//------------------------------------------------------------------------------ // File: WXDebug.cpp // // Desc: DirectShow base classes - implements ActiveX system debugging // facilities. // // Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved. //------------------------------------------------------------------------------ #define _WINDLL #include #include #include #ifdef DEBUG #ifdef UNICODE #ifndef _UNICODE #define _UNICODE #endif // _UNICODE #endif // UNICODE #endif // DEBUG #include #ifdef DEBUG // The Win32 wsprintf() function writes a maximum of 1024 characters to it's output buffer. // See the documentation for wsprintf()'s lpOut parameter for more information. const INT iDEBUGINFO = 1024; // Used to format strings /* For every module and executable we store a debugging level for each of the five categories (eg LOG_ERROR and LOG_TIMING). This makes it easy to isolate and debug individual modules without seeing everybody elses spurious debug output. The keys are stored in the registry under the HKEY_LOCAL_MACHINE\SOFTWARE\Debug\\ key values NOTE these must be in the same order as their enumeration definition */ TCHAR *pKeyNames[] = { TEXT("TIMING"), // Timing and performance measurements TEXT("TRACE"), // General step point call tracing TEXT("MEMORY"), // Memory and object allocation/destruction TEXT("LOCKING"), // Locking/unlocking of critical sections TEXT("ERROR"), // Debug error notification TEXT("CUSTOM1"), TEXT("CUSTOM2"), TEXT("CUSTOM3"), TEXT("CUSTOM4"), TEXT("CUSTOM5") }; const TCHAR CAutoTrace::_szEntering[] = TEXT("Entering: %s"); const TCHAR CAutoTrace::_szLeaving[] = TEXT("Leaving: %s"); const INT iMAXLEVELS = NUMELMS(pKeyNames); // Maximum debug categories HINSTANCE m_hInst; // Module instance handle TCHAR m_ModuleName[iDEBUGINFO]; // Cut down module name DWORD m_Levels[iMAXLEVELS]; // Debug level per category CRITICAL_SECTION m_CSDebug; // Controls access to list DWORD m_dwNextCookie; // Next active object ID ObjectDesc *pListHead = NULL; // First active object DWORD m_dwObjectCount; // Active object count BOOL m_bInit = FALSE; // Have we been initialised HANDLE m_hOutput = INVALID_HANDLE_VALUE; // Optional output written here DWORD dwWaitTimeout = INFINITE; // Default timeout value DWORD dwTimeOffset; // Time of first DbgLog call bool g_fUseKASSERT = false; // don't create messagebox bool g_fDbgInDllEntryPoint = false; bool g_fAutoRefreshLevels = false; const TCHAR *pBaseKey = TEXT("SOFTWARE\\Debug"); const TCHAR *pGlobalKey = TEXT("GLOBAL"); static CHAR *pUnknownName = "UNKNOWN"; TCHAR *TimeoutName = TEXT("TIMEOUT"); /* This sets the instance handle that the debug library uses to find the module's file name from the Win32 GetModuleFileName function */ void WINAPI DbgInitialise(HINSTANCE hInst) { InitializeCriticalSection(&m_CSDebug); m_bInit = TRUE; m_hInst = hInst; DbgInitModuleName(); if (GetProfileInt(m_ModuleName, TEXT("BreakOnLoad"), 0)) DebugBreak(); DbgInitModuleSettings(false); DbgInitGlobalSettings(true); dwTimeOffset = timeGetTime(); } /* This is called to clear up any resources the debug library uses - at the moment we delete our critical section and the object list. The values we retrieve from the registry are all done during initialisation but we don't go looking for update notifications while we are running, if the values are changed then the application has to be restarted to pick them up */ void WINAPI DbgTerminate() { if (m_hOutput != INVALID_HANDLE_VALUE) { EXECUTE_ASSERT(CloseHandle(m_hOutput)); m_hOutput = INVALID_HANDLE_VALUE; } DeleteCriticalSection(&m_CSDebug); m_bInit = FALSE; } /* This is called by DbgInitLogLevels to read the debug settings for each logging category for this module from the registry */ void WINAPI DbgInitKeyLevels(HKEY hKey, bool fTakeMax) { LONG lReturn; // Create key return value LONG lKeyPos; // Current key category DWORD dwKeySize; // Size of the key value DWORD dwKeyType; // Receives it's type DWORD dwKeyValue; // This fields value /* Try and read a value for each key position in turn */ for (lKeyPos = 0;lKeyPos < iMAXLEVELS;lKeyPos++) { dwKeySize = sizeof(DWORD); lReturn = RegQueryValueEx( hKey, // Handle to an open key pKeyNames[lKeyPos], // Subkey name derivation NULL, // Reserved field &dwKeyType, // Returns the field type (LPBYTE) &dwKeyValue, // Returns the field's value &dwKeySize ); // Number of bytes transferred /* If either the key was not available or it was not a DWORD value then we ensure only the high priority debug logging is output but we try and update the field to a zero filled DWORD value */ if (lReturn != ERROR_SUCCESS || dwKeyType != REG_DWORD) { dwKeyValue = 0; lReturn = RegSetValueEx( hKey, // Handle of an open key pKeyNames[lKeyPos], // Address of subkey name (DWORD) 0, // Reserved field REG_DWORD, // Type of the key field (PBYTE) &dwKeyValue, // Value for the field sizeof(DWORD)); // Size of the field buffer if (lReturn != ERROR_SUCCESS) { DbgLog((LOG_ERROR,0,TEXT("Could not create subkey %s"),pKeyNames[lKeyPos])); dwKeyValue = 0; } } if(fTakeMax) { m_Levels[lKeyPos] = max(dwKeyValue,m_Levels[lKeyPos]); } else { if((m_Levels[lKeyPos] & LOG_FORCIBLY_SET) == 0) { m_Levels[lKeyPos] = dwKeyValue; } } } /* Read the timeout value for catching hangs */ dwKeySize = sizeof(DWORD); lReturn = RegQueryValueEx( hKey, // Handle to an open key TimeoutName, // Subkey name derivation NULL, // Reserved field &dwKeyType, // Returns the field type (LPBYTE) &dwWaitTimeout, // Returns the field's value &dwKeySize ); // Number of bytes transferred /* If either the key was not available or it was not a DWORD value then we ensure only the high priority debug logging is output but we try and update the field to a zero filled DWORD value */ if (lReturn != ERROR_SUCCESS || dwKeyType != REG_DWORD) { dwWaitTimeout = INFINITE; lReturn = RegSetValueEx( hKey, // Handle of an open key TimeoutName, // Address of subkey name (DWORD) 0, // Reserved field REG_DWORD, // Type of the key field (PBYTE) &dwWaitTimeout, // Value for the field sizeof(DWORD)); // Size of the field buffer if (lReturn != ERROR_SUCCESS) { DbgLog((LOG_ERROR,0,TEXT("Could not create subkey %s"),pKeyNames[lKeyPos])); dwWaitTimeout = INFINITE; } } } void WINAPI DbgOutString(LPCTSTR psz) { if (m_hOutput != INVALID_HANDLE_VALUE) { UINT cb = lstrlen(psz); DWORD dw; #ifdef UNICODE CHAR szDest[2048]; WideCharToMultiByte(CP_ACP, 0, psz, -1, szDest, NUMELMS(szDest), 0, 0); WriteFile (m_hOutput, szDest, cb, &dw, NULL); #else WriteFile (m_hOutput, psz, cb, &dw, NULL); #endif } else { OutputDebugString (psz); } } /* Called by DbgInitGlobalSettings to setup alternate logging destinations */ void WINAPI DbgInitLogTo ( HKEY hKey) { LONG lReturn; DWORD dwKeyType; DWORD dwKeySize; TCHAR szFile[MAX_PATH] = {0}; static const TCHAR cszKey[] = TEXT("LogToFile"); dwKeySize = MAX_PATH; lReturn = RegQueryValueEx( hKey, // Handle to an open key cszKey, // Subkey name derivation NULL, // Reserved field &dwKeyType, // Returns the field type (LPBYTE) szFile, // Returns the field's value &dwKeySize); // Number of bytes transferred // create an empty key if it does