windows-nt/Source/XPSP1/NT/base/hals/processor/lib/method.c
2020-09-26 16:20:57 +08:00

4113 lines
91 KiB
C
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (c) 2000 Microsoft Corporation
Module Name:
method.c
Abstract:
This module implements code to find and evaluate
ACPI objects.
Author:
Jake Oshins (3/18/00) - create file
Environment:
Kernel mode
Notes:
Revision History:
--*/
#include "processor.h"
#include "acpiioct.h"
#include "ntacpi.h"
#include <wdmguid.h>
#include "apic.inc"
#include "..\eventmsg.h"
#define rgzMultiFunctionAdapter L"\\Registry\\Machine\\Hardware\\Description\\System\\MultifunctionAdapter"
#define rgzAcpiConfigurationData L"Configuration Data"
#define rgzAcpiIdentifier L"Identifier"
#define rgzBIOSIdentifier L"ACPI BIOS"
const WCHAR CCSEnumRegKey[] = L"\\Registry\\Machine\\System\\CurrentControlSet\\Enum";
const WCHAR FriendlyNameRegKey[] = L"FriendlyName";
const WCHAR EnumKeyName[] = L"Enum";
extern FADT HalpFixedAcpiDescTable;
extern ULONG HalpThrottleScale;
extern WMI_EVENT PStateEvent;
extern WMI_EVENT NewPStatesEvent;
extern WMI_EVENT NewCStatesEvent;
// toddcar 4/24/01 ISSUE
// when we support CStates and Throttle States on MP machines
// these values need to be in the device extension.
//
GEN_ADDR PCntAddress;
GEN_ADDR C2Address;
GEN_ADDR C3Address;
//
// Well known virtual address of local processor apic
//
#define LOCALAPIC 0xfffe0000
#define pLocalApic ((ULONG volatile *) UlongToPtr(LOCALAPIC))
NTSTATUS
AcpiParseGenRegDesc(
IN PUCHAR Buffer,
OUT PGEN_ADDR *GenericAddress
);
NTSTATUS
AcpiFindRsdt (
OUT PACPI_BIOS_MULTI_NODE *AcpiMulti
);
VOID
AcpiNotify80CallbackWorker(
IN PDEVICE_OBJECT DeviceObject,
IN PVOID Context
);
VOID
AcpiNotify81CallbackWorker(
IN PDEVICE_OBJECT DeviceObject,
IN PVOID Context
);
#if DBG
VOID
DumpCStates(
PACPI_CST_PACKAGE CStates
);
#else
#define DumpCStates(_x_)
#endif
#ifdef ALLOC_PRAGMA
#pragma alloc_text (PAGE, AcpiEvaluateCst)
#pragma alloc_text (PAGE, AcpiEvaluateMethod)
#pragma alloc_text (PAGE, AcpiEvaluatePct)
#pragma alloc_text (PAGE, AcpiEvaluatePpc)
#pragma alloc_text (PAGE, AcpiEvaluateProcessorObject)
#pragma alloc_text (PAGE, AcpiEvaluatePss)
#pragma alloc_text (PAGE, AcpiEvaluatePtc)
#pragma alloc_text (PAGE, AcpiFindRsdt)
#pragma alloc_text (PAGE, AcpiNotify80CallbackWorker)
#pragma alloc_text (PAGE, AcpiParseGenRegDesc)
#pragma alloc_text (PAGE, AcquireAcpiInterfaces)
#pragma alloc_text (PAGE, GetRegistryValue)
#pragma alloc_text (PAGE, GetAcpiTable)
#pragma alloc_text (PAGE, InitializeAcpi2PStatesGeneric)
#pragma alloc_text (PAGE, ReleaseAcpiInterfaces)
#pragma alloc_text (PAGE, InitializeAcpi2IoSpaceCstates)
#endif
NTSTATUS
AcpiEvaluateMethod (
IN PFDO_DATA DeviceExtension,
IN PCHAR MethodName,
IN PVOID InputBuffer OPTIONAL,
OUT PVOID *OutputBuffer
)
/*
Routine Description:
This routine sends an IRP to ACPI to evaluate a method.
Arguments:
MethodName - String identifying the method
InputBuffer - Arguments for the method. If specified, the
method name must match MethodName
OutputBuffer- Return value(s) from method
Return Value:
NTSTATUS
--*/
#define CONTROL_METHOD_BUFFER_SIZE 0x1024
{
ACPI_EVAL_INPUT_BUFFER inputBuffer;
NTSTATUS status;
PIRP irp = NULL;
KEVENT irpCompleted;
IO_STATUS_BLOCK statusBlock;
ULONG inputBufLen;
DebugEnter();
PAGED_CODE();
if (!InputBuffer) {
//
// The caller didn't specify an input buffer. So
// build one without any arguments out of the MethodName.
//
ASSERT(strlen(MethodName) <= 4);
if (strlen(MethodName) > 4) {
return STATUS_INVALID_PARAMETER_1;
}
inputBuffer.Signature = ACPI_EVAL_INPUT_BUFFER_SIGNATURE;
strncpy(inputBuffer.MethodName, MethodName, sizeof(inputBuffer.MethodName));
InputBuffer = &inputBuffer;
}
//
// Figure out how big the input buffer is.
//
switch(((PACPI_EVAL_INPUT_BUFFER)InputBuffer)->Signature) {
case ACPI_EVAL_INPUT_BUFFER_SIGNATURE:
inputBufLen = sizeof(ACPI_EVAL_INPUT_BUFFER);
break;
case ACPI_EVAL_INPUT_BUFFER_SIMPLE_INTEGER_SIGNATURE:
inputBufLen = sizeof(ACPI_EVAL_INPUT_BUFFER_SIMPLE_INTEGER);
break;
case ACPI_EVAL_INPUT_BUFFER_SIMPLE_STRING_SIGNATURE:
inputBufLen = sizeof(ACPI_EVAL_INPUT_BUFFER_SIMPLE_STRING) +
((PACPI_EVAL_INPUT_BUFFER_SIMPLE_STRING)InputBuffer)->StringLength - 1;
break;
case ACPI_EVAL_INPUT_BUFFER_COMPLEX_SIGNATURE:
inputBufLen = ((PACPI_EVAL_INPUT_BUFFER_COMPLEX)InputBuffer)->Size;
break;
default:
return STATUS_INVALID_PARAMETER_2;
}
KeInitializeEvent(&irpCompleted, NotificationEvent, FALSE);
//
// Allocate 1K for the output buffer. That should handle
// everything that is necessary for ACPI 2.0 processor objects.
//
*OutputBuffer = ExAllocatePoolWithTag(PagedPool,
CONTROL_METHOD_BUFFER_SIZE,
PROCESSOR_POOL_TAG);
if (!*OutputBuffer) {
return STATUS_INSUFFICIENT_RESOURCES;
}
//
// Build the IRP.
//
irp = IoBuildDeviceIoControlRequest(IOCTL_ACPI_EVAL_METHOD,
DeviceExtension->NextLowerDriver,
InputBuffer,
inputBufLen,
*OutputBuffer,
CONTROL_METHOD_BUFFER_SIZE,
FALSE,
&irpCompleted,
&statusBlock);
if (!irp) {
ExFreePool(*OutputBuffer);
return STATUS_INSUFFICIENT_RESOURCES;
}
irp->IoStatus.Status = STATUS_NOT_SUPPORTED;
irp->IoStatus.Information = 0;
status = IoCallDriver(DeviceExtension->NextLowerDriver, irp);
if (status == STATUS_PENDING) {
KeWaitForSingleObject(&irpCompleted,
Executive,
KernelMode,
FALSE,
NULL);
status = statusBlock.Status;
}
if (!NT_SUCCESS(status)) {
ExFreePool(*OutputBuffer);
}
return status;
}
NTSTATUS
AcpiEvaluateProcessorObject (
IN PFDO_DATA DeviceExtension,
OUT PVOID *OutputBuffer
)
/*
Routine Description:
This routine sends an IRP to ACPI to evaluate a processor object.
Arguments:
OutputBuffer- Return value(s) from object
Return Value:
NTSTATUS
--*/
{
NTSTATUS status;
PIRP irp = NULL;
KEVENT irpCompleted;
IO_STATUS_BLOCK statusBlock;
ULONG inputBufLen;
DebugEnter();
PAGED_CODE();
KeInitializeEvent(&irpCompleted, NotificationEvent, FALSE);
//
// Allocate 1K for the output buffer. That should handle
// everything that is necessary for ACPI 2.0 processor objects.
//
*OutputBuffer = ExAllocatePoolWithTag(PagedPool,
sizeof(PROCESSOR_OBJECT_INFO),
PROCESSOR_POOL_TAG);
if (!*OutputBuffer) {
return STATUS_INSUFFICIENT_RESOURCES;
}
//
// Build the IRP.
//
irp = IoBuildDeviceIoControlRequest(IOCTL_GET_PROCESSOR_OBJ_INFO,
DeviceExtension->NextLowerDriver,
NULL,
0,
*OutputBuffer,
sizeof(PROCESSOR_OBJECT_INFO),
FALSE,
&irpCompleted,
&statusBlock);
if (!irp) {
ExFreePool(*OutputBuffer);
return STATUS_INSUFFICIENT_RESOURCES;
}
irp->IoStatus.Status = STATUS_NOT_SUPPORTED;
irp->IoStatus.Information = 0;
status = IoCallDriver(DeviceExtension->NextLowerDriver, irp);
if (status == STATUS_PENDING) {
KeWaitForSingleObject(&irpCompleted,
Executive,
KernelMode,
FALSE,
NULL);
status = statusBlock.Status;
}
if (!NT_SUCCESS(status)) {
ExFreePool(*OutputBuffer);
}
return status;
}
NTSTATUS
AcpiParseGenRegDesc(
IN PUCHAR Buffer,
OUT PGEN_ADDR *GenericAddress
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
DebugEnter();
PAGED_CODE();
if ((Buffer[0] != 0x82) ||
((Buffer[1] != 0x0b) && (Buffer[1] != 0x0c)) ||
(Buffer[2] != 0)) {
//
// The buffer is not a Generic Register Descriptor.
//
DebugPrint((WARN, "ACPI BIOS error: _PTC object was not a Generic Register Descriptor\n"));
return STATUS_NOT_FOUND;
}
//
// The thing passes the sanity test.
//
*GenericAddress = ExAllocatePoolWithTag(PagedPool,
sizeof(GEN_ADDR),
PROCESSOR_POOL_TAG);
if (!*GenericAddress) {
return STATUS_INSUFFICIENT_RESOURCES;
}
//
// toddcar - 10/31/2000 - TEMP
// Need to remove this code once new Acpi2.0 bios's change to
// reflect new register descriptor type. Defined in Acpi 2.0 errata 1.1
//
if (Buffer[1] == 0x0b) {
(*GenericAddress)->AddressSpaceID = Buffer[3];
(*GenericAddress)->BitWidth = Buffer[4];
(*GenericAddress)->BitOffset = Buffer[5];
(*GenericAddress)->Reserved = 0;
RtlCopyMemory(&(*GenericAddress)->Address.QuadPart,
&(Buffer[6]),
sizeof(PHYSICAL_ADDRESS));
} else {
RtlCopyMemory(*GenericAddress,
&(Buffer[3]),
sizeof(GEN_ADDR));
}
return STATUS_SUCCESS;
}
NTSTATUS
AcpiEvaluatePtc(
IN PFDO_DATA DeviceExtension,
OUT PGEN_ADDR *Address
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
PACPI_EVAL_OUTPUT_BUFFER ptcBuffer;
NTSTATUS status;
DebugEnter();
PAGED_CODE();
status = AcpiEvaluateMethod(DeviceExtension,
"_PTC",
NULL,
&ptcBuffer);
if (!NT_SUCCESS(status)) {
return status;
}
ASSERT(ptcBuffer->Signature == ACPI_EVAL_OUTPUT_BUFFER_SIGNATURE);
//
// Sanity check the output buffer. (ACPI BIOSes can often be
// wrong.
