.file "modf.s" // Copyright (c) 2000, Intel Corporation // All rights reserved. // // Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story, // and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation. // // WARRANTY DISCLAIMER // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code, and requests that all // problem reports or change requests be submitted to it directly at // http://developer.intel.com/opensource. // // History //============================================================== // 2/02/00: Initial version // 4/04/00: Improved speed, corrected result for NaN input // // API //============================================================== // double modf(double x, double *iptr) // break a floating point x number into fraction and an exponent // // input floating point f8, address in r33 // output floating point f8 (x fraction), and *iptr (x integral part) // // OVERVIEW //============================================================== // // NO FRACTIONAL PART: HUGE // If // for double-extended // If the true exponent is greater than 63 // 1003e ==> 1003e -ffff = 3f = 63(dec) // for double // If the true exponent is greater than 52 // 10033 -ffff = 34 = 52(dec) // for single // If the true exponent is greater than 23 // 10016 -ffff = 17 = 23(dec) // then // we are already an integer (p9 true) // NO INTEGER PART: SMALL // Is f8 exponent less than register bias (that is, is it // less than 1). If it is, get the right sign of // zero and store this in iptr. // CALCULATION: NOT HUGE, NOT SMALL // To get the integer part // Take the floating-point input and truncate // then convert this integer to fp Call it MODF_INTEGER_PART // Subtract MODF_INTEGER_PART from MODF_NORM_F8 to get fraction part // Then put fraction part in f8 // put integer part MODF_INTEGER_PART into *iptr // Registers used //============================================================== // predicate registers used: // p6 - p13 // 0xFFFF 0x10033 // -----------------------+-----------------+------------- // SMALL | NORMAL | HUGE // p11 --------------->|<----- p12 ----->| <-------------- p9 // p10 --------------------------------->| // p13 --------------------------------------------------->| // // floating-point registers used: MODF_NORM_F8 = f9 MODF_FRACTION_PART = f10 MODF_INTEGER_PART = f11 MODF_INT_INTEGER_PART = f12 // general registers used modf_signexp = r14 modf_GR_10033 = r15 modf_GR_FFFF = r16 modf_17_ones = r17 modf_exp = r18 // r33 = iptr .align 32 .global modf# .section .text .proc modf# .align 32 // Main path is p9, p11, p8 FALSE and p12 TRUE // Assume input is normalized and get signexp // Normalize input just in case // Form exponent bias modf: { .mfi (p0) getf.exp modf_signexp = f8 (p0) fnorm MODF_NORM_F8 = f8 (p0) addl modf_GR_FFFF = 0xffff, r0 } // Get integer part of input // Form exponent mask { .mfi nop.m 999 (p0) fcvt.fx.trunc.s1 MODF_INT_INTEGER_PART = f8 (p0) mov modf_17_ones = 0x1ffff ;; } // Is x unnorm? // qnan snan inf norm unorm 0 -+ // 0 0 0 0 1 0 11 = 0x0b UNORM // Form biased exponent where input only has an integer part { .mfi nop.m 999 (p0) fclass.m.unc p8,p0 = f8, 0x0b (p0) addl modf_GR_10033 = 0x10033, r0 ;; } // Mask to get exponent // Is x nan or inf? // qnan snan inf norm unorm 0 -+ // 1 1 1 0 0 0 11 = 0xe3 NAN_INF // Set p13 to indicate calculation path, else p6 if nan or inf { .mfi (p0) and modf_exp = modf_17_ones, modf_signexp (p0) fclass.m.unc p6,p13 = f8, 0xe3 nop.i 999 ;; } // If x unorm get signexp from normalized input // If x unorm get integer part from normalized input { .mfi (p8) getf.exp modf_signexp = MODF_NORM_F8 (p8) fcvt.fx.trunc MODF_INT_INTEGER_PART = MODF_NORM_F8 nop.i 999 ;; } // If x unorm mask to get exponent // Is x inf? p6 if inf, p7 if nan { .mfi (p8) and modf_exp = modf_17_ones, modf_signexp (p6) fclass.m.unc p6,p7 = f8, 0x23 nop.i 999 ;; } // p11 <== SMALL, no integer part, fraction is everyting // p9 <== HUGE, no fraction part, integer is everything // p12 <== NORMAL, fraction part and integer part { .mii (p13) cmp.lt.unc p11,p10 = modf_exp, modf_GR_FFFF nop.i 999 nop.i 999 ;; } // For SMALL set fraction to normalized input, integer part to signed 0 { .mfi (p10) cmp.gt.unc p9,p12 = modf_exp, modf_GR_10033 (p11) fmerge.s MODF_INTEGER_PART = f8,f0 nop.i 999 } { .mfi nop.m 999 (p11) fnorm.d f8 = MODF_NORM_F8 nop.i 999 ;; } // For HUGE set fraction to signed 0 { .mfi nop.m 999 (p9) fmerge.s f8 = f8,f0 nop.i 999 } // For NORMAL float the integer part { .mfi nop.m 999 (p12) fcvt.xf MODF_INTEGER_PART = MODF_INT_INTEGER_PART nop.i 999 ;; } // If x inf set integer part to INF, fraction to signed 0 { .mfi (p6) stfd [r33] = MODF_NORM_F8 (p6) fmerge.s f8 = f8,f0 nop.i 999 } // For HUGE set integer part to normalized input { .mfi nop.m 999 (p9) fnorm.d MODF_INTEGER_PART = MODF_NORM_F8 nop.i 999 ;; } // If x nan set integer and fraction parts to NaN (quietized) { .mfi (p7) stfd [r33] = MODF_NORM_F8 (p7) fmerge.s f8 = MODF_NORM_F8, MODF_NORM_F8 nop.i 999 ;; } // For NORMAL compute fraction part { .mfi nop.m 999 (p12) fms.d.s0 f8 = MODF_NORM_F8,f1, MODF_INTEGER_PART nop.i 999 } // For NORMAL test if fraction part is zero; if so append correct sign { .mfi nop.m 999 (p12) fcmp.eq.unc p12,p0 = MODF_NORM_F8, MODF_INTEGER_PART nop.i 999 ;; } // For NORMAL if fraction part is zero append sign of input { .mfb (p13) stfd [r33] = MODF_INTEGER_PART (p12) fmerge.s f8 = MODF_NORM_F8, f8 (p0) br.ret.sptk b0 ;; } .endp modf