// functional standard header
#ifndef _FUNCTIONAL_
#define _FUNCTIONAL_
#include <xstddef>

#ifdef  _MSC_VER
#pragma pack(push,8)
#endif  /* _MSC_VER */
_STD_BEGIN
		// TEMPLATE STRUCT unary_function
template<class _A, class _R>
	struct unary_function {
	typedef _A argument_type;
	typedef _R result_type;
	};
		// TEMPLATE STRUCT binary_function
template<class _A1, class _A2, class _R>
	struct binary_function {
	typedef _A1 first_argument_type;
	typedef _A2 second_argument_type;
	typedef _R result_type;
	};
		// TEMPLATE STRUCT plus
template<class _Ty>
	struct plus : binary_function<_Ty, _Ty, _Ty> {
	_Ty operator()(const _Ty& _X, const _Ty& _Y) const
		{return (_X + _Y); }
	};
		// TEMPLATE STRUCT minus
template<class _Ty>
	struct minus : binary_function<_Ty, _Ty, _Ty> {
	_Ty operator()(const _Ty& _X, const _Ty& _Y) const
		{return (_X - _Y); }
	};
		// TEMPLATE STRUCT multiplies
template<class _Ty>
	struct multiplies : binary_function<_Ty, _Ty, _Ty> {
	_Ty operator()(const _Ty& _X, const _Ty& _Y) const
		{return (_X * _Y); }
	};
		// TEMPLATE STRUCT divides
template<class _Ty>
	struct divides : binary_function<_Ty, _Ty, _Ty> {
	_Ty operator()(const _Ty& _X, const _Ty& _Y) const
		{return (_X / _Y); }
	};
		// TEMPLATE STRUCT modulus
template<class _Ty>
	struct modulus : binary_function<_Ty, _Ty, _Ty> {
	_Ty operator()(const _Ty& _X, const _Ty& _Y) const
		{return (_X % _Y); }
	};
		// TEMPLATE STRUCT negate
template<class _Ty>
	struct negate : unary_function<_Ty, _Ty> {
	_Ty operator()(const _Ty& _X) const
		{return (-_X); }
	};
		// TEMPLATE STRUCT equal_to
template<class _Ty>
	struct equal_to : binary_function<_Ty, _Ty, bool> {
	bool operator()(const _Ty& _X, const _Ty& _Y) const
		{return (_X == _Y); }
	};
		// TEMPLATE STRUCT not_equal_to
template<class _Ty>
	struct not_equal_to : binary_function<_Ty, _Ty, bool> {
	bool operator()(const _Ty& _X, const _Ty& _Y) const
		{return (_X != _Y); }
	};
		// TEMPLATE STRUCT greater
template<class _Ty>
	struct greater : binary_function<_Ty, _Ty, bool> {
	bool operator()(const _Ty& _X, const _Ty& _Y) const
		{return (_X > _Y); }
	};
		// TEMPLATE STRUCT less
template<class _Ty>
	struct less : binary_function<_Ty, _Ty, bool> {
	bool operator()(const _Ty& _X, const _Ty& _Y) const
		{return (_X < _Y); }
	};
		// TEMPLATE STRUCT greater_equal
template<class _Ty>
	struct greater_equal : binary_function<_Ty, _Ty, bool> {
	bool operator()(const _Ty& _X, const _Ty& _Y) const
		{return (_X >= _Y); }
	};
		// TEMPLATE STRUCT less_equal
template<class _Ty>
	struct less_equal : binary_function<_Ty, _Ty, bool> {
	bool operator()(const _Ty& _X, const _Ty& _Y) const
		{return (_X <= _Y); }
	};
		// TEMPLATE STRUCT logical_and
template<class _Ty>
	struct logical_and : binary_function<_Ty, _Ty, bool> {
	bool operator()(const _Ty& _X, const _Ty& _Y) const
		{return (_X && _Y); }
	};
		// TEMPLATE STRUCT logical_or
template<class _Ty>
	struct logical_or : binary_function<_Ty, _Ty, bool> {
	bool operator()(const _Ty& _X, const _Ty& _Y) const