not already exist // if (lReturn != ERROR_SUCCESS || dwKeyType != REG_SZ) { dwKeySize = sizeof(TCHAR); lReturn = RegSetValueEx( hKey, // Handle of an open key cszKey, // Address of subkey name (DWORD) 0, // Reserved field REG_SZ, // Type of the key field (PBYTE)szFile, // Value for the field dwKeySize); // Size of the field buffer } // if an output-to was specified. try to open it. // if (m_hOutput != INVALID_HANDLE_VALUE) { EXECUTE_ASSERT(CloseHandle (m_hOutput)); m_hOutput = INVALID_HANDLE_VALUE; } if (szFile[0] != 0) { if (!lstrcmpi(szFile, TEXT("Console"))) { m_hOutput = GetStdHandle (STD_OUTPUT_HANDLE); if (m_hOutput == INVALID_HANDLE_VALUE) { AllocConsole (); m_hOutput = GetStdHandle (STD_OUTPUT_HANDLE); } SetConsoleTitle (TEXT("ActiveX Debug Output")); } else if (szFile[0] && lstrcmpi(szFile, TEXT("Debug")) && lstrcmpi(szFile, TEXT("Debugger")) && lstrcmpi(szFile, TEXT("Deb"))) { m_hOutput = CreateFile(szFile, GENERIC_WRITE, FILE_SHARE_READ, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL); if (INVALID_HANDLE_VALUE != m_hOutput) { static const TCHAR cszBar[] = TEXT("\r\n\r\n=====DbgInitialize()=====\r\n\r\n"); SetFilePointer (m_hOutput, 0, NULL, FILE_END); DbgOutString (cszBar); } } } } /* This is called by DbgInitLogLevels to read the global debug settings for each logging category for this module from the registry. Normally each module has it's own values set for it's different debug categories but setting the global SOFTWARE\Debug\Global applies them to ALL modules */ void WINAPI DbgInitGlobalSettings(bool fTakeMax) { LONG lReturn; // Create key return value TCHAR szInfo[iDEBUGINFO]; // Constructs key names HKEY hGlobalKey; // Global override key /* Construct the global base key name */ wsprintf(szInfo,TEXT("%s\\%s"),pBaseKey,pGlobalKey); /* Create or open the key for this module */ lReturn = RegCreateKeyEx(HKEY_LOCAL_MACHINE, // Handle of an open key szInfo, // Address of subkey name (DWORD) 0, // Reserved value NULL, // Address of class name (DWORD) 0, // Special options flags KEY_ALL_ACCESS, // Desired security access NULL, // Key security descriptor &hGlobalKey, // Opened handle buffer NULL); // What really happened if (lReturn != ERROR_SUCCESS) { DbgLog((LOG_ERROR,0,TEXT("Could not access GLOBAL module key"))); return; } DbgInitKeyLevels(hGlobalKey, fTakeMax); RegCloseKey(hGlobalKey); } /* This sets the debugging log levels for the different categories. We start by opening (or creating if not already available) the SOFTWARE\Debug key that all these settings live under. We then look at the global values set under SOFTWARE\Debug\Global which apply on top of the individual module settings. We then load the individual module registry settings */ void WINAPI DbgInitModuleSettings(bool fTakeMax) { LONG lReturn; // Create key return value TCHAR szInfo[iDEBUGINFO]; // Constructs key names HKEY hModuleKey; // Module key handle /* Construct the base key name */ wsprintf(szInfo,TEXT("%s\\%s"),pBaseKey,m_ModuleName); /* Create or open the key for this module */ lReturn = RegCreateKeyEx(HKEY_LOCAL_MACHINE, // Handle of an open key szInfo, // Address of subkey name (DWORD) 0, // Reserved value NULL, // Address of class name (DWORD) 0, // Special options flags KEY_ALL_ACCESS, // Desired security access NULL, // Key security descriptor &hModuleKey, // Opened handle buffer NULL); // What really happened if (lReturn != ERROR_SUCCESS) { DbgLog((LOG_ERROR,0,TEXT("Could not access module key"))); return; } DbgInitLogTo(hModuleKey); DbgInitKeyLevels(hModuleKey, fTakeMax); RegCloseKey(hModuleKey); } /* Initialise