//+------------------------------------------------------------------------- // // Microsoft Windows // // Copyright (C) Microsoft Corporation, 1997 - 1998 // // File: domain.cpp // //-------------------------------------------------------------------------- // // domain.cpp // #include #include "domain.h" bool RANGELIM :: operator < ( const RANGELIM & rlim ) const { if ( first ^ rlim.first ) { // One has a bound and the other doesn't. // If we do not have an bound and other does, we are "less" return true; } // Both either have or don't have bounds. Therefore, // we're "less" iff both have bounds and ours is less // than the other's. return first && second < rlim.second; } bool RANGELIM :: operator > ( const RANGELIM & rlim ) const { if ( first ^ rlim.first ) { // One has a bound and the other doesn't. // If we have a bound and the other doesn't, it is "greater" return true; } // Both either have or don't have bounds. Therefore, // we're "greater" iff both have bounds and ours is greater // than the other's. return first && second > rlim.second; } bool RANGELIM :: operator == ( const RANGELIM & rlim ) const { return first == rlim.first && ( !first || (second == rlim.second) ); } // Order two RANGEDEFs according to their lower bounds. bool RANGEDEF :: operator < ( const RANGEDEF & rdef ) const { if ( self == rdef ) return false; // If the other doesn't have a lower bound, we're geq if ( ! rdef.BLbound() ) return false; // If we don't have an upper bound, we're gtr if ( ! BUbound() ) return false; // The other has a lower bound and we have an upper bound; // start by checking them. bool bResult = RUbound() <= rdef.RLbound(); if ( BLbound() ) { // Both have lower bounds; self must be < other bResult &= (RLbound() <= rdef.RLbound()); } if ( rdef.BUbound() ) { // Both have upper bounds; self must be < other bResult &= (RUbound() <= rdef.RUbound()); } return bResult; } bool RANGEDEF :: operator == ( const RANGEDEF & rdef ) const { return RlimLower() == rdef.RlimLower() && RlimUpper() == rdef.RlimUpper(); } bool RANGEDEF :: operator > ( const RANGEDEF & rdef ) const { return !(self < rdef); } bool RANGEDEF :: BValid () const { return RlimLower() < RlimUpper() || RlimLower() == RlimUpper(); } bool RANGEDEF :: BOverlap ( const RANGEDEF & rdef ) const { if ( self == rdef ) return true; bool bLess = self < rdef; if ( bLess ) return RlimUpper() > rdef.RlimLower(); return rdef.RlimUpper() > RlimLower(); } SZC RDOMAIN :: SzcState ( REAL rValue ) const { RANGELIM rlim(true,rValue); for ( const_iterator itdm = begin(); itdm != end(); itdm++ ) { const RANGEDEF & rdef = (*itdm); SZC szcState = rdef.ZsrName(); if ( rdef.RlimLower() == rlim ) return szcState; if ( rdef.RlimUpper() < rlim ) break; if ( rdef.RlimLower() < rlim ) return szcState; } return NULL; } // Return true if any of the RANGEDEFs overlap bool RDOMAIN :: BOverlap () const { for ( const_iterator itdm = begin(); itdm != end(); itdm++ ) { const_iterator itdmNext = itdm; itdmNext++; if ( itdmNext == end() ) continue; // Check sequence of the list assert( *itdm < *itdmNext ); // If ubounds collide, it's an overlap if ( *itdm > *itdmNext ) return true; } return false; } GOBJMBN * GOBJMBN_DOMAIN :: CloneNew ( MODEL & modelSelf, MODEL & modelNew, GOBJMBN * pgobjNew ) { GOBJMBN_DOMAIN * pgdom = NULL; if ( pgobjNew == NULL ) { pgdom = new GOBJMBN_DOMAIN; } else { DynCastThrow( pgobjNew, pgdom ); } ASSERT_THROW( GOBJMBN::CloneNew( modelSelf, modelNew, pgdom ), EC_INTERNAL_ERROR, "cloning failed to returned object pointer" ); pgdom->_domain = _domain; return pgdom; }