//
if (ptcBuffer->Count != 1) {
DebugPrint((WARN, "ACPI BIOS error: _PTC object returned multiple objects\n"));
status = STATUS_NOT_FOUND;
goto AcpiEvaluatePtcExit;
}
if (ptcBuffer->Argument[0].Type != ACPI_METHOD_ARGUMENT_BUFFER) {
DebugPrint((WARN, "ACPI BIOS error: _PTC object didn't return a buffer\n"));
status = STATUS_ACPI_INVALID_ARGTYPE;
goto AcpiEvaluatePtcExit;
}
if (ptcBuffer->Argument[0].DataLength != sizeof(GEN_ADDR) + 2) {
//
// The buffer is not the right size.
//
DebugPrint((WARN, "ACPI BIOS error: _PTC object returned a buffer of the wrong size\n"));
status = STATUS_ACPI_INVALID_ARGTYPE;
goto AcpiEvaluatePtcExit;
}
status = AcpiParseGenRegDesc(ptcBuffer->Argument[0].Data,
Address);
AcpiEvaluatePtcExit:
ExFreePool(ptcBuffer);
return status;
}
NTSTATUS
AcpiEvaluateCst(
IN PFDO_DATA DeviceExtension,
OUT PACPI_CST_PACKAGE *CStates
)
/*
Routine Description:
This routine finds and evaluates the _CST object in an ACPI 2.0
namespace. It returns the information in non-paged pool, as
C-states must be entered and exited at DISPATCH_LEVEL.
Arguments:
DeviceExtension - FDO_DATA
CStates - pointer to be filled in with return data
Return Value:
NTSTATUS
--*/
{
PACPI_EVAL_OUTPUT_BUFFER output;
PACPI_METHOD_ARGUMENT arg, subArg;
NTSTATUS status;
ULONG cstateCount = 0;
ULONG subElement;
ULONG size;
ULONG totalCStates;
DebugEnter();
PAGED_CODE();
DebugAssert(CStates);
*CStates = NULL;
status = AcpiEvaluateMethod(DeviceExtension,
"_CST",
NULL,
&output);
if (!NT_SUCCESS(status)) {
return status;
}
DebugAssert(output->Signature == ACPI_EVAL_OUTPUT_BUFFER_SIGNATURE);
//
// Parse the output buffer, figuring out what we got. See chapter
// 8.3.2 of the ACPI 2.0 spec for details.
//
if (output->Count == 0) {
//
// There was nothing in the object.
//
status = STATUS_ACPI_INVALID_ARGTYPE;
goto AcpiEvaluateCstExit;
}
//
// The first object should be an integer that lists the number of
// C-states.
//
if (output->Argument[0].Type != ACPI_METHOD_ARGUMENT_INTEGER) {
//
// The first element in the _CST package wasn't an
// integer.
//
status = STATUS_ACPI_INVALID_ARGTYPE;
goto AcpiEvaluateCstExit;
}
ASSERT(output->Argument[0].DataLength == sizeof(ULONG));
totalCStates = output->Argument[0].Argument;
size = ((totalCStates - 1) * sizeof(ACPI_CST_DESCRIPTOR)) +
sizeof(ACPI_CST_PACKAGE);
*CStates = ExAllocatePoolWithTag(NonPagedPool,
size,
PROCESSOR_POOL_TAG);
if (!*CStates) {
status = STATUS_INSUFFICIENT_RESOURCES;
goto AcpiEvaluateCstExit;
}
RtlZeroMemory(*CStates, size);
(*CStates)->NumCStates = (UCHAR) totalCStates;
//
// Get second data element, should be a package
//
arg = &output->Argument[1];
while ((PUCHAR)arg < ((PUCHAR)output + output->Length)) {
//
// Crack the packages.
//
if (arg->Type == ACPI_METHOD_ARGUMENT_PACKAGE) {
subArg = (PACPI_METHOD_ARGUMENT)(arg->Data);
subElement = 0;
// toddcar - 1/21/2001 - ISSUE
// Currently there is no way to know if one our _CST
// packages contained too few elements.
//
while ((PUCHAR)subArg < ((PUCHAR)(arg->Data) + arg->DataLength)) {
//
// In Chapter 8.3.2 of ACPI 2.0, these packages are
// defined as having four elements each:
//
// C State_Register - Generic Register Descriptor
// C State_Type - byte
// Latency - word
// Power_Consumption - dword
//
switch (subElement) {
case 0:
//
// Looking at the buffer
//
ASSERT(subArg->Type == ACPI_METHOD_ARGUMENT_BUFFER);
ASSERT(subArg->DataLength >= sizeof(ACPI_GENERIC_REGISTER_DESC));
if ((subArg->DataLength < sizeof(ACPI_GENERIC_REGISTER_DESC)) ||
(subArg->Type != ACPI_METHOD_ARGUMENT_BUFFER)) {
DebugAssert(!"ACPI Bios Error: _CST Package[0] must be type Generic Register Descriptor");
status = STATUS_ACPI_INVALID_ARGTYPE;
goto AcpiEvaluateCstExit;
}
RtlCopyMemory(&(*CStates)->State[cstateCount].Register,
&(subArg->Data[3]),
sizeof(GEN_ADDR));
break;
case 1:
if (subArg->Type != ACPI_METHOD_ARGUMENT_INTEGER) {
DebugAssert(!"ACPI Bios Error: _CST Package item [1] must be type INTEGER");
status = STATUS_ACPI_INVALID_ARGTYPE;
goto AcpiEvaluateCstExit;
}
ASSERT(!(subArg->Argument & 0xffffff00));
(*CStates)->State[cstateCount].StateType = (UCHAR)subArg->Argument;
break;
case 2:
if (subArg->Type != ACPI_METHOD_ARGUMENT_INTEGER) {
DebugAssert(!"ACPI Bios Error: _CST Package item[2] must be type INTEGER");
status = STATUS_ACPI_INVALID_ARGTYPE;
goto AcpiEvaluateCstExit;
}
ASSERT(!(subArg->Argument & 0xffff0000));
(*CStates)->State[cstateCount].Latency = (USHORT)subArg->Argument;
break;
case 3:
if (subArg->Type != ACPI_METHOD_ARGUMENT_INTEGER) {
DebugAssert(!"ACPI Bios Error: _CST Package item[3] must be type INTEGER");
status = STATUS_ACPI_INVALID_ARGTYPE;
goto AcpiEvaluateCstExit;
}
(*CStates)->State[cstateCount].PowerConsumption = subArg->Argument;
break;
default:
//
// There were more than four elements in the package.
//
ASSERT(FALSE);
status = STATUS_ACPI_INVALID_ARGTYPE;
goto AcpiEvaluateCstExit;
}
subArg = ACPI_METHOD_NEXT_ARGUMENT(subArg);
subElement++;
}
} else {
//
// There was an object that wasn't a package.
//
DebugAssert(!"ACPI Bios Error: _CST[2..n] must be type PACKAGE");
status = STATUS_ACPI_INVALID_ARGTYPE;
goto AcpiEvaluateCstExit;
}
arg = ACPI_METHOD_NEXT_ARGUMENT(arg);
cstateCount++;
}
ASSERT(cstateCount == (output->Count - 1));
DumpCStates(*CStates);
AcpiEvaluateCstExit:
if (!NT_SUCCESS(status) && (*CStates != NULL)) {
ExFreePool(*CStates);
*CStates = NULL;
}
ExFreePool(output);
DebugExitStatus(status);
return status;
}
NTSTATUS
AcpiEvaluatePct(
IN PFDO_DATA DeviceExtension,
OUT PACPI_PCT_PACKAGE *Address
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
PACPI_EVAL_OUTPUT_BUFFER pctBuffer;
PACPI_METHOD_ARGUMENT arg;
PGEN_ADDR genAddr;
NTSTATUS status;
ULONG pass = 0;
DebugEnter();
PAGED_CODE();
ASSERT(Address);
*Address = 0;
status = AcpiEvaluateMethod(DeviceExtension,
"_PCT",
NULL,
&pctBuffer);
if (!NT_SUCCESS(status)) {
return status;
}
ASSERT(pctBuffer->Signature == ACPI_EVAL_OUTPUT_BUFFER_SIGNATURE);
//
// Sanity check the output buffer. (ACPI BIOSes can often be
// wrong.
//
if (pctBuffer->Count != 2) {
DebugPrint((WARN, "ACPI BIOS error: _PCT object didn't return two objects\n"));
status = STATUS_NOT_FOUND;
goto AcpiEvaluatePctExit;
}
*Address = ExAllocatePoolWithTag(NonPagedPool,
sizeof(ACPI_PCT_PACKAGE),
PROCESSOR_POOL_TAG);
if (!*Address) {
status = STATUS_INSUFFICIENT_RESOURCES;
goto AcpiEvaluatePctExit;
}
RtlZeroMemory(*Address, sizeof(ACPI_PCT_PACKAGE));
//
// Traverse the package, parsing the elements.
//
arg = (PACPI_METHOD_ARGUMENT)pctBuffer->Argument;
while ((PUCHAR)arg < (PUCHAR)pctBuffer + pctBuffer->Length) {
if (arg->Type != ACPI_METHOD_ARGUMENT_BUFFER) {
DebugPrint((WARN, "ACPI BIOS error: _PCT object didn't return a buffer\n"));
status = STATUS_ACPI_INVALID_ARGTYPE;
goto AcpiEvaluatePctExit;
}
if (arg->DataLength < sizeof(GEN_ADDR) + 2) {
//
// The buffer is not the right size.
//
DebugPrint((WARN, "ACPI BIOS error: _PCT object returned a buffer of the wrong size\n"));
status = STATUS_ACPI_INVALID_ARGTYPE;
goto AcpiEvaluatePctExit;
}
if (pass > 1) {
//
// Too many things in the package.
//
status = STATUS_ACPI_INVALID_ARGTYPE;
goto AcpiEvaluatePctExit;
}
//
// Both package elements should contain generic addresses. So parse one.
//
status = AcpiParseGenRegDesc(arg->Data,
&genAddr);
if (!NT_SUCCESS(status)) {
goto AcpiEvaluatePctExit;
}
switch (pass) {
case 0:
//
// The first object in a _PCT should be the Perf Control Register
//
RtlCopyMemory(&((*Address)->Control), genAddr, sizeof(*genAddr));
break;
case 1:
//
// The second object in a _PCT should be the Perf Status Register
//
RtlCopyMemory(&((*Address)->Status), genAddr, sizeof(*genAddr));
}
ExFreePool(genAddr);
arg = ACPI_METHOD_NEXT_ARGUMENT(arg);
pass++;
}
AcpiEvaluatePctExit:
if (!NT_SUCCESS(status)) {
if (*Address) {
ExFreePool(*Address);
*Address = NULL;
}
}
ExFreePool(pctBuffer);
return status;
}
NTSTATUS
AcpiEvaluatePss(
IN PFDO_DATA DeviceExtension,
OUT PACPI_PSS_PACKAGE *Address
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
PACPI_EVAL_OUTPUT_BUFFER pssBuffer;
PACPI_METHOD_ARGUMENT arg, subArg;
NTSTATUS status;
ULONG subElem, pState = 0;
static UCHAR fieldOffsets[] = {
FIELD_OFFSET(ACPI_PSS_DESCRIPTOR, CoreFrequency),
FIELD_OFFSET(ACPI_PSS_DESCRIPTOR, Power),
FIELD_OFFSET(ACPI_PSS_DESCRIPTOR, Latency),
FIELD_OFFSET(ACPI_PSS_DESCRIPTOR, BmLatency),
FIELD_OFFSET(ACPI_PSS_DESCRIPTOR, Control),
FIELD_OFFSET(ACPI_PSS_DESCRIPTOR, Status)
};
DebugEnter();
PAGED_CODE();
ASSERT(Address);
*Address = 0;
status = AcpiEvaluateMethod(DeviceExtension,
"_PSS",
NULL,
&pssBuffer);
if (!NT_SUCCESS(status)) {
return status;
}
ASSERT(pssBuffer->Signature == ACPI_EVAL_OUTPUT_BUFFER_SIGNATURE);
//
// The _PSS object is a package of packages. So the number
// of objects in the _PCT method will be the number of
// sub-packages. The amount of memory we need is calculated
// from that.
