDRESS; } // // Found a VAD. // Va = PAGE_ALIGN(BaseAddress); Info.BaseAddress = Va; // // There is a page mapped at the base address. // if (Vad->u.VadFlags.PrivateMemory) { Info.Type = MEM_PRIVATE; } else { if (Vad->u.VadFlags.ImageMap == 1) { Info.Type = MEM_IMAGE; } else { Info.Type = MEM_MAPPED; } if (MemoryInformationClass == MemoryMappedFilenameInformation) { if (Vad->ControlArea) { FilePointer = Vad->ControlArea->FilePointer; } if (FilePointer == NULL) { FilePointer = (PVOID)1; } else { ObReferenceObject(FilePointer); } } } LOCK_WS_UNSAFE (TargetProcess); Info.State = MiQueryAddressState (Va, Vad, TargetProcess, &Info.Protect, &NextVaToQuery); Va = NextVaToQuery; while (MI_VA_TO_VPN (Va) <= Vad->EndingVpn) { NewState = MiQueryAddressState (Va, Vad, TargetProcess, &NewProtect, &NextVaToQuery); if ((NewState != Info.State) || (NewProtect != Info.Protect)) { // // The state for this address does not match, calculate // size and return. // Leaped = FALSE; break; } Va = NextVaToQuery; } UNLOCK_WS_UNSAFE (TargetProcess); // // We may have aggressively leaped past the end of the VAD. Shorten the // Va here if we did. // if (Leaped == TRUE) { Va = MI_VPN_TO_VA (Vad->EndingVpn + 1); } Info.RegionSize = ((PCHAR)Va - (PCHAR)Info.BaseAddress); Info.AllocationBase = MI_VPN_TO_VA (Vad->StartingVpn); Info.AllocationProtect = MI_CONVERT_FROM_PTE_PROTECTION ( Vad->u.VadFlags.Protection); // // A range has been found, release the mutexes, detach from the // target process and return the information. // #if defined(_MIALT4K_) if (TargetProcess->Wow64Process != NULL) { Info.BaseAddress = PAGE_4K_ALIGN(BaseAddress); MiQueryRegionFor4kPage (Info.BaseAddress, MI_VPN_TO_VA_ENDING(Vad->EndingVpn), &Info.RegionSize, &Info.State, &Info.Protect, TargetProcess); } #endif UNLOCK_ADDRESS_SPACE (TargetProcess); if (Attached == TRUE) { KeUnstackDetachProcess (&ApcState); ObDereferenceObject (TargetProcess); } if (MemoryInformationClass == MemoryBasicInformation) { Found = FALSE; try { *(PMEMORY_BASIC_INFORMATION)MemoryInformation = Info; Found = TRUE; if (ARGUMENT_PRESENT(ReturnLength)) { *ReturnLength = sizeof(MEMORY_BASIC_INFORMATION); } } except (EXCEPTION_EXECUTE_HANDLER) { // // Just return success if the BasicInfo was successfully // filled in. // if (Found == FALSE) { return GetExceptionCode (); } } return STATUS_SUCCESS; } // // Try to return the name of the file that is mapped. // if (FilePointer == NULL) { return STATUS_INVALID_ADDRESS; } if (FilePointer == (PVOID)1) { return STATUS_FILE_INVALID; } MemoryInformationLengthUlong = (ULONG)MemoryInformationLength; if ((SIZE_T)MemoryInformationLengthUlong < MemoryInformationLength) { return STATUS_INVALID_PARAMETER_5; } // // We have a referenced pointer to the file. Call ObQueryNameString // and get the file name. // Status = ObQueryNameString (FilePointer, (POBJECT_NAME_INFORMATION) MemoryInformation, MemoryInformationLengthUlong, (PULONG)ReturnLength); ObDereferenceObject (FilePointer); return Status; } ULONG MiQueryAddressState ( IN PVOID Va, IN PMMVAD Vad, IN PEPROCESS TargetProcess, OUT PULONG ReturnedProtect, OUT PVOID *NextVaToQuery ) /*++ Routine Description: Arguments: Return Value: Returns the state (MEM_COMMIT, MEM_RESERVE, MEM_PRIVATE). Environment: Kernel mode. Working set lock and address creation lock held. --*/ { PMMPTE PointerPte; PMMPTE PointerPde; PMMPTE PointerPpe; PMMPTE PointerPxe; MMPTE CapturedProtoPte; PMMPTE ProtoPte; LOGICAL PteIsZero; ULONG State; ULONG Protect; ULONG Waited; LOGICAL PteDetected; PVOID NextVa; State = MEM_RESERVE; Protect = 0; #ifdef LARGE_PAGES if (Vad->u.VadFlags.LargePages) { *ReturnedProtect = MI_CONVERT_FROM_PTE_PROTECTION ( Vad->u.VadFlags.Protection); return MEM_COMMIT; } #endif //LARGE_PAGES PointerPxe = MiGetPxeAddress (Va); PointerPpe = MiGetPpeAddress (Va); PointerPde = MiGetPdeAddress (Va); PointerPte = MiGetPteAddress (Va); ASSERT ((Vad->StartingVpn <= MI_VA_TO_VPN (Va)) && (Vad->EndingVpn >= MI_VA_TO_VPN (Va))); PteIsZero = TRUE; PteDetected = FALSE; *NextVaToQuery = (PVOID)((PCHAR)Va + PAGE_SIZE); do { if (!MiDoesPxeExistAndMakeValid (PointerPxe, TargetProcess, FALSE, &Waited)) { #if (_MI_PAGING_LEVELS >= 4) NextVa = MiGetVirtualAddressMappedByPte (PointerPxe + 1); NextVa = MiGetVirtualAddressMappedByPte (NextVa); NextVa = MiGetVirtualAddressMappedByPte (NextVa); *NextVaToQuery = MiGetVirtualAddressMappedByPte (NextVa); #endif break; } #if (_MI_PAGING_LEVELS >= 4) Waited = 0; #endif if (!MiDoesPpeExistAndMakeValid (PointerPpe, TargetProcess, FALSE, &Waited)) { #if (_MI_PAGING_LEVELS >= 3) NextVa = MiGetVirtualAddressMappedByPte (PointerPpe + 1); NextVa = MiGetVirtualAddressMappedByPte (NextVa); *NextVaToQuery = MiGetVirtualAddressMappedByPte (NextVa); #endif break; } #if (_MI_PAGING_LEVELS < 4) Waited = 0; #endif if (!MiDoesPdeExistAndMakeValid (PointerPde, TargetProcess, FALSE, &Waited)) { NextVa = MiGetVirtualAddressMappedByPte (PointerPde + 1); *NextVaToQuery = MiGetVirtualAddressMappedByPte (NextVa); break; } if (Waited == 0) { PteDetected = TRUE; } } while (Waited != 0); if (PteDetected == TRUE) { // // A PTE exists at this address, see if it is zero. // if (PointerPte->u.Long != 0) { PteIsZero = FALSE; // // There is a non-zero PTE at this address, use // it to build the information block. // if (MiIsPteDecommittedPage (PointerPte)) { ASSERT (Protect == 0); ASSERT (State == MEM_RESERVE); } else { State = MEM_COMMIT; if (Vad->u.VadFlags.PhysicalMapping == 1) { // // Physical mapping, there is no corresponding // PFN element to get the page protection from. // Protect = MI_CONVERT_FROM_PTE_PROTECTION ( Vad->u.VadFlags.Protection); } else { Protect = MiGetPageProtection (PointerPte, TargetProcess, FALSE); if ((PointerPte->u.Soft.Valid == 0) && (PointerPte->u.Soft.Prototype == 1) && (Vad->u.VadFlags.PrivateMemory == 0) && (Vad->ControlArea != (PCONTROL_AREA)NULL)) { // // Make sure the protoPTE is committed. // ProtoPte = MiGetProtoPteAddress(Vad, MI_VA_TO_VPN (Va)); CapturedProtoPte.u.Long = 0; if (ProtoPte) { CapturedProtoPte = MiCaptureSystemPte (ProtoPte, TargetProcess); } if (CapturedProtoPte.u.Long == 0) { State = MEM_RESERVE; Protect = 0; } } } } } } if (PteIsZero) { // // There is no PDE at this address, the template from // the VAD supplies the information unless the VAD is // for an image file. For image files the individual // protection is on the prototype PTE. // // // Get the default protection information. // State = MEM_RESERVE; Protect = 0; if (Vad->u.VadFlags.PhysicalMapping == 1) { // // Must be banked memory, just return reserved. // NOTHING; } else if ((Vad->u.VadFlags.PrivateMemory == 0) && (Vad->ControlArea != (PCONTROL_AREA)NULL)) { // // This VAD refers to a section. Even though the PTE is // zero, the actual page may be committed in the section. // *NextVaToQuery = (PVOID)((PCHAR)Va + PAGE_SIZE); ProtoPte = MiGetProtoPteAddress(Vad, MI_VA_TO_VPN (Va)); CapturedProtoPte.u.Long = 0; if (ProtoPte) { CapturedProtoPte = MiCaptureSystemPte (ProtoPte, TargetProcess); } if (CapturedProtoPte.u.Long != 0) { State = MEM_COMMIT; if (Vad->u.VadFlags.ImageMap == 0) { Protect = MI_CONVERT_FROM_PTE_PROTECTION ( Vad->u.VadFlags.Protection); } else { // // This is an image file, the protection is in the // prototype PTE. // Protect = MiGetPageProtection (&CapturedProtoPte, TargetProcess, TRUE); } } } else { // // Get the protection from the corresponding VAD. // if (Vad->u.VadFlags.MemCommit) { State = MEM_COMMIT; Protect = MI_CONVERT_FROM_PTE_PROTECTION ( Vad->u.VadFlags.Protection); } } } *ReturnedProtect = Protect; return State; } NTSTATUS MiGetWorkingSetInfo ( IN PMEMORY_WORKING_SET_INFORMATION WorkingSetInfo, IN SIZE_T Length, IN PEPROCESS Process ) { PMDL Mdl; PMEMORY_WORKING_SET_INFORMATION Info; PMEMORY_WORKING_SET_BLOCK Entry; #if DBG PMEMORY_WORKING_SET_BLOCK LastEntry; #endif PMMWSLE Wsle; PMMWSLE LastWsle; WSLE_NUMBER WsSize; PMMPTE PointerPte; PMMPFN Pfn1; NTSTATUS status; LOGICAL Attached; KAPC_STATE ApcState; PETHREAD CurrentThread; // // Allocate an MDL to map the request. // Mdl = ExAllocatePoolWithTag (NonPagedPool, sizeof(MDL) + sizeof(PFN_NUMBER) + BYTES_TO_PAGES (Length) * sizeof(PFN_NUMBER), ' mM'); if (Mdl == NULL) { return STATUS_INSUFFICIENT_RESOURCES; } // // Initialize the MDL for the request. // MmInitializeMdl(Mdl, WorkingSetInfo, Length); CurrentThread = PsGetCurrentThread (); try { MmProbeAndLockPages (Mdl, KeGetPreviousModeByThread (&CurrentThread->Tcb), IoWriteAccess); } except (EXCEPTION_EXECUTE_HANDLER) { ExFreePool (Mdl); return GetExceptionCode(); } Info = MmGetSystemAddressForMdlSafe (Mdl, NormalPagePriority); if (Info == NULL) { MmUnlockPages (Mdl); ExFreePool (Mdl); return STATUS_INSUFFICIENT_RESOURCES; } if (PsGetCurrentProcessByThread (CurrentThread) != Process) { KeStackAttachProcess (&Process->Pcb, &ApcState); Attached = TRUE; } else { Attached = FALSE; } status = STATUS_SUCCESS; LOCK_WS (Process); if (Process->Flags & PS_PROCESS_FLAGS_VM_DELETED) { status = STATUS_PROCESS_IS_TERMINATING; } else { WsSize = Process->Vm.WorkingSetSize; ASSERT (WsSize != 0); Info->NumberOfEntries = WsSize; if (sizeof(MEMORY_WORKING_SET_INFORMATION) + (WsSize-1) * sizeof(ULONG_PTR) > Length) { status = STATUS_INFO_LENGTH_MISMATCH; } } if (!NT_SUCCESS(status)) { UNLOCK_WS (Process); if (Attached == TRUE) { KeUnstackDetachProcess (&ApcState); } MmUnlockPages (Mdl); ExFreePool (Mdl); return status; } Wsle = MmWsle; LastWsle = &MmWsle[MmWorkingSetList->LastEntry]; Entry = &Info->WorkingSetInfo[0]; #if DBG LastEntry = (PMEMORY_WORKING_SET_BLOCK)( (PCHAR)Info + (Length & (~(sizeof(ULONG_PTR) - 1)))); #endif do { if (Wsle->u1.e1.Valid == 1) { Entry->VirtualPage = Wsle->u1.e1.VirtualPageNumber; PointerPte = MiGetPteAddress (Wsle->u1.VirtualAddress); ASSERT (PointerPte->u.Hard.Valid == 1); Pfn1 = MI_PFN_ELEMENT (PointerPte->u.Hard.PageFrameNumber); #if defined(MI_MULTINODE) Entry->Node = Pfn1->u3.e1.PageColor; #else Entry->Node = 0; #endif Entry->Shared = Pfn1->u3.e1.PrototypePte; if (Pfn1->u3.e1.PrototypePte == 0) { Entry->ShareCount = 0; Entry->Protection = MI_GET_PROTECTION_FROM_SOFT_PTE(&Pfn1->OriginalPte); } else { if (Pfn1->u2.ShareCount <= 7) { Entry->ShareCount = Pfn1->u2.ShareCount; } else { Entry->ShareCount = 7; } if (Wsle->u1.e1.SameProtectAsProto == 1) { Entry->Protection = MI_GET_PROTECTION_FROM_SOFT_PTE(&Pfn1->OriginalPte); } else { Entry->Protection = Wsle->u1.e1.Protection; } } Entry += 1; } Wsle += 1; #if DBG ASSERT ((Entry < LastEntry) || (Wsle > LastWsle)); #endif } while (Wsle <= LastWsle); UNLOCK_WS (Process); if (Attached == TRUE) { KeUnstackDetachProcess (&ApcState); } MmUnlockPages (Mdl); ExFreePool (Mdl); return STATUS_SUCCESS; }