/******************************************************************************* * DXVector.h * *------------* * Description: * This is the header file for the vector and matrix classes. *------------------------------------------------------------------------------- * Created By: Mike Arnstein Date: 04/11/97 * Copyright (C) 1997 Microsoft Corporation * All Rights Reserved * *------------------------------------------------------------------------------- * Revisions: * *******************************************************************************/ #ifndef DXVector_h #define DXVector_h #ifndef _INC_MATH #include #endif #ifndef _INC_CRTDBG #include #endif //=== Constants ==================================================== //=== Class, Enum, Struct and Union Declarations =================== class CDXMatrix4x4F; //=== Enumerated Set Definitions =================================== //=== Function Type Definitions ==================================== float det4x4( CDXMatrix4x4F *pIn ); float det3x3( float a1, float a2, float a3, float b1, float b2, float b3, float c1, float c2, float c3 ); float det2x2( float a, float b, float c, float d ); //=== Class, Struct and Union Definitions ========================== /*** CDXVec ************ * This template implements basic vector operations for each of the * union types */ #define CDXV_C CDXVec #define CDXV_T ((TYPE*)u.D) #define CDXV_O( OtherVec ) ((TYPE*)OtherVec.u.D) template class CDXVec : public DXVEC { /*=== Methods =======*/ public: /*--- Constructors ---*/ CDXVec() { eType = eBndType; ZeroVector(); } CDXVec(BOOL bInit) { eType = eBndType; if (bInit) ZeroVector(); } CDXVec( TYPE x, TYPE y, TYPE z, TYPE t ) { eType = eBndType; CDXV_T[DXB_X] = x; CDXV_T[DXB_Y] = y; CDXV_T[DXB_Z] = z; CDXV_T[DXB_T] = t; } CDXVec( const CDXVec& Other ) { memcpy( this, (void *)&Other, sizeof(DXVEC) ); } CDXVec( const DXVEC Other ) { memcpy( this, &Other, sizeof(DXVEC) ); } operator TYPE *() { return CDXV_T; } operator const TYPE *() { return CDXV_T; } /*--- operations ---*/ void ZeroVector( void ) { memset( u.D, 0, sizeof(TYPE) * 4); } /*--- operators ---*/ TYPE& operator[]( int index ) const { return CDXV_T[index]; } TYPE& operator[]( long index ) const { return CDXV_T[index]; } TYPE& operator[]( USHORT index ) const { return CDXV_T[index]; } TYPE& operator[]( DWORD index ) const { return CDXV_T[index]; } CDXV_C operator+(const CDXV_C& v); CDXV_C operator-(const CDXV_C& v); void operator=(const CDXV_C& srcVector); void operator+=(const CDXV_C& vOther); void operator-=(const CDXV_C& vOther); BOOL operator==(const CDXV_C& otherVector) const; BOOL operator!=(const CDXV_C& otherVector) const; }; template CDXV_C CDXV_C::operator+( const CDXV_C& srcVector ) { CDXV_C Result( this ); CDXV_O( Result )[DXB_X] += CDXV_O( srcVector )[DXB_X]; CDXV_O( Result )[DXB_Y] += CDXV_O( srcVector )[DXB_Y]; CDXV_O( Result )[DXB_Z] += CDXV_O( srcVector )[DXB_Z]; CDXV_O( Result )[DXB_T] += CDXV_O( srcVector )[DXB_T]; return Result; } /* CDXVec::operator+ */ template CDXV_C CDXV_C::operator-( const CDXV_C& srcVector ) { CDXV_C Result( this ); CDXV_O( Result )[DXB_X] -= CDXV_O( srcVector )[DXB_X]; CDXV_O( Result )[DXB_Y] -= CDXV_O( srcVector )[DXB_Y]; CDXV_O( Result )[DXB_Z] -= CDXV_O( srcVector )[DXB_Z]; CDXV_O( Result )[DXB_T] -= CDXV_O( srcVector )[DXB_T]; return Result; } /* CDXVec::operator- */ template void CDXV_C::operator=( const CDXV_C& srcVector ) { memcpy( this, &srcVector, sizeof(CDXVec) ); } /* CDXVec::operator= */ template BOOL CDXV_C::operator==(const CDXV_C& otherVector) const { return !memcmp( this, &otherVector, sizeof(otherVector) ); } /* CDXVec::operator== */ template BOOL CDXV_C::operator!