//----------------------------------------------------------------------------- // File: collections.h // // Desc: Contains all container templates used by the UI. // // Copyright (C) 1999-2000 Microsoft Corporation. All Rights Reserved. //----------------------------------------------------------------------------- #ifndef __COLLECTIONS_H__ #define __COLLECTIONS_H__ // fake out afx #define BEFORE_START_POSITION ((POSITION)-1L) BOOL AfxIsValidAddress( const void* lp, UINT nBytes, BOOL bReadWrite = TRUE ); #define ASSERT assert #define AFX_INLINE inline #define AFXAPI #define ASSERT_VALID(p) assert(p != NULL) typedef void *POSITION; #pragma warning( disable : 4291 ) inline void *__cdecl operator new(size_t, void *_P) { return (_P); } // afx template stuff without mfc dependencies! :D template AFX_INLINE UINT AFXAPI HashKey(ARG_KEY key) { // default identity hash - works for most primitive values return ((UINT)(DWORD)key) >> 4; } template AFX_INLINE void AFXAPI ConstructElements(TYPE* pElements, int nCount) { ASSERT(nCount == 0 || AfxIsValidAddress(pElements, nCount * sizeof(TYPE))); // first do bit-wise zero initialization memset((void*)pElements, 0, nCount * sizeof(TYPE)); // then call the constructor(s) for (; nCount--; pElements++) ::new((void*)pElements) TYPE; } template AFX_INLINE void AFXAPI DestructElements(TYPE* pElements, int nCount) { ASSERT(nCount == 0 || AfxIsValidAddress(pElements, nCount * sizeof(TYPE))); // call the destructor(s) for (; nCount--; pElements++) pElements->~TYPE(); } template AFX_INLINE void AFXAPI CopyElements(TYPE* pDest, const TYPE* pSrc, int nCount) { ASSERT(nCount == 0 || AfxIsValidAddress(pDest, nCount * sizeof(TYPE))); ASSERT(nCount == 0 || AfxIsValidAddress(pSrc, nCount * sizeof(TYPE))); // default is element-copy using assignment while (nCount--) *pDest++ = *pSrc++; } template BOOL AFXAPI CompareElements(const TYPE* pElement1, const ARG_TYPE* pElement2) { ASSERT(AfxIsValidAddress(pElement1, sizeof(TYPE), FALSE)); ASSERT(AfxIsValidAddress(pElement2, sizeof(ARG_TYPE), FALSE)); return *pElement1 == *pElement2; } ///////////////////////////////////////////////////////////////////////////// // CArray template class CArray { public: // Construction CArray(); // Attributes int GetSize() const; int GetUpperBound() const; void SetSize(int nNewSize, int nGrowBy = -1); // Operations // Clean up void FreeExtra(); void RemoveAll(); // Accessing elements TYPE GetAt(int nIndex) const; void SetAt(int nIndex, ARG_TYPE newElement); TYPE& ElementAt(int nIndex); // Direct Access to the element data (may return NULL) const TYPE* GetData() const; TYPE* GetData(); // Potentially growing the array void SetAtGrow(int nIndex, ARG_TYPE newElement); int Add(ARG_TYPE newElement); int Append(const CArray& src); void Copy(const CArray& src); // overloaded operator helpers TYPE operator[](int nIndex) const; TYPE& operator[](int nIndex); // Operations that move elements around void InsertAt(int nIndex, ARG_TYPE newElement, int nCount = 1); void RemoveAt(int nIndex, int nCount = 1); void InsertAt(int nStartIndex, CArray* pNewArray); // Implementation protected: TYPE* m_pData; // the actual array of data int m_nSize; // # of elements (upperBound - 1) int m_nMaxSize; // max allocated int m_nGrowBy; // grow amount public: ~CArray(); }; ///////////////////////////////////////////////////////////////////////////// // CArray inline functions template AFX_INLINE int CArray::GetSize() const { return m_nSize; } template AFX_INLINE int CArray::GetUpperBound() const { return m_nSize-1; } template AFX_INLINE void CArray::RemoveAll() { SetSize(0, -1); } template AFX_INLINE TYPE CArray::GetAt(int nIndex) const { ASSERT(nIndex >= 0 && nIndex < m_nSize); return m_pData[nIndex]; } template AFX_INLINE void CArray::SetAt(int nIndex, ARG_TYPE newElement) { ASSERT(nIndex >= 0 && nIndex < m_nSize); m_pData[nIndex] = newElement; } template AFX_INLINE TYPE& CArray::ElementAt(int nIndex) { ASSERT(nIndex >= 0 && nIndex < m_nSize); return m_pData[nIndex]; } template AFX_INLINE const TYPE* CArray::GetData() const { return (const TYPE*)m_pData; } template AFX_INLINE TYPE* CArray::GetData() { return (TYPE*)m_pData; } template AFX_INLINE int CArray::Add(ARG_TYPE newElement) { int nIndex = m_nSize; SetAtGrow(nIndex, newElement); return nIndex; } template AFX_INLINE TYPE CArray::operator[](int nIndex) const { return GetAt(nIndex); } template AFX_INLINE TYPE& CArray::operator[](int nIndex) { return ElementAt(nIndex); } ///////////////////////////////////////////////////////////////////////////// // CArray out-of-line functions template CArray::CArray() { m_pData = NULL; m_nSize = m_nMaxSize = m_nGrowBy = 0; } template CArray::~CArray() { ASSERT_VALID(this); if (m_pData != NULL) { DestructElements(m_pData, m_nSize); delete[] (BYTE*)m_pData; } } template void CArray::SetSize(int nNewSize, int nGrowBy) { ASSERT_VALID(this); ASSERT(nNewSize >= 0); if (nGrowBy != -1) m_nGrowBy = nGrowBy; // set new size if (nNewSize == 0) { // shrink to nothing if (m_pData != NULL) { DestructElements(m_pData, m_nSize); delete[] (BYTE*)m_pData; m_pData = NULL; } m_nSize = m_nMaxSize = 0; } else if (m_pData == NULL) { // create one with exact size #ifdef SIZE_T_MAX ASSERT(nNewSize <= SIZE_T_MAX/sizeof(TYPE)); // no overflow #endif m_pData = (TYPE*) new BYTE[nNewSize * sizeof(TYPE)]; ConstructElements(m_pData, nNewSize); m_nSize = m_nMaxSize = nNewSize; } else if (nNewSize <= m_nMaxSize) { // it fits if (nNewSize > m_nSize) { // initialize the new elements ConstructElements(&m_pData[m_nSize], nNewSize-m_nSize); } else if (m_nSize > nNewSize) { // destroy the old elements DestructElements(&m_pData[nNewSize], m_nSize-nNewSize); } m_nSize = nNewSize; } else { // otherwise, grow array int nGrowBy = m_nGrowBy; if (nGrowBy == 0) { // heuristically determine growth when nGrowBy == 0 // (this avoids heap fragmentation in many situations) nGrowBy = m_nSize / 8; nGrowBy = (nGrowBy < 4) ? 4 : ((nGrowBy > 1024) ? 1024 : nGrowBy); } int nNewMax; if (nNewSize < m_nMaxSize + nGrowBy) nNewMax = m_nMaxSize + nGrowBy; // granularity else nNewMax = nNewSize; // no slush ASSERT(nNewMax >= m_nMaxSize); // no wrap around #ifdef SIZE_T_MAX ASSERT(nNewMax <= SIZE_T_MAX/sizeof(TYPE)); // no overflow #endif TYPE* pNewData = (TYPE*) new BYTE[nNewMax * sizeof(TYPE)]; // copy new data from old memcpy(pNewData, m_pData, m_nSize * sizeof(TYPE)); // construct remaining elements ASSERT(nNewSize > m_nSize); ConstructElements(&pNewData[m_nSize], nNewSize-m_nSize); // get rid of old stuff (note: no destructors called) delete[] (BYTE*)m_pData; m_pData = pNewData; m_nSize = nNewSize; m_nMaxSize = nNewMax; } } template int CArray::Append(const CArray& src) { ASSERT_VALID(this); ASSERT(this != &src); // cannot append to itself int nOldSize = m_nSize; SetSize(m_nSize + src.m_nSize); CopyElements(m_pData + nOldSize, src.m_pData, src.m_nSize); return nOldSize; } template