#include "precomp.h" // // SBC.C // Send Bitmap Cache, display driver side // // Copyright(c) Microsoft 1997- // // // // SBC_DDProcessRequest() - see sbc.h // // BOOL SBC_DDProcessRequest ( SURFOBJ* pso, DWORD fnEscape, LPOSI_ESCAPE_HEADER pRequest, LPOSI_ESCAPE_HEADER pResult, DWORD cbResult ) { BOOL rc; LPOSI_PDEV ppDev = (LPOSI_PDEV)pso->dhpdev; DebugEntry(SBC_DDProcessRequest); // // Get the request number. // switch (fnEscape) { case SBC_ESC_NEW_CAPABILITIES: { if (cbResult != sizeof(SBC_NEW_CAPABILITIES)) { ERROR_OUT(("SBC_DDProcessRequest: Invalid size %d for SBC_ESC_NEW_CAPABILITIES", cbResult)); rc = FALSE; DC_QUIT; } TRACE_OUT(("SBC_ESC_NEW_CAPABILITIES")); SBCDDSetNewCapabilities((LPSBC_NEW_CAPABILITIES)pRequest); rc = TRUE; } break; default: { ERROR_OUT(("Unrecognized SBC_ escape")); rc = FALSE; } break; } DC_EXIT_POINT: DebugExitBOOL(SBC_DDProcessRequest, rc); return(rc); } // // // SBC_DDInit() - see sbc.h // // BOOL SBC_DDInit ( LPOSI_PDEV ppDev, LPBYTE pRestOfMemory, DWORD cbRestOfMemory, LPOSI_INIT_REQUEST pResult ) { UINT i; SIZEL bitmapSize; BOOL rc = FALSE; DebugEntry(SBC_DDInit); // // We have to create work DIBs to Blt into when SBC_CacheMemScreenBlt // is called. // for (i = 0 ; i < SBC_NUM_TILE_SIZES ; i++) { ASSERT(!g_asbcWorkInfo[i].pShuntBuffer); ASSERT(!g_asbcWorkInfo[i].mruIndex); ASSERT(!g_asbcWorkInfo[i].workBitmap); if (i == SBC_MEDIUM_TILE_INDEX) { g_asbcWorkInfo[SBC_MEDIUM_TILE_INDEX].tileWidth = MP_MEDIUM_TILE_WIDTH; g_asbcWorkInfo[SBC_MEDIUM_TILE_INDEX].tileHeight = MP_MEDIUM_TILE_HEIGHT; } else { ASSERT(i == SBC_LARGE_TILE_INDEX); g_asbcWorkInfo[SBC_LARGE_TILE_INDEX].tileWidth = MP_LARGE_TILE_WIDTH; g_asbcWorkInfo[SBC_LARGE_TILE_INDEX].tileHeight = MP_LARGE_TILE_HEIGHT; } // // Create the bitmap. Note that we create it "top down" rather // than the default of "bottom up" to simplify copying data from // the bitmap (we don't have to work out offsets into the data - we // can copy from the beginning). // // We set the last parameter to NULL, to allow GDI to allocate // memory for the bits. We can get a pointer to the bits later // when we have a SURFOBJ for the bitmap. // bitmapSize.cx = g_asbcWorkInfo[i].tileWidth; bitmapSize.cy = g_asbcWorkInfo[i].tileHeight; g_asbcWorkInfo[i].workBitmap = EngCreateBitmap(bitmapSize, BYTES_IN_BITMAP(g_asbcWorkInfo[i].tileWidth, 1, ppDev->cBitsPerPel), ppDev->iBitmapFormat, BMF_TOPDOWN, NULL); if (! g_asbcWorkInfo[i].workBitmap) { ERROR_OUT(( "Failed to create work bitmap %d", i)); DC_QUIT; } } // // Initialize the shunt buffers // if (! SBCDDCreateShuntBuffers(ppDev, pRestOfMemory, cbRestOfMemory)) { ERROR_OUT(( "Failed to create shunt buffers")); DC_QUIT; } // // Set up the remaining global variables // EngQueryPerformanceFrequency(&g_sbcPerfFrequency); // // OK, so we can create our SBC cache. Fill in the details. // for (i = 0 ; i < SBC_NUM_TILE_SIZES; i++) { // // This is filling in the APP address to the shunt buffers. // pResult->psbcTileData[i] = (LPBYTE)pResult->pSharedMemory + PTRBASE_TO_OFFSET(g_asbcWorkInfo[i].pShuntBuffer, g_asSharedMemory); } pResult->aBitmasks[0] = ppDev->flRed; pResult->aBitmasks[1] = ppDev->flGreen; pResult->aBitmasks[2] = ppDev->flBlue; // // If we are a palette device (i.e. we are running at 8 bpp or less), // set the paletteChanged flag so that we will send a color table to // the share core before our first Mem(3)Blt. // ppDev->paletteChanged = (ppDev->cBitsPerPel <= 8); rc = TRUE; DC_EXIT_POINT: DebugExitBOOL(SBC_DDInit, rc); return(rc); } // // // SBC_DDTerm() - see sbc.h // // void SBC_DDTerm(void) { UINT i; DebugEntry(SBC_DDTerm); // // We just have to set the pointers to the shunt buffers to NULL // for (i = 0 ; i < SBC_NUM_TILE_SIZES ; i++) { // Kill the bitmap if there if (g_asbcWorkInfo[i].workBitmap) { EngDeleteSurface((HSURF)g_asbcWorkInfo[i].workBitmap); g_asbcWorkInfo[i].workBitmap = 0; } g_asbcWorkInfo[i].pShuntBuffer = NULL; g_asbcWorkInfo[i].mruIndex = 0; } DebugExitVOID(SBC_DDTerm); } // // // SBC_DDIsMemScreenBltCachable() - see sbc.h // // BOOL