the module file name */ void WINAPI DbgInitModuleName() { TCHAR FullName[iDEBUGINFO]; // Load the full path and module name TCHAR *pName; // Searches from the end for a backslash GetModuleFileName(m_hInst,FullName,iDEBUGINFO); pName = _tcsrchr(FullName,'\\'); if (pName == NULL) { pName = FullName; } else { pName++; } lstrcpy(m_ModuleName,pName); } struct MsgBoxMsg { HWND hwnd; TCHAR *szTitle; TCHAR *szMessage; DWORD dwFlags; INT iResult; }; // // create a thread to call MessageBox(). calling MessageBox() on // random threads at bad times can confuse the host (eg IE). // DWORD WINAPI MsgBoxThread( LPVOID lpParameter // thread data ) { MsgBoxMsg *pmsg = (MsgBoxMsg *)lpParameter; pmsg->iResult = MessageBox( pmsg->hwnd, pmsg->szTitle, pmsg->szMessage, pmsg->dwFlags); return 0; } INT MessageBoxOtherThread( HWND hwnd, TCHAR *szTitle, TCHAR *szMessage, DWORD dwFlags) { if(g_fDbgInDllEntryPoint) { // can't wait on another thread because we have the loader // lock held in the dll entry point. return MessageBox(hwnd, szTitle, szMessage, dwFlags); } else { MsgBoxMsg msg = {hwnd, szTitle, szMessage, dwFlags, 0}; DWORD dwid; HANDLE hThread = CreateThread( 0, // security 0, // stack size MsgBoxThread, (void *)&msg, // arg 0, // flags &dwid); if(hThread) { WaitForSingleObject(hThread, INFINITE); CloseHandle(hThread); return msg.iResult; } // break into debugger on failure. return IDCANCEL; } } /* Displays a message box if the condition evaluated to FALSE */ void WINAPI DbgAssert(const TCHAR *pCondition,const TCHAR *pFileName,INT iLine) { if(g_fUseKASSERT) { DbgKernelAssert(pCondition, pFileName, iLine); } else { TCHAR szInfo[iDEBUGINFO]; wsprintf(szInfo, TEXT("%s \nAt line %d of %s\nContinue? (Cancel to debug)"), pCondition, iLine, pFileName); INT MsgId = MessageBoxOtherThread(NULL,szInfo,TEXT("ASSERT Failed"), MB_SYSTEMMODAL | MB_ICONHAND | MB_YESNOCANCEL | MB_SETFOREGROUND); switch (MsgId) { case IDNO: /* Kill the application */ FatalAppExit(FALSE, TEXT("Application terminated")); break; case IDCANCEL: /* Break into the debugger */ DebugBreak(); break; case IDYES: /* Ignore assertion continue execution */ break; } } } /* Displays a message box at a break point */ void WINAPI DbgBreakPoint(const TCHAR *pCondition,const TCHAR *pFileName,INT iLine) { if(g_fUseKASSERT) { DbgKernelAssert(pCondition, pFileName, iLine); } else { TCHAR szInfo[iDEBUGINFO]; wsprintf(szInfo, TEXT("%s \nAt line %d of %s\nContinue? (Cancel to debug)"), pCondition, iLine, pFileName); INT MsgId = MessageBoxOtherThread(NULL,szInfo,TEXT("Hard coded break point"), MB_SYSTEMMODAL | MB_ICONHAND | MB_YESNOCANCEL | MB_SETFOREGROUND); switch (MsgId) { case IDNO: /* Kill the application */ FatalAppExit(FALSE, TEXT("Application terminated")); break; case IDCANCEL: /* Break into the debugger */ DebugBreak(); break; case IDYES: /* Ignore break point continue execution */ break; } } } void WINAPI DbgBreakPoint(const TCHAR *pFileName,INT iLine,const TCHAR* szFormatString,...) { // A debug break point message can have at most 2000 characters if // ANSI or UNICODE characters are being used. A debug break point message // can have between 1000 and 2000 double byte characters in it. If a // particular message needs more characters, then the value of this constant // should be increased. const DWORD MAX_BREAK_POINT_MESSAGE_SIZE = 2000; TCHAR szBreakPointMessage[MAX_BREAK_POINT_MESSAGE_SIZE]; const DWORD MAX_CHARS_IN_BREAK_POINT_MESSAGE = sizeof(szBreakPointMessage) / sizeof(TCHAR); va_list va; va_start( va, szFormatString ); int nReturnValue = _vsntprintf( szBreakPointMessage, MAX_CHARS_IN_BREAK_POINT_MESSAGE, szFormatString, va ); va_end(va); // _vsnprintf() returns -1 if an error occurs. if( -1 == nReturnValue ) { DbgBreak( "ERROR in DbgBreakPoint(). The variable length debug message could not be displayed because _vsnprintf() failed." ); return; } ::DbgBreakPoint( szBreakPointMessage, pFileName, iLine ); } /* When we initialised the library we stored in the m_Levels array the current debug output level for this module for each of the five categories. When some debug logging is sent to us it can be sent with a combination of the categories (if it is applicable to many for example) in which case we map the type's categories into their current debug levels and see if any of them can be accepted. The function looks at each bit position in turn from the input type field and then compares it's debug level with the modules. A level of 0 means that output is always sent to the debugger. This is due to producing output if the input level is <= m_Levels. */ BOOL WINAPI DbgCheckModuleLevel(DWORD Type,DWORD Level) { if(g_fAutoRefreshLevels) { // re-read the registry every second. We cannot use RegNotify() to // notice registry changes because it's not available on win9x. static g_dwLastRefresh = 0; DWORD dwTime = timeGetTime(); if(dwTime - g_dwLastRefresh > 1000) { g_dwLastRefresh = dwTime; // there's a race condition: multiple threads could update the // values. plus read and write not synchronized. no harm // though. DbgInitModuleSettings(false); } } DWORD Mask = 0x01; // If no valid bits are set return FALSE if ((Type & ((1<m_szName = szObjectName; pObject->m_wszName = wszObjectName; pObject->m_dwCookie = ++m_dwNextCookie; pObject->m_pNext = pListHead; pListHead = pObject; m_dwObjectCount++; DWORD ObjectCookie = pObject->m_dwCookie; ASSERT(ObjectCookie); if(wszObjectName) { DbgLog((LOG_MEMORY,2,TEXT("Object created %d (%ls) %d Active"), pObject->m_dwCookie, wszObjectName, m_dwObjectCount)); } else { DbgLog((LOG_MEMORY,2,TEXT("Object created %d (%hs) %d Active"), pObject->m_dwCookie, szObjectName, m_dwObjectCount)); } LeaveCriticalSection(&m_CSDebug); return ObjectCookie; } /* This is called by the CBaseObject destructor when an object is about to be destroyed, we are passed the cookie we returned during construction that identifies this object. We scan the object list for a matching cookie and remove the object if successful. We also update the active object count */ BOOL WINAPI DbgRegisterObjectDestruction(DWORD dwCookie) { /* Grab the list critical section */ EnterCriticalSection(&m_CSDebug); ObjectDesc *pObject = pListHead; ObjectDesc *pPrevious = NULL; /* Scan the object list looking for a cookie match */ while (pObject) { if (pObject->m_dwCookie == dwCookie) { break; } pPrevious = pObject; pObject = pObject->m_pNext; } if (pObject == NULL) { DbgBreak("Apparently destroying a bogus object"); LeaveCriticalSection(&m_CSDebug); return FALSE; } /* Is the object at the head of the list */ if (pPrevious == NULL) { pListHead = pObject->m_pNext; } else { pPrevious->m_pNext = pObject->m_pNext; } /* Delete the object and update the housekeeping information */ m_dwObjectCount--; if(pObject->m_wszName) { DbgLog((LOG_MEMORY,2,TEXT("Object destroyed %d (%ls) %d Active"), pObject->m_dwCookie, pObject->m_wszName, m_dwObjectCount)); } else { DbgLog((LOG_MEMORY,2,TEXT("Object destroyed %d (%hs) %d Active"), pObject->m_dwCookie, pObject->m_szName, m_dwObjectCount)); } delete pObject; LeaveCriticalSection(&m_CSDebug); return