=(const CDXV_C& otherVector) const { return memcmp( this, &otherVector, sizeof(otherVector) ); } /* CDXVec::operator!= */ template void CDXV_C::operator+=(const CDXV_C& vOther) { CDXV_T[DXB_X] += CDXV_O( vOther )[DXB_X]; CDXV_T[DXB_Y] += CDXV_O( vOther )[DXB_Y]; CDXV_T[DXB_Z] += CDXV_O( vOther )[DXB_Z]; CDXV_T[DXB_T] += CDXV_O( vOther )[DXB_T]; } /* CDXVec::operator+= */ template void CDXV_C::operator-=(const CDXVec& vOther) { CDXV_T[DXB_X] -= CDXV_O( vOther )[DXB_X]; CDXV_T[DXB_Y] -= CDXV_O( vOther )[DXB_Y]; CDXV_T[DXB_Z] -= CDXV_O( vOther )[DXB_Z]; CDXV_T[DXB_T] -= CDXV_O( vOther )[DXB_T]; } /* CDXVec::operator-= */ typedef CDXVec CDXDVec; typedef CDXVec CDXDVec64; typedef CDXVec CDXCVec; typedef CDXVec CDXCVec64; /*** CDX2DXForm ************ * This class implements basic matrix operation based on the GDI XFORM * structure. */ //const DX2DXFORM g_DX2DXFORMIdentity = { 1., 0., 0., 1., 0., 0., DX2DXO_IDENTITY }; class CDX2DXForm : public DX2DXFORM { /*=== Methods =======*/ public: /*--- Constructors ---*/ CDX2DXForm() { SetIdentity(); } CDX2DXForm( const CDX2DXForm& Other ) { memcpy( this, &Other, sizeof(*this) ); } CDX2DXForm( const DX2DXFORM& Other ) { memcpy( this, &Other, sizeof(*this) ); } /*--- methods ---*/ void DetermineOp( void ); void Set( const DX2DXFORM& Other ) { memcpy( this, &Other, sizeof(*this) ); DetermineOp(); } void ZeroMatrix( void ) { memset( this, 0, sizeof( *this ) ); } void SetIdentity( void ) { eM11 = 1.; eM12 = 0.; eM21 = 0.; eM22 = 1.; eDx = 0.; eDy = 0.; eOp = DX2DXO_IDENTITY; } BOOL IsIdentity() const { return eOp == DX2DXO_IDENTITY; } void Scale( float sx, float sy ); void Rotate( float Rotation ); void Translate( float dx, float dy ); BOOL Invert(); void TransformBounds( const DXBNDS& Bnds, DXBNDS& ResultBnds ) const; void TransformPoints( const DXFPOINT InPnts[], DXFPOINT OutPnts[], ULONG ulCount ) const; void GetMinMaxScales( float& MinScale, float& MaxScale ); /*--- operators ---*/ DXFPOINT operator*( const DXFPOINT& v ) const; CDX2DXForm operator*( const CDX2DXForm& Other ) const; }; //=== CDX2DXForm methods ============================================================== inline void CDX2DXForm::DetermineOp( void ) { if( ( eM12 == 0. ) && ( eM21 == 0. ) ) { if( ( eM11 == 1. ) && ( eM22 == 1. ) ) { eOp = ( ( eDx == 0 ) && ( eDy == 0 ) )?(DX2DXO_IDENTITY):(DX2DXO_TRANSLATE); } else { eOp = ( ( eDx == 0 ) && ( eDy == 0 ) )?(DX2DXO_SCALE):(DX2DXO_SCALE_AND_TRANS); } } else { eOp = ( ( eDx == 0 ) && ( eDy == 0 ) )?(DX2DXO_GENERAL):(DX2DXO_GENERAL_AND_TRANS); } } /* CDX2DXForm::DetermineOp */ inline float DXSq( float f ) { return f * f; } // This function computes the Min and Max scale that a matrix represents. // In other words, what is the maximum/minimum length that a line of length 1 // could get stretched/shrunk to if the line was transformed by this matrix. // // The function uses eigenvalues; and returns two float numbers. Both are // non-negative; and MaxScale >= MinScale. // inline void CDX2DXForm::GetMinMaxScales( float& MinScale, float& MaxScale ) { if( ( eM12 == 0. ) && ( eM21 == 0. ) ) { // Let MinScale = abs(eM11) if (eM11 < 0) MinScale = -eM11; else MinScale = eM11; // Let MaxScale = abs(eM22) if (eM22 < 0) MaxScale = -eM22; else MaxScale = eM22; // Swap Min/Max if necessary if (MinScale > MaxScale) { float flTemp = MinScale; MinScale = MaxScale; MaxScale = flTemp; } } else { float t1 = DXSq(eM11) + DXSq(eM12) + DXSq(eM21) + DXSq(eM22); if( t1 == 0. ) { MinScale = MaxScale = 0; } else { float t2 = (float)sqrt( (DXSq(eM12 + eM21) + DXSq(eM11 - eM22)) * (DXSq(eM12 - eM21) + DXSq(eM11 + eM22)) ); // Due to floating point error; t1 may end up less than t2; // but that would mean that the min scale was small (relative // to max scale) if (t1 <= t2) MinScale = 0; else MinScale = (float)sqrt( (t1 - t2) * .5f ); MaxScale = (float)sqrt( (t1 + t2) * .5f ); } } } /* CDX2DXForm::GetMinMaxScales */ inline void CDX2DXForm::Rotate( float Rotation ) { double Angle = Rotation * (3.1415926535/180.0); float CosZ = (float)cos( Angle ); float SinZ = (float)sin( Angle ); if (CosZ > 0.0F && CosZ < 0.0000005F) { CosZ = .0F; } if (SinZ > -0.0000005F && SinZ < .0F) { SinZ = .0F; } float M11 = ( CosZ * eM11 ) + ( SinZ * eM21 ); float M21 = (-SinZ * eM11 ) + ( CosZ * eM21 ); float M12 = ( CosZ * eM12 ) + ( SinZ * eM22 ); float M22 = (-SinZ * eM12 ) + ( CosZ * eM22 ); eM11 = M11; eM21 = M21; eM12 = M12; eM22 = M22; DetermineOp(); } /* CDX2DXForm::Rotate */ inline void CDX2DXForm::Scale( float sx, float sy ) { eM11 *= sx; eM12 *= sx; eDx *= sx; eM21 *= sy; eM22 *= sy; eDy *= sy; DetermineOp(); } /* CDX2DXForm::Scale */ inline void CDX2DXForm::Translate( float dx, float dy ) { eDx += dx; eDy += dy; DetermineOp(); } /* CDX2DXForm::Translate */ inline void CDX2DXForm::TransformBounds( const DXBNDS& Bnds, DXBNDS& ResultBnds ) const { ResultBnds = Bnds; if( eOp != DX2DXO_IDENTITY ) { ResultBnds.u.D[DXB_X].Min = (long)(( eM11 * Bnds.u.D[DXB_X].Min ) + ( eM12 * Bnds.u.D[DXB_Y].Min ) + eDx); ResultBnds.u.D[DXB_X].Max = (long)(( eM11 * Bnds.u.D[DXB_X].Max ) + ( eM12 * Bnds.u.D[DXB_Y].Max ) + eDx); ResultBnds.u.D[DXB_Y].Min = (long)(( eM21 * Bnds.u.D[DXB_X].Min ) + ( eM22 * Bnds.u.D[DXB_Y].Min ) + eDy); ResultBnds.u.D[DXB_Y].Max = (long)(( eM21 * Bnds.u.D[DXB_X].Max ) + ( eM22 * Bnds.u.D[DXB_Y].Max ) + eDy); } } /* CDX2DXForm::TransformBounds */ inline void CDX2DXForm::TransformPoints( const DXFPOINT InPnts[], DXFPOINT OutPnts[], ULONG ulCount ) const { ULONG i; switch( eOp ) { case DX2DXO_IDENTITY: memcpy( OutPnts, InPnts, ulCount * sizeof( DXFPOINT ) ); break; case DX2DXO_TRANSLATE: for( i = 0; i < ulCount; ++i ) { OutPnts[i].x = InPnts[i].x + eDx; OutPnts[i].y = InPnts[i].y + eDy; } break; case DX2DXO_SCALE: for( i = 0; i < ulCount; ++i ) { OutPnts[i].x = InPnts[i].x * eM11; OutPnts[i].y = InPnts[i].y * eM22; } break; case DX2DXO_SCALE_AND_TRANS: for( i = 0; i < ulCount; ++i ) { OutPnts[i].x = (InPnts[i].x * eM11) + eDx; OutPnts[i].y = (InPnts[i].y * eM22) + eDy; } break; case DX2DXO_GENERAL: for( i = 0; i < ulCount; ++i ) { OutPnts[i].x = ( InPnts[i].x * eM11 ) + ( InPnts[i].y * eM12 ); OutPnts[i].y = ( InPnts[i].x * eM21 ) + ( InPnts[i].y * eM22 ); } break; case DX2DXO_GENERAL_AND_TRANS: for( i = 0; i < ulCount; ++i ) { OutPnts[i].x = ( InPnts[i].x * eM11 ) + ( InPnts[i].y * eM12 ) + eDx; OutPnts[i].y = ( InPnts[i].x * eM21 ) + ( InPnts[i].y * eM22 ) + eDy; } break; default: _ASSERT( 0 ); // invalid operation id } } /* CDX2DXForm::TransformPoints */ inline DXFPOINT CDX2DXForm::operator*( const DXFPOINT& v ) const { DXFPOINT NewPnt; NewPnt.x = ( v.x * eM11 ) + ( v.y * eM12 ) + eDx; NewPnt.y = ( v.x * eM21 ) + ( v.y * eM22 ) + eDy; return NewPnt; } /* CDX2DXForm::operator* */ inline CDX2DXForm CDX2DXForm::operator*( const CDX2DXForm& Other ) const { DX2DXFORM x; x.eM11 = ( eM11 * Other.eM11 ) + ( eM12 * Other.eM21 ); x.eM12 = ( eM11 * Other.eM12 ) + ( eM12 * Other.eM22 ); x.eDx = ( eM11 * Other.eDx ) + ( eM12 * Other.eDy ) + eDx; x.eM21 = ( eM21 * Other.eM11 ) + ( eM22 * Other.eM21 ); x.eM22 = ( eM21 * Other.eM12 ) + ( eM22 * Other.eM22 ); x.eDy = ( eM21 * Other.eDx ) + ( eM22 * Other.eDy ) + eDy; return x; } /* CDX2DXForm::operator*= */ inline BOOL CDX2DXForm::Invert() { switch( eOp ) { case DX2DXO_IDENTITY: break; case DX2DXO_TRANSLATE: eDx = -eDx; eDy = -eDy; break; case DX2DXO_SCALE: if (eM11 == 0.0 || eM22 == 0.0) return false; eM11 = 1.0f / eM11; eM22 = 1.0f / eM22; break; case DX2DXO_SCALE_AND_TRANS: { if (eM11 == 0.0f || eM22 == 0.0f) return false; // Our old equation was F = aG + b // The inverse is G = F/a - b/a where a is eM11 and b is eDx float flOneOverA = 1.0f / eM11; eDx = -eDx * flOneOverA; eM11 = flOneOverA; // Our old equation was F = aG + b // The inverse is G = F/a - b/a where a is eM22 and b is eDy flOneOverA = 1.0f / eM22; eDy = -eDy * flOneOverA; eM22 = flOneOverA; break; } case DX2DXO_GENERAL: case DX2DXO_GENERAL_AND_TRANS: { // The inverse of A= |a b| is | d -c|*(1/Det) where Det is the determinant of A // |c d| |-b a| // Det(A) = ad - bc // Compute determininant float flDet = (eM11 * eM22 - eM12 * eM21); if (flDet == 0.0f) return FALSE; float flCoef = 1.0f / flDet; // Remember old value of eM11 float flM11Original = eM11; eM11 = flCoef * eM22; eM12 = -flCoef * eM12; eM21 = -flCoef * eM21; eM22 = flCoef * flM11Original; // If we have a translation; then we need to // compute new values for that translation if (eOp == DX2DXO_GENERAL_AND_TRANS) { // Remember original value of eDx float eDxOriginal = eDx; eDx = -eM11 * eDx - eM12 * eDy; eDy = -eM21 * eDxOriginal - eM22 * eDy; } } break; default: _ASSERT( 0 ); // invalid operation id } // We don't need to call DetermineOp here // because the op doesn't change when inverted // i.e. a scale remains a scale, etc. return true; } /* CDX2DXForm::Invert */ /*** CDXMatrix4x4F ************ * This class implements basic matrix operation based on a 4x4 array. */ //const float g_DXMat4X4Identity[4][4] = //{ // { 1.0, 0. , 0. , 0. }, // { 0. , 1.0, 0. , 0. }, // { 0. , 0. , 1.0, 0. }, // { 0. , 0. , 0. , 1.0 } //}; class CDXMatrix4x4F { public: /*=== Member Data ===*/ float m_Coeff[4][4]; /*=== Methods =======*/ public: /*--- Constructors ---*/ CDXMatrix4x4F() { SetIdentity(); } CDXMatrix4x4F( const CDXMatrix4x4F& Other ) { CopyMemory( (void *)&m_Coeff, (void *)&Other.m_Coeff, sizeof(m_Coeff) ); } CDXMatrix4x4F( DX2DXFORM& XForm ); /*--- operations ---*/ void ZeroMatrix( void ) { memset( m_Coeff, 0, sizeof( m_Coeff ) ); } void SetIdentity( void ) { memset( m_Coeff, 0, sizeof( m_Coeff ) ); m_Coeff[0][0] = m_Coeff[1][1] = m_Coeff[2][2] = m_Coeff[3][3] = 1.0; } void SetCoefficients( float Coeff[4][4] ) { memcpy( m_Coeff, Coeff, sizeof( m_Coeff )); } void GetCoefficients( float Coeff[4][4] ) { memcpy( Coeff, m_Coeff, sizeof( m_Coeff )); } //BOOL IsIdentity(); void Scale( float sx, float sy, float sz ); void Rotate( float rx, float ry, float rz ); void Translate( float dx, float dy, float dz ); BOOL Invert(); BOOL GetInverse( CDXMatrix4x4F *pIn ); void Transpose(); void GetTranspose( CDXMatrix4x4F *pIn ); void GetAdjoint( CDXMatrix4x4F *pIn ); HRESULT InitFromSafeArray( SAFEARRAY *psa ); HRESULT GetSafeArray( SAFEARRAY **ppsa ) const; void TransformBounds( DXBNDS& Bnds, DXBNDS& ResultBnds ); /*--- operators ---*/ CDXDVec operator*( CDXDVec& v) const; CDXCVec operator*( CDXCVec& v) const; CDXMatrix4x4F operator*(CDXMatrix4x4F Matrix) const; void operator*=(CDXMatrix4x4F Matrix) const; void CDXMatrix4x4F::operator=(const CDXMatrix4x4F srcMatrix); void CDXMatrix4x4F::operator+=(const CDXMatrix4x4F otherMatrix); void CDXMatrix4x4F::operator-=(const CDXMatrix4x4F otherMatrix); BOOL CDXMatrix4x4F::operator==(const CDXMatrix4x4F otherMatrix) const; BOOL CDXMatrix4x4F::operator!