//
*Address = ExAllocatePoolWithTag(NonPagedPool,
sizeof(ACPI_PSS_PACKAGE) +
(sizeof(ACPI_PSS_DESCRIPTOR) * (pssBuffer->Count - 1)),
PROCESSOR_POOL_TAG);
if (!*Address) {
status = STATUS_INSUFFICIENT_RESOURCES;
goto AcpiEvaluatePssExit;
}
(*Address)->NumPStates = (UCHAR)pssBuffer->Count;
//
// Traverse the package, parsing the elements.
//
arg = (PACPI_METHOD_ARGUMENT)pssBuffer->Argument;
while ((PUCHAR)arg < (PUCHAR)pssBuffer + pssBuffer->Length) {
//
// Each element in a _PSS should be a package.
//
if (arg->Type != ACPI_METHOD_ARGUMENT_PACKAGE) {
status = STATUS_ACPI_INVALID_ARGTYPE;
goto AcpiEvaluatePssExit;
}
//
// Traverse the inner package.
//
subElem = 0;
subArg = (PACPI_METHOD_ARGUMENT)arg->Data;
while ((PUCHAR)subArg < ((PUCHAR)arg) + arg->DataLength) {
//
// All the elements in the inner packages of
// a _PSS object should be integers.
//
if (subArg->Type != ACPI_METHOD_ARGUMENT_INTEGER) {
status = STATUS_ACPI_INVALID_ARGTYPE;
goto AcpiEvaluatePssExit;
}
if (subElem > 5) {
//
// There are too many elements in this package.
//
status = STATUS_ACPI_INVALID_ARGTYPE;
goto AcpiEvaluatePssExit;
}
//
// The next step is to fill in the proper field in the P-State
// table. Do this by indexing across pState and subElem.
//
*(PULONG)(((PUCHAR)&(*Address)->State[pState]) + fieldOffsets[subElem]) =
subArg->Argument;
subArg = ACPI_METHOD_NEXT_ARGUMENT(subArg);
subElem++;
}
arg = ACPI_METHOD_NEXT_ARGUMENT(arg);
pState++;
}
ASSERT(pState == (*Address)->NumPStates);
status = STATUS_SUCCESS;
AcpiEvaluatePssExit:
if (!NT_SUCCESS(status)) {
if (*Address) ExFreePool(*Address);
}
ExFreePool(pssBuffer);
return status;
}
NTSTATUS
AcpiEvaluatePpc(
IN PFDO_DATA DeviceExtension,
OUT ULONG *AvailablePerformanceStates
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
PACPI_EVAL_OUTPUT_BUFFER ppcBuffer;
NTSTATUS status;
DebugEnter();
PAGED_CODE();
ASSERT(AvailablePerformanceStates);
*AvailablePerformanceStates = 0;
status = AcpiEvaluateMethod(DeviceExtension,
"_PPC",
NULL,
&ppcBuffer);
if (!NT_SUCCESS(status)) {
return status;
}
ASSERT(ppcBuffer->Signature == ACPI_EVAL_OUTPUT_BUFFER_SIGNATURE);
//
// The _PPC object is an integer.
//
ASSERT(ppcBuffer->Count == 1);
ASSERT(ppcBuffer->Argument[0].Type == ACPI_METHOD_ARGUMENT_INTEGER);
*AvailablePerformanceStates = ppcBuffer->Argument[0].Argument;
ExFreePool(ppcBuffer);
return status;
}
NTSTATUS
InitializeAcpi2PStatesGeneric(
IN PFDO_DATA DeviceExtension
)
/*++
Routine Description:
This routine evaluates _PSS and _PCT, then
builds the performance state array.
Note: The caller must hold PerfStateLock.
Arguments:
DeviceExtension
Return Value:
A NTSTATUS code to indicate the result of the initialization.
--*/
{
NTSTATUS status;
PACPI_PCT_PACKAGE pctPackage = NULL;
DebugEnter();
PAGED_CODE();
//
// We automatically fail to use the Acpi 2.0 interface
//
if (Globals.HackFlags & DISABLE_ACPI20_INTERFACE_FLAG) {
DebugPrint((ERROR, " Acpi 2.0 Interface Disabled\n"));
return STATUS_NOT_FOUND;
}
//
// Fill in the DeviceExtension with _PSS and _PCT.
//
status = AcpiEvaluatePss(DeviceExtension, &DeviceExtension->PssPackage);
if (!NT_SUCCESS(status)) {
goto InitializeAcpiPerformanceStatesExit;
}
status = AcpiEvaluatePct(DeviceExtension, &pctPackage);
if (!NT_SUCCESS(status)) {
goto InitializeAcpiPerformanceStatesExit;
}
RtlCopyMemory(&(DeviceExtension->PctPackage),
pctPackage,
sizeof(ACPI_PCT_PACKAGE));
//
// The _PCT object may have pointed to registers in Memory space.
// If so, we need virtual addresses for these physical addresses.
//
if (DeviceExtension->PctPackage.Control.AddressSpaceID == AcpiGenericSpaceMemory) {
DeviceExtension->PctPackage.Control.Address.QuadPart = (ULONG_PTR)
MmMapIoSpace(DeviceExtension->PctPackage.Control.Address,
DeviceExtension->PctPackage.Control.BitWidth / 8,
MmNonCached);
if (!DeviceExtension->PctPackage.Control.Address.QuadPart) {
status = STATUS_INVALID_PARAMETER;
goto InitializeAcpiPerformanceStatesExit;
}
}
if (DeviceExtension->PctPackage.Status.AddressSpaceID == AcpiGenericSpaceMemory) {
DeviceExtension->PctPackage.Status.Address.QuadPart = (ULONG_PTR)
MmMapIoSpace(DeviceExtension->PctPackage.Status.Address,
DeviceExtension->PctPackage.Status.BitWidth / 8,
MmNonCached);
if (!DeviceExtension->PctPackage.Status.Address.QuadPart) {
status = STATUS_INVALID_PARAMETER;
goto InitializeAcpiPerformanceStatesExit;
}
}
//
// Merge these states in with other available states.
//
status = MergePerformanceStates(DeviceExtension);
//
// Notify the bios we are taking control
//
if (NT_SUCCESS(status)) {
AssumeProcessorPerformanceControl();
}
InitializeAcpiPerformanceStatesExit:
if (!NT_SUCCESS(status)) {
//
// Something went wrong. Blow away the mess.
//
if (DeviceExtension->PssPackage) {
ExFreePool(DeviceExtension->PssPackage);
DeviceExtension->PssPackage = NULL;
}
}
if (pctPackage) {
ExFreePool(pctPackage);
}
DebugExitStatus(status);
return status;
}
NTSTATUS
AcpiFindRsdt (
OUT PACPI_BIOS_MULTI_NODE *AcpiMulti
)
/*++
Routine Description:
This function looks into the registry to find the ACPI RSDT,
which was stored there by ntdetect.com.
Arguments:
RsdtPtr - Pointer to a buffer that contains the ACPI
Root System Description Pointer Structure.
The caller is responsible for freeing this
buffer. Note: This is returned in non-paged
pool.
Return Value:
A NTSTATUS code to indicate the result of the initialization.
--*/
{
UNICODE_STRING unicodeString, unicodeValueName, biosId;
OBJECT_ATTRIBUTES objectAttributes;
HANDLE hMFunc, hBus;
WCHAR wbuffer[10];
ULONG i, length;
PWSTR p;
PKEY_VALUE_PARTIAL_INFORMATION valueInfo;
NTSTATUS status;
BOOLEAN same;
PCM_PARTIAL_RESOURCE_LIST prl;
PCM_PARTIAL_RESOURCE_DESCRIPTOR prd;
PACPI_BIOS_MULTI_NODE multiNode;
ULONG multiNodeSize;
PLEGACY_GEYSERVILLE_INT15 int15Info;
DebugEnter();
PAGED_CODE();
//
// Look in the registry for the "ACPI BIOS bus" data
//
RtlInitUnicodeString (&unicodeString, rgzMultiFunctionAdapter);
InitializeObjectAttributes (&objectAttributes,
&unicodeString,
OBJ_CASE_INSENSITIVE,
NULL, // handle
NULL);
status = ZwOpenKey (&hMFunc, KEY_READ, &objectAttributes);
if (!NT_SUCCESS(status)) {
DebugPrint((ERROR, "AcpiBios:Can not open MultifunctionAdapter registry key.\n"));
return status;
}
unicodeString.Buffer = wbuffer;
unicodeString.MaximumLength = sizeof(wbuffer);
RtlInitUnicodeString(&biosId, rgzBIOSIdentifier);
for (i = 0; TRUE; i++) {
RtlIntegerToUnicodeString (i, 10, &unicodeString);
InitializeObjectAttributes (&objectAttributes,
&unicodeString,
OBJ_CASE_INSENSITIVE,
hMFunc,
NULL);
status = ZwOpenKey (&hBus, KEY_READ, &objectAttributes);
if (!NT_SUCCESS(status)) {
//
// Out of Multifunction adapter entries...
//
DebugPrint((ERROR, "AcpiBios: ACPI BIOS MultifunctionAdapter registry key not found.\n"));
ZwClose (hMFunc);
return STATUS_UNSUCCESSFUL;
}
//
// Check the Indentifier to see if this is an ACPI BIOS entry
//
status = GetRegistryValue (hBus, rgzAcpiIdentifier, &valueInfo);
if (!NT_SUCCESS (status)) {
ZwClose (hBus);
continue;
}
p = (PWSTR) ((PUCHAR) valueInfo->Data);
unicodeValueName.Buffer = p;
unicodeValueName.MaximumLength = (USHORT)valueInfo->DataLength;
length = valueInfo->DataLength;
//
// Determine the real length of the ID string
//
while (length) {
if (p[length / sizeof(WCHAR) - 1] == UNICODE_NULL) {
length -= 2;
} else {
break;
}
}
unicodeValueName.Length = (USHORT)length;
same = RtlEqualUnicodeString(&biosId, &unicodeValueName, TRUE);
ExFreePool(valueInfo);
if (!same) {
ZwClose (hBus);
continue;
}
status = GetRegistryValue(hBus, rgzAcpiConfigurationData, &valueInfo);
ZwClose (hBus);
if (!NT_SUCCESS(status)) {
continue ;
}
prl = (PCM_PARTIAL_RESOURCE_LIST)(valueInfo->Data);
prd = &prl->PartialDescriptors[0];
multiNode = (PACPI_BIOS_MULTI_NODE)((PCHAR) prd + sizeof(CM_PARTIAL_RESOURCE_LIST));
break;
}
multiNodeSize = sizeof(ACPI_BIOS_MULTI_NODE) +
((ULONG)(multiNode->Count - 1) * sizeof(ACPI_E820_ENTRY)) +
sizeof(LEGACY_GEYSERVILLE_INT15);
*AcpiMulti = (PACPI_BIOS_MULTI_NODE) ExAllocatePoolWithTag(NonPagedPool,
multiNodeSize,
PROCESSOR_POOL_TAG);
if (*AcpiMulti == NULL) {
ExFreePool(valueInfo);
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlZeroMemory(*AcpiMulti, multiNodeSize);
RtlCopyMemory(*AcpiMulti, multiNode, multiNodeSize - sizeof(LEGACY_GEYSERVILLE_INT15));
//
// Geyserville BIOS information is appended to the E820 entries. Unfortunately,
// there is no way to know if it is there. So wrap the code in a try/except.