SBC_DDIsMemScreenBltCachable(LPMEMBLT_ORDER_EXTRA_INFO pMemBltInfo) { BOOL rc = FALSE; UINT tileWidth; UINT tileHeight; SURFOBJ * pSourceSurf; DebugEntry(SBC_DDIsMemScreenBltCachable); // // Is this an RLE bitmap - these bitmaps can have effective transparent // sections which we cannot mimic with SBC. // pSourceSurf = pMemBltInfo->pSource; if ( (pSourceSurf->iBitmapFormat == BMF_4RLE) || (pSourceSurf->iBitmapFormat == BMF_8RLE) ) { TRACE_OUT(( "RLE Bitmap %d", pSourceSurf->iBitmapFormat)); DC_QUIT; } // // If this is a thrasher then don't cache it // if (SBCDDIsBitmapThrasher(pSourceSurf)) { TRACE_OUT(( "Its a thrasher")); DC_QUIT; } // // Make sure that this bitmap can be tiled OK // if (!SBC_DDQueryBitmapTileSize(pSourceSurf->sizlBitmap.cx, pSourceSurf->sizlBitmap.cy, &tileWidth, &tileHeight)) { TRACE_OUT(("Cache does not support tiling")); DC_QUIT; } rc = TRUE; DC_EXIT_POINT: DebugExitDWORD(SBC_DDIsMemScreenBltCachable, rc); return(rc); } // // // SBC_DDCacheMemScreenBlt() - see sbc.h // // BOOL SBC_DDCacheMemScreenBlt ( LPINT_ORDER pOrder, LPMEMBLT_ORDER_EXTRA_INFO pMemBltInfo ) { BOOL rc = FALSE; LPMEMBLT_ORDER pMemBltOrder = (LPMEMBLT_ORDER)&(pOrder->abOrderData); LPMEM3BLT_ORDER pMem3BltOrder = (LPMEM3BLT_ORDER)pMemBltOrder; UINT bmpWidth; UINT bmpHeight; UINT tileWidth; UINT tileHeight; POINTL tileOrg; UINT cxSubBitmapWidth; UINT cySubBitmapHeight; UINT type; SURFOBJ * pDestSurf; SURFOBJ * pSourceSurf; LPOSI_PDEV pDestDev; SURFOBJ * pWorkSurf = NULL; LPBYTE pWorkBits; RECTL destRectl; POINTL sourcePt; int tileSize; LPSBC_TILE_DATA pTileData = NULL; DebugEntry(SBC_DDCacheMemScreenBlt); // // Do a first pass on the cacheability of the Blt // if (!SBC_DDIsMemScreenBltCachable(pMemBltInfo)) { TRACE_OUT(( "This MemBlt Order is not cachable")); DC_QUIT; } // // Get the width and height of the source bitmap // pSourceSurf = pMemBltInfo->pSource; bmpWidth = pSourceSurf->sizlBitmap.cx; bmpHeight = pSourceSurf->sizlBitmap.cy; // // Calculate the tile size for this blit // if (!SBC_DDQueryBitmapTileSize(bmpWidth, bmpHeight, &tileWidth, &tileHeight)) { TRACE_OUT(("Cache does not support tiling")); DC_QUIT; } // // Set up pointers to the source coordinates in the order. // type = pMemBltOrder->type; if (type == ORD_MEMBLT_TYPE) { sourcePt.x = pMemBltOrder->nXSrc; sourcePt.y = pMemBltOrder->nYSrc; TRACE_OUT(( "Request to cache MemBlt (%d, %d), %d x %d -> (%d, %d), src %x", sourcePt.x, sourcePt.y, pMemBltOrder->nWidth, pMemBltOrder->nHeight, pMemBltOrder->nLeftRect, pMemBltOrder->nTopRect, pSourceSurf->hsurf)); } else { sourcePt.x = pMem3BltOrder->nXSrc; sourcePt.y = pMem3BltOrder->nYSrc; TRACE_OUT(( "Request to cache Mem3Blt (%d, %d), %d x %d -> (%d, %d), src %x", sourcePt.x, sourcePt.y, pMem3BltOrder->nWidth, pMem3BltOrder->nHeight, pMem3BltOrder->nLeftRect, pMem3BltOrder->nTopRect, pSourceSurf->hsurf)); } // // Calculate the tile origin and size of remaining bitmap. Origin is // rounded down to the nearest tile. Actual size of bitmap to cache // may be smaller than tile size if the tile runs off the right/bottom // of the bitmap // tileOrg.x = sourcePt.x - (sourcePt.x % tileWidth); tileOrg.y = sourcePt.y - (sourcePt.y % tileHeight); // // Actual size of bitmap to cache may be smaller than tile size if the // tile runs off the right/bottom of the bitmap. To see why this // calculation is correct, realize that (bmpWidth - tileOrg.x) is the // remaining width of the bitmap after the start of this tile. // cxSubBitmapWidth = min(tileWidth, bmpWidth - tileOrg.x); cySubBitmapHeight = min(tileHeight, bmpHeight - tileOrg.y); // // We know how large a tile we have - we now have to Blt it into one of // our work bitmaps and pass it up to the share core. First, work out // which of our work bitmaps we should use and set up some variables // based on this. // for (tileSize = 0; tileSize < SBC_NUM_TILE_SIZES ; tileSize++) { if ((cxSubBitmapWidth <= g_asbcWorkInfo[tileSize].tileWidth) && (cySubBitmapHeight <= g_asbcWorkInfo[tileSize].tileHeight)) { break; } } if (tileSize == SBC_NUM_TILE_SIZES) { ERROR_OUT(( "%d