		{return (_X || _Y); }
	};
		// TEMPLATE STRUCT logical_not
template<class _Ty>
	struct logical_not : unary_function<_Ty, bool> {
	bool operator()(const _Ty& _X) const
		{return (!_X); }
	};
		// TEMPLATE CLASS unary_negate
template<class _Ufn>
	class unary_negate
	: public unary_function<_Ufn::argument_type, bool> {
public:
	explicit unary_negate(const _Ufn& _X)
		: _Fn(_X) {}
	bool operator()(const _Ufn::argument_type& _X) const
		{return (!_Fn(_X)); }
protected:
	_Ufn _Fn;
	};
		// TEMPLATE FUNCTION not1
template<class _Ufn> inline
	unary_negate<_Ufn> not1(const _Ufn& _X)
		{return (unary_negate<_Ufn>(_X)); }
		// TEMPLATE CLASS binary_negate
template<class _Bfn>
	class binary_negate
	: public binary_function<_Bfn::first_argument_type,
		_Bfn::second_argument_type, bool> {
public:
	explicit binary_negate(const _Bfn& _X)
		: _Fn(_X) {}
	bool operator()(const _Bfn::first_argument_type& _X,
		const _Bfn::second_argument_type& _Y) const
		{return (!_Fn(_X, _Y)); }
protected:
	_Bfn _Fn;
	};
		// TEMPLATE FUNCTION not2
template<class _Bfn> inline
	binary_negate<_Bfn> not2(const _Bfn& _X)
		{return (binary_negate<_Bfn>(_X)); }
		// TEMPLATE CLASS binder1st
template<class _Bfn>
	class binder1st
	: public unary_function<_Bfn::second_argument_type,
		_Bfn::result_type> {
public:
	binder1st(const _Bfn& _X,
		const _Bfn::first_argument_type& _Y)
		: op(_X), value(_Y) {}
	result_type operator()(const argument_type& _X) const
		{return (op(value, _X)); }
protected:
	_Bfn op;
	_Bfn::first_argument_type value;
	};
		// TEMPLATE FUNCTION bind1st
template<class _Bfn, class _Ty> inline
	binder1st<_Bfn> bind1st(const _Bfn& _X, const _Ty& _Y)
		{return (binder1st<_Bfn>(_X,
			_Bfn::first_argument_type(_Y))); }
		// TEMPLATE CLASS binder2nd
template<class _Bfn>
	class binder2nd
	: public unary_function<_Bfn::first_argument_type,
		_Bfn::result_type> {
public:
	binder2nd(const _Bfn& _X,
		const _Bfn::second_argument_type& _Y)
		: op(_X), value(_Y) {}
	result_type operator()(const argument_type& _X) const
		{return (op(_X, value)); }
protected:
	_Bfn op;
	_Bfn::second_argument_type value;
	};
		// TEMPLATE FUNCTION bind2nd
template<class _Bfn, class _Ty> inline
	binder2nd<_Bfn> bind2nd(const _Bfn& _X, const _Ty& _Y)
		{return (binder2nd<_Bfn>(_X,
			_Bfn::second_argument_type(_Y))); }
		// TEMPLATE CLASS pointer_to_unary_function
template<class _A, class _R>
	class pointer_to_unary_function
		: public unary_function<_A, _R> {
public:
	explicit pointer_to_unary_function(_R (__cdecl *_X)(_A))
		: _Fn(_X) {}
	_R operator()(_A _X) const
		{return (_Fn(_X)); }
protected:
	_R (__cdecl *_Fn)(_A);
	};
		// TEMPLATE CLASS pointer_to_binary_function
template<class _A1, class _A2, class _R>
	class pointer_to_binary_function
		: public binary_function<_A1, _A2, _R> {
public:
	explicit pointer_to_binary_function(
		_R (__cdecl *_X)(_A1, _A2))
		: _Fn(_X) {}
	_R operator()(_A1 _X, _A2 _Y) const
		{return (_Fn(_X, _Y)); }
protected:
	_R (__cdecl *_Fn)(_A1, _A2);
	};