//
try {
int15Info = (PLEGACY_GEYSERVILLE_INT15)&(multiNode->E820Entry[multiNode->Count]);
if (int15Info->Signature == 'GS') {
//
// This BIOS supports Geyserville.
//
RtlCopyMemory(((PUCHAR)*AcpiMulti + multiNodeSize - sizeof(LEGACY_GEYSERVILLE_INT15)),
int15Info,
sizeof(LEGACY_GEYSERVILLE_INT15));
}
} except (EXCEPTION_EXECUTE_HANDLER) {
*((PUSHORT)((PUCHAR)*AcpiMulti + multiNodeSize - sizeof(LEGACY_GEYSERVILLE_INT15))) = 0;
}
ExFreePool(valueInfo);
return STATUS_SUCCESS;
}
NTSTATUS
GetRegistryValue(
IN HANDLE KeyHandle,
IN PWSTR ValueName,
OUT PKEY_VALUE_PARTIAL_INFORMATION *Information
)
/*++
Routine Description:
This routine is invoked to retrieve the data for a registry key's value.
This is done by querying the value of the key with a zero-length buffer
to determine the size of the value, and then allocating a buffer and
actually querying the value into the buffer.
It is the responsibility of the caller to free the buffer.
Arguments:
KeyHandle - Supplies the key handle whose value is to be queried
ValueName - Supplies the null-terminated Unicode name of the value.
Information - Returns a pointer to the allocated data buffer.
Return Value:
The function value is the final status of the query operation.
--*/
{
UNICODE_STRING unicodeString;
NTSTATUS status;
PKEY_VALUE_PARTIAL_INFORMATION infoBuffer;
ULONG keyValueLength;
//DebugEnter();
PAGED_CODE();
RtlInitUnicodeString(&unicodeString, ValueName);
//
// Figure out how big the data value is so that a buffer of the
// appropriate size can be allocated.
//
status = ZwQueryValueKey(KeyHandle,
&unicodeString,
KeyValuePartialInformation,
(PVOID) NULL,
0,
&keyValueLength);
if (status != STATUS_BUFFER_OVERFLOW && status != STATUS_BUFFER_TOO_SMALL) {
return status;
}
//
// Allocate a buffer large enough to contain the entire key data value.
//
infoBuffer = ExAllocatePoolWithTag(PagedPool,
keyValueLength,
PROCESSOR_POOL_TAG);
if (!infoBuffer) {
return STATUS_INSUFFICIENT_RESOURCES;
}
//
// Query the data for the key value.
//
status = ZwQueryValueKey(KeyHandle,
&unicodeString,
KeyValuePartialInformation,
infoBuffer,
keyValueLength,
&keyValueLength);
if (!NT_SUCCESS(status)) {
ExFreePool(infoBuffer);
return status;
}
//
// Everything worked, so simply return the address of the allocated
// buffer to the caller, who is now responsible for freeing it.
//
*Information = infoBuffer;
return STATUS_SUCCESS;
}
PVOID
GetAcpiTable(
IN ULONG Signature
)
/*++
Routine Description:
This routine will retrieve any table referenced in the ACPI
RSDT.
Arguments:
Signature - Target table signature
Return Value:
pointer to a copy of the table, or NULL if not found
--*/
{
PACPI_BIOS_MULTI_NODE multiNode;
NTSTATUS status;
ULONG entry, rsdtEntries;
PDESCRIPTION_HEADER header;
PHYSICAL_ADDRESS physicalAddr;
PRSDT rsdt;
PVOID table = NULL;
DebugEnter();
PAGED_CODE();
status = AcpiFindRsdt(&multiNode);
if (!NT_SUCCESS(status)) {
return NULL;
}
rsdt = MmMapIoSpace(multiNode->RsdtAddress,
sizeof(RSDT) + (100 * sizeof(PHYSICAL_ADDRESS)),
MmCached);
ExFreePool(multiNode);
if (!rsdt) {
return NULL;
}
//
// Do a sanity check on the RSDT.
//
if ((rsdt->Header.Signature != RSDT_SIGNATURE) &&
(rsdt->Header.Signature != XSDT_SIGNATURE)) {
goto GetAcpiTableEnd;
}
//
// Calculate the number of entries in the RSDT.
//
rsdtEntries = rsdt->Header.Signature == XSDT_SIGNATURE ?
NumTableEntriesFromXSDTPointer(rsdt) :
NumTableEntriesFromRSDTPointer(rsdt);
//
// Look down the pointer in each entry to see if it points to
// the table we are looking for.
//
for (entry = 0; entry < rsdtEntries; entry++) {
//
// BUGBUG: should the highpart always be zero ? ie: what about PAE &
// WIN64 ? are other places in this module also susceptible to this ?
//
if (rsdt->Header.Signature == XSDT_SIGNATURE) {
physicalAddr = ((PXSDT)rsdt)->Tables[entry];
} else {
physicalAddr.HighPart = 0;
physicalAddr.LowPart = (ULONG)rsdt->Tables[entry];
}
header = MmMapIoSpace(physicalAddr,
PAGE_SIZE * 2,
MmCached);
if (!header) {
goto GetAcpiTableEnd;
}
if (header->Signature == Signature) {
break;
}
MmUnmapIoSpace(header, PAGE_SIZE * 2);
}
if (entry == rsdtEntries) {
goto GetAcpiTableEnd;
}
table = ExAllocatePoolWithTag(PagedPool,
header->Length,
PROCESSOR_POOL_TAG);
if (table) {
RtlCopyMemory(table, header, header->Length);
}
MmUnmapIoSpace(header, PAGE_SIZE * 2);
GetAcpiTableEnd:
MmUnmapIoSpace(rsdt,
sizeof(RSDT) + (100 * sizeof(PHYSICAL_ADDRESS)));
return table;
}
NTSTATUS
AcquireAcpiInterfaces(
PFDO_DATA DeviceExtension
)
/*++
Routine Description:
This routine sends an IRP to the ACPI driver to get the
funtion pointer table for the standard ACPI direct-call
interfaces.
Arguments:
DeviceExtension
Return Value:
NTSTATUS
--*/
{
KEVENT event;
NTSTATUS status, callbackStatus;
PIRP irp;
IO_STATUS_BLOCK ioStatusBlock;
PIO_STACK_LOCATION irpStack;
PACPI_INTERFACE_STANDARD acpiInterfaces = NULL;
DebugEnter();
PAGED_CODE();
ASSERT(DeviceExtension->DevicePnPState == NotStarted);
ASSERT(DeviceExtension->AcpiInterfaces == NULL);
KeInitializeEvent( &event, NotificationEvent, FALSE );
acpiInterfaces = ExAllocatePoolWithTag(PagedPool,
sizeof(ACPI_INTERFACE_STANDARD),
PROCESSOR_POOL_TAG);
if (!acpiInterfaces) {
return STATUS_INSUFFICIENT_RESOURCES;
}
irp = IoBuildSynchronousFsdRequest(IRP_MJ_PNP,
DeviceExtension->NextLowerDriver,
NULL,
0,
NULL,
&event,
&ioStatusBlock);
if (!irp) {
status = STATUS_INSUFFICIENT_RESOURCES;
goto AcquireAcpiInterfacesExit;
}
irpStack = IoGetNextIrpStackLocation(irp);
irpStack->MinorFunction = IRP_MN_QUERY_INTERFACE;
irpStack->Parameters.QueryInterface.InterfaceType = (LPGUID) &GUID_ACPI_INTERFACE_STANDARD;
irpStack->Parameters.QueryInterface.Size = sizeof(ACPI_INTERFACE_STANDARD);
irpStack->Parameters.QueryInterface.Version = 1;
irpStack->Parameters.QueryInterface.Interface = (PINTERFACE) acpiInterfaces;
irpStack->Parameters.QueryInterface.InterfaceSpecificData = NULL;
//
// Initialize the status to error in case the ACPI driver decides not to
// set it correctly.
//
irp->IoStatus.Status = STATUS_NOT_SUPPORTED ;
status = IoCallDriver( DeviceExtension->NextLowerDriver, irp );
if (!NT_SUCCESS(status)) {
goto AcquireAcpiInterfacesExit;
}
if (status == STATUS_PENDING) {
KeWaitForSingleObject( &event, Executive, KernelMode, FALSE, NULL );
status = ioStatusBlock.Status;
}
if (NT_SUCCESS(status)) {
DeviceExtension->AcpiInterfaces = acpiInterfaces;
//
// Reference the interface.
//
if (DeviceExtension->AcpiInterfaces->InterfaceReference) {
DeviceExtension->AcpiInterfaces->InterfaceReference(DeviceExtension->AcpiInterfaces->Context);
}
//
// Register for notification callbacks.
//
callbackStatus =
DeviceExtension->AcpiInterfaces->RegisterForDeviceNotifications(
DeviceExtension->UnderlyingPDO,
AcpiNotifyCallback,
DeviceExtension
);
if (!NT_SUCCESS(callbackStatus)) {
DebugAssert(!"AcpiInterfaces->RegisterForDeviceNotifications() Failed!");
if (DeviceExtension->AcpiInterfaces->InterfaceDereference) {
DeviceExtension->AcpiInterfaces->InterfaceDereference(DeviceExtension->AcpiInterfaces->Context);
}
DeviceExtension->AcpiInterfaces = NULL;
status = callbackStatus;
goto AcquireAcpiInterfacesExit;
}
}
AcquireAcpiInterfacesExit:
if (!NT_SUCCESS(status)) {
if (acpiInterfaces) {
ExFreePool(acpiInterfaces);
}
}
return status;
}
NTSTATUS
ReleaseAcpiInterfaces(
PFDO_DATA DeviceExtension
)
/*++
Routine Description:
This routine releases the ACPI interfaces.
Arguments:
DeviceExtension
Return Value:
NTSTATUS
--*/
{
DebugEnter();
PAGED_CODE();
ASSERT(DeviceExtension->DevicePnPState == Deleted);
ASSERT(DeviceExtension->AcpiInterfaces != NULL);
//
// Unregister for device notification.
//
DeviceExtension->AcpiInterfaces->UnregisterForDeviceNotifications(
DeviceExtension->UnderlyingPDO,
AcpiNotifyCallback
);
//
// Dereference the interface.
//
DeviceExtension->AcpiInterfaces->InterfaceDereference(DeviceExtension->AcpiInterfaces->Context);
DeviceExtension->AcpiInterfaces = NULL;
return STATUS_SUCCESS;
}
VOID
AcpiNotifyCallback(
PVOID Context,
ULONG NotifyCode
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
PFDO_DATA DeviceExtension = (PFDO_DATA)Context;
PIO_WORKITEM workItem;
DebugEnter();
if ((DeviceExtension->DevicePnPState != Started) ||
(DeviceExtension->LegacyInterface)) {
//
// Ignore notifications that come in while the device
// isn't started, or if we are using the legacy interface.