void CArray::Copy(const CArray& src) { ASSERT_VALID(this); ASSERT(this != &src); // cannot append to itself SetSize(src.m_nSize); CopyElements(m_pData, src.m_pData, src.m_nSize); } template void CArray::FreeExtra() { ASSERT_VALID(this); if (m_nSize != m_nMaxSize) { // shrink to desired size #ifdef SIZE_T_MAX ASSERT(m_nSize <= SIZE_T_MAX/sizeof(TYPE)); // no overflow #endif TYPE* pNewData = NULL; if (m_nSize != 0) { pNewData = (TYPE*) new BYTE[m_nSize * sizeof(TYPE)]; // copy new data from old memcpy(pNewData, m_pData, m_nSize * sizeof(TYPE)); } // get rid of old stuff (note: no destructors called) delete[] (BYTE*)m_pData; m_pData = pNewData; m_nMaxSize = m_nSize; } } template void CArray::SetAtGrow(int nIndex, ARG_TYPE newElement) { ASSERT_VALID(this); ASSERT(nIndex >= 0); if (nIndex >= m_nSize) SetSize(nIndex+1, -1); m_pData[nIndex] = newElement; } template void CArray::InsertAt(int nIndex, ARG_TYPE newElement, int nCount /*=1*/) { ASSERT_VALID(this); ASSERT(nIndex >= 0); // will expand to meet need ASSERT(nCount > 0); // zero or negative size not allowed if (nIndex >= m_nSize) { // adding after the end of the array SetSize(nIndex + nCount, -1); // grow so nIndex is valid } else { // inserting in the middle of the array int nOldSize = m_nSize; SetSize(m_nSize + nCount, -1); // grow it to new size // destroy intial data before copying over it DestructElements(&m_pData[nOldSize], nCount); // shift old data up to fill gap memmove(&m_pData[nIndex+nCount], &m_pData[nIndex], (nOldSize-nIndex) * sizeof(TYPE)); // re-init slots we copied from ConstructElements(&m_pData[nIndex], nCount); } // insert new value in the gap ASSERT(nIndex + nCount <= m_nSize); while (nCount--) m_pData[nIndex++] = newElement; } template void CArray::RemoveAt(int nIndex, int nCount) { ASSERT_VALID(this); ASSERT(nIndex >= 0); ASSERT(nCount >= 0); ASSERT(nIndex + nCount <= m_nSize); // just remove a range int nMoveCount = m_nSize - (nIndex + nCount); DestructElements(&m_pData[nIndex], nCount); if (nMoveCount) memmove(&m_pData[nIndex], &m_pData[nIndex + nCount], nMoveCount * sizeof(TYPE)); m_nSize -= nCount; } template void CArray::InsertAt(int nStartIndex, CArray* pNewArray) { ASSERT_VALID(this); ASSERT(pNewArray != NULL); ASSERT_VALID(pNewArray); ASSERT(nStartIndex >= 0); if (pNewArray->GetSize() > 0) { InsertAt(nStartIndex, pNewArray->GetAt(0), pNewArray->GetSize()); for (int i = 0; i < pNewArray->GetSize(); i++) SetAt(nStartIndex + i, pNewArray->GetAt(i)); } } ///////////////////////////////////////////////////////////////////////////// // CPlex struct CPlex // warning variable length structure { CPlex* pNext; DWORD dwReserved[1]; // align on 8 byte boundary // BYTE data[maxNum*elementSize]; void* data() { return this+1; } static CPlex* PASCAL Create(CPlex*& head, UINT nMax, UINT cbElement); // like 'calloc' but no zero fill // may throw memory exceptions void FreeDataChain(); // free this one and links }; ///////////////////////////////////////////////////////////////////////////// // CList template class CList { protected: struct CNode { CNode* pNext; CNode* pPrev; TYPE data; }; public: // Construction CList(int nBlockSize = 10); // Attributes (head and tail) // count of elements int GetCount() const; BOOL IsEmpty() const; // peek at head or tail TYPE& GetHead(); TYPE GetHead() const; TYPE& GetTail(); TYPE GetTail() const; // Operations // get head or tail (and remove it) - don't call on empty list ! TYPE