=(const CDXMatrix4x4F otherMatrix) const; }; inline CDXMatrix4x4F::CDXMatrix4x4F( DX2DXFORM& XForm ) { SetIdentity(); m_Coeff[0][0] = XForm.eM11; m_Coeff[0][1] = XForm.eM12; m_Coeff[1][0] = XForm.eM21; m_Coeff[1][1] = XForm.eM22; m_Coeff[0][3] = XForm.eDx; m_Coeff[1][3] = XForm.eDy; } // Additional Operations inline void CDXMatrix4x4F::operator=(const CDXMatrix4x4F srcMatrix) { CopyMemory( (void *)m_Coeff, (const void *)srcMatrix.m_Coeff, sizeof(srcMatrix.m_Coeff) ); } /* CDXMatrix4x4F::operator= */ inline BOOL CDXMatrix4x4F::operator==(const CDXMatrix4x4F otherMatrix) const { return !memcmp( (void *)m_Coeff, (const void *)otherMatrix.m_Coeff, sizeof(otherMatrix.m_Coeff) ); } /* CDXMatrix4x4F::operator== */ inline BOOL CDXMatrix4x4F::operator!=(const CDXMatrix4x4F otherMatrix) const { return memcmp( (void *)m_Coeff, (const void *)otherMatrix.m_Coeff, sizeof(otherMatrix.m_Coeff) ); } /* CDXMatrix4x4F::operator!= */ inline void CDXMatrix4x4F::operator+=(const CDXMatrix4x4F otherMatrix) { for( int i = 0; i < 4; i++ ) for( int j = 0; j < 4; j++ ) m_Coeff[i][j] += otherMatrix.m_Coeff[i][j]; } /* CDXMatrix4x4F::operator+= */ inline void CDXMatrix4x4F::operator-=(const CDXMatrix4x4F otherMatrix) { for( int i = 0; i < 4; i++ ) for( int j = 0; j < 4; j++ ) m_Coeff[i][j] -= otherMatrix.m_Coeff[i][j]; } /* CDXMatrix4x4F::operator-= */ inline CDXDVec CDXMatrix4x4F::operator*(CDXDVec& v) const { CDXDVec t; float temp; temp = v[0]*m_Coeff[0][0]+v[1]*m_Coeff[1][0]+v[2]*m_Coeff[2][0]+v[3]*m_Coeff[3][0]; t[0] = (long)((temp < 0) ? temp -= .5 : temp += .5); temp = v[0]*m_Coeff[0][1]+v[1]*m_Coeff[1][1]+v[2]*m_Coeff[2][1]+v[3]*m_Coeff[3][1]; t[1] = (long)((temp < 0) ? temp -= .5 : temp += .5); temp = v[0]*m_Coeff[0][2]+v[1]*m_Coeff[1][2]+v[2]*m_Coeff[2][2]+v[3]*m_Coeff[3][2]; t[2] = (long)((temp < 0) ? temp -= .5 : temp += .5); temp = v[0]*m_Coeff[0][3]+v[1]*m_Coeff[1][3]+v[2]*m_Coeff[2][3]+v[3]*m_Coeff[3][3]; t[3] = (long)((temp < 0) ? temp -= .5 : temp += .5); return t; } /* CDXMatrix4x4F::operator*(DXDVEC) */ inline CDXCVec CDXMatrix4x4F::operator*(CDXCVec& v) const { CDXCVec t; t[0] = v[0]*m_Coeff[0][0]+v[1]*m_Coeff[1][0]+v[2]*m_Coeff[2][0]+v[3]*m_Coeff[3][0]; t[1] = v[0]*m_Coeff[0][1]+v[1]*m_Coeff[1][1]+v[2]*m_Coeff[2][1]+v[3]*m_Coeff[3][1]; t[2] = v[0]*m_Coeff[0][2]+v[1]*m_Coeff[1][2]+v[2]*m_Coeff[2][2]+v[3]*m_Coeff[3][2]; t[3] = v[0]*m_Coeff[0][3]+v[1]*m_Coeff[1][3]+v[2]*m_Coeff[2][3]+v[3]*m_Coeff[3][3]; return t; } /* CDXMatrix4x4F::operator*(DXCVEC) */ inline CDXMatrix4x4F CDXMatrix4x4F::operator*(CDXMatrix4x4F Mx) const { CDXMatrix4x4F t; int i, j; for( i = 0; i < 4; i++ ) { for( j = 0; j < 4; j++ ) { t.m_Coeff[i][j] = m_Coeff[i][0] * Mx.m_Coeff[0][j] + m_Coeff[i][1] * Mx.m_Coeff[1][j] + m_Coeff[i][2] * Mx.m_Coeff[2][j] + m_Coeff[i][3] * Mx.m_Coeff[3][j]; } } return t; } /* CDXMatrix4x4F::operator*(CDXMatrix4x4F) */ inline void CDXMatrix4x4F::operator*=(CDXMatrix4x4F Mx) const { CDXMatrix4x4F t; int i, j; for( i = 0; i < 4; i++ ) { for( j = 0; j < 4; j++ ) { t.m_Coeff[i][j] = m_Coeff[i][0] * Mx.m_Coeff[0][j] + m_Coeff[i][1] * Mx.m_Coeff[1][j] + m_Coeff[i][2] * Mx.m_Coeff[2][j] + m_Coeff[i][3] * Mx.m_Coeff[3][j]; } } CopyMemory( (void *)m_Coeff, (void *)t.m_Coeff, sizeof(m_Coeff) ); } /* CDXMatrix4x4F::operator*=(CDXMatrix4x4F) */ inline void CDXMatrix4x4F::Scale( float sx, float sy, float sz ) { if( sx != 