TRUE; } /* This runs through the active object list displaying their details */ void WINAPI DbgDumpObjectRegister() { TCHAR szInfo[iDEBUGINFO]; /* Grab the list critical section */ EnterCriticalSection(&m_CSDebug); ObjectDesc *pObject = pListHead; /* Scan the object list displaying the name and cookie */ DbgLog((LOG_MEMORY,2,TEXT(""))); DbgLog((LOG_MEMORY,2,TEXT(" ID Object Description"))); DbgLog((LOG_MEMORY,2,TEXT(""))); while (pObject) { if(pObject->m_wszName) { wsprintf(szInfo,TEXT("%5d (%8x) %30ls"),pObject->m_dwCookie, &pObject, pObject->m_wszName); } else { wsprintf(szInfo,TEXT("%5d (%8x) %30hs"),pObject->m_dwCookie, &pObject, pObject->m_szName); } DbgLog((LOG_MEMORY,2,szInfo)); pObject = pObject->m_pNext; } wsprintf(szInfo,TEXT("Total object count %5d"),m_dwObjectCount); DbgLog((LOG_MEMORY,2,TEXT(""))); DbgLog((LOG_MEMORY,1,szInfo)); LeaveCriticalSection(&m_CSDebug); } /* Debug infinite wait stuff */ DWORD WINAPI DbgWaitForSingleObject(HANDLE h) { DWORD dwWaitResult; do { dwWaitResult = WaitForSingleObject(h, dwWaitTimeout); ASSERT(dwWaitResult == WAIT_OBJECT_0); } while (dwWaitResult == WAIT_TIMEOUT); return dwWaitResult; } DWORD WINAPI DbgWaitForMultipleObjects(DWORD nCount, CONST HANDLE *lpHandles, BOOL bWaitAll) { DWORD dwWaitResult; do { dwWaitResult = WaitForMultipleObjects(nCount, lpHandles, bWaitAll, dwWaitTimeout); ASSERT((DWORD)(dwWaitResult - WAIT_OBJECT_0) < MAXIMUM_WAIT_OBJECTS); } while (dwWaitResult == WAIT_TIMEOUT); return dwWaitResult; } void WINAPI DbgSetWaitTimeout(DWORD dwTimeout) { dwWaitTimeout = dwTimeout; } #endif /* DEBUG */ #ifdef _OBJBASE_H_ /* Stuff for printing out our GUID names */ GUID_STRING_ENTRY g_GuidNames[] = { #define OUR_GUID_ENTRY(name, l, w1, w2, b1, b2, b3, b4, b5, b6, b7, b8) \ { #name, { l, w1, w2, { b1, b2, b3, b4, b5, b6, b7, b8 } } }, #include }; CGuidNameList GuidNames; int g_cGuidNames = sizeof(g_GuidNames) / sizeof(g_GuidNames[0]); char *CGuidNameList::operator [] (const GUID &guid) { for (int i = 0; i < g_cGuidNames; i++) { if (g_GuidNames[i].guid == guid) { return g_GuidNames[i].szName; } } if (guid == GUID_NULL) { return "GUID_NULL"; } // !!! add something to print FOURCC guids? // shouldn't this print the hex CLSID? return "Unknown GUID Name"; } #endif /* _OBJBASE_H_ */ /* CDisp class - display our data types */ // clashes with REFERENCE_TIME CDisp::CDisp(LONGLONG ll, int Format) { // note: this could be combined with CDisp(LONGLONG) by // introducing a default format of CDISP_REFTIME LARGE_INTEGER li; li.QuadPart = ll; switch (Format) { case CDISP_DEC: { TCHAR temp[20]; int pos=20; temp[--pos] = 0; int digit; // always output at least one digit do { // Get the rightmost digit - we only need the low word digit = li.LowPart % 10; li.QuadPart /= 10; temp[--pos] = (TCHAR) digit+L'0'; } while (li.QuadPart); wsprintf(m_String, TEXT("%s"), temp+pos); break; } case CDISP_HEX: default: wsprintf(m_String, TEXT("0x%X%8.8X"), li.HighPart, li.LowPart); } }; CDisp::CDisp(REFCLSID clsid) { WCHAR strClass[CHARS_IN_GUID+1]; StringFromGUID2(clsid, strClass, sizeof(strClass) / sizeof(strClass[0])); ASSERT(sizeof(m_String)/sizeof(m_String[0]) >= CHARS_IN_GUID+1); wsprintf(m_String, TEXT("%ls"), strClass); }; #ifdef __STREAMS__ /* Display stuff */ CDisp::CDisp(CRefTime llTime) { LPTSTR lpsz = m_String; LONGLONG llDiv; if (llTime < 0) { llTime = -llTime; lpsz += wsprintf(lpsz, TEXT("-")); } llDiv = (LONGLONG)24 * 3600 * 10000000; if (llTime >= llDiv) { lpsz += wsprintf(lpsz, TEXT("%d days "), (LONG)(llTime / llDiv)); llTime = llTime % llDiv; } llDiv = (LONGLONG)3600 * 10000000; if (llTime >= llDiv) { lpsz += wsprintf(lpsz, TEXT("%d hrs "), (LONG)(llTime / llDiv)); llTime = llTime % llDiv; } llDiv = (LONGLONG)60 * 10000000; if (llTime >= llDiv) { lpsz += wsprintf(lpsz, TEXT("%d mins "), (LONG)(llTime / llDiv)); llTime = llTime % llDiv; } wsprintf(lpsz, TEXT("%d.