windows-nt/Source/XPSP1/NT/admin/wmi/wbem/common/utillib/chptrarr.cpp
2020-09-26 16:20:57 +08:00

349 lines
8 KiB
C++

//***************************************************************************
//
// Copyright (c) 1997-2001 Microsoft Corporation, All Rights Reserved
//
// chptrarr.cpp
//
// Purpose: Non-MFC CPtrArray class implementation
//
//***************************************************************************
//=================================================================
// NOTE: we allocate an array of 'm_nMaxSize' elements, but only
// the current size 'm_nSize' contains properly constructed
// objects.
//===============================================================
#include "precomp.h"
#pragma warning( disable : 4290 )
#include <CHString.h>
#include <chptrarr.h>
#include <AssertBreak.h>
CHPtrArray::CHPtrArray () : m_pData ( NULL ) ,
m_nSize ( 0 ) ,
m_nMaxSize ( 0 ) ,
m_nGrowBy ( 0 )
{
}
CHPtrArray::~CHPtrArray()
{
if ( m_pData )
{
delete [] (BYTE*) m_pData ;
}
}
void CHPtrArray::SetSize(int nNewSize, int nGrowBy)
{
ASSERT_BREAK(nNewSize >= 0) ;
if (nGrowBy != -1)
{
m_nGrowBy = nGrowBy ; // set new size
}
if (nNewSize == 0)
{
// shrink to nothing
delete[] (BYTE*)m_pData ;
m_pData = NULL ;
m_nSize = m_nMaxSize = 0 ;
}
else if (m_pData == NULL)
{
// create one with exact size
m_pData = (void**) new BYTE[nNewSize * sizeof(void*)] ;
if ( m_pData )
{
memset(m_pData, 0, nNewSize * sizeof(void*)) ; // zero fill
m_nSize = m_nMaxSize = nNewSize ;
}
else
{
throw CHeap_Exception ( CHeap_Exception :: E_ALLOCATION_ERROR ) ;
}
}
else if (nNewSize <= m_nMaxSize)
{
// it fits
if (nNewSize > m_nSize)
{
// initialize the new elements
memset(&m_pData[m_nSize], 0, (nNewSize-m_nSize) * sizeof(void*)) ;
}
m_nSize = nNewSize ;
}
else
{
// otherwise, grow array
int nGrowBy = m_nGrowBy ;
if (nGrowBy == 0)
{
// heuristically determine growth when nGrowBy == 0
// (this avoids heap fragmentation in many situations)
nGrowBy = min(1024, max(4, m_nSize / 8)) ;
}
int nNewMax ;
if (nNewSize < m_nMaxSize + nGrowBy)
{
nNewMax = m_nMaxSize + nGrowBy ; // granularity
}
else
{
nNewMax = nNewSize ; // no slush
}
ASSERT_BREAK(nNewMax >= m_nMaxSize) ; // no wrap around
void** pNewData = (void**) new BYTE[nNewMax * sizeof(void*)] ;
if ( pNewData )
{
// copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(void*)) ;
// construct remaining elements
ASSERT_BREAK(nNewSize > m_nSize) ;
memset(&pNewData[m_nSize], 0, (nNewSize-m_nSize) * sizeof(void*)) ;
// get rid of old stuff (note: no destructors called)
delete[] (BYTE*)m_pData ;
m_pData = pNewData ;
m_nSize = nNewSize ;
m_nMaxSize = nNewMax ;
}
else
{
throw CHeap_Exception ( CHeap_Exception :: E_ALLOCATION_ERROR ) ;
}
}
}
int CHPtrArray::Append(const CHPtrArray& src)
{
ASSERT_BREAK(this != &src) ; // cannot append to itself
int nOldSize = m_nSize ;
SetSize(m_nSize + src.m_nSize) ;
memcpy(m_pData + nOldSize, src.m_pData, src.m_nSize * sizeof(void*)) ;
return nOldSize ;
}
void CHPtrArray::Copy(const CHPtrArray& src)
{
ASSERT_BREAK(this != &src) ; // cannot append to itself
SetSize(src.m_nSize) ;
memcpy(m_pData, src.m_pData, src.m_nSize * sizeof(void*)) ;
}
void CHPtrArray::FreeExtra()
{
if (m_nSize != m_nMaxSize)
{
// shrink to desired size
void** pNewData = NULL ;
if (m_nSize != 0)
{
pNewData = (void**) new BYTE[m_nSize * sizeof(void*)] ;
if ( pNewData )
{
// copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(void*)) ;
}
else
{
throw CHeap_Exception ( CHeap_Exception :: E_ALLOCATION_ERROR ) ;
}
}
// get rid of old stuff (note: no destructors called)
delete[] (BYTE*)m_pData ;
m_pData = pNewData ;
m_nMaxSize = m_nSize ;
}
}
/////////////////////////////////////////////////////////////////////////////
void CHPtrArray::SetAtGrow(int nIndex, void* newElement)
{
ASSERT_BREAK(nIndex >= 0) ;
if (nIndex >= m_nSize)
{
SetSize(nIndex+1) ;
}
m_pData[nIndex] = newElement ;
}
void CHPtrArray::InsertAt(int nIndex, void* newElement, int nCount)
{
ASSERT_BREAK(nIndex >= 0) ; // will expand to meet need
ASSERT_BREAK(nCount > 0) ; // zero or negative size not allowed
if (nIndex >= m_nSize)
{
// adding after the end of the array
SetSize(nIndex + nCount) ; // grow so nIndex is valid
}
else
{
// inserting in the middle of the array
int nOldSize = m_nSize ;
SetSize(m_nSize + nCount) ; // grow it to new size
// shift old data up to fill gap
memmove(&m_pData[nIndex+nCount], &m_pData[nIndex],
(nOldSize-nIndex) * sizeof(void*)) ;
// re-init slots we copied from
memset(&m_pData[nIndex], 0, nCount * sizeof(void*)) ;
}
// insert new value in the gap
ASSERT_BREAK(nIndex + nCount <= m_nSize) ;
while (nCount--)
{
m_pData[nIndex++] = newElement ;
}
}
void CHPtrArray::RemoveAt(int nIndex, int nCount)
{
ASSERT_BREAK(nIndex >= 0) ;
ASSERT_BREAK(nCount >= 0) ;
ASSERT_BREAK(nIndex + nCount <= m_nSize) ;
// just remove a range
int nMoveCount = m_nSize - (nIndex + nCount) ;
if (nMoveCount)
{
memcpy(&m_pData[nIndex], &m_pData[nIndex + nCount],
nMoveCount * sizeof(void*)) ;
}
m_nSize -= nCount ;
}
void CHPtrArray::InsertAt(int nStartIndex, CHPtrArray* pNewArray)
{
ASSERT_BREAK(pNewArray != NULL) ;
ASSERT_BREAK(nStartIndex >= 0) ;
if (pNewArray->GetSize() > 0)
{
InsertAt(nStartIndex, pNewArray->GetAt(0), pNewArray->GetSize()) ;
for (int i = 0 ; i < pNewArray->GetSize() ; i++)
{
SetAt(nStartIndex + i, pNewArray->GetAt(i)) ;
}
}
}
// Inline functions (from CArray)
//===============================
inline int CHPtrArray::GetSize() const {
return m_nSize ;
}
inline int CHPtrArray::GetUpperBound() const {
return m_nSize-1 ;
}
inline void CHPtrArray::RemoveAll() {
SetSize(0, -1) ;
return ;
}
inline void *CHPtrArray::GetAt(int nIndex) const {
ASSERT_BREAK(nIndex >= 0 && nIndex < m_nSize) ;
return m_pData[nIndex] ;
}
inline void CHPtrArray::SetAt(int nIndex, void * newElement) {
ASSERT_BREAK(nIndex >= 0 && nIndex < m_nSize) ;
m_pData[nIndex] = newElement ;
return ;
}
inline void *&CHPtrArray::ElementAt(int nIndex) {
ASSERT_BREAK(nIndex >= 0 && nIndex < m_nSize) ;
return m_pData[nIndex] ;
}
inline const void **CHPtrArray::GetData() const {
return (const void **) m_pData ;
}
inline void **CHPtrArray::GetData() {
return (void **) m_pData ;
}
inline int CHPtrArray::Add(void *newElement) {
int nIndex = m_nSize ;
SetAtGrow(nIndex, newElement) ;
return nIndex ;
}
inline void *CHPtrArray::operator[](int nIndex) const {
return GetAt(nIndex) ;
}
inline void *&CHPtrArray::operator[](int nIndex) {
return ElementAt(nIndex) ;
}
// Diagnostics
//============
#ifdef _DEBUG
void CHPtrArray::AssertValid() const
{
if (m_pData == NULL)
{
ASSERT_BREAK(m_nSize == 0) ;
ASSERT_BREAK(m_nMaxSize == 0) ;
}
else
{
ASSERT_BREAK(m_nSize >= 0) ;
ASSERT_BREAK(m_nMaxSize >= 0) ;
ASSERT_BREAK(m_nSize <= m_nMaxSize) ;
}
}
#endif //_DEBUG