// // Copyright (c) 1998-1999, Microsoft Corporation, all rights reserved // // md5.c // // IEEE1394 mini-port/call-manager driver // // Mini-port routines // // 08/08/2000 ADube created. // // Purpose: Create a unique MAC address from 1394 EUID // // Derived from derived from the RSA Data Security, // Inc. MD5 Message-Digest Algorithm // #include #pragma hdrstop #include "md5.h" // Constants for MD5Transform routine. #define S11 7 #define S12 12 #define S13 17 #define S14 22 #define S21 5 #define S22 9 #define S23 14 #define S24 20 #define S31 4 #define S32 11 #define S33 16 #define S34 23 #define S41 6 #define S42 10 #define S43 15 #define S44 21 static void MD5Transform PROTO_LIST ((UINT4 [4], unsigned char [64])); static void Encode PROTO_LIST ((unsigned char *, UINT4 *, unsigned int)); static void Decode PROTO_LIST ((UINT4 *, unsigned char *, unsigned int)); static void MD5_memcpy PROTO_LIST ((POINTER, POINTER, unsigned int)); static void MD5_memset PROTO_LIST ((POINTER, int, unsigned int)); static unsigned char PADDING[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; // F, G, H and I are basic MD5 functions. #define F(x, y, z) (((x) & (y)) | ((~x) & (z))) #define G(x, y, z) (((x) & (z)) | ((y) & (~z))) #define H(x, y, z) ((x) ^ (y) ^ (z)) #define I(x, y, z) ((y) ^ ((x) | (~z))) // ROTATE_LEFT rotates x left n bits. #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n)))) // FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4. // Rotation is separate from addition to prevent recomputation. #define FF(a, b, c, d, x, s, ac) { \ (a) += F ((b), (c), (d)) + (x) + (UINT4)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } #define GG(a, b, c, d, x, s, ac) { \ (a) += G ((b), (c), (d)) + (x) + (UINT4)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } #define HH(a, b, c, d, x, s, ac) { \ (a) += H ((b), (c), (d)) + (x) + (UINT4)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } #define II(a, b, c, d, x, s, ac) { \ (a) += I ((b), (c), (d)) + (x) + (UINT4)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } // MD5 initialization. Begins an MD5 operation, writing a new context. void MD5Init ( MD5_CTX *context// context ) { context->count[0] = context->count[1] = 0; // Load magic initialization constants. context->state[0] = 0x67452301; context->state[1] = 0xefcdab89; context->state[2] = 0x98badcfe; context->state[3] = 0x10325476; } // MD5 block update operation. Continues an MD5 message-digest // operation, processing another message block, and updating the // context. void MD5Update ( MD5_CTX *context, // context unsigned char *input, // input block unsigned int inputLen // length of input block ) { unsigned int i, index, partLen; // Compute number of bytes mod 64 index = (unsigned int)((context->count[0] >> 3) & 0x3F); // Update number of bits if ((context->count[0] += ((UINT4)inputLen << 3)) < ((UINT4)inputLen << 3)) { context->count[1]++; } context->count[1] += ((UINT4)inputLen >> 29); partLen = 64 - index; // Transform as many times as possible. if (inputLen >= partLen) { MD5_memcpy ((POINTER)&context->buffer[index], (POINTER)input, partLen); MD5Transform (context->state, context->buffer); for (i = partLen; i + 63 < inputLen; i += 64) { MD5Transform (context->state, &input[i]); } index = 0; } else { i = 0; } // Buffer remaining input MD5_memcpy ((POINTER)&context->buffer[index], (POINTER)&input[i], inputLen-i); } // MD5 finalization. Ends an MD5 message-digest operation, writing the // the message digest and zeroizing the context. void MD5Final ( unsigned char digest[16], // message digest MD5_CTX *context ) // context { unsigned char bits[8]; unsigned int index, padLen; // Save number of bits Encode (bits, context->count, 8); // Pad out to 56 mod 64. index = (unsigned int)((context->count[0] >> 3) & 0x3f); padLen = (index < 56) ? (56 - index) : (120 - index); MD5Update (context, PADDING, padLen); // Append length (before padding) MD5Update (context, bits, 8); // Store state in digest Encode (digest, context->state, 6); // Zeroize sensitive information. MD5_memset ((POINTER)context, 0, sizeof (*context)); } // MD5 basic transformation. Transforms state based on block. static void MD5Transform ( UINT4 state[4], unsigned char block[64] ) { UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16]; Decode (x, block, 64); // Round 1 FF (a, b, c, d, x[ 0], S11, 0xd76aa478); // 1 FF (d, a, b, c, x[ 1], S12, 0xe8c7b756); // 2 FF (c, d, a, b, x[ 2], S13, 0x242070db); // 3 FF (b, c, d, a, x[ 3], S14, 0xc1bdceee); // 4 FF (a, b, c, d, x[ 4], S11, 0xf57c0faf); // 5 FF (d, a, b, c, x[ 5], S12, 0x4787c62a); // 6 FF (c, d, a, b, x[ 6], S13, 0xa8304613); // 7 FF (b, c, d, a, x[ 7], S14, 0xfd469501); // 8 FF (a, b, c, d, x[ 8], S11, 0x698098d8); // 9 FF (d, a, b, c, x[ 9], S12, 0x8b44f7af); // 10 FF (c, d, a, b, x[10], S13, 0xffff5bb1); // 11 FF (b, c, d, a, x[11], S14, 0x895cd7be); // 12 FF (a, b, c, d, x[12], S11, 0x6b901122); // 13 FF (d, a, b, c, x[13], S12, 0xfd987193); // 14 FF (c, d, a, b, x[14], S13, 0xa679438e); // 15 FF (b, c, d, a, x[15], S14, 0x49b40821); // 16 // Round 2 GG (a, b, c, d, x[ 1], S21, 0xf61e2562); // 17 GG (d, a, b, c, x[ 6], S22, 0xc040b340); // 18 GG (c, d, a, b, x[11], S23, 0x265e5a51); // 19 GG (b, c, d, a, x[ 0], S24, 0xe9b6c7aa); // 20 GG (a, b, c, d, x[ 5], S21, 0xd62f105d); // 21 GG (d, a, b, c, x[10], S22, 0x2441453); // 22 GG (c, d, a, b, x[15], S23, 0xd8a1e681); // 23 GG (b, c, d, a, x[ 4], S24, 0xe7d3fbc8); // 24 GG (a, b, c, d, x[ 9], S21, 0x21e1cde6); // 25 GG (d, a, b, c, x[14], S22, 0xc33707d6); // 26 GG (c, d, a, b, x[ 3], S23, 0xf4d50d87); // 27 GG (b, c, d, a, x[ 8], S24, 0x455a14ed); // 28 GG (a, b, c, d, x[13], S21, 0xa9e3e905); // 29 GG (d, a, b, c, x[ 2], S22, 0xfcefa3f8); // 30 GG (c, d, a, b, x[ 7], S23, 0x676f02d9); // 31 GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); // 32 // Round 3 HH (a, b, c, d, x[ 5], S31, 0xfffa3942); // 33 HH (d, a, b, c, x[ 8], S32, 0x8771f681); // 34 HH (c, d, a, b, x[11], S33, 0x6d9d6122); // 35 HH (b, c, d, a, x[14], S34, 0xfde5380c); // 36 HH (a, b, c, d, x[ 1], S31, 0xa4beea44); // 37 HH (d, a, b, c, x[ 4], S32, 0x4bdecfa9); // 38 HH (c, d, a, b, x[ 7], S33, 0xf6bb4b60); // 39 HH (b, c, d, a, x[10], S34, 0xbebfbc70); // 40 HH (a, b, c, d, x[13], S31, 0x289b7ec6); // 41 HH (d, a, b, c, x[ 0], S32, 0xeaa127fa); // 42 HH (c, d, a, b, x[ 3], S33, 0xd4ef3085); // 43 HH (b, c, d, a, x[ 6], S34, 0x4881d05); // 44 HH (a, b, c, d, x[ 