/* ** Copyright 1991,1992 Silicon Graphics, Inc. ** All Rights Reserved. ** ** This is UNPUBLISHED PROPRIETARY SOURCE CODE of Silicon Graphics, Inc.; ** the contents of this file may not be disclosed to third parties, copied or ** duplicated in any form, in whole or in part, without the prior written ** permission of Silicon Graphics, Inc. ** ** RESTRICTED RIGHTS LEGEND: ** Use, duplication or disclosure by the Government is subject to restrictions ** as set forth in subdivision (c)(1)(ii) of the Rights in Technical Data ** and Computer Software clause at DFARS 252.227-7013, and/or in similar or ** successor clauses in the FAR, DOD or NASA FAR Supplement. Unpublished - ** rights reserved under the Copyright Laws of the United States. ** ** $Revision: 1.7 $ ** $Date: 1993/06/18 00:29:39 $ */ #include "precomp.h" #pragma hdrstop GLubyte __glMsbToLsbTable[256] = { 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0, 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8, 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd, 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3, 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff, }; static GLubyte LowBitsMask[9] = { 0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff, }; static GLubyte HighBitsMask[9] = { 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff, }; /************************************************************************/ void FASTCALL __glConvertStipple(__GLcontext *gc) { GLubyte b0, b1, b2, b3, *stipple; GLuint *dst; GLint i; stipple = &gc->state.polygonStipple.stipple[0]; dst = &gc->polygon.stipple[0]; #ifdef __GL_STIPPLE_MSB /* ** Convert input stipple bytes which are in little endian MSB format ** into a single long word, whose high bit represents the left most ** X coordinate of a 32 bit span. */ for (i = 0; i < 32; i++) { b0 = *stipple++; b1 = *stipple++; b2 = *stipple++; b3 = *stipple++; *dst++ = (b0 << 24) | (b1 << 16) | (b2 << 8) | b3; } #else /* ** Make 32bit form of the stipple for easier rendering. */ for (i = 0; i < 32; i++) { b0 = __glMsbToLsbTable[*stipple++]; b1 = __glMsbToLsbTable[*stipple++]; b2 = __glMsbToLsbTable[*stipple++]; b3 = __glMsbToLsbTable[*stipple++]; *dst++ = b0 | (b1 << 8) | (b2 << 16) | (b3 << 24); } #endif } /************************************************************************/ /* ** Compute memory required for internal packed array of data of given type ** and format. */ GLint APIPRIVATE __glImageSize(GLsizei width, GLsizei height, GLenum format, GLenum type) { GLint bytes_per_row; GLint components; components = __glElementsPerGroup(format); if (type == GL_BITMAP) { bytes_per_row = (width + 7) >> 3; } else { bytes_per_row =(GLint)__glBytesPerElement(type) * width; } return bytes_per_row * height * components; } /* ** Extract array from user's data applying all pixel store modes. ** The internal packed array format used has LSB_FIRST = FALSE and ** ALIGNMENT = 1. */ void APIPRIVATE __glFillImage(__GLcontext *gc, GLsizei width, GLsizei height, GLenum format, GLenum type, const GLvoid *userdata, GLubyte *newimage) { GLint components; GLint element_size; GLint rowsize; GLint padding; GLint line_length = gc->state.pixel.unpackModes.lineLength; GLint alignment = gc->state.pixel.unpackModes.alignment; GLint skip_pixels = gc->state.pixel.unpackModes.skipPixels; GLint skip_lines = gc->state.pixel.unpackModes.skipLines; GLint groups_per_line; GLint group_size; GLint lsb_first = gc->state.pixel.unpackModes.lsbFirst; GLint swap_bytes = gc->state.pixel.unpackModes.swapEndian; GLint elements_per_line; const GLubyte *start; const GLubyte *iter; GLubyte *iter2; GLint i, j, k; components = __glElementsPerGroup(format); if (line_length > 0) { groups_per_line = line_length; } else { groups_per_line = width; } /* All formats except GL_BITMAP fall out trivially */ if (type == GL_BITMAP) { GLint elements_left; GLint bit_offset; GLint current_byte; GLint next_byte; GLint high_bit_mask; GLint low_bit_mask; rowsize = (groups_per_line * components + 7) / 8; padding = (rowsize % alignment); if (padding) { rowsize += alignment - padding; } start = ((const GLubyte*) userdata) + skip_lines * rowsize + (skip_pixels * components / 8); bit_offset = (skip_pixels * components) % 8; high_bit_mask = LowBitsMask[8-bit_offset]; low_bit_mask = HighBitsMask[bit_offset]; elements_per_line = width * components; iter2 = newimage; for (i = 0; i < height; i++) { elements_left = elements_per_line; iter = start; while (elements_left) { /* First retrieve low bits from current byte */ if (lsb_first) { current_byte = __glMsbToLsbTable[iter[0]]; } else { current_byte = iter[0]; } if (bit_offset) { /* Need to read next byte to finish current byte */ if (elements_left > (8 - bit_offset)) { if (lsb_first) { next_byte = __glMsbToLsbTable[iter[1]]; } else { next_byte = iter[1]; } current_byte = ((current_byte & high_bit_mask) << bit_offset) | ((next_byte & low_bit_mask) >> (8 - bit_offset)); } else { current_byte = ((current_byte & high_bit_mask) << bit_offset); } } if (elements_left >= 8) { *iter2 = (GLubyte) current_byte; elements_left -= 