x %d tile doesn't fit into work bmp", cxSubBitmapWidth, cySubBitmapHeight)); DC_QUIT; } // // Before doing any more work, get the next free entry in the shunt // buffer. Note that this fills in the tileId element of the returned // structure. // // It is perfectly valid for this call to fail. The shunt buffer may // just be full if we are sending lots of bitmap data up to the share // core. // if (!SBCDDGetNextFreeTile(tileSize, &pTileData)) { TRACE_OUT(( "Unable to get a free tile in shunt buffer")); DC_QUIT; } // // Lock the work bitmap to get a surface to pass to EngBitBlt // pWorkSurf = EngLockSurface((HSURF)g_asbcWorkInfo[tileSize].workBitmap); if (pWorkSurf == NULL) { ERROR_OUT(( "Failed to lock work surface")); DC_QUIT; } TRACE_OUT(( "Locked surface")); // // Do the Blt to our work bitmap to get the bits at native bpp, and // using the color table which we sent to the share core. // destRectl.top = 0; destRectl.left = 0; destRectl.right = cxSubBitmapWidth; destRectl.bottom = cySubBitmapHeight; sourcePt = tileOrg; if (!EngBitBlt(pWorkSurf, pSourceSurf, NULL, // mask surface NULL, // clip object pMemBltInfo->pXlateObj, &destRectl, &sourcePt, NULL, // mask origin NULL, // brush NULL, // brush origin 0xcccc)) // SRCCPY { ERROR_OUT(( "Failed to Blt to work bitmap")); DC_QUIT; } TRACE_OUT(( "Completed BitBlt")); // // The Blt succeeded, so pass the bits to the share core by copying // them into the correct shunt buffer. // // bytesUsed is set to the number of bytes required for // cySubBitmapHeight number of full scanlines in the shunt buffer tile // (NOT the number of bytes available in the tile, or the number of // bytes of data which was actually Blted) // // major/minorCacheInfo are set to details from the source surface. // hdev does not change on consecutive Blts from the same surface, but // iUniq may. // pDestSurf = pMemBltInfo->pDest; pDestDev = (LPOSI_PDEV)pDestSurf->dhpdev; pTileData->bytesUsed = BYTES_IN_BITMAP(g_asbcWorkInfo[tileSize].tileWidth, cySubBitmapHeight, pDestDev->cBitsPerPel); pTileData->srcX = (TSHR_UINT16)sourcePt.x; pTileData->srcY = (TSHR_UINT16)sourcePt.y; pTileData->width = (WORD)cxSubBitmapWidth; pTileData->height = (WORD)cySubBitmapHeight; pTileData->tilingWidth = (WORD)tileWidth; pTileData->tilingHeight = (WORD)tileHeight; pTileData->majorCacheInfo = (UINT_PTR)pSourceSurf->hsurf; pTileData->minorCacheInfo = (UINT)pSourceSurf->iUniq; pTileData->majorPalette = (UINT_PTR)pMemBltInfo->pXlateObj; pTileData->minorPalette = (UINT)(pMemBltInfo->pXlateObj != NULL ? pMemBltInfo->pXlateObj->iUniq : 0); // // If the source surface has the BMF_DONTCACHE flag set then it is a // DIB Section. This means that an app can change the bits in the // surface without calling GDI, and hence without the iUniq value being // updated. // // We rely on iUniq changing for the fast path to work, so we must // exclude these bitmaps from the fast path. Do this by resetting the // majorCacheInfo field (we use this rather than minorCacheInfo because // we can't tell what an invalid iUniq value is). // if ( (pSourceSurf->iType == STYPE_BITMAP) && ((pSourceSurf->fjBitmap & BMF_DONTCACHE) != 0) ) { TRACE_OUT(( "Source hsurf %#.8lx has BMF_DONTCACHE set", pTileData->majorCacheInfo)); pTileData->majorCacheInfo = SBC_DONT_FASTPATH; } // // Note that this only works correctly because we create our work // bitmaps to be "top down" rather than the default of "bottom up". // i.e. the data for the top scanline is first in memory, so we can // start copying from the start of the bit data. Bottom up would mean // working out an offset into the work bitmap to start copying from. // memcpy(pTileData->bitData, pWorkSurf->pvBits, pTileData->bytesUsed); // // We've done the copy. Reset the work bitmap bits for next time we // use this work bitmap - this helps with compression later on. // memset(pWorkSurf->pvBits, 0, pWorkSurf->cjBits); // // Fill in the required info in the Mem(3)Blt order. // if (type == ORD_MEMBLT_TYPE) { pMemBltOrder->cacheId = pTileData->tileId; } else { pMem3BltOrder->cacheId = pTileData->tileId; } // // We've filled in all the data in the shunt buffer entry, so mark it // as in use so that the share core can access it. // pTileData->inUse = TRUE; // // Must have completed successfully to get to here // TRACE_OUT(( "Queued tile (%d, %d), %d x %d, tile %d x %d, Id %hx", sourcePt.x, sourcePt.y, cxSubBitmapWidth, cySubBitmapHeight, g_asbcWorkInfo[tileSize].tileWidth, g_asbcWorkInfo[tileSize].tileHeight, pTileData->tileId)); rc = TRUE; DC_EXIT_POINT: // // Unlock the work surface (if required) // if (pWorkSurf != NULL) { EngUnlockSurface(pWorkSurf); TRACE_OUT(( "Unlocked surface")); } DebugExitDWORD(SBC_DDCacheMemScreenBlt, rc); return(rc); } // // SBC_DDQueryBitmapTileSize() // // Once 2.X COMPAT is gone, we don't need this anymore. We won't set our // random cell sizes based off of what REMOTES say. // BOOL SBC_DDQueryBitmapTileSize ( UINT bmpWidth, UINT bmpHeight, UINT * pTileWidth, UINT * pTileHeight ) { BOOL rc = FALSE; DebugEntry(SBC_DDQueryBitmapTileSize); // // The tile cell sizes are currently changed when back level nodes // join in a 3.0 call, in which case we must take the MINIMUM of the // cell sizes/entries for everybody in the share. // if (g_asbcCacheInfo[ID_LARGE_BMP_CACHE].cCellSize < BYTES_IN_BITMAP(g_asbcWorkInfo[SBC_MEDIUM_TILE_INDEX].tileWidth, g_asbcWorkInfo[SBC_MEDIUM_TILE_INDEX].tileHeight, g_sbcSendingBPP)) { // // This should be a short-term thing. When an old dude joins the // share, we'll also adjust g_sbcSendingBPP. // TRACE_OUT(("SBC_DDQueryBitmapTileSize: No space for any cells")); DC_QUIT; } rc = TRUE; // // If the large size is adequate, use that cell size // if (g_asbcCacheInfo[ID_LARGE_BMP_CACHE].cCellSize >= BYTES_IN_BITMAP(g_asbcWorkInfo[SBC_LARGE_TILE_INDEX].tileWidth, g_asbcWorkInfo[SBC_LARGE_TILE_INDEX].tileHeight, g_sbcSendingBPP)) { if ((bmpWidth > g_asbcWorkInfo[SBC_MEDIUM_TILE_INDEX].tileWidth) || (bmpHeight > g_asbcWorkInfo[SBC_MEDIUM_TILE_INDEX].tileHeight)) { *pTileWidth = g_asbcWorkInfo[SBC_LARGE_TILE_INDEX].tileWidth; *pTileHeight = g_asbcWorkInfo[SBC_LARGE_TILE_INDEX].tileHeight; DC_QUIT; } } // // Sigh, medium cells it is. // *pTileWidth = g_asbcWorkInfo[SBC_MEDIUM_TILE_INDEX].tileWidth; *pTileHeight = g_asbcWorkInfo[SBC_MEDIUM_TILE_INDEX].tileHeight; DC_EXIT_POINT: DebugExitBOOL(SBC_DDQueryBitmapTileSize, rc); return(rc); } // // // SBC_DDSyncUpdatesNow() - see sbc.h // // void SBC_DDSyncUpdatesNow(LPOSI_PDEV ppDev) { LPSBC_TILE_DATA pTileData; UINT i; UINT j; DebugEntry(SBC_DDSyncUpdatesNow); TRACE_OUT(( "Marking all shunt buffer entries as not in use")); // // We have to mark all entries in the shunt buffers as being free. // for (i = 0; i < SBC_NUM_TILE_SIZES ; i++) { if(g_asbcWorkInfo[i].pShuntBuffer) { for (j = 0; j < g_asbcWorkInfo[i].pShuntBuffer->numEntries ; j++) { pTileData = SBCTilePtrFromIndex(g_asbcWorkInfo[i].pShuntBuffer, j); pTileData->inUse = FALSE; } } // // Reset the MRU counter for this shunt buffer // g_asbcWorkInfo[i].mruIndex = 0; } // // If we are a palette device (i.e. we are running at 8 bpp or less), // set the paletteChanged flag so we will send up a color table before // our next Mem(3)Blt. We do this because the color table order for // the current device palette may have been discarded during the OA // sync. // ppDev->paletteChanged = (ppDev->cBitsPerPel <= 8); DebugExitVOID(SBC_DDSyncUpdatesNow); } // // // SBC_DDOrderSpoiltNotification() - see sbc.h // // void SBC_DDOrderSpoiltNotification(LPINT_ORDER pOrder) { LPMEMBLT_ORDER pMemBltOrder = (LPMEMBLT_ORDER)&(pOrder->abOrderData); LPMEM3BLT_ORDER pMem3BltOrder = (LPMEM3BLT_ORDER)pMemBltOrder; UINT tileId; LPSBC_TILE_DATA pTileData; UINT tileType; UINT i; DebugEntry(SBC_DDOrderSpoiltNotification); // // pOrder has been removed from the order heap before being processed. // We have to free up the entry which it references in one of the shunt // buffers. First get the tile Id. // if (pMemBltOrder->type == ORD_MEMBLT_TYPE) { tileId = pMemBltOrder->cacheId; } else { tileId = pMem3BltOrder->cacheId; } TRACE_OUT(( "Order referencing tile %hx has been spoiled", tileId)); // // Find out which of the shunt buffers the entry should be in based on // the tileId // tileType = SBC_TILE_TYPE(tileId); // // We implement the shunt buffers as circular FIFO queues, so we will // start looking from the last order which we marked as being in use, // and work BACKWARDS. This is because, in general, the entries after // the last one we accessed will not be in use (unless the whole shunt // buffer is in use). // // So, get the index of the last tile we accessed. // i = g_asbcWorkInfo[tileType].mruIndex; // // Loop through the circular buffer until we get a match, or have // circled back to the beginning. // // Note that this has been coded as a "do while" loop, rather than just // a "while" loop so that we don't miss mruIndex. mruIndex is set up // to point to the NEXT entry to be used, rather than the last entry to // be used, so decrementing i before doing any work first time round // the loop is actually what we want to do. // do { // // On to the next tile // i = (i == 0) ? g_asbcWorkInfo[tileType].pShuntBuffer->numEntries - 1 : i - 1; pTileData = SBCTilePtrFromIndex(g_asbcWorkInfo[tileType].pShuntBuffer, i); if (pTileData->inUse && (pTileData->tileId == tileId)) { // // We've got a match, so mark the tile as being free. // // We don't want to update the shunt buffer mruIndex - this // should remain indicating the next tile to be used when // adding an entry to the shunt buffer. // TRACE_OUT(( "Marked tile Id %hx at index %d as free", tileId, i)); pTileData->inUse = FALSE; break; } } while (i != g_asbcWorkInfo[tileType].mruIndex); DebugExitVOID(SBC_DDOrderSpoiltNotification); } // // // SBC_DDMaybeQueueColorTable() - see sbc.h // // BOOL SBC_DDMaybeQueueColorTable(LPOSI_PDEV ppDev) { BOOL queuedOK = FALSE; int orderSize; LPINT_ORDER pOrder; LPINT_COLORTABLE_ORDER_1BPP pColorTableOrder; UINT numColors; UINT i; DebugEntry(SBC_DDMaybeQueueColorTable); // // If we're running at > 8 bpp, then we don't have a palette, so just // quit out. // if (ppDev->cBitsPerPel > 8) { queuedOK = TRUE; DC_QUIT; } // // Check the boolean in our PDEV to see if the palette has changed // since the last time we sent a color table order. Note that if we // have a non palette device, the boolean will never be set. // if (!ppDev->paletteChanged) { queuedOK = TRUE; DC_QUIT; } // // The palette has changed, so allocate order memory to queue a color // table order. The order size depends on the bpp of our device. Note // that the allocation can fail if the order buffer is full. // switch (ppDev->cBitsPerPel) { case 1: { orderSize = sizeof(INT_COLORTABLE_ORDER_1BPP); } break; case 4: { orderSize = sizeof(INT_COLORTABLE_ORDER_4BPP); } break; case 8: { orderSize = sizeof(INT_COLORTABLE_ORDER_8BPP); } break; default: { ERROR_OUT(("Invalid bpp (%d) for palette device", ppDev->cBitsPerPel)); DC_QUIT; } break; } pOrder = OA_DDAllocOrderMem(orderSize, 0); if (pOrder == NULL) { TRACE_OUT(( "Failed to allocate %d bytes for order", orderSize)); DC_QUIT; } TRACE_OUT(( "Allocate %d bytes for color table order", orderSize)); // // We've successfully allocated the order, so fill in the details. We // mark the order as internal so that the Update Packager will spot it // up in the share core and prevent it being sent over the wire. // pOrder->OrderHeader.Common.fOrderFlags = OF_INTERNAL; pColorTableOrder = (LPINT_COLORTABLE_ORDER_1BPP)&(pOrder->abOrderData); pColorTableOrder->header.type = INTORD_COLORTABLE_TYPE; pColorTableOrder->header.bpp = (TSHR_UINT16)ppDev->cBitsPerPel; // // Unfortunately we can't just copy the palette from the PDEV into the // color table order because the PDEV has an array of PALETTEENTRY // structures which are RGBs whereas the order has an array of // TSHR_RGBQUADs which are BGRs... // numColors = COLORS_FOR_BPP(ppDev->cBitsPerPel); ASSERT(numColors); for (i = 0; i < numColors; i++) { pColorTableOrder->colorData[i].rgbRed = ppDev->pPal[i].peRed; pColorTableOrder->colorData[i].rgbGreen = ppDev->pPal[i].peGreen; pColorTableOrder->colorData[i].rgbBlue = ppDev->pPal[i].peBlue; } // // Add the order // OA_DDAddOrder(pOrder, NULL); TRACE_OUT(( "Added internal color table order, size %d", orderSize)); // // Reset the flag which indicates that the palette needs to be sent // ppDev->paletteChanged = FALSE; // // Must be OK to get to here // queuedOK = TRUE; DC_EXIT_POINT: DebugExitBOOL(SBC_DDMaybeQueueColorTable, queuedOK); return(queuedOK); } // // SBCDDCreateShuntBuffers() // // Here's where we calc how many cache entries (tiles) we can support. This // depends on: // * The amount of shared memory we have // * The color depth of the driver // // There is an upper bound on the amount of memory we'll use, since this // maps to how much memory on remotes will be needed to store our sent // cache entries. // // The tiles are created in a fixed proportion (MP_RATIO_MTOL). // // We return TRUE for success if we can set up the caches and create the // objects necessary for a sent bitmap cache. // BOOL SBCDDCreateShuntBuffers ( LPOSI_PDEV ppDev, LPBYTE psbcSharedMemory, DWORD sbcSharedMemorySize ) { int i; UINT memPerBuffer[SBC_NUM_TILE_SIZES]; UINT memPerTile[SBC_NUM_TILE_SIZES]; UINT numTiles[SBC_NUM_TILE_SIZES]; UINT memRequired; LPBYTE pBuffer = psbcSharedMemory; BOOL rc = FALSE; DebugEntry(SBCDDCreateShuntBuffers); // // We should already have a pointer to the shared memory we can use for // our shunt buffers, and the number of bytes available. What we have // to do is to partition this shared memory into SBC_NUM_TILE_SIZE // shunt buffers. i.e. one shunt buffer per tile size. // // // <--- buffer 0 ---><------------------ buffer 1 --------------------> // //ÚÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ //³ ³ : : : : ³ ³ : : : : ³ //³ ³ : : : : ³ ³ tile : tile : tile : tile : tile ³ //³ ³ : : : : ³ ³ : : : : ³ //ÀÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ //^ ^ ^ //³ ³ ³ //³ ÀÄÄÄ header[0] ÀÄÄÄ header[1] //³ //ÀÄÄ psbcSharedMemory // // // We try to use the number of entries given in the pEntries array, but // if we do not have enough shared memory for this, we reduce the // number of entries in each shunt buffer, preserving the ratio between // the number of entries in each of the shunt buffers. // // // First make sure that we have some shared memory // if (sbcSharedMemorySize == 0) { ERROR_OUT(( "No SBC shared memory !")); DC_QUIT; } // Max out at MP_MEMORY_MAX bytes sbcSharedMemorySize = min(sbcSharedMemorySize, MP_MEMORY_MAX); // // Do we have enough shared memory to satisfy the requested number of // entries in each shunt buffer ? // memRequired = 0; for (i = 0; i < SBC_NUM_TILE_SIZES; i++) { memPerTile[i] = SBC_BYTES_PER_TILE(g_asbcWorkInfo[i].tileWidth, g_asbcWorkInfo[i].tileHeight, ppDev->cBitsPerPel); // We use the same amount of memory for each tile size. numTiles[i] = ((sbcSharedMemorySize / SBC_NUM_TILE_SIZES) - (sizeof(SBC_SHUNT_BUFFER) - sizeof(SBC_TILE_DATA))) / memPerTile[i]; TRACE_OUT(("Can fit %d tiles of memory size %d in tile cache %d", numTiles[i], memPerTile[i], i)); memPerBuffer[i] = (numTiles[i] * memPerTile[i]) + (sizeof(SBC_SHUNT_BUFFER) - sizeof(SBC_TILE_DATA)); memRequired += memPerBuffer[i]; } TRACE_OUT(( "%d bytes required for request, %d bytes available", memRequired, sbcSharedMemorySize)); ASSERT(memRequired <= sbcSharedMemorySize); // Zero out rest of amount we're going to use RtlFillMemory(psbcSharedMemory, memRequired, 0); // // OK, we've got the // - the bytes per tile in memPerTile[i] // - number of entries per shunt buffer in numTiles[i] // - the total size of each shunt buffer in memPerBuffer[i]. // // Do the partitioning. // for (i = 0; i < SBC_NUM_TILE_SIZES ; i++) { g_asbcWorkInfo[i].pShuntBuffer = (LPSBC_SHUNT_BUFFER)pBuffer; g_asbcWorkInfo[i].pShuntBuffer->numEntries = numTiles[i]; g_asbcWorkInfo[i].pShuntBuffer->numBytes = memPerTile[i] - sizeof(SBC_TILE_DATA); g_asbcWorkInfo[i].pShuntBuffer->structureSize = memPerTile[i]; // // Move the buffer pointer past the memory we are using for this // shunt