//
return;
}
//
// Allocate work item
//
workItem = IoAllocateWorkItem(DeviceExtension->Self);
if (!workItem) {
DebugPrint((ERROR, "IoAllocateWorkItem() Failed!\n"));
return; // STATUS_INSUFFICIENT_RESOURCES
}
switch (NotifyCode) {
case 0x80:
IoQueueWorkItem(workItem,
AcpiNotify80CallbackWorker,
DelayedWorkQueue,
workItem);
break;
case 0x81:
IoQueueWorkItem(workItem,
AcpiNotify81CallbackWorker,
DelayedWorkQueue,
workItem);
break;
default:
DebugPrint((ERROR, "Unrecognized Notify code (0x%x)\n", NotifyCode));
IoFreeWorkItem(workItem);
break;
}
return;
}
VOID
AcpiNotify80CallbackWorker(
IN PDEVICE_OBJECT DeviceObject,
IN PVOID Context
)
/*++
Routine Description:
Arguments:
DeviceObject -
Context - If we were called as part of a WorkItem, "Context" is a pointer
to the WorkItem, otherwise, this value is NULL
Return Value:
--*/
{
NTSTATUS status;
PFDO_DATA DeviceExtension = (PFDO_DATA) DeviceObject->DeviceExtension;
PPROCESSOR_PERFORMANCE_STATES oldPerfStates;
PROCESSOR_PERFORMANCE_STATES nullPerfStates = {NULL, 0, 0, 0, {0,0,0}};
DebugEnter();
PAGED_CODE();
//
// if called as WorkItem, free worker resources
//
if (Context) {
IoFreeWorkItem((PIO_WORKITEM) Context);
}
if (!DeviceExtension->PssPackage) {
//
// This machine has no _PSS package, so
// this notification shouldn't do anything.
//
return;
}
AcquireProcessorPerfStateLock(DeviceExtension);
//
// Register zero ACPI 2.0 performance states with the
// kernel so that no state gets invoked while we're
// screwing around with the DeviceExtension.
//
oldPerfStates = DeviceExtension->PerfStates;
DeviceExtension->PerfStates = &nullPerfStates;
status = RegisterStateHandlers(DeviceExtension);
//
// Need to put the orginal states back
//
DeviceExtension->PerfStates = oldPerfStates;
if (!NT_SUCCESS(status)) {
DebugAssert(!"RegisterStateHandlers(NULL PerfStates) Failed!");
goto AcpiNotify80CallbackWorkerExit;
}
//
// Calculate currently available states.
// NOTE: MergePerformanceStates will invalidate CurrentPerfState
//
status = MergePerformanceStates(DeviceExtension);
if (!NT_SUCCESS(status)) {
goto AcpiNotify80CallbackWorkerExit;
}
//
// Register new perf states with the kernel.
//
status = RegisterStateHandlers(DeviceExtension);
ASSERT(NT_SUCCESS(status));
AcpiNotify80CallbackWorkerExit:
if (!NT_SUCCESS(status)) {
//
// Something went wrong. Blow away the mess.
//
if (DeviceExtension->PerfStates) {
ExFreePool(DeviceExtension->PerfStates);
DeviceExtension->PerfStates = NULL;
DeviceExtension->CurrentPerfState = INVALID_PERF_STATE;
}
}
ReleaseProcessorPerfStateLock(DeviceExtension);
//
// Notify anyone who might be interested
//
ProcessorFireWmiEvent(DeviceExtension,
&NewPStatesEvent,
&DeviceExtension->PpcResult);
}
VOID
AcpiNotify81CallbackWorker(
IN PDEVICE_OBJECT DeviceObject,
IN PVOID Context
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
NTSTATUS status;
PFDO_DATA DeviceExtension = (PFDO_DATA) DeviceObject->DeviceExtension;
PPROCESSOR_IDLE_STATES oldCStates;
PROCESSOR_IDLE_STATES nullCStates = {0,{0,0,{0,0,0,0,{0,0}},NULL}};
DebugEnter();
PAGED_CODE();
//
// Free worker resources
//
IoFreeWorkItem((PIO_WORKITEM) Context);
if (!DeviceExtension->CstPresent) {
//
// This machine has no _CST package, so
// this notification shouldn't do anything.
//
return;
}
AcquireProcessorPerfStateLock(DeviceExtension);
//
// Register zero ACPI 2.0 performance states with the
// kernel so that no state gets invoked while we're
// screwing around with the DeviceExtension.
//
oldCStates = DeviceExtension->CStates;
DeviceExtension->CStates = &nullCStates;
status = RegisterStateHandlers(DeviceExtension);
//
// restore previous CStates
//
DeviceExtension->CStates = oldCStates;
if (!NT_SUCCESS(status)) {
DebugAssert(!"RegisterStateHandlers(NULL CStates) Failed!");
goto AcpiNotify81CallbackWorkerExit;
}
//
// Calculate currently available Cstates.
//
status = InitializeAcpi2IoSpaceCstates(DeviceExtension);
if (!NT_SUCCESS(status)) {
goto AcpiNotify81CallbackWorkerExit;
}
//
// Register new perf states with the kernel.
//
status = RegisterStateHandlers(DeviceExtension);
ASSERT(NT_SUCCESS(status));
AcpiNotify81CallbackWorkerExit:
if (!NT_SUCCESS(status)) {
//
// Something went wrong. Blow away the mess.
//
if (DeviceExtension->CStates) {
ExFreePool(DeviceExtension->CStates);
DeviceExtension->CStates = NULL;
}
}
ReleaseProcessorPerfStateLock(DeviceExtension);
//
// Notify anyone who might be interested
//
ProcessorFireWmiEvent(DeviceExtension,
&NewCStatesEvent,
NULL);
}
NTSTATUS
Acpi2PerfStateTransitionGeneric(
IN PFDO_DATA DeviceExtension,
IN ULONG State
)
/*++
Routine Description:
This routine changes the performance state of the processor
based on ACPI 2.0 performance state objects.
NOTE: This function only understands I/O and Memory addresses,
not FFH addresses.
Arguments:
State - Index into _PSS
Return Value:
none
--*/
{
ULONG statusValue = 0;
NTSTATUS status = STATUS_SUCCESS;
DebugEnter();
DebugAssert(State >= DeviceExtension->PpcResult);
DebugAssert(State < DeviceExtension->PssPackage->NumPStates);
DebugAssert(DeviceExtension->PctPackage.Control.Address.QuadPart);
DebugAssert(DeviceExtension->PctPackage.Status.Address.QuadPart);
//
// Write Control value
//
WriteGenAddr(&DeviceExtension->PctPackage.Control,
DeviceExtension->PssPackage->State[State].Control);
//
// Get Status Value
//
statusValue = ReadGenAddr(&DeviceExtension->PctPackage.Status);
//
// Check to see if the status register matches what we expect.
//
if (statusValue != DeviceExtension->PssPackage->State[State].Status) {
DebugPrint((ERROR,
"Acpi2PerfStateTransitionGeneric: Transition failed! Expected 0x%x status value, recieved 0x%x\n",
DeviceExtension->PssPackage->State[State].Status,
statusValue));
status = STATUS_UNSUCCESSFUL;
}
DebugExitStatus(status);
return status;
}
NTSTATUS
AcpiPerfStateTransition (
IN PFDO_DATA DeviceExtension,
IN ULONG State
)
/*++
Routine Description:
Arguments:
State - Index into DeviceExtension->PerfStates
Return Value:
--*/
{
//
// Legacy drivers may use the PssPackage variable, so
// we first check for legacy, all legacy drivers have
// this flag set.
//
if (DeviceExtension->LegacyInterface) {
return AcpiLegacyPerfStateTransition(DeviceExtension, State);
} else if (DeviceExtension->PssPackage) {
//
// The State index passed in reflects an index in the current PerfStates
// registered with the kernel. Must convert it to an index into the _PSS.
//
return Acpi2PerfStateTransition(DeviceExtension,
State + DeviceExtension->PpcResult);
}
return STATUS_NOT_IMPLEMENTED;
}
NTSTATUS
InitializeAcpi2IoSpaceCstates(
IN PFDO_DATA DeviceExtension
)
/*++
Routine Description:
This function looks to see if there is an ACPI 2.0 _CST object in the
namespace, and, if it is present and _does not_ contain CStates that
reference funtionly fixed hardware registers, it replaces the functions
found by InitializeAcpi1Cstates. This generic driver has no knowledge
of processor specific registers
Note: This is a little bit ridiculous, as the generic processor driver
can't possibly know how to use a C-state that it couldn't find via ACPI 1.0
means. Never-the-less, we should respect what we find in a _CST, if for no
other reason than that this code may be used as an example in a more complex
driver.
Further note: This function leaves the filling in of throttling functions
to the InitializePerformanceStates functions.
Arguments:
DeviceExtension
Return Value:
A NTSTATUS code to indicate the result of the initialization.
--*/
{
#define HIGHEST_SUPPORTED_CSTATE 3
PPROCESSOR_IDLE_STATES iStates;
PACPI_CST_PACKAGE cstData = NULL;
NTSTATUS status;
ULONG i;
UCHAR cState;
ULONG size;
DebugEnter();
PAGED_CODE();
//
// Find the _CST
//
status = AcpiEvaluateCst(DeviceExtension, &cstData);
if (!NT_SUCCESS(status)) {
goto InitializeAcpi2IoSpaceCstatesExit;
}
//
// The namespace contains a _CST package. So we should
// use it instead of ACPI 1.0 C-states.
//
if (DeviceExtension->CStates) {
//
// There were 1.0 C-states. Get rid of them.
//
ExFreePool(DeviceExtension->CStates);
DeviceExtension->CStates = NULL;
}
//
// Currently we only support 3 C States. We can't allocate based on
// the number of _CST cstates, as there may be more than we support
//
size = (sizeof(PROCESSOR_IDLE_STATE) *
(HIGHEST_SUPPORTED_CSTATE - 1)) +
sizeof(PROCESSOR_IDLE_STATES);
iStates = ExAllocatePoolWithTag(NonPagedPool,
size,
PROCESSOR_POOL_TAG);
if (!iStates) {
status = STATUS_INSUFFICIENT_RESOURCES;
goto InitializeAcpi2IoSpaceCstatesExit;
}
//
// Collect Acpi 2.0 CState info
//
DeviceExtension->CStates = iStates;
DeviceExtension->CstPresent = TRUE;
//
// We always support C1.
//
iStates->State[0].StateType = 1;
RtlZeroMemory(&(iStates->State[0].Register), sizeof(GEN_ADDR));
iStates->State[0].Latency = 0;
iStates->State[0].IdleHandler = AcpiC1Idle;
//
// We only support C2 & C3 on UP machines
//
if (!Globals.SingleProcessorProfile) {
goto InitializeAcpi2IoSpaceCstatesExit;
}
//
// Hunt through the _CST package looking for supported (and useful) states.
// NOTE: if the _CST contains multiple definitions for C2 or C3, we will
// use deepest state, ie the one that offers the greatest power savings.
//
//
// Start looking at C2
//
cState = 2;
for (i = 0; i < cstData->NumCStates; i++) {
if (cstData->State[i].StateType == cState) {
DebugPrint((INFO, "Found CState C%u\n", cState));
//
// Look ahead to see if another identicle C state with greater power
// savings exists.
//
while((i+1 < cstData->NumCStates) &&
(cstData->State[i+1].StateType == cState) &&
(cstData->State[i+1].PowerConsumption < cstData->State[i].PowerConsumption) &&
(cstData->State[i+1].Register.AddressSpaceID == AcpiGenericSpaceIO)) {
i++;
}
//
// We have found a state in the package that matches the one we're
// looking for. See if we think that it's usable. This function
// only knows how to use ACPI 1.0-compatible C-states. So anything
// that is not in I/O space is out of bounds.
//
if (cstData->State[i].Register.AddressSpaceID != AcpiGenericSpaceIO) {
DebugPrint((ERROR, "InitializeAcpi2IoSpaceCstates() only supports CStates in I/O space\n"));
continue;
}
iStates->State[cState - 1].StateType = cState;
iStates->State[cState - 1].Register = cstData->State[i].Register;
iStates->State[cState - 1].Latency = cstData->State[i].Latency;
switch (cState) {
case 2:
iStates->State[cState - 1].IdleHandler = Acpi2C2Idle;
C2Address = iStates->State[cState - 1].Register;
break;
case 3:
iStates->State[cState - 1].IdleHandler = Acpi2C3ArbdisIdle;
C3Address = iStates->State[cState - 1].Register;
break;
default:
DebugAssert(!"Found Unsupported CState")
break;
}
//
// Look for next state
//
cState++;
//
// if we found C3, then we are finished
//
if (cState > HIGHEST_SUPPORTED_CSTATE) {
break;
}
}
}
//
// "Count" represents the highest supported C State found,
// must be < MAX_IDLE_HANDLERS.