RemoveHead(); TYPE RemoveTail(); // add before head or after tail POSITION AddHead(ARG_TYPE newElement); POSITION AddTail(ARG_TYPE newElement); // add another list of elements before head or after tail void AddHead(CList* pNewList); void AddTail(CList* pNewList); // remove all elements void RemoveAll(); // iteration POSITION GetHeadPosition() const; POSITION GetTailPosition() const; TYPE& GetNext(POSITION& rPosition); // return *Position++ TYPE GetNext(POSITION& rPosition) const; // return *Position++ TYPE& GetPrev(POSITION& rPosition); // return *Position-- TYPE GetPrev(POSITION& rPosition) const; // return *Position-- // getting/modifying an element at a given position TYPE& GetAt(POSITION position); TYPE GetAt(POSITION position) const; void SetAt(POSITION pos, ARG_TYPE newElement); void RemoveAt(POSITION position); // inserting before or after a given position POSITION InsertBefore(POSITION position, ARG_TYPE newElement); POSITION InsertAfter(POSITION position, ARG_TYPE newElement); // helper functions (note: O(n) speed) POSITION Find(ARG_TYPE searchValue, POSITION startAfter = NULL) const; // defaults to starting at the HEAD, return NULL if not found POSITION FindIndex(int nIndex) const; // get the 'nIndex'th element (may return NULL) // Implementation protected: CNode* m_pNodeHead; CNode* m_pNodeTail; int m_nCount; CNode* m_pNodeFree; struct CPlex* m_pBlocks; int m_nBlockSize; CNode* NewNode(CNode*, CNode*); void FreeNode(CNode*); public: ~CList(); }; ///////////////////////////////////////////////////////////////////////////// // CList inline functions template AFX_INLINE int CList::GetCount() const { return m_nCount; } template AFX_INLINE BOOL CList::IsEmpty() const { return m_nCount == 0; } template AFX_INLINE TYPE& CList::GetHead() { ASSERT(m_pNodeHead != NULL); return m_pNodeHead->data; } template AFX_INLINE TYPE CList::GetHead() const { ASSERT(m_pNodeHead != NULL); return m_pNodeHead->data; } template AFX_INLINE TYPE& CList::GetTail() { ASSERT(m_pNodeTail != NULL); return m_pNodeTail->data; } template AFX_INLINE TYPE CList::GetTail() const { ASSERT(m_pNodeTail != NULL); return m_pNodeTail->data; } template AFX_INLINE POSITION CList::GetHeadPosition() const { return (POSITION) m_pNodeHead; } template AFX_INLINE POSITION CList::GetTailPosition() const { return (POSITION) m_pNodeTail; } template AFX_INLINE TYPE& CList::GetNext(POSITION& rPosition) // return *Position++ { CNode* pNode = (CNode*) rPosition; ASSERT(AfxIsValidAddress(pNode, sizeof(CNode))); rPosition = (POSITION) pNode->pNext; return pNode->data; } template AFX_INLINE TYPE CList::GetNext(POSITION& rPosition) const // return *Position++ { CNode* pNode = (CNode*) rPosition; ASSERT(AfxIsValidAddress(pNode, sizeof(CNode))); rPosition = (POSITION) pNode->pNext; return pNode->data; } template AFX_INLINE TYPE& CList::GetPrev(POSITION& rPosition) // return *Position-- { CNode* pNode = (CNode*) rPosition; ASSERT(AfxIsValidAddress(pNode, sizeof(CNode))); rPosition = (POSITION) pNode->pPrev; return pNode->data; } template AFX_INLINE TYPE CList::GetPrev(POSITION& rPosition) const // return *Position-- { CNode* pNode = (CNode*) rPosition; ASSERT(AfxIsValidAddress(pNode, sizeof(CNode))); rPosition = (POSITION) pNode->pPrev; return pNode->data; } template AFX_INLINE TYPE& CList::GetAt(POSITION position) { CNode* pNode = (CNode*) position; ASSERT(AfxIsValidAddress(pNode, sizeof(CNode))); return pNode->data; } template AFX_INLINE