/*** *tan.c - tangent * * Copyright (c) 1991-2001, Microsoft Corporation. All rights reserved. * *Purpose: * *Revision History: * 8-15-91 GDP written * 12-30-91 GDP support IEEE exceptions * 03-11-91 GDP use 66 significant bits for representing pi * support FP_TLOSS * 06-23-92 GDP tan(denormal) now raises underflow exception * 02-06-95 JWM Mac merge * 10-07-97 RDL Added IA64. * *******************************************************************************/ #include #include #if defined(_M_IA64) #pragma function(tan) #endif /* constants */ static double const TWO_OVER_PI = 0.63661977236758134308; static double const EPS = 1.05367121277235079465e-8; /* 2^(-53/2) */ static double const YMAX = 2.98156826864790199324e8; /* 2^(53/2)*PI/2 */ // // The sum of C1 and C2 is a representation of PI/2 with 66 bits in the // significand (same as x87). (PI/2 = 2 * 0.c90fdaa2 2168c234 c h) // static _dbl _C1 = {SET_DBL (0x3ff921fb, 0x54400000)}; static _dbl _C2 = {SET_DBL (0x3dd0b461, 0x1a600000)}; #define C1 (_C1.dbl) #define C2 (_C2.dbl) /* constants for the rational approximation */ /* p0 = 1.0 is not used (avoid mult by 1) */ static double const p1 = -0.13338350006421960681e+0; static double const p2 = 0.34248878235890589960e-2; static double const p3 = -0.17861707342254426711e-4; static double const q0 = 0.10000000000000000000e+1; static double const q1 = -0.46671683339755294240e+0; static double const q2 = 0.25663832289440112864e-1; static double const q3 = -0.31181531907010027307e-3; static double const q4 = 0.49819433993786512270e-6; #define Q(g) ((((q4 * (g) + q3) * (g) + q2) * (g) + q1) * (g) + q0) #define P(g,f) (((p3 * (g) + p2) * (g) + p1) * (g) * (f) + (f)) #define ISODD(i) ((i)&0x1) /*** *double tan(double x) - tangent * *Purpose: * Compute the tangent of a number. * The algorithm (reduction / rational approximation) is * taken from Cody & Waite. * *Entry: * *Exit: * *Exceptions: * P, I, U * if x is denormal: raise underflow *******************************************************************************/ double tan(double x) { uintptr_t savedcw; unsigned long n; double xn,xnum,xden; double f,g,result; /* save user fp control word */ savedcw = _maskfp(); if (IS_D_SPECIAL(x)){ switch(_sptype(x)) { case T_PINF: case T_NINF: return _except1(FP_I,OP_TAN,x,QNAN_TAN1,savedcw); case T_QNAN: return _handle_qnan1(OP_TAN, x, savedcw); default: //T_SNAN return _except1(FP_I,OP_TAN,x,_s2qnan(x),savedcw); } } if (x == 0.0) RETURN(savedcw, x); if (ABS(x) > YMAX) { // The argument is too large to produce a meaningful result, // so this is treated as an invalid operation. // We also set the (extra) FP_TLOSS flag for matherr // support return _except1(FP_TLOSS | FP_I,OP_TAN,x,QNAN_TAN2,savedcw); } xn = _frnd(x * TWO_OVER_PI); n = (unsigned long) fabs(xn); /* assume there is a guard digit for addition */ f = (x - xn * C1) - xn * C2; if (ABS(f) < EPS) { xnum = f; xden = 1; if (IS_D_DENORM(f)) { return _except1(FP_U | FP_P,OP_TAN,x,_add_exp(f, IEEE_ADJUST),savedcw); } } else { g = f*f; xnum = P(g,f); xden = Q(g); } if (ISODD(n)) { xnum = -xnum; result = xden/xnum; } else result = xnum/xden; RETURN_INEXACT1(OP_TAN,x,result,savedcw); }