buffer. // pBuffer += memPerBuffer[i]; TRACE_OUT(( "Shunt buffer %d at %#.8lx: tile bytes %u, " "structure size %u, num entries %u", i, g_asbcWorkInfo[i].pShuntBuffer, g_asbcWorkInfo[i].pShuntBuffer->numBytes, g_asbcWorkInfo[i].pShuntBuffer->structureSize, g_asbcWorkInfo[i].pShuntBuffer->numEntries)); // // Fill in the mruIndex for this shunt buffer // g_asbcWorkInfo[i].mruIndex = 0; } // // Initialize the global variables associated with the shunt buffers // g_sbcNextTileId = 0; // // Must be OK to get to here // rc = TRUE; DC_EXIT_POINT: DebugExitBOOL(SBCDDCreateShuntBuffers, rc); return(rc); } // // Name: SBCGetNextFreeTile // // Purpose: Return the next free tile of the correct size from one of the // shunt buffers. // // Returns: TRUE if a tile is returned, FALSE otherwise // // Params: IN workTileSize - The tile size. One of // SBC_MEDIUM_TILE // SBC_LARGE_TILE // OUT ppTileData - A pointer to the tile. // // Operation: The tileId field of the tile is filled in on return from // this function. // // BOOL SBCDDGetNextFreeTile(int tileSize, LPSBC_TILE_DATA FAR * ppTileData) { BOOL foundFreeTile = FALSE; LPSBC_TILE_DATA pTileData; DebugEntry(SBCDDGetNextFreeTile); // // Make sure that we have a valid tile size // if (tileSize >= SBC_NUM_TILE_SIZES) { ERROR_OUT(( "Invalid tile size %d", tileSize)); DC_QUIT; } // // Get a pointer to the next entry to be used in the shunt buffer // containing tiles of the given size. // pTileData = SBCTilePtrFromIndex(g_asbcWorkInfo[tileSize].pShuntBuffer, g_asbcWorkInfo[tileSize].mruIndex); // // If the entry is still in use (the share core has not yet processed // the order which references this tile) we have to quit - the shunt // buffer is full. // if (pTileData->inUse) { TRACE_OUT(( "Target entry (%d, %d) is still in use", tileSize, g_asbcWorkInfo[tileSize].mruIndex)); DC_QUIT; } // // The entry is not in use - we can re-use it. Fill in the Id field, // and the pointer to the entry which we return to the caller. // // We always set the top bit of the tile Id for large tiles, and clear // it for small tiles. // *ppTileData = pTileData; pTileData->tileId = g_sbcNextTileId; if (tileSize == SBC_MEDIUM_TILE_INDEX) { pTileData->tileId &= ~0x8000; } else { pTileData->tileId |= 0x8000; } TRACE_OUT(( "Returning entry (%d, %d), Id %hx", tileSize, g_asbcWorkInfo[tileSize].mruIndex, pTileData->tileId)); // // Update the index of the next free entry in this shunt buffer, and // also the Id which we should assign next time. Remember to wrap the // shunt buffer index to the number of entries in the shunt buffer. // g_asbcWorkInfo[tileSize].mruIndex = (g_asbcWorkInfo[tileSize].mruIndex + 1) % g_asbcWorkInfo[tileSize].pShuntBuffer->numEntries; g_sbcNextTileId++; g_sbcNextTileId &= ~0x8000; // // Completed successfully ! // foundFreeTile = TRUE; DC_EXIT_POINT: DebugExitBOOL(SBCDDGetNextFreeTile, foundFreeTile); return(foundFreeTile); } // // // Name: SBCDDIsBitmapThrasher // // Purpose: Check to see if the given bitmap (surface object) is one // which would cause cache thrashing. // // Returns: TRUE if the bitmap is a thrasher, FALSE otherwise. // // Params: IN pSurfObj - Pointer to the bitmap // // BOOL SBCDDIsBitmapThrasher(SURFOBJ * pSurfObj) { UINT i; BOOL rc = FALSE; BOOL bitmapInList = FALSE; BOOL updateEntry = FALSE; UINT updateIndex; UINT nextTickCount; UINT evictIndex; UINT evictTickCount; DebugEntry(SBCDDIsBitmapThrasher); // // Here's an overview of how our bitmap cache thrash detection works... // // We hold an array of information about the last SBC_NUM_THRASHERS // bitmaps which we have tried to cache. This information is // - A value to identify the bitmap. This is the hsurf field from the // bitmap surface object, and is different for every bitmap. // - A value to identify the "version" of the bitmap. This is the // iUniq field from the bitmap surface object, and is updated by GDI // each time the bitmap is drawn to. // - A timestamp for the last time which we saw iUniq change for this // bitmap (or when we added the bitmap to the array). // // Each