//
iStates->Count = cState - 1;
InitializeAcpi2IoSpaceCstatesExit:
if (cstData) {
ExFreePool(cstData);
}
DebugExitStatus(status);
return status;
}
VOID
AssumeProcessorPerformanceControl (
VOID
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
DebugEnter();
DebugAssert(HalpFixedAcpiDescTable.smi_cmd_io_port);
//
// In Acpi 2.0, the FADT->pstate_control contains the magic value to write to
// the SMI Command port to turn off bios control of processor performance control
//
if (HalpFixedAcpiDescTable.pstate_control) {
WRITE_PORT_UCHAR((PUCHAR)(ULONG_PTR) HalpFixedAcpiDescTable.smi_cmd_io_port,
HalpFixedAcpiDescTable.pstate_control);
}
}
VOID
AssumeCStateControl (
VOID
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
DebugEnter();
DebugAssert(HalpFixedAcpiDescTable.smi_cmd_io_port);
//
// In Acpi 2.0, the FADT->cstate_control contains the magic value to write to
// the SMI Command port to turn off bios control of Acpi 2.0 Cstates
//
if (HalpFixedAcpiDescTable.cstate_control) {
WRITE_PORT_UCHAR((PUCHAR)(ULONG_PTR) HalpFixedAcpiDescTable.smi_cmd_io_port,
HalpFixedAcpiDescTable.cstate_control);
}
}
NTSTATUS
GetRegistryDwordValue (
IN PWCHAR RegKey,
IN PWCHAR ValueName,
OUT PULONG RegData
)
/*++
Routine Description:
Arguments:
Return Value:
NTSTATUS
--*/
{
NTSTATUS ntStatus = STATUS_SUCCESS;
ULONG_PTR zero = 0;
RTL_QUERY_REGISTRY_TABLE paramTable[2] = {0}; // terminate with null table entry
paramTable[0].Flags = RTL_QUERY_REGISTRY_DIRECT;
paramTable[0].Name = ValueName;
paramTable[0].EntryContext = RegData;
paramTable[0].DefaultType = REG_DWORD;
paramTable[0].DefaultData = &zero;
paramTable[0].DefaultLength = sizeof(zero);
ntStatus = RtlQueryRegistryValues(RTL_REGISTRY_ABSOLUTE,
RegKey,
&paramTable[0],
NULL, // Context
NULL); // Environment
return ntStatus;
}
NTSTATUS
SetRegistryStringValue (
IN PWCHAR RegKey,
IN PWCHAR ValueName,
IN PWCHAR String
)
/*++
Routine Description:
Arguments:
Return Value:
NTSTATUS
--*/
{
return RtlWriteRegistryValue(RTL_REGISTRY_ABSOLUTE,
RegKey,
ValueName,
REG_SZ,
String,
(wcslen(String)+1) * sizeof(WCHAR));
}
NTSTATUS
GetRegistryStringValue (
IN PWCHAR RegKey,
IN PWCHAR ValueName,
OUT PUNICODE_STRING RegString
)
/*++
Routine Description:
Arguments:
Return Value:
NTSTATUS
--*/
{
NTSTATUS status;
ULONG_PTR zero = 0;
RTL_QUERY_REGISTRY_TABLE paramTable[2] = {0}; // terminate with null table entry
DebugEnter();
DebugAssert(RegString);
RtlZeroMemory(RegString, sizeof(UNICODE_STRING));
paramTable[0].Flags = RTL_QUERY_REGISTRY_DIRECT;
paramTable[0].Name = ValueName;
paramTable[0].EntryContext = RegString;
paramTable[0].DefaultType = REG_SZ;
paramTable[0].DefaultData = &zero;
paramTable[0].DefaultLength = sizeof(zero);
status = RtlQueryRegistryValues(RTL_REGISTRY_ABSOLUTE,
RegKey,
&paramTable[0],
NULL, // Context
NULL); // Environment
DebugExitStatus(status);
return status;
}
#ifdef _X86_
NTSTATUS
FASTCALL
SetPerfLevelGeneric(
IN UCHAR Throttle,
IN PFDO_DATA DeviceExtension
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
ULONG newState, lowestPerfState;
ULONG throttleValue;
NTSTATUS status = STATUS_SUCCESS;
//DebugEnter();
DebugAssert(DeviceExtension);
DebugPrint((TRACE, "SetPerfLevelGeneric: Throttling to %u%%\n", Throttle));
//
// Save Throttle uncase we aren't able to Throttle
//
DeviceExtension->LastRequestedThrottle = Throttle;
//
// Run through the performance states looking for one
// that matches this throttling level.
//
for (newState = 0; newState < DeviceExtension->PerfStates->Count; newState++) {
if (DeviceExtension->PerfStates->State[newState].PercentFrequency <= Throttle) {
DebugPrint((TRACE, " Found Match! PerfState = %u, Freq %u%%\n",
newState,
DeviceExtension->PerfStates->State[newState].PercentFrequency));
break;
}
}
if (newState >= DeviceExtension->PerfStates->Count) {
DebugPrint((ERROR, "Couldn't find match for throttle request of %u%%\n", Throttle));
status = STATUS_UNSUCCESSFUL;
goto SetPerfLevelGenericExit;
}
if (newState == DeviceExtension->CurrentPerfState) {
//
// No work to do.
//
goto SetPerfLevelGenericExit;
}
//
// NOTE: The current state maybe invalid ie. 0xff, this happens notify(0x80).
//
lowestPerfState = DeviceExtension->LowestPerfState;
if (newState <= lowestPerfState) {
//
// If throttling is on, turn it off.
//
if (DeviceExtension->ThrottleValue) {
ProcessorThrottle((UCHAR)HalpThrottleScale);
DeviceExtension->ThrottleValue = 0;
}
status = AcpiPerfStateTransition(DeviceExtension, newState);
} else {
//
// Throttle states/percentages are build from the lowest Perf State, make
// sure we are currently in the lowest perf state.
//
if (DeviceExtension->CurrentPerfState != lowestPerfState) {
AcpiPerfStateTransition(DeviceExtension, lowestPerfState);
}
//
// this state is a throttle state, so throttle even if the Transition to
// low volts fails.
//
throttleValue = HalpThrottleScale - (newState - lowestPerfState);
DebugAssert(throttleValue);
DebugAssert(HalpThrottleScale != throttleValue);
ProcessorThrottle((UCHAR)throttleValue);
DeviceExtension->ThrottleValue = throttleValue;
status = STATUS_SUCCESS;
}
//
// Keep track of the state we just set.
//
DeviceExtension->LastTransitionResult = status;
if (NT_SUCCESS(status)) {
DeviceExtension->CurrentPerfState = newState;
}
//
// Notify any interested parties
//
if (PStateEvent.Enabled) {
PSTATE_EVENT data;
data.State = newState;
data.Status = status;
data.Latency = 0; // latency
data.Speed = DeviceExtension->PerfStates->State[newState].Frequency;
ProcessorFireWmiEvent(DeviceExtension, &PStateEvent, &data);
}
SetPerfLevelGenericExit:
return status;
}
NTSTATUS
FASTCALL
SetThrottleLevelGeneric (
IN UCHAR Throttle,
IN PFDO_DATA DeviceExtension
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
UCHAR adjustedState;
UCHAR state;
UCHAR numAcpi2PerfStates;
DebugEnter();
DebugAssert(DeviceExtension);
DebugPrint((TRACE, " Throttling to %u%%\n", Throttle));
//
// Save Throttle in case we aren't able to Throttle
//
DeviceExtension->LastRequestedThrottle = Throttle;
//
// Run through the performance states looking for one
// that matches this throttling level.
//
for (state = 0; state < DeviceExtension->PerfStates->Count; state++) {
if (DeviceExtension->PerfStates->State[state].PercentFrequency <= Throttle) {
break;
}
}
//
// We didn't find a match, or HalpThrottleScale is incorrect.
// Either case is a problem.
//
if ((state >= DeviceExtension->PerfStates->Count) ||
(state >= HalpThrottleScale)) {
DebugAssert(!"SetThrottleLevel() Invalid state!");
return STATUS_UNSUCCESSFUL;
}
if (state == DeviceExtension->CurrentPerfState) {
return STATUS_SUCCESS;
}
//
// if state == 0, then we are turning stop throttling off.
//
ProcessorThrottle((UCHAR)HalpThrottleScale - state);
DeviceExtension->ThrottleValue = HalpThrottleScale - state;
DeviceExtension->CurrentPerfState = state;
//
// Notify any interested parties
//
if (PStateEvent.Enabled) {
PSTATE_EVENT data;
data.State = state;
data.Status = STATUS_SUCCESS;
data.Latency = 0; // latency
data.Speed = DeviceExtension->PerfStates->State[state].Frequency;
ProcessorFireWmiEvent(DeviceExtension, &PStateEvent, &data);
}
return STATUS_SUCCESS;
}
#endif
NTSTATUS
MergePerformanceStatesGeneric(
IN PFDO_DATA DeviceExtension
)
/*++
Routine Description:
This routine looks at the performance states in the device extension.
Note: The caller must hold PerfStateLock.
Arguments:
DeviceExtension
Return Value:
A NTSTATUS code to indicate the result of the initialization.
NOTE:
This is called during START_DEVICE, and after recieving a Notify(0x80)
on the processor.
--*/
{
NTSTATUS status = STATUS_SUCCESS;
ULONG oldBuffSize, newBuffSize, state;
ULONG availablePerfStates, numThrottlingStates;
ULONG lowestPerfState, lowestPerfStateFreq;
ULONG maxFreq, maxTransitionLatency = 0;
PPROCESSOR_PERFORMANCE_STATES newPerfStates;
DebugEnter();
PAGED_CODE();
//
// Find out how many performance states this machine currently supports
// by evaluating the ACPI 2.0 _PPC object.
//
if (DeviceExtension->PssPackage) {
status = BuildAvailablePerfStatesFromPss(DeviceExtension);
if (!NT_SUCCESS(status)) {
goto MergePerformanceStatesExit;
}
}
//
// We may have already found Acpi 2.0 or Legacy performance states
// we need to add those to any duty-cycle throttling states supported.
// So allocate a buffer big enough to hold them all.
//
DebugAssert(DeviceExtension->PerfStates);
availablePerfStates = DeviceExtension->PerfStates->Count;
oldBuffSize = sizeof(PROCESSOR_PERFORMANCE_STATES) +
(sizeof(PROCESSOR_PERFORMANCE_STATE) *
(availablePerfStates - 1));
//
// Calculate addition supported throttling states
//
numThrottlingStates = GetNumThrottleSettings(DeviceExtension);
availablePerfStates += numThrottlingStates;
newBuffSize = oldBuffSize +
(sizeof(PROCESSOR_PERFORMANCE_STATE) * numThrottlingStates);
newPerfStates = ExAllocatePoolWithTag(NonPagedPool,
newBuffSize,
PROCESSOR_POOL_TAG);
if (!newPerfStates) {
status = STATUS_INSUFFICIENT_RESOURCES;
goto MergePerformanceStatesExit;
}
RtlZeroMemory(newPerfStates, newBuffSize);
DebugAssert(newBuffSize >= oldBuffSize);
RtlCopyMemory(newPerfStates,
DeviceExtension->PerfStates,
oldBuffSize);
//
// Figure out which performance states to keep. At present,
// we believe that there is no advantage to throttling at any
// voltage other than the lowest. E.g. we will drop voltage until
// there is no more voltage to drop, throttling after that.
//
maxFreq = GetMaxProcFrequency(DeviceExtension);
//
// Now cycle through any throttling states, appending them if appropriate.