TYPE CList::GetAt(POSITION position) const { CNode* pNode = (CNode*) position; ASSERT(AfxIsValidAddress(pNode, sizeof(CNode))); return pNode->data; } template AFX_INLINE void CList::SetAt(POSITION pos, ARG_TYPE newElement) { CNode* pNode = (CNode*) pos; ASSERT(AfxIsValidAddress(pNode, sizeof(CNode))); pNode->data = newElement; } template CList::CList(int nBlockSize) { ASSERT(nBlockSize > 0); m_nCount = 0; m_pNodeHead = m_pNodeTail = m_pNodeFree = NULL; m_pBlocks = NULL; m_nBlockSize = nBlockSize; } template void CList::RemoveAll() { ASSERT_VALID(this); // destroy elements CNode* pNode; for (pNode = m_pNodeHead; pNode != NULL; pNode = pNode->pNext) DestructElements(&pNode->data, 1); m_nCount = 0; m_pNodeHead = m_pNodeTail = m_pNodeFree = NULL; m_pBlocks->FreeDataChain(); m_pBlocks = NULL; } template CList::~CList() { RemoveAll(); ASSERT(m_nCount == 0); } ///////////////////////////////////////////////////////////////////////////// // Node helpers // // Implementation note: CNode's are stored in CPlex blocks and // chained together. Free blocks are maintained in a singly linked list // using the 'pNext' member of CNode with 'm_pNodeFree' as the head. // Used blocks are maintained in a doubly linked list using both 'pNext' // and 'pPrev' as links and 'm_pNodeHead' and 'm_pNodeTail' // as the head/tail. // // We never free a CPlex block unless the List is destroyed or RemoveAll() // is used - so the total number of CPlex blocks may grow large depending // on the maximum past size of the list. // template CList::CNode* CList::NewNode(CList::CNode* pPrev, CList::CNode* pNext) { if (m_pNodeFree == NULL) { // add another block CPlex* pNewBlock = CPlex::Create(m_pBlocks, m_nBlockSize, sizeof(CNode)); // chain them into free list CNode* pNode = (CNode*) pNewBlock->data(); // free in reverse order to make it easier to debug pNode += m_nBlockSize - 1; for (int i = m_nBlockSize-1; i >= 0; i--, pNode--) { pNode->pNext = m_pNodeFree; m_pNodeFree = pNode; } } ASSERT(m_pNodeFree != NULL); // we must have something CList::CNode* pNode = m_pNodeFree; m_pNodeFree = m_pNodeFree->pNext; pNode->pPrev = pPrev; pNode->pNext = pNext; m_nCount++; ASSERT(m_nCount > 0); // make sure we don't overflow ConstructElements(&pNode->data, 1); return pNode; } template void CList::FreeNode(CList::CNode* pNode) { DestructElements(&pNode->data, 1); pNode->pNext = m_pNodeFree; m_pNodeFree = pNode; m_nCount--; ASSERT(m_nCount >= 0); // make sure we don't underflow // if no more elements, cleanup completely if (m_nCount == 0) RemoveAll(); } template POSITION CList::AddHead(ARG_TYPE newElement) { ASSERT_VALID(this); CNode* pNewNode = NewNode(NULL, m_pNodeHead); pNewNode->data = newElement; if (m_pNodeHead != NULL) m_pNodeHead->pPrev = pNewNode; else m_pNodeTail = pNewNode; m_pNodeHead = pNewNode; return (POSITION) pNewNode; } template POSITION CList::AddTail(ARG_TYPE newElement) { ASSERT_VALID(this); CNode* pNewNode = NewNode(m_pNodeTail, NULL); pNewNode->data = newElement; if (m_pNodeTail != NULL) m_pNodeTail->pNext = pNewNode; else m_pNodeHead = pNewNode; m_pNodeTail = pNewNode; return (POSITION) pNewNode; } template void CList::AddHead(CList* pNewList) { ASSERT_VALID(this); ASSERT(pNewList != NULL); ASSERT_VALID(pNewList); // add a list of same elements to head (maintain order) POSITION pos = pNewList->GetTailPosition(); while (pos != NULL) AddHead(pNewList->GetPrev(pos)); } template void CList::AddTail(CList* pNewList) { ASSERT_VALID(this); ASSERT(pNewList != NULL); ASSERT_VALID(pNewList); // add a list of same elements POSITION pos = pNewList->GetHeadPosition(); while (pos != NULL) AddTail(pNewList->GetNext(pos)); } template TYPE CList::RemoveHead() { ASSERT_VALID(this); ASSERT(m_pNodeHead != NULL); // don't call on empty list !!! ASSERT(AfxIsValidAddress(m_pNodeHead, sizeof(CNode))); CNode* pOldNode = m_pNodeHead; TYPE returnValue = pOldNode->data; m_pNodeHead = pOldNode->pNext; if (m_pNodeHead != NULL) m_pNodeHead->pPrev = NULL; else m_pNodeTail = NULL; FreeNode(pOldNode); return returnValue; } template TYPE CList::RemoveTail() { ASSERT_VALID(this); ASSERT(m_pNodeTail != NULL); // don't call on empty list !!! ASSERT(AfxIsValidAddress(m_pNodeTail, sizeof(CNode))); CNode* pOldNode = m_pNodeTail; TYPE returnValue = pOldNode->data; m_pNodeTail = pOldNode->pPrev; if (m_pNodeTail != NULL) m_pNodeTail->pNext = NULL; else m_pNodeHead = NULL; FreeNode(pOldNode); return returnValue; } template POSITION CList::InsertBefore(POSITION position, ARG_TYPE newElement) { ASSERT_VALID(this); if (position == NULL) return AddHead(newElement); // insert before nothing -> head of the list // Insert it before position CNode* pOldNode = (CNode*) position; CNode* pNewNode = NewNode(pOldNode->pPrev, pOldNode); pNewNode->data = newElement; if (pOldNode->pPrev != NULL) { ASSERT(AfxIsValidAddress(pOldNode->pPrev, sizeof(CNode))); pOldNode->pPrev->pNext = pNewNode; } else { ASSERT(pOldNode == m_pNodeHead); m_pNodeHead = pNewNode; } pOldNode->pPrev = pNewNode; return (POSITION) pNewNode; } template POSITION CList::InsertAfter(POSITION position, ARG_TYPE newElement) { ASSERT_VALID(this); if (position == NULL) return AddTail(newElement); // insert after nothing -> tail of the list // Insert it before position CNode* pOldNode = (CNode*) position; ASSERT(AfxIsValidAddress(pOldNode, sizeof(CNode))); CNode* pNewNode = NewNode(pOldNode, pOldNode->pNext); pNewNode->data = newElement; if (pOldNode->pNext != NULL) { ASSERT(AfxIsValidAddress(pOldNode->pNext, sizeof(CNode))); pOldNode->pNext->pPrev = pNewNode; } else { ASSERT(pOldNode == m_pNodeTail); m_pNodeTail = pNewNode; } pOldNode->pNext = pNewNode; return (POSITION) pNewNode; } template void CList::RemoveAt(POSITION position) { ASSERT_VALID(this); CNode* pOldNode = (CNode*) position; ASSERT(AfxIsValidAddress(pOldNode, sizeof(CNode))); // remove pOldNode from list if (pOldNode == m_pNodeHead) { m_pNodeHead = pOldNode->pNext; } else { ASSERT(AfxIsValidAddress(pOldNode->pPrev, sizeof(CNode))); pOldNode->pPrev->pNext = pOldNode->pNext; } if (pOldNode == m_pNodeTail) { m_pNodeTail = pOldNode->pPrev; } else { ASSERT(AfxIsValidAddress(pOldNode->pNext, sizeof(CNode))); pOldNode->pNext->pPrev = pOldNode->pPrev; } FreeNode(pOldNode); } template POSITION CList::FindIndex(int nIndex) const { ASSERT_VALID(this); if (nIndex >= m_nCount || nIndex < 0) return NULL; // went too far CNode* pNode = m_pNodeHead; while (nIndex--) { ASSERT(AfxIsValidAddress(pNode, sizeof(CNode))); pNode = pNode->pNext; } return (POSITION) pNode; } template POSITION CList::Find(ARG_TYPE searchValue, POSITION startAfter) const { ASSERT_VALID(this); CNode* pNode = (CNode*) startAfter; if (pNode == NULL) { pNode = m_pNodeHead; // start at head } else { ASSERT(AfxIsValidAddress(pNode, sizeof(CNode))); pNode = pNode->pNext; // start after the one specified } for (; pNode != NULL; pNode = pNode->pNext) if (CompareElements(&pNode->data, &searchValue)) return (POSITION)pNode; return NULL; } ///////////////////////////////////////////////////////////////////////////// // CMap template class CMap { protected: // Association struct CAssoc { CAssoc* pNext; UINT nHashValue; // needed for efficient iteration KEY key; VALUE value; }; public: // Construction CMap(int nBlockSize = 10); // Attributes // number of elements int GetCount() const; BOOL IsEmpty() const; // Lookup BOOL Lookup(ARG_KEY key, VALUE& rValue) const; // Operations // Lookup and add if not there VALUE& operator[](ARG_KEY key); // add a new (key, value) pair void SetAt(ARG_KEY key, ARG_VALUE newValue); // removing existing (key, ?) pair BOOL RemoveKey(ARG_KEY key); void RemoveAll(); // iterating all (key, value) pairs POSITION GetStartPosition() const; void GetNextAssoc(POSITION& rNextPosition, KEY& rKey, VALUE& rValue) const; // advanced features for derived classes UINT GetHashTableSize() const; void InitHashTable(UINT hashSize, BOOL bAllocNow = TRUE); // Implementation protected: CAssoc** m_pHashTable; UINT m_nHashTableSize; int m_nCount; CAssoc* m_pFreeList; struct CPlex* m_pBlocks; int m_nBlockSize; CAssoc* NewAssoc(); void FreeAssoc(CAssoc*); CAssoc* GetAssocAt(ARG_KEY, UINT&) const; public: ~CMap(); }; ///////////////////////////////////////////////////////////////////////////// // CMap inline functions template AFX_INLINE int CMap::GetCount() const { return m_nCount; } template AFX_INLINE BOOL CMap::IsEmpty() const { return m_nCount == 0; } template AFX_INLINE void CMap::SetAt(ARG_KEY key, ARG_VALUE newValue) { (*this)[key] = newValue; } template AFX_INLINE POSITION CMap::GetStartPosition() const { return (m_nCount == 0) ? NULL : BEFORE_START_POSITION; } template AFX_INLINE UINT CMap::GetHashTableSize() const { return m_nHashTableSize; } ///////////////////////////////////////////////////////////////////////////// // CMap out-of-line functions template CMap::CMap(int nBlockSize) { ASSERT(nBlockSize > 0); m_pHashTable = NULL; m_nHashTableSize = 17; // default size m_nCount = 0; m_pFreeList = NULL; m_pBlocks = NULL; m_nBlockSize = nBlockSize; } template void CMap::InitHashTable( UINT nHashSize, BOOL bAllocNow) // // Used to force allocation of a hash table or to override the default // hash table size of (which is fairly small) { ASSERT_VALID(this); ASSERT(m_nCount == 0); ASSERT(nHashSize > 0); if (m_pHashTable != NULL) { // free hash table delete[] m_pHashTable; m_pHashTable = NULL; } if (bAllocNow) { m_pHashTable = new CAssoc* [nHashSize]; memset(m_pHashTable, 0, sizeof(CAssoc*) * nHashSize); } m_nHashTableSize = nHashSize; } template void CMap::RemoveAll() { ASSERT_VALID(this); if (m_pHashTable != NULL) { // destroy elements (values and keys) for (UINT nHash = 0; nHash < m_nHashTableSize; nHash++) { CAssoc* pAssoc; for (pAssoc = m_pHashTable[nHash]; pAssoc != NULL; pAssoc = pAssoc->pNext) { DestructElements(&pAssoc->value, 1); DestructElements(&pAssoc->key, 1); } } } // free hash table delete[] m_pHashTable; m_pHashTable = NULL; m_nCount = 0; m_pFreeList = NULL; m_pBlocks->FreeDataChain(); m_pBlocks = NULL; } template CMap::~CMap() { RemoveAll(); ASSERT(m_nCount == 0); } template CMap::CAssoc* CMap::NewAssoc() { if (m_pFreeList == NULL) { // add another block CPlex* newBlock = CPlex::Create(m_pBlocks, m_nBlockSize, sizeof(CMap::CAssoc)); // chain them into free list CMap::CAssoc* pAssoc = (CMap::CAssoc*) newBlock->data(); // free in reverse order to make