1. ) { m_Coeff[0][0] *= sx; m_Coeff[0][1] *= sx; m_Coeff[0][2] *= sx; m_Coeff[0][3] *= sx; } if( sy != 1. ) { m_Coeff[1][0] *= sy; m_Coeff[1][1] *= sy; m_Coeff[1][2] *= sy; m_Coeff[1][3] *= sy; } if( sz != 1. ) { m_Coeff[2][0] *= sz; m_Coeff[2][1] *= sz; m_Coeff[2][2] *= sz; m_Coeff[2][3] *= sz; } } /* CDXMatrix4x4F::Scale */ inline void CDXMatrix4x4F::Translate( float dx, float dy, float dz ) { float a, b, c, d; a = b = c = d = 0; if( dx != 0. ) { a += m_Coeff[0][0]*dx; b += m_Coeff[0][1]*dx; c += m_Coeff[0][2]*dx; d += m_Coeff[0][3]*dx; } if( dy != 0. ) { a += m_Coeff[1][0]*dy; b += m_Coeff[1][1]*dy; c += m_Coeff[1][2]*dy; d += m_Coeff[1][3]*dy; } if( dz != 0. ) { a += m_Coeff[2][0]*dz; b += m_Coeff[2][1]*dz; c += m_Coeff[2][2]*dz; d += m_Coeff[2][3]*dz; } m_Coeff[3][0] += a; m_Coeff[3][1] += b; m_Coeff[3][2] += c; m_Coeff[3][3] += d; } /* CDXMatrix4x4F::Translate */ inline void CDXMatrix4x4F::Rotate( float rx, float ry, float rz ) { const float l_dfCte = (const float)(3.1415926535/180.0); float lAngleY = 0.0; float lAngleX = 0.0; float lAngleZ = 0.0; float lCosX = 1.0; float lSinX = 0.0; float lCosY = 1.0; float lSinY = 0.0; float lCosZ = 1.0; float lSinZ = 0.0; // calculate rotation angle sines and cosines if( rx != 0 ) { lAngleX = rx * l_dfCte; lCosX = (float)cos(lAngleX); lSinX = (float)sin(lAngleX); if (lCosX > 0.0F && lCosX < 0.0000005F) { lCosX = .0F; } if (lSinX > -0.0000005F && lSinX < .0F) { lSinX = .0F; } } if( ry != 0 ) { lAngleY = ry * l_dfCte; lCosY = (float)cos(lAngleY); lSinY = (float)sin(lAngleY); if (lCosY > 0.0F && lCosY < 0.0000005F) { lCosY = .0F; } if (lSinY > -0.0000005F && lSinY < .0F) { lSinY = .0F; } } if( rz != 0 ) { lAngleZ = rz * l_dfCte; lCosZ = (float)cos(lAngleZ); lSinZ = (float)sin(lAngleZ); if (lCosZ > 0.0F && lCosZ < 0.0000005F) { lCosZ = .0F; } if (lSinZ > -0.0000005F && lSinZ < .0F) { lSinZ = .0F; } } float u, v; int i; //--- X Rotation for( i = 0; i < 4; i++ ) { u = m_Coeff[1][i]; v = m_Coeff[2][i]; m_Coeff[1][i] = lCosX*u+lSinX*v; m_Coeff[2][i] = -lSinX*u+lCosX*v; } //--- Y Rotation for( i = 0; i < 4; i++ ) { u = m_Coeff[0][i]; v = m_Coeff[2][i]; m_Coeff[0][i] = lCosY*u-lSinY*v; m_Coeff[2][i] = lSinY*u+lCosY*v; } //--- Z Rotation for( i = 0; i < 4; i++ ) { u = m_Coeff[0][i]; v = m_Coeff[1][i]; m_Coeff[0][i] = lCosZ*u+lSinZ*v; m_Coeff[1][i] = -lSinZ*u+lCosZ*v; } } /* inline BOOL CDXMatrix4x4F::IsIdentity() { return !memcmp( m_Coeff, g_DXMat4X4Identity, sizeof(g_DXMat4X4Identity) ); } /* CDXMatrix4x4F::IsIdentity */ /* Uses Gaussian elimination to invert the 4 x 4 non-linear matrix in t and return the result in Mx. The matrix t is destroyed in the process. */ inline BOOL CDXMatrix4x4F::Invert() { int i,j,k,Pivot; float PValue; CDXMatrix4x4F Mx; Mx.SetIdentity(); /* Find pivot element. Use partial pivoting by row */ for( i = 0;i < 4; i++ ) { Pivot = 0; for( j = 0; j < 4; j++ ) { if( fabs(m_Coeff[i][j]) > fabs(m_Coeff[i][Pivot]) ) Pivot = j; } if( m_Coeff[i][Pivot] == 0.0 ) { ZeroMatrix(); /* Singular Matrix */ return FALSE; } /* Normalize */ PValue = m_Coeff[i][Pivot]; for( j = 0; j < 4; j++ ) { m_Coeff[i][j] /= PValue; Mx.m_Coeff[i][j] /= PValue; } /* Zeroing */ for( j = 0; j < 4; j++ ) { if( j != i ) { PValue = m_Coeff[j][Pivot]; for( k = 0; k < 4; k++ ) { m_Coeff[j][k] -= PValue*m_Coeff[i][k]; Mx.m_Coeff[j][k] -= PValue*Mx.m_Coeff[i][k]; } } } } /* Reorder rows */ for( i = 0; i < 4; i++ ) { if( m_Coeff[i][i] != 1.0 ) { for( j = i + 1; j < 4; j++ ) if( m_Coeff[j][i] == 1.0 ) break; if( j >= 4 ) { ZeroMatrix(); return FALSE; } //--- swap rows i and j of original for( k = 0; k < 