// PerfStates->Count - 1 is the lowest perf state. This state will be the one
// used to calculate frequency and power values from for throttling states.
//
lowestPerfState = DeviceExtension->PerfStates->Count - 1;
lowestPerfStateFreq = DeviceExtension->PerfStates->State[lowestPerfState].Frequency;
for (state = lowestPerfState + 1;
state < numThrottlingStates + lowestPerfState;
state++) {
//
// Frequency is some fraction of the lowest perf state frequency.
//
newPerfStates->State[state].Frequency = lowestPerfStateFreq *
(numThrottlingStates - (state - lowestPerfState)) / numThrottlingStates;
newPerfStates->State[state].PercentFrequency =
(UCHAR)PERCENT_TO_PERF_LEVEL((newPerfStates->State[state].Frequency * 100) / maxFreq);
DebugAssert(newPerfStates->State[state].PercentFrequency <= 100);
//
// Mark this state as a Throttling State
//
newPerfStates->State[state].Flags = PROCESSOR_STATE_TYPE_THROTTLE;
//
// Stop processing when we have found all states greater than 200mhz or
// 25% of max speed
//
#define LOWEST_USABLE_FREQUENCY 200
#define REQUIRED_THROTTLE_LEVEL 25
if ((newPerfStates->State[state].Frequency < LOWEST_USABLE_FREQUENCY) &&
(newPerfStates->State[state].PercentFrequency < REQUIRED_THROTTLE_LEVEL)) {
DebugPrint((INFO, "Droping all Perf States after state %u: Freq=%u Percent=%u\n",
state,
newPerfStates->State[state].Frequency,
newPerfStates->State[state].PercentFrequency));
break;
}
}
newPerfStates->Count = (UCHAR) state;
//
// Replace old perf states with new.
//
ExFreePool(DeviceExtension->PerfStates);
DeviceExtension->PerfStates = newPerfStates;
DeviceExtension->CurrentPerfState = INVALID_PERF_STATE;
DumpProcessorPerfStates(newPerfStates);
MergePerformanceStatesExit:
DebugExitStatus(status);
return status;
}
NTSTATUS
BuildAvailablePerfStatesFromPss (
PFDO_DATA DeviceExtension
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
NTSTATUS status;
ULONG availablePerfStates, ppcResult, perfStatesSize;
ULONG maxFreq, maxTransitionLatency = 0, state;
DebugEnter();
DebugAssert(DeviceExtension->PssPackage);
//
// if this is a legacy system, simulate the _PPC method
//
if (DeviceExtension->LegacyInterface) {
status = STATUS_SUCCESS;
ppcResult = DeviceExtension->PpcResult;
} else {
status = AcpiEvaluatePpc(DeviceExtension, &ppcResult);
}
if (!NT_SUCCESS(status)) {
goto BuildAvailablePerfStatesFromPssExit;
}
if (ppcResult > (ULONG)(DeviceExtension->PssPackage->NumPStates - 1)) {
//
// Log Error
//
QueueEventLogWrite(DeviceExtension,
PROCESSOR_PCT_ERROR,
ppcResult);
//
// change ppcResult to valid value
//
ppcResult = DeviceExtension->PssPackage->NumPStates - 1;
}
DeviceExtension->PpcResult = ppcResult;
availablePerfStates = DeviceExtension->PssPackage->NumPStates - ppcResult;
DeviceExtension->LowestPerfState = availablePerfStates - 1;
DeviceExtension->CurrentPerfState = INVALID_PERF_STATE;
//
// if there were already PerfStates, they were probably acpi 1.0 type
// throttling, so we will blow them away, because they will be recreated
// in MergePerformanceStates()
//
if (DeviceExtension->PerfStates) {
ExFreePool(DeviceExtension->PerfStates);
}
perfStatesSize = sizeof(PROCESSOR_PERFORMANCE_STATES) +
(sizeof(PROCESSOR_PERFORMANCE_STATE) *
(availablePerfStates - 1));
DeviceExtension->PerfStates = ExAllocatePoolWithTag(PagedPool,
perfStatesSize,
PROCESSOR_POOL_TAG);
if (!DeviceExtension->PerfStates) {
status = STATUS_INSUFFICIENT_RESOURCES;
goto BuildAvailablePerfStatesFromPssExit;
}
RtlZeroMemory(DeviceExtension->PerfStates,
perfStatesSize);
maxFreq = GetMaxProcFrequency(DeviceExtension);
for (state = 0; state < availablePerfStates; state++) {
//
// Fill in the _PPC states, top down.
//
DeviceExtension->PerfStates->State[state].Frequency =
DeviceExtension->PssPackage->State[state + ppcResult].CoreFrequency;
DeviceExtension->PerfStates->State[state].PercentFrequency =
PERCENT_TO_PERF_LEVEL(
(DeviceExtension->PerfStates->State[state].Frequency * 100) / maxFreq);
//
// Mark this state as a Performance State
//
DeviceExtension->PerfStates->State[state].Flags = PROCESSOR_STATE_TYPE_PERFORMANCE;
maxTransitionLatency =
MAX(maxTransitionLatency,
DeviceExtension->PssPackage->State[state + ppcResult].Latency);
}
DeviceExtension->PerfStates->TransitionLatency = maxTransitionLatency;
DeviceExtension->PerfStates->TransitionFunction = SetPerfLevel;
DeviceExtension->PerfStates->Count = state;
BuildAvailablePerfStatesFromPssExit:
DebugExitStatus(status);
return status;
}
ULONG
GetMaxProcFrequency(
PFDO_DATA DeviceExtension
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
NTSTATUS status;
ULONG frequency = 0;
static ULONG regSpeed = 0;
DebugEnter();
PAGED_CODE();
//
// First we check for Acpi 2.0 info, then NonAcpi info, and if we haven't
// yet gathered either of those, then we use the CPU speed from the registy.
//
if (DeviceExtension->PssPackage) {
frequency = DeviceExtension->PssPackage->State[0].CoreFrequency;
} else if (DeviceExtension->LegacyInterface) {
GetLegacyMaxProcFrequency(&frequency);
} else {
//
// Retrieve cpu speed from the registry.
//
if (!regSpeed) {
status = GetRegistryDwordValue(CPU0_REG_KEY,
L"~MHz",
&regSpeed);
}
frequency = regSpeed;
}
//
// We couldn't find the max speed, so we will have to guess.
//
if (!frequency) {
frequency = 650; // a reasonable guess?
}
DebugExitValue(frequency);
return frequency;
}
NTSTATUS
SaveCurrentStateGoToLowVolts(
IN PFDO_DATA DevExt
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
ULONG targetState;
DebugEnter();
//
// Throttling should be off, and if we have perf states, then we
// should be at the lowest state.
//
if (DevExt->PerfStates && (DevExt->CurrentPerfState != INVALID_PERF_STATE)) {
AcquireProcessorPerfStateLock(DevExt);
//
// Save current throttle percentage
//
DebugAssert(DevExt->CurrentPerfState < DevExt->PerfStates->Count);
DevExt->SavedState = DevExt->PerfStates->State[DevExt->CurrentPerfState].PercentFrequency;
//
// Go to lowest Performance state
//
targetState = DevExt->LowestPerfState;
if (DevExt->PerfStates->TransitionFunction) {
DevExt->PerfStates->TransitionFunction(
(UCHAR)DevExt->PerfStates->State[targetState].PercentFrequency);
}
ReleaseProcessorPerfStateLock(DevExt);
}
return STATUS_SUCCESS;
}
NTSTATUS
RestoreToSavedPerformanceState(
IN PFDO_DATA DeviceExtension
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
//
// BUG 615135: remove code that restores save processor performance state,
// as it causes the kernel to get out of sync.
//
return STATUS_SUCCESS;
}
NTSTATUS
SetProcessorPerformanceState(
IN ULONG TargetPerfState,
IN PFDO_DATA DeviceExtension
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
NTSTATUS status;
DebugEnter();
DebugAssert(DeviceExtension);
DebugPrint((TRACE, "Transitioning to state 0x%x\n", TargetPerfState));
if (TargetPerfState < DeviceExtension->PerfStates->Count) {
DeviceExtension->PerfStates->TransitionFunction(
(UCHAR)DeviceExtension->PerfStates->State[TargetPerfState].PercentFrequency);
status = STATUS_SUCCESS;
} else {
//
// not a vaild state
//
DebugPrint((TRACE, "%u is not a valid Processor Performance State\n"));
status = STATUS_UNSUCCESSFUL;
}
return status;
}
NTSTATUS
QueueEventLogWrite(
IN PFDO_DATA DeviceExtension,
IN ULONG EventErrorCode,
IN ULONG EventValue
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
PEVENT_LOG_CONTEXT context;
context = ExAllocatePoolWithTag(NonPagedPool,
sizeof(EVENT_LOG_CONTEXT),
PROCESSOR_POOL_TAG);
if (!context) {
return STATUS_INSUFFICIENT_RESOURCES;
}
context->EventErrorCode = EventErrorCode;
context->EventValue = EventValue;
context->WorkItem = IoAllocateWorkItem(DeviceExtension->Self);
if (context->WorkItem) {
//
// Log error to event log
//
IoQueueWorkItem(context->WorkItem,
ProcessEventLogEntry,
DelayedWorkQueue,
context);
return STATUS_SUCCESS;
} else {
DebugPrint((ERROR, "IoAllocateWorkItem() Failed!\n"));
ExFreePool(context);
return STATUS_INSUFFICIENT_RESOURCES;
}
}
VOID
ProcessEventLogEntry (
IN PDEVICE_OBJECT DeviceObject,
IN PVOID Context
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
WCHAR eventLogValue[11];
UNICODE_STRING eventLogErrorString;
PEVENT_LOG_CONTEXT workItem = (PEVENT_LOG_CONTEXT) Context;
PVOID string = NULL;
ULONG stringCount = 0;
DebugEnter();
DebugAssert(Context);
PAGED_CODE();
//
// Free worker resources
//
IoFreeWorkItem(workItem->WorkItem);
switch (workItem->EventErrorCode) {
case PROCESSOR_PCT_ERROR:
case PROCESSOR_INIT_TRANSITION_FAILURE:
eventLogErrorString.Buffer = eventLogValue;
eventLogErrorString.MaximumLength = sizeof(eventLogValue);
RtlIntegerToUnicodeString(workItem->EventValue, 10, &eventLogErrorString);
string = &eventLogErrorString.Buffer;
stringCount = 1;
break;
case PROCESSOR_LEGACY_INTERFACE_FAILURE:
case PROCESSOR_INITIALIZATION_FAILURE:
case PROCESSOR_REINITIALIZATION_FAILURE:
//
// no strings
//
break;
default:
DebugPrint((ERROR, "ProcessEventLogEntry: Unknown EventErrorCode\n"));
goto ProcessEventLogEntryExit;
}
//
// Write Event
//
WriteEventLogEntry(DeviceObject,
workItem->EventErrorCode,
string,
stringCount,
NULL,
0);
ProcessEventLogEntryExit:
ExFreePool(Context);
}
NTSTATUS
PowerStateHandlerNotificationRegistration (
IN PENTER_STATE_NOTIFY_HANDLER NotifyHandler,
IN PVOID Context,
IN BOOLEAN Register
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
POWER_STATE_NOTIFY_HANDLER newHandler = {0};
NTSTATUS status;
DebugEnter();
if (Register) {
DebugAssert(NotifyHandler);
newHandler.Handler = NotifyHandler;
newHandler.Context = Context;
}
status = ZwPowerInformation(SystemPowerStateNotifyHandler,
&newHandler,
sizeof(POWER_STATE_NOTIFY_HANDLER),
NULL,
0);
DebugExitStatus(status);
return status;
}
NTSTATUS
ProcessMultipleApicDescTable(
PPROCESSOR_INFO ProcInfo
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
PMAPIC mapicTable = NULL;
PUCHAR apicTable;
PUCHAR mapicTableEnd;
UCHAR apicType;
UCHAR apicSize;
DebugEnter();
DebugAssert(ProcInfo);
DebugAssert(ProcInfo->TotalProcessors == 0);
//
// Get MAPIC table
//
mapicTable = GetAcpiTable(APIC_SIGNATURE);
if (!mapicTable) {
return STATUS_UNSUCCESSFUL;
}
//
// Start of MAPIC tables
//
apicTable = (PUCHAR) mapicTable->APICTables;
//
// Calculate end of MAPIC table.