%3.3d sec"), (LONG)llTime / 10000000, (LONG)((llTime % 10000000) / 10000)); }; #endif // __STREAMS__ /* Display pin */ CDisp::CDisp(IPin *pPin) { PIN_INFO pi; TCHAR str[MAX_PIN_NAME]; CLSID clsid; if (pPin) { pPin->QueryPinInfo(&pi); pi.pFilter->GetClassID(&clsid); QueryPinInfoReleaseFilter(pi); #ifndef UNICODE WideCharToMultiByte(GetACP(), 0, pi.achName, lstrlenW(pi.achName) + 1, str, MAX_PIN_NAME, NULL, NULL); #else lstrcpy(str, pi.achName); #endif } else { lstrcpy(str, TEXT("NULL IPin")); } m_pString = (PTCHAR) new TCHAR[lstrlen(str)+64]; if (!m_pString) { return; } wsprintf(m_pString, TEXT("%hs(%s)"), GuidNames[clsid], str); } /* Display filter or pin */ CDisp::CDisp(IUnknown *pUnk) { IBaseFilter *pf; HRESULT hr = pUnk->QueryInterface(IID_IBaseFilter, (void **)&pf); if(SUCCEEDED(hr)) { FILTER_INFO fi; hr = pf->QueryFilterInfo(&fi); if(SUCCEEDED(hr)) { QueryFilterInfoReleaseGraph(fi); m_pString = new TCHAR[lstrlenW(fi.achName) + 1]; if(m_pString) { wsprintf(m_pString, TEXT("%ls"), fi.achName); } } pf->Release(); return; } IPin *pp; hr = pUnk->QueryInterface(IID_IPin, (void **)&pp); if(SUCCEEDED(hr)) { CDisp::CDisp(pp); pp->Release(); return; } } CDisp::~CDisp() { } CDispBasic::~CDispBasic() { if (m_pString != m_String) { delete [] m_pString; } } CDisp::CDisp(double d) { #ifdef DEBUG _stprintf(m_String, TEXT("%.16g"), d); #else wsprintf(m_String, TEXT("%d.%03d"), (int) d, (int) ((d - (int) d) * 1000)); #endif } /* If built for debug this will display the media type details. We convert the major and subtypes into strings and also ask the base classes for a string description of the subtype, so MEDIASUBTYPE_RGB565 becomes RGB 565 16 bit We also display the fields in the BITMAPINFOHEADER structure, this should succeed as we do not accept input types unless the format is big enough */ #ifdef DEBUG void WINAPI DisplayType(LPTSTR label, const AM_MEDIA_TYPE *pmtIn) { /* Dump the GUID types and a short description */ DbgLog((LOG_TRACE,5,TEXT(""))); DbgLog((LOG_TRACE,2,TEXT("%s M type %s S type %s"), label, GuidNames[pmtIn->majortype], GuidNames[pmtIn->subtype])); DbgLog((LOG_TRACE,5,TEXT("Subtype description %s"),GetSubtypeName(&pmtIn->subtype))); /* Dump the generic media types */ if (pmtIn->bTemporalCompression) { DbgLog((LOG_TRACE,5,TEXT("Temporally compressed"))); } else { DbgLog((LOG_TRACE,5,TEXT("Not temporally compressed"))); } if (pmtIn->bFixedSizeSamples) { DbgLog((LOG_TRACE,5,TEXT("Sample size %d"),pmtIn->lSampleSize)); } else { DbgLog((LOG_TRACE,5,TEXT("Variable size samples"))); } if (pmtIn->formattype == FORMAT_VideoInfo) { /* Dump the contents of the BITMAPINFOHEADER structure */ BITMAPINFOHEADER *pbmi = HEADER(pmtIn->pbFormat); VIDEOINFOHEADER *pVideoInfo = (VIDEOINFOHEADER *)pmtIn->pbFormat; DbgLog((LOG_TRACE,5,TEXT("Source rectangle (Left %d Top %d Right %d Bottom %d)"), pVideoInfo->rcSource.left, pVideoInfo->rcSource.top, pVideoInfo->rcSource.right, pVideoInfo->rcSource.bottom)); DbgLog((LOG_TRACE,5,TEXT("Target rectangle (Left %d Top %d Right %d Bottom %d)"), pVideoInfo->rcTarget.left, pVideoInfo->rcTarget.top, pVideoInfo->rcTarget.right, pVideoInfo->rcTarget.bottom)); DbgLog((LOG_TRACE,5,TEXT("Size of BITMAPINFO structure %d"),pbmi->biSize)); if (pbmi->biCompression < 