it easier to debug pAssoc += m_nBlockSize - 1; for (int i = m_nBlockSize-1; i >= 0; i--, pAssoc--) { pAssoc->pNext = m_pFreeList; m_pFreeList = pAssoc; } } ASSERT(m_pFreeList != NULL); // we must have something CMap::CAssoc* pAssoc = m_pFreeList; m_pFreeList = m_pFreeList->pNext; m_nCount++; ASSERT(m_nCount > 0); // make sure we don't overflow ConstructElements(&pAssoc->key, 1); ConstructElements(&pAssoc->value, 1); // special construct values return pAssoc; } template void CMap::FreeAssoc(CMap::CAssoc* pAssoc) { DestructElements(&pAssoc->value, 1); DestructElements(&pAssoc->key, 1); pAssoc->pNext = m_pFreeList; m_pFreeList = pAssoc; m_nCount--; ASSERT(m_nCount >= 0); // make sure we don't underflow // if no more elements, cleanup completely if (m_nCount == 0) RemoveAll(); } template CMap::CAssoc* CMap::GetAssocAt(ARG_KEY key, UINT& nHash) const // find association (or return NULL) { nHash = HashKey(key) % m_nHashTableSize; if (m_pHashTable == NULL) return NULL; // see if it exists CAssoc* pAssoc; for (pAssoc = m_pHashTable[nHash]; pAssoc != NULL; pAssoc = pAssoc->pNext) { if (CompareElements(&pAssoc->key, &key)) return pAssoc; } return NULL; } template BOOL CMap::Lookup(ARG_KEY key, VALUE& rValue) const { ASSERT_VALID(this); UINT nHash; CAssoc* pAssoc = GetAssocAt(key, nHash); if (pAssoc == NULL) return FALSE; // not in map rValue = pAssoc->value; return TRUE; } template VALUE& CMap::operator[](ARG_KEY key) { ASSERT_VALID(this); UINT nHash; CAssoc* pAssoc; if ((pAssoc = GetAssocAt(key, nHash)) == NULL) { if (m_pHashTable == NULL) InitHashTable(m_nHashTableSize); // it doesn't exist, add a new Association pAssoc = NewAssoc(); pAssoc->nHashValue = nHash; pAssoc->key = key; // 'pAssoc->value' is a constructed object, nothing more // put into hash table pAssoc->pNext = m_pHashTable[nHash]; m_pHashTable[nHash] = pAssoc; } return pAssoc->value; // return new reference } template BOOL CMap::RemoveKey(ARG_KEY key) // remove key - return TRUE if removed { ASSERT_VALID(this); if (m_pHashTable == NULL) return FALSE; // nothing in the table CAssoc** ppAssocPrev; ppAssocPrev = &m_pHashTable[HashKey(key) % m_nHashTableSize]; CAssoc* pAssoc; for (pAssoc = *ppAssocPrev; pAssoc != NULL; pAssoc = pAssoc->pNext) { if (CompareElements(&pAssoc->key, &key)) { // remove it *ppAssocPrev = pAssoc->pNext; // remove from list FreeAssoc(pAssoc); return TRUE; } ppAssocPrev = &pAssoc->pNext; } return FALSE; // not found } template void CMap::GetNextAssoc(POSITION& rNextPosition, KEY& rKey, VALUE& rValue) const { ASSERT_VALID(this); ASSERT(m_pHashTable != NULL); // never call on empty map CAssoc* pAssocRet = (CAssoc*)rNextPosition; ASSERT(pAssocRet != NULL); if (pAssocRet == (CAssoc*) BEFORE_START_POSITION) { // find the first association for (UINT nBucket = 0; nBucket < m_nHashTableSize; nBucket++) if ((pAssocRet = m_pHashTable[nBucket]) != NULL) break; ASSERT(pAssocRet != NULL); // must find something } // find next association ASSERT(AfxIsValidAddress(pAssocRet, sizeof(CAssoc))); CAssoc* pAssocNext; if ((pAssocNext = pAssocRet->pNext) == NULL) { // go to next bucket for (UINT nBucket = pAssocRet->nHashValue + 1; nBucket < m_nHashTableSize; nBucket++) if ((pAssocNext = m_pHashTable[nBucket]) != NULL) break; } rNextPosition = (POSITION) pAssocNext; // fill in return data rKey = pAssocRet->key; rValue = pAssocRet->value; } #undef ASSERT #undef AFX_INLINE #undef AFXAPI #undef ASSERT_VALID #endif //__COLLECTIONS_H__