//
mapicTableEnd = (PUCHAR) mapicTable + mapicTable->Header.Length;
//
// Walk through each APIC table
//
while ((apicTable + sizeof(PROCLOCALAPIC)) <= mapicTableEnd) {
//
// individual apic tables have common header
//
apicType = ((PAPICTABLE)apicTable)->Type;
apicSize = ((PAPICTABLE)apicTable)->Length;
//
// Sanity check
//
if (!apicSize) {
DebugPrint((ERROR, "ProcessMultipleApicDescTable() table size = 0\n"));
break;
}
if (apicType == PROCESSOR_LOCAL_APIC &&
apicSize == PROCESSOR_LOCAL_APIC_LENGTH) {
PPROCLOCALAPIC procLocalApic = (PPROCLOCALAPIC) apicTable;
// toddcar - 12/08/2000: TEMP
// Should implement better method to map between processorid and ApicId.
//
//
// save Processor ID to APIC ID mappings
//
ProcInfo->ProcIdToApicId[procLocalApic->ACPIProcessorID] = procLocalApic->APICID;
ProcInfo->TotalProcessors++;
DebugAssert(ProcInfo->TotalProcessors < MAX_PROCESSOR_VALUE);
if (procLocalApic->Flags & PLAF_ENABLED) {
ProcInfo->ActiveProcessors++;
}
}
apicTable += apicSize;
}
//
// Allocated by GetAcpiTable()
//
if (mapicTable) {
ExFreePool(mapicTable);
}
return STATUS_SUCCESS;
}
extern
_inline
ULONG
GetApicId(
VOID
)
{
//
// Well known virtual address of local processor apic
//
return ((pLocalApic[LU_ID_REGISTER] & APIC_ID_MASK) >> APIC_ID_SHIFT);
}
NTSTATUS
SetProcessorFriendlyName (
PFDO_DATA DeviceExtension
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
NTSTATUS status = STATUS_UNSUCCESSFUL;
PWCHAR driverEnumKey;
PWCHAR instanceId;
PWCHAR deviceRegKey;
ULONG size;
PUCHAR cpuBrandString = NULL;
PUCHAR tmpBrandString = NULL;
ANSI_STRING ansiCpuString;
UNICODE_STRING unicodeCpuString;
UNICODE_STRING fullDeviceId;
DebugEnter();
//
// if we already have the Processor Brand String,
// we will use it.
//
if (!Globals.ProcessorBrandString) {
//
// Get size needed
//
status = GetProcessorBrandString(NULL, &size);
if (status == STATUS_NOT_SUPPORTED || !size) {
goto SetProcessorFriendlyNameExit;
}
//
// alloc some memory
//
cpuBrandString = ExAllocatePoolWithTag(PagedPool,
size,
PROCESSOR_POOL_TAG);
if (!cpuBrandString) {
status = STATUS_INSUFFICIENT_RESOURCES;
goto SetProcessorFriendlyNameExit;
}
//
// Get Brand String
//
status = GetProcessorBrandString(cpuBrandString, &size);
if (!NT_SUCCESS(status)) {
goto SetProcessorFriendlyNameExit;
}
//
// need to save orig pointer for the free
//
tmpBrandString = cpuBrandString;
//
// some Processors include leading spaces, removed them
//
while (tmpBrandString[0] == 0x20) {
tmpBrandString++;
}
//
// Convert ansi string to wide
//
RtlInitAnsiString(&ansiCpuString, tmpBrandString);
status = RtlAnsiStringToUnicodeString(&unicodeCpuString,
&ansiCpuString,
TRUE);
if (!NT_SUCCESS(status)) {
goto SetProcessorFriendlyNameExit;
}
Globals.ProcessorBrandString = unicodeCpuString.Buffer;
}
//
// construct registy path for current pocessor device
//
//
// Construct driver enum path...
// HKLM\Machine\System\CurrentControlSet\Services\P3+\+Enum
// 2 == "\" + NULL
//
size = Globals.RegistryPath.Length +
((wcslen(EnumKeyName) + 2) * sizeof(WCHAR));
driverEnumKey = ExAllocatePoolWithTag(PagedPool, size, PROCESSOR_POOL_TAG);
if (!driverEnumKey) {
status = STATUS_INSUFFICIENT_RESOURCES;
goto SetProcessorFriendlyNameExit;
}
//
// construct enum registry path for current device
//
_snwprintf(driverEnumKey,
size,
L"%s\\%s",
Globals.RegistryPath.Buffer,
EnumKeyName);
//
// Get Instance Id string
//
status = GetInstanceId(DeviceExtension, &instanceId);
if (!NT_SUCCESS(status)) {
goto SetProcessorFriendlyNameExit;
}
//
// get Bus\DeviceId\InstanceId path from driver's enum key
//
GetRegistryStringValue(driverEnumKey,
instanceId,
&fullDeviceId);
ExFreePool(driverEnumKey);
ExFreePool(instanceId); // allocated inside GetInstanceId
//
// alloc enough memory for entire regkey path
// 2 == "\" + NULL
//
size = fullDeviceId.Length + ((wcslen(CCSEnumRegKey) + 2) * sizeof(WCHAR));
deviceRegKey = ExAllocatePoolWithTag(PagedPool, size, PROCESSOR_POOL_TAG);
if (!deviceRegKey) {
status = STATUS_INSUFFICIENT_RESOURCES;
goto SetProcessorFriendlyNameExit;
}
//
// construct enum registry path for current device
//
_snwprintf(deviceRegKey,
size,
L"%s\\%s",
CCSEnumRegKey,
fullDeviceId.Buffer);
//
// create "FriendlyName" regkey for processor device
//
status = SetRegistryStringValue(deviceRegKey,
(PWCHAR)FriendlyNameRegKey,
Globals.ProcessorBrandString);
ExFreePool(deviceRegKey);
ExFreePool(fullDeviceId.Buffer);
SetProcessorFriendlyNameExit:
if (cpuBrandString) {
ExFreePool(cpuBrandString);
}
DebugExitStatus(status);
return status;
}
NTSTATUS
GetHardwareId(
PFDO_DATA DeviceExtension
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
NTSTATUS status;
KEVENT event;
PIRP irp;
IO_STATUS_BLOCK ioStatusBlock;
PIO_STACK_LOCATION irpStack;
DebugEnter();
KeInitializeEvent(&event, NotificationEvent, FALSE);
irp = IoBuildSynchronousFsdRequest(IRP_MJ_PNP,
DeviceExtension->NextLowerDriver,
NULL,
0,
NULL,
&event,
&ioStatusBlock);
if (!irp) {
status = STATUS_INSUFFICIENT_RESOURCES;
goto GetHardwareIdExit;
}
irpStack = IoGetNextIrpStackLocation(irp);
irpStack->MinorFunction = IRP_MN_QUERY_ID;
irpStack->Parameters.QueryId.IdType = BusQueryDeviceID;
irp->IoStatus.Status = STATUS_NOT_SUPPORTED;
status = IoCallDriver(DeviceExtension->NextLowerDriver, irp);
if (status == STATUS_PENDING) {
KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL);
status = ioStatusBlock.Status;
}
if (NT_SUCCESS(status)) {
DebugPrint((ERROR, "DeviceId == %S\n", ioStatusBlock.Information));
}
GetHardwareIdExit:
DebugExitStatus(status);
return status;
}
NTSTATUS
GetInstanceId(
PFDO_DATA DeviceExtension,
PWCHAR *InstanceId
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
NTSTATUS status;
KEVENT event;
PIRP irp;
ULONG idSize;
IO_STATUS_BLOCK ioStatusBlock;
PIO_STACK_LOCATION irpStack;
DebugEnter();
DebugAssert(InstanceId);
KeInitializeEvent(&event, NotificationEvent, FALSE);
irp = IoBuildSynchronousFsdRequest(IRP_MJ_PNP,
DeviceExtension->NextLowerDriver,
NULL,
0,
NULL,
&event,
&ioStatusBlock);
if (!irp) {
status = STATUS_INSUFFICIENT_RESOURCES;
goto GetHardwareIdExit;
}
irpStack = IoGetNextIrpStackLocation(irp);
irpStack->MinorFunction = IRP_MN_QUERY_ID;
irpStack->Parameters.QueryId.IdType = BusQueryInstanceID;
irp->IoStatus.Status = STATUS_NOT_SUPPORTED;
status = IoCallDriver(DeviceExtension->NextLowerDriver, irp);
if (status == STATUS_PENDING) {
KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL);
status = ioStatusBlock.Status;
}
//
// remove leading white spaces
//
if (NT_SUCCESS(status)) {
PWCHAR idString = (PWCHAR)ioStatusBlock.Information;
//
// remove leading white space
//
while(idString[0] == 0x20) {
idString++;
}
idSize = (wcslen(idString) + 1) * sizeof(WCHAR);
*InstanceId = ExAllocatePoolWithTag(PagedPool, idSize, PROCESSOR_POOL_TAG);
if (!(*InstanceId)) {
status = STATUS_INSUFFICIENT_RESOURCES;
goto GetHardwareIdExit;
}
RtlCopyMemory(*InstanceId, idString, idSize);
//
// Free ID structure
//
ExFreePool((PWCHAR)ioStatusBlock.Information);
}
GetHardwareIdExit:
DebugExitStatus(status);
return status;
}
__inline
NTSTATUS
AcquireProcessorPerfStateLock (
IN PFDO_DATA DevExt
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
return KeWaitForSingleObject(&DevExt->PerfStateLock,
Executive,
KernelMode,
FALSE,
NULL);
}
__inline
NTSTATUS
ReleaseProcessorPerfStateLock (
IN PFDO_DATA DevExt
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
return KeSetEvent(&DevExt->PerfStateLock, IO_NO_INCREMENT, FALSE);
}
#if DBG
VOID
DumpCStates(
PACPI_CST_PACKAGE CStates
)
{
ULONG x;
PACPI_CST_DESCRIPTOR cState;
DebugAssert(CStates);
DebugPrint((TRACE, "\n"));
DebugPrint((TRACE, "_CST:\n"));
DebugPrint((TRACE, "Found %u C-states\n", CStates->NumCStates));
DebugPrint((TRACE, "\n"));
for (x=0; x < CStates->NumCStates; x++) {
cState = &CStates->State[x];
DebugPrint((TRACE, "State #%u:\n", x));
DebugPrint((TRACE, " Register:\n"));
DebugPrint((TRACE, " AddressSpaceID: 0x%x\n", cState->Register.AddressSpaceID));
DebugPrint((TRACE, " BitWidth: 0x%x\n", cState->Register.BitWidth));
DebugPrint((TRACE, " BitOffset: 0x%x\n", cState->Register.BitOffset));
DebugPrint((TRACE, " Reserved: 0x%x\n", cState->Register.Reserved));
DebugPrint((TRACE, " Address: 0x%I64x\n", cState->Register.Address));
DebugPrint((TRACE, "\n"));
DebugPrint((TRACE, " State Type: C%u\n", cState->StateType));
DebugPrint((TRACE, " Latency: %u us\n", cState->Latency));
DebugPrint((TRACE, " Power Consumption: %u mW\n", cState->PowerConsumption));
DebugPrint((TRACE, "\n"));
}
}
#endif