time this function is called, we scan this array looking for an // entry for the bitmap. // // If we find an entry, we check whether the bitmap has changed (has // the iUniq field changed). If it has not changed, the bitmap is not // a thrasher. If the bitmap has changed, we check the interval from // the timestamp value to the current time. If the interval is less // than the SBC_THRASH_INTERVAL, the bitmap has changed too quickly, so // it is a thrasher. If the interval is OK, the bitmap is not a // thrasher. In either case, we update the stored iUniq field and the // timestamp to record the time / version at which we spotted that the // bitmap changed. // // If we do not find an entry for the bitmap, we add an entry for it. // If the array is fully populated, we evict the entry with the oldest // timestamp, and replace it with the new entry. // // // Scan the thrasher list looking for a match // for (i=0 ; ihsurf) { bitmapInList = TRUE; if (g_sbcThrashers[i].iUniq != pSurfObj->iUniq) { TRACE_OUT(( "Matching surface %x, index %u," "tick count %u has been modified", pSurfObj->hsurf, i, g_sbcThrashers[i].tickCount)); updateEntry = TRUE; updateIndex = i; // // Now we need to determine if this is a thrasher. It is a // thrasher if the time we last read it is less than our // thrash interval. (We only update the time when we read // a modified bitmap) // nextTickCount = SBCDDGetTickCount(); if ((nextTickCount - g_sbcThrashers[i].tickCount) < SBC_THRASH_INTERVAL) { TRACE_OUT(( "Rejected cache attempt of thrashy bitmap %x", pSurfObj->hsurf)); rc = TRUE; } g_sbcThrashers[i].tickCount = nextTickCount; g_sbcThrashers[i].iUniq = pSurfObj->iUniq; } // // We've found a match - we can break out of the loop // break; } } if (!bitmapInList) { // // The bitmap isn't already in the thrasher list, so add it now. // Find the entry with the smallest (earliest) tick count - we will // evict this entry from the array to make room for the new entry. // evictIndex = 0; evictTickCount = 0xffffffff; for (i=0 ; i g_sbcThrashers[i].tickCount) { evictTickCount = g_sbcThrashers[i].tickCount; evictIndex = i; } } TRACE_OUT(( "Evicting entry %d, surface %x", evictIndex, g_sbcThrashers[i].hsurf)); nextTickCount = SBCDDGetTickCount(); TRACE_OUT(( "Adding surface %x to thrash list, tick %d", pSurfObj->hsurf, nextTickCount)); updateEntry = TRUE; updateIndex = evictIndex; } if (updateEntry) { // // We have to update the entry at index updateIndex. We optimise // things slightly by always putting the most recent bitmap in // position 0 of the array, so copy entry 0 to the eviction index, // and put the new entry in position 0. // g_sbcThrashers[updateIndex] = g_sbcThrashers[0]; g_sbcThrashers[0].hsurf = pSurfObj->hsurf; g_sbcThrashers[0].iUniq = pSurfObj->iUniq; g_sbcThrashers[0].tickCount = nextTickCount; } DebugExitBOOL(SBCDDIsBitmapThrasher, rc); return(rc); } // // // Name: SBCDDGetTickCount // // Purpose: Get a system tick count // // Returns: The number of centi-seconds since the system was started. // This number will wrap after approximately 497 days! // // Params: None // // DWORD SBCDDGetTickCount(void) { DWORD tickCount; LONGLONG perfTickCount; DebugEntry(SBCDDGetTickCount); // // Get the number of system ticks since the system was started. // EngQueryPerformanceCounter(&perfTickCount); // // Now convert this into a number of centi-seconds. g_sbcPerfFrequency // contains the number of system ticks per second. // tickCount = (DWORD)((100 * perfTickCount) / g_sbcPerfFrequency); DebugExitDWORD(SBCDDGetTickCount, tickCount); return(tickCount); } // // FUNCTION: SBCDDSetNewCapabilities // // DESCRIPTION: // // Set the new SBC related capabilities // // RETURNS: // // NONE // // PARAMETERS: // // pDataIn - pointer to the input buffer // // void SBCDDSetNewCapabilities(LPSBC_NEW_CAPABILITIES pCapabilities) { DebugEntry(SBCSetNewCapabilities); g_sbcSendingBPP = pCapabilities->sendingBpp; memcpy(&g_asbcCacheInfo, pCapabilities->cacheInfo, sizeof(g_asbcCacheInfo)); DebugExitVOID(SBCSetNewCapabilities); }