		// TEMPLATE FUNCTION ptr_fun
template<class _A, class _R> inline
	pointer_to_unary_function<_A, _R>
		ptr_fun(_R (__cdecl *_X)(_A))
		{return (pointer_to_unary_function<_A, _R>(_X)); }
template<class _A1, class _A2, class _R> inline
	pointer_to_binary_function<_A1, _A2, _R>
		ptr_fun(_R (__cdecl *_X)(_A1, _A2))
		{return (pointer_to_binary_function<_A1, _A2, _R>(_X)); }
		// TEMPLATE CLASS mem_fun_t
template<class _R, class _Ty>
	class mem_fun_t : public unary_function<_Ty *, _R> {
public:
	explicit mem_fun_t(_R (_Ty::*_Pm)())
		: _Ptr(_Pm) {}
	_R operator()(_Ty *_P) const
		{return ((_P->*_Ptr)()); }
private:
	_R (_Ty::*_Ptr)();
	};
		// TEMPLATE FUNCTION mem_fun
template<class _R, class _Ty> inline
	mem_fun_t<_R, _Ty> mem_fun(_R (_Ty::*_Pm)())
	{return (mem_fun_t<_R, _Ty>(_Pm)); }
		// TEMPLATE CLASS mem_fun1_t
template<class _R, class _Ty, class _A>
	class mem_fun1_t : public binary_function<_Ty *, _A, _R> {
public:
	explicit mem_fun1_t(_R (_Ty::*_Pm)(_A))
		: _Ptr(_Pm) {}
	_R operator()(_Ty *_P, _A _Arg) const
		{return ((_P->*_Ptr)(_Arg)); }
private:
	_R (_Ty::*_Ptr)(_A);
	};
		// TEMPLATE FUNCTION mem_fun1
template<class _R, class _Ty, class _A> inline
	mem_fun1_t<_R, _Ty, _A> mem_fun1(_R (_Ty::*_Pm)(_A))
	{return (mem_fun1_t<_R, _Ty, _A>(_Pm)); }
		// TEMPLATE CLASS mem_fun_ref_t
template<class _R, class _Ty>
	class mem_fun_ref_t : public unary_function<_Ty, _R> {
public:
	explicit mem_fun_ref_t(_R (_Ty::*_Pm)())
		: _Ptr(_Pm) {}
	_R operator()(_Ty& _X) const
		{return ((_X.*_Ptr)()); }
private:
	_R (_Ty::*_Ptr)();
	};
		// TEMPLATE FUNCTION mem_fun_ref
template<class _R, class _Ty> inline
	mem_fun_ref_t<_R, _Ty> mem_fun_ref(_R (_Ty::*_Pm)())
	{return (mem_fun_ref_t<_R, _Ty>(_Pm)); }
		// TEMPLATE CLASS mem_fun1_ref_t
template<class _R, class _Ty, class _A>
	class mem_fun1_ref_t : public binary_function<_Ty *, _A, _R> {
public:
	explicit mem_fun1_ref_t(_R (_Ty::*_Pm)(_A))
		: _Ptr(_Pm) {}
	_R operator()(_Ty& _X, _A _Arg) const
		{return ((_X.*_Ptr)(_Arg)); }
private:
	_R (_Ty::*_Ptr)(_A);
	};
		// TEMPLATE FUNCTION mem_fun1_ref
template<class _R, class _Ty, class _A> inline
	mem_fun1_ref_t<_R, _Ty, _A> mem_fun1_ref(_R (_Ty::*_Pm)(_A))
	{return (mem_fun1_ref_t<_R, _Ty, _A>(_Pm)); }
_STD_END
#ifdef  _MSC_VER
#pragma pack(pop)
#endif  /* _MSC_VER */

#endif /* _FUNCTIONAL_ */

/*
 * Copyright (c) 1995 by P.J. Plauger.  ALL RIGHTS RESERVED. 
 * Consult your license regarding permissions and restrictions.
 */

/*
 * This file is derived from software bearing the following
 * restrictions:
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this
 * software and its documentation for any purpose is hereby
 * granted without fee, provided that the above copyright notice
 * appear in all copies and that both that copyright notice and
 * this permission notice appear in supporting documentation.
 * Hewlett-Packard Company makes no representations about the
 * suitability of this software for any purpose. It is provided
 * "as is" without express or implied warranty.
 */