9], S31, 0xd9d4d039); // 45 HH (d, a, b, c, x[12], S32, 0xe6db99e5); // 46 HH (c, d, a, b, x[15], S33, 0x1fa27cf8); // 47 HH (b, c, d, a, x[ 2], S34, 0xc4ac5665); // 48 // Round 4 II (a, b, c, d, x[ 0], S41, 0xf4292244); // 49 II (d, a, b, c, x[ 7], S42, 0x432aff97); // 50 II (c, d, a, b, x[14], S43, 0xab9423a7); // 51 II (b, c, d, a, x[ 5], S44, 0xfc93a039); // 52 II (a, b, c, d, x[12], S41, 0x655b59c3); // 53 II (d, a, b, c, x[ 3], S42, 0x8f0ccc92); // 54 II (c, d, a, b, x[10], S43, 0xffeff47d); // 55 II (b, c, d, a, x[ 1], S44, 0x85845dd1); // 56 II (a, b, c, d, x[ 8], S41, 0x6fa87e4f); // 57 II (d, a, b, c, x[15], S42, 0xfe2ce6e0); // 58 II (c, d, a, b, x[ 6], S43, 0xa3014314); // 59 II (b, c, d, a, x[13], S44, 0x4e0811a1); // 60 II (a, b, c, d, x[ 4], S41, 0xf7537e82); // 61 II (d, a, b, c, x[11], S42, 0xbd3af235); // 62 II (c, d, a, b, x[ 2], S43, 0x2ad7d2bb); // 63 II (b, c, d, a, x[ 9], S44, 0xeb86d391); // 64 state[0] += a; state[1] += b; state[2] += c; state[3] += d; // Zeroize sensitive information. MD5_memset ((POINTER)x, 0, sizeof (x)); } // Encodes input (UINT4) into output (unsigned char). Assumes len is // a multiple of 4. static void Encode ( unsigned char *output, UINT4 *input, unsigned int len ) { unsigned int i, j; for (i = 0, j = 0; j < len; i++, j += 4) { output[j] = (unsigned char)(input[i] & 0xff); output[j+1] = (unsigned char)((input[i] >> 8) & 0xff); output[j+2] = (unsigned char)((input[i] >> 16) & 0xff); output[j+3] = (unsigned char)((input[i] >> 24) & 0xff); } } // Decodes input (unsigned char) into output (UINT4). Assumes len is // a multiple of 4. static void Decode ( UINT4 *output, unsigned char *input, unsigned int len ) { unsigned int i, j; for (i = 0, j = 0; j < len; i++, j += 4) { output[i] = ((UINT4)input[j]) | (((UINT4)input[j+1]) << 8) | (((UINT4)input[j+2]) << 16) | (((UINT4)input[j+3]) << 24); } } // Note: Replace "for loop" with standard memcpy if possible. static void MD5_memcpy ( POINTER output, POINTER input, unsigned int len ) { unsigned int i; for (i = 0; i < len; i++) { output[i] = input[i]; } } // Note: Replace "for loop" with standard memset if possible. static void MD5_memset ( POINTER output, int value, unsigned int len ) { unsigned int i; for (i = 0; i < len; i++) { ((char *)output)[i] = (char)value; } } #define ETH_IS_MULTICAST(Address) \ (BOOLEAN)(((PUCHAR)(Address))[0] & ((UCHAR)0x01)) VOID nicGetMacAddressFromEuid ( UINT64 *pEuid, MAC_ADDRESS *pMacAddr ) { MD_CTX context; unsigned char digest[6]; unsigned int len = 8; MD5Init (&context); MD5Update (&context, (unsigned char*)pEuid, len); MD5Final (digest, &context); NdisMoveMemory (pMacAddr, digest, 6); // Set the locally administered bit // and clear the multicast bit. // // randomize the returned Mac Address // by xor ing the address with a random // 0xf22f617c91e0 (a random number) // //pMacAddr->addr[0] ^= 0x00; pMacAddr->addr[0] |= 0x2; pMacAddr->addr[0] &= 0xf2; pMacAddr->addr[1] ^= 0x2f; pMacAddr->addr[2] ^= 0x61; pMacAddr->addr[3] ^= 0x7c; pMacAddr->addr[4] ^= 0x91; pMacAddr->addr[5] ^= 0x30; } // Digests a string and prints the result. VOID nicGetFakeMacAddress( UINT64 *pEuid, MAC_ADDRESS *pMacAddr ) { nicGetMacAddressFromEuid (pEuid, pMacAddr); }