4; k++ ) { m_Coeff[i][k] += m_Coeff[j][k]; m_Coeff[j][k] = m_Coeff[i][k] - m_Coeff[j][k]; m_Coeff[i][k] -= m_Coeff[j][k]; } //--- swap rows i and j of result for( k = 0; k < 4; k++ ) { Mx.m_Coeff[i][k] += Mx.m_Coeff[j][k]; Mx.m_Coeff[j][k] = Mx.m_Coeff[i][k] - Mx.m_Coeff[j][k]; Mx.m_Coeff[i][k] -= Mx.m_Coeff[j][k]; } } } *this = Mx; return TRUE; } /* CDXMatrix4x4F::Invert */ inline void CDXMatrix4x4F::Transpose() { float temp; temp = m_Coeff[0][1]; m_Coeff[0][1] = m_Coeff[1][0]; m_Coeff[1][0] = temp; temp = m_Coeff[0][2]; m_Coeff[0][2] = m_Coeff[2][0]; m_Coeff[2][0] = temp; temp = m_Coeff[0][3]; m_Coeff[0][3] = m_Coeff[3][0]; m_Coeff[3][0] = temp; temp = m_Coeff[1][2]; m_Coeff[1][2] = m_Coeff[2][1]; m_Coeff[2][1] = temp; temp = m_Coeff[1][3]; m_Coeff[1][3] = m_Coeff[3][1]; m_Coeff[3][1] = temp; temp = m_Coeff[2][3]; m_Coeff[2][3] = m_Coeff[3][2]; m_Coeff[3][2] = temp; } /* CDXMatrix4x4F::Transpose */ inline void CDXMatrix4x4F::GetTranspose( CDXMatrix4x4F *m ) { float temp; (*this) = *m; temp = m_Coeff[0][1]; m_Coeff[0][1] = m_Coeff[1][0]; m_Coeff[1][0] = temp; temp = m_Coeff[0][2]; m_Coeff[0][2] = m_Coeff[2][0]; m_Coeff[2][0] = temp; temp = m_Coeff[0][3]; m_Coeff[0][3] = m_Coeff[3][0]; m_Coeff[3][0] = temp; temp = m_Coeff[1][2]; m_Coeff[1][2] = m_Coeff[2][1]; m_Coeff[2][1] = temp; temp = m_Coeff[1][3]; m_Coeff[1][3] = m_Coeff[3][1]; m_Coeff[3][1] = temp; temp = m_Coeff[2][3]; m_Coeff[2][3] = m_Coeff[3][2]; m_Coeff[3][2] = temp; } /* CDXMatrix4x4F::Transpose */ /* Matrix Inversion by Richard Carling from "Graphics Gems", Academic Press, 1990 */ #define SMALL_NUMBER 1.e-8 /* * inverse( original_matrix, inverse_matrix ) * * calculate the inverse of a 4x4 matrix * * -1 * A = ___1__ adjoint A * det A */ inline BOOL CDXMatrix4x4F::GetInverse( CDXMatrix4x4F *pIn ) { int i, j; float det; /* calculate the adjoint matrix */ GetAdjoint( pIn ); /* calculate the 4x4 determinant * if the determinant is zero, * then the inverse matrix is not unique. */ det = det4x4( pIn ); if( fabs( det ) < SMALL_NUMBER ) { // Non-singular matrix, no inverse! return FALSE;; } /* scale the adjoint matrix to get the inverse */ for( i = 0; i < 4; i++ ) for( j = 0; j < 4; j++ ) m_Coeff[i][j] = m_Coeff[i][j] / det; return TRUE; } /* * adjoint( original_matrix, inverse_matrix ) * * calculate the adjoint of a 4x4 matrix * * Let a denote the minor determinant of matrix A obtained by * ij * * deleting the ith row and jth column from A. * * i+j * Let b = (-1) a * ij ji * * The matrix B = (b ) is the adjoint of A * ij */ inline void CDXMatrix4x4F::GetAdjoint( CDXMatrix4x4F *pIn ) { float a1, a2, a3, a4, b1, b2, b3, b4; float c1, c2, c3, c4, d1, d2, d3, d4; /* assign to individual variable names to aid */ /* selecting correct values */ a1 = pIn->m_Coeff[0][0]; b1 = pIn->m_Coeff[0][1]; c1 = pIn->m_Coeff[0][2]; d1 = pIn->m_Coeff[0][3]; a2 = pIn->m_Coeff[1][0]; b2 = pIn->m_Coeff[1][1]; c2 = pIn->m_Coeff[1][2]; d2 = pIn->m_Coeff[1][3]; a3 = pIn->m_Coeff[2][0]; b3 = pIn->m_Coeff[2][1]; c3 = pIn->m_Coeff[2][2]; d3 = pIn->m_Coeff[2][3]; a4 = pIn->m_Coeff[3][0]; b4 = pIn->m_Coeff[3][1]; c4 = pIn->m_Coeff[3][2]; d4 = pIn->m_Coeff[3][3]; /* row column labeling reversed since we transpose rows & columns */ m_Coeff[0][0] = det3x3( b2, b3, b4, c2, c3, c4, d2, d3, d4); m_Coeff[1][0] = - det3x3( a2, a3, a4, c2, c3, c4, d2, d3, d4); m_Coeff[2][0] = det3x3( a2, a3, a4, b2, b3, b4, d2, d3, d4); m_Coeff[3][0] = - det3x3( a2, a3, a4, b2, b3, b4, c2, c3, c4); m_Coeff[0][1] = - det3x3( b1, b3, b4, c1, c3, c4, d1, d3, d4); m_Coeff[1][1] = det3x3( a1, a3, a4, c1, c3, c4, d1, d3, d4); m_Coeff[2][1] = - det3x3( a1, a3, a4, b1, b3, b4, d1, d3, d4); m_Coeff[3][1] = det3x3( a1, a3, a4, b1, b3, b4, c1, c3, c4); m_Coeff[0][2] = det3x3( b1, b2, b4, c1, c2, c4, d1, d2, d4); m_Coeff[1][2] = - det3x3( a1, a2, a4, c1, c2, c4, d1, d2, d4); m_Coeff[2][2] = det3x3( a1, a2, a4, b1, b2, b4, d1, d2, d4); m_Coeff[3][2] = - det3x3( a1, a2, a4, b1, b2, b4, c1, c2, c4); m_Coeff[0][3] = - det3x3( b1, b2, b3, c1, c2, c3, d1, d2, d3); m_Coeff[1][3] = det3x3( a1, a2, a3, c1, c2, c3, d1, d2, d3); m_Coeff[2][3] = - det3x3( a1, a2, a3, b1, b2, b3, d1, d2, d3); m_Coeff[3][3] = det3x3( a1, a2, a3, b1, b2, b3, c1, c2, c3); } /* * float = det4x4( matrix ) * * calculate the determinant of a 4x4 matrix. */ inline float det4x4( CDXMatrix4x4F *pIn ) { float ans; float a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4, d1, d2, d3, d4; /* assign to individual variable names to aid selecting */ /* correct elements */ a1 = pIn->m_Coeff[0][0]; b1 = pIn->m_Coeff[0][1]; c1 = pIn->m_Coeff[0][2]; d1 = pIn->m_Coeff[0][3]; a2 = pIn->m_Coeff[1][0]; b2 = pIn->m_Coeff[1][1]; c2 = pIn->m_Coeff[1][2]; d2 = pIn->m_Coeff[1][3]; a3 = pIn->m_Coeff[2][0]; b3 = pIn->m_Coeff[2][1]; c3 = pIn->m_Coeff[2][2]; d3 = pIn->m_Coeff[2][3]; a4 = pIn->m_Coeff[3][0]; b4 = pIn->m_Coeff[3][1]; c4 = pIn->m_Coeff[3][2]; d4 = pIn->m_Coeff[3][3]; ans = a1 * det3x3( b2, b3, b4, c2, c3, c4, d2, d3, d4 ) - b1 * det3x3( a2, a3, a4, c2, c3, c4, d2, d3, d4 ) + c1 * det3x3( a2, a3, a4, b2, b3, b4, d2, d3, d4 ) - d1 * det3x3( a2, a3, a4, b2, b3, b4, c2, c3, c4 ); return ans; } /* * float = det3x3( a1, a2, a3, b1, b2, b3, c1, c2, c3 ) * * calculate the determinant of a 3x3 matrix * in the form * * | a1, b1, c1 | * | a2, b2, c2 | * | a3, b3, c3 | */ inline float det3x3( float a1, float a2, float a3, float b1, float b2, float b3, float c1, float c2, float c3 ) { float ans; ans = a1 * det2x2( b2, b3, c2, c3 ) - b1 * det2x2( a2, a3, c2, c3 ) + c1 * det2x2( a2, a3, b2, b3 ); return ans; } /* * float = det2x2( float a, float b, float c, float d ) * * calculate the determinant of a 2x2 matrix. */ inline float det2x2( float a, float b, float c, float d ) { float ans = a * d - b * c; return ans; } inline HRESULT CDXMatrix4x4F::InitFromSafeArray( SAFEARRAY * /*pSA*/ ) { HRESULT hr = S_OK; #if 0 long *pData; if( !pSA || ( pSA->cDims != 1 ) || ( pSA->cbElements != sizeof(float) ) || ( pSA->rgsabound->lLbound != 1 ) || ( pSA->rgsabound->cElements != 8 ) ) { hr = E_INVALIDARG; } else { hr = SafeArrayAccessData(pSA, (void **)&pData); if( SUCCEEDED( hr ) ) { for( int i = 0; i < 4; ++i ) { m_Bounds[i].Min = pData[i]; m_Bounds[i].Max = pData[i+4]; m_Bounds[i].SampleRate = SampleRate; } hr = SafeArrayUnaccessData( pSA ); } } #endif return hr; } /* CDXMatrix4x4F::InitFromSafeArray */ inline HRESULT CDXMatrix4x4F::GetSafeArray( SAFEARRAY ** /*ppSA*/ ) const { HRESULT hr = S_OK; #if 0 SAFEARRAY *pSA; if( !ppSA ) { hr = E_POINTER; } else { SAFEARRAYBOUND rgsabound; rgsabound.lLbound = 1; rgsabound.cElements = 16; if( !(pSA = SafeArrayCreate( VT_I4, 1, &rgsabound ) ) ) { hr = E_OUTOFMEMORY; } else { long *pData; hr = SafeArrayAccessData( pSA, (void **)&pData ); if( SUCCEEDED( hr ) ) { for( int i = 0; i < 4; ++i ) { pData[i] = m_Bounds[i].Min; pData[i+4] = m_Bounds[i].Max; } hr = SafeArrayUnaccessData( pSA ); } } if( SUCCEEDED( hr ) ) { *ppSA = pSA; } } #endif return hr; } /* CDXMatrix4x4F::GetSafeArray */ inline void CDXMatrix4x4F::TransformBounds( DXBNDS& /*Bnds*/, DXBNDS& /*ResultBnds*/ ) { } /* CDXMatrix4x4F::TransformBounds */ #endif // DXVector_h