256) { DbgLog((LOG_TRACE,2,TEXT("%dx%dx%d bit (%d)"), pbmi->biWidth, pbmi->biHeight, pbmi->biBitCount, pbmi->biCompression)); } else { DbgLog((LOG_TRACE,2,TEXT("%dx%dx%d bit '%4.4hs'"), pbmi->biWidth, pbmi->biHeight, pbmi->biBitCount, &pbmi->biCompression)); } DbgLog((LOG_TRACE,2,TEXT("Image size %d"),pbmi->biSizeImage)); DbgLog((LOG_TRACE,5,TEXT("Planes %d"),pbmi->biPlanes)); DbgLog((LOG_TRACE,5,TEXT("X Pels per metre %d"),pbmi->biXPelsPerMeter)); DbgLog((LOG_TRACE,5,TEXT("Y Pels per metre %d"),pbmi->biYPelsPerMeter)); DbgLog((LOG_TRACE,5,TEXT("Colours used %d"),pbmi->biClrUsed)); } else if (pmtIn->majortype == MEDIATYPE_Audio) { DbgLog((LOG_TRACE,2,TEXT(" Format type %hs"), GuidNames[pmtIn->formattype])); DbgLog((LOG_TRACE,2,TEXT(" Subtype %hs"), GuidNames[pmtIn->subtype])); if ((pmtIn->subtype != MEDIASUBTYPE_MPEG1Packet) && (pmtIn->cbFormat >= sizeof(PCMWAVEFORMAT))) { /* Dump the contents of the WAVEFORMATEX type-specific format structure */ WAVEFORMATEX *pwfx = (WAVEFORMATEX *) pmtIn->pbFormat; DbgLog((LOG_TRACE,2,TEXT("wFormatTag %u"), pwfx->wFormatTag)); DbgLog((LOG_TRACE,2,TEXT("nChannels %u"), pwfx->nChannels)); DbgLog((LOG_TRACE,2,TEXT("nSamplesPerSec %lu"), pwfx->nSamplesPerSec)); DbgLog((LOG_TRACE,2,TEXT("nAvgBytesPerSec %lu"), pwfx->nAvgBytesPerSec)); DbgLog((LOG_TRACE,2,TEXT("nBlockAlign %u"), pwfx->nBlockAlign)); DbgLog((LOG_TRACE,2,TEXT("wBitsPerSample %u"), pwfx->wBitsPerSample)); /* PCM uses a WAVEFORMAT and does not have the extra size field */ if (pmtIn->cbFormat >= sizeof(WAVEFORMATEX)) { DbgLog((LOG_TRACE,2,TEXT("cbSize %u"), pwfx->cbSize)); } } else { } } else { DbgLog((LOG_TRACE,2,TEXT(" Format type %hs"), GuidNames[pmtIn->formattype])); // !!!! should add code to dump wave format, others } } void WINAPI DumpGraph(IFilterGraph *pGraph, DWORD dwLevel) { if( !pGraph ) { return; } IEnumFilters *pFilters; DbgLog((LOG_TRACE,dwLevel,TEXT("DumpGraph [%x]"), pGraph)); if (FAILED(pGraph->EnumFilters(&pFilters))) { DbgLog((LOG_TRACE,dwLevel,TEXT("EnumFilters failed!"))); } IBaseFilter *pFilter; ULONG n; while (pFilters->Next(1, &pFilter, &n) == S_OK) { FILTER_INFO info; if (FAILED(pFilter->QueryFilterInfo(&info))) { DbgLog((LOG_TRACE,dwLevel,TEXT(" Filter [%x] -- failed QueryFilterInfo"), pFilter)); } else { QueryFilterInfoReleaseGraph(info); // !!! should QueryVendorInfo here! DbgLog((LOG_TRACE,dwLevel,TEXT(" Filter [%x] '%ls'"), pFilter, info.achName)); IEnumPins *pins; if (FAILED(pFilter->EnumPins(&pins))) { DbgLog((LOG_TRACE,dwLevel,TEXT("EnumPins failed!"))); } else { IPin *pPin; while (pins->Next(1, &pPin, &n) == S_OK) { PIN_INFO info; if (FAILED(pPin->QueryPinInfo(&info))) { DbgLog((LOG_TRACE,dwLevel,TEXT(" Pin [%x] -- failed QueryPinInfo"), pPin)); } else { QueryPinInfoReleaseFilter(info); IPin *pPinConnected = NULL; HRESULT hr = pPin->ConnectedTo(&pPinConnected); if (pPinConnected) { DbgLog((LOG_TRACE,dwLevel,TEXT(" Pin [%x] '%ls' [%sput]") TEXT(" Connected to pin [%x]"), pPin, info.achName, info.dir == PINDIR_INPUT ? TEXT("In") : TEXT("Out"), pPinConnected)); pPinConnected->Release(); // perhaps we should really dump the type both ways as a sanity // check? if (info.dir == PINDIR_OUTPUT) { AM_MEDIA_TYPE mt; hr = pPin->ConnectionMediaType(&mt); if (SUCCEEDED(hr)) { DisplayType(TEXT("Connection type"), &mt); FreeMediaType(mt); } } } else { DbgLog((LOG_TRACE,dwLevel, TEXT(" Pin [%x] '%ls' [%sput]"), pPin, info.achName, info.dir == PINDIR_INPUT ? TEXT("In") : TEXT("Out"))); } } pPin->Release(); } pins->Release(); } } pFilter->Release(); } pFilters->Release(); } #endif