8; } else { *iter2 = (GLubyte) (current_byte & HighBitsMask[elements_left]); elements_left = 0; } iter2++; iter++; } start += rowsize; } } else { element_size = (GLint)__glBytesPerElement(type); group_size = element_size * components; if (element_size == 1) swap_bytes = 0; rowsize = groups_per_line * group_size; padding = (rowsize % alignment); if (padding) { rowsize += alignment - padding; } start = ((const GLubyte*) userdata) + skip_lines * rowsize + skip_pixels * group_size; iter2 = newimage; elements_per_line = width * components; if (swap_bytes) { for (i = 0; i < height; i++) { iter = start; for (j = 0; j < elements_per_line; j++) { for (k = 1; k <= element_size; k++) { iter2[k-1] = iter[element_size - k]; } iter2 += element_size; iter += element_size; } start += rowsize; } } else { if (rowsize == elements_per_line * element_size) { /* Ha! This is mondo easy! */ __GL_MEMCOPY(iter2, start, elements_per_line * element_size * height); } else { iter = start; for (i = 0; i < height; i++) { __GL_MEMCOPY(iter2, iter, elements_per_line * element_size); iter2 += elements_per_line * element_size; iter += rowsize; } } } } } /* ** Insert array into user's data applying all pixel store modes. ** The internal packed array format used has LSB_FIRST = FALSE and ** ALIGNMENT = 1. __glEmptyImage() because it is the opposite of ** __glFillImage(). */ void __glEmptyImage(__GLcontext *gc, GLsizei width, GLsizei height, GLenum format, GLenum type, const GLubyte *oldimage, GLvoid *userdata) { GLint components; GLint element_size; GLint rowsize; GLint padding; GLint line_length = gc->state.pixel.packModes.lineLength; GLint alignment = gc->state.pixel.packModes.alignment; GLint skip_pixels = gc->state.pixel.packModes.skipPixels; GLint skip_lines = gc->state.pixel.packModes.skipLines; GLint groups_per_line; GLint group_size; GLint lsb_first = gc->state.pixel.packModes.lsbFirst; GLint swap_bytes = gc->state.pixel.packModes.swapEndian; GLint elements_per_line; GLubyte *start; GLubyte *iter; const GLubyte *iter2; GLint i, j, k; components = __glElementsPerGroup(format); if (line_length > 0) { groups_per_line = line_length; } else { groups_per_line = width; } /* All formats except GL_BITMAP fall out trivially */ if (type == GL_BITMAP) { GLint elements_left; GLint bit_offset; GLint current_byte; GLint high_bit_mask; GLint low_bit_mask; GLint write_mask; GLubyte write_byte; rowsize = (groups_per_line * components + 7) / 8; padding = (rowsize % alignment); if (padding) { rowsize += alignment - padding; } start = ((GLubyte*) userdata) + skip_lines * rowsize + (skip_pixels * components / 8); bit_offset = (skip_pixels * components) % 8; high_bit_mask = LowBitsMask[8-bit_offset]; low_bit_mask = HighBitsMask[bit_offset]; elements_per_line = width * components; iter2 = oldimage; for (i = 0; i < height; i++) { elements_left = elements_per_line; iter = start; write_mask = high_bit_mask; write_byte = 0; while (elements_left) { /* Set up write_mask (to write to current byte) */ if (elements_left + bit_offset < 8) { /* Need to trim write_mask */ write_mask &= HighBitsMask[bit_offset+elements_left]; } if (lsb_first) { current_byte = __glMsbToLsbTable[iter[0]]; } else { current_byte = iter[0]; } if (bit_offset) { write_byte |= (GLubyte) (iter2[0] >> bit_offset); current_byte = (current_byte & ~write_mask) | (write_byte & write_mask); write_byte = (GLubyte) (iter2[0] << (8 - bit_offset)); } else { current_byte = (current_byte & ~write_mask) | (iter2[0] & write_mask); } if (lsb_first) { iter[0] = __glMsbToLsbTable[current_byte]; } else { iter[0] = (GLubyte) current_byte; } if (elements_left >= 8) { elements_left -= 8; } else { elements_left = 0; } iter2++; iter++; write_mask = 0xff; } if (write_byte) { /* Some data left over that still needs writing */ write_mask &= low_bit_mask; if (lsb_first) { current_byte = __glMsbToLsbTable[iter[0]]; } else { current_byte = iter[0]; } current_byte = (current_byte & ~write_mask) | (write_byte & write_mask); if (lsb_first) { iter[0] = __glMsbToLsbTable[current_byte]; } else { iter[0] = (GLubyte) current_byte; } } start += rowsize; } } else { element_size = (GLint)__glBytesPerElement(type); group_size = element_size * components; if (element_size == 1) swap_bytes = 0; rowsize = groups_per_line * group_size; padding = (rowsize % alignment); if (padding) { rowsize += alignment - padding; } start = ((GLubyte*) userdata) + skip_lines * rowsize + skip_pixels * group_size; iter2 = oldimage; elements_per_line = width * components; if (swap_bytes) { for (i = 0; i < height; i++) { iter = start; for (j = 0; j < elements_per_line; j++) { for (k = 1; k <= element_size; k++) { iter[k-1] = iter2[element_size - k]; } iter2 += element_size; iter += element_size; } start += rowsize; } } else { if (rowsize == elements_per_line * element_size) { /* Ha! This is mondo easy! */ __GL_MEMCOPY(start, iter2, elements_per_line * element_size * height); } else { iter = start; for (i = 0; i < height; i++) { __GL_MEMCOPY(iter, iter2, elements_per_line * element_size); iter2 += elements_per_line * element_size; iter += rowsize; } } } } }