windows-nt/Source/XPSP1/NT/base/crts/fpw32/tran/asincos.c
2020-09-26 16:20:57 +08:00

189 lines
4.8 KiB
C

/***
*asincos.c - inverse sin, cos
*
* Copyright (c) 1991-2001, Microsoft Corporation. All rights reserved.
*
*Purpose:
*
*Revision History:
* 8-15-91 GDP written
* 12-26-91 GDP support IEEE exceptions
* 06-23-92 GDP asin(denormal) now raises underflow exception
* 02-06-95 JWM Mac merge
* 10-07-97 RDL Added IA64.
*
*******************************************************************************/
#include <math.h>
#include <trans.h>
#if defined(_M_IA64)
#pragma function(asin, acos)
#endif
static double _asincos(double x, int flag);
static double const a[2] = {
0.0,
0.78539816339744830962
};
static double const b[2] = {
1.57079632679489661923,
0.78539816339744830962
};
static double const EPS = 1.05367121277235079465e-8; /* 2^(-53/2) */
/* constants for the rational approximation */
static double const p1 = -0.27368494524164255994e+2;
static double const p2 = 0.57208227877891731407e+2;
static double const p3 = -0.39688862997504877339e+2;
static double const p4 = 0.10152522233806463645e+2;
static double const p5 = -0.69674573447350646411e+0;
static double const q0 = -0.16421096714498560795e+3;
static double const q1 = 0.41714430248260412556e+3;
static double const q2 = -0.38186303361750149284e+3;
static double const q3 = 0.15095270841030604719e+3;
static double const q4 = -0.23823859153670238830e+2;
/* q5 = 1 is not needed (avoid myltiplying by 1) */
#define Q(g) (((((g + q4) * g + q3) * g + q2) * g + q1) * g + q0)
#define R(g) (((((p5 * g + p4) * g + p3) * g + p2) * g + p1) * g) / Q(g)
/***
*double asin(double x) - inverse sin
*double acos(double x) - inverse cos
*
*Purpose:
* Compute arc sin, arc cos.
* The algorithm (reduction / rational approximation) is
* taken from Cody & Waite.
*
*Entry:
*
*Exit:
*
*Exceptions:
* P, I
* (denormals are accepted)
*******************************************************************************/
double asin(double x)
{
return _asincos(x,0);
}
double acos(double x)
{
return _asincos(x,1);
}
static double _asincos(double x, int flag)
{
uintptr_t savedcw;
double qnan;
int who;
double y,result;
double g;
int i;
/* save user fp control word */
savedcw = _maskfp();
if (flag) {
who = OP_ACOS;
qnan = QNAN_ACOS;
}
else {
who = OP_ASIN;
qnan = QNAN_ASIN;
}
/* check for infinity or NAN */
if (IS_D_SPECIAL(x)){
switch(_sptype(x)) {
case T_PINF:
case T_NINF:
return _except1(FP_I,who,x,qnan,savedcw);
case T_QNAN:
return _handle_qnan1(who,x,savedcw);
default: //T_SNAN
return _except1(FP_I,who,x,_s2qnan(x),savedcw);
}
}
// do test for zero after making sure that x is not special
// because the compiler does not handle NaNs for the time
if (x == 0.0 && !flag) {
RETURN(savedcw, x);
}
y = ABS(x);
if (y < EPS) {
i = flag;
result = y;
if (IS_D_DENORM(result)) {
// this should only happen for sin(denorm). Use x as a result
return _except1(FP_U | FP_P,who,x,_add_exp(x, IEEE_ADJUST),savedcw);
}
}
else {
if (y > .5) {
i = 1-flag;
if (y > 1.0) {
return _except1(FP_I,who,x,qnan,savedcw);
}
else if (y == 1.0) {
/* separate case to avoid domain error in sqrt */
if (flag && x >= 0.0) {
//
// acos(1.0) is exactly computed as 0.0
//
RETURN(savedcw, 0.0);
}
y = 0.0;
g = 0.0;
}
else {
/* now even if y is as close to 1 as possible,
* 1-y is still not a denormal.
* e.g. for y=3fefffffffffffff, 1-y is about 10^(-16)
* So we can speed up division
*/
g = _add_exp(1.0 - y,-1);
/* g and sqrt(g) are not denomrals either,
* even in the worst case
* So we can speed up multiplication
*/
y = _add_exp(-_fsqrt(g),1);
}
}
else {
/* y <= .5 */
i = flag;
g = y*y;
}
result = y + y * R(g);
}
if (flag == 0) {
/* compute asin */
if (i) {
/* a[i] is non zero if i is nonzero */
result = (a[i] + result) + a[i];
}
if (x < 0)
result = -result;
}
else {
/* compute acos */
if (x < 0)
result = (b[i] + result) + b[i];
else
result = (a[i] - result) + a[i];
}
RETURN_INEXACT1 (who,x,result,savedcw);
}