windows-nt/Source/XPSP1/NT/base/ntos/mm/alpha/mialpha.h
2020-09-26 16:20:57 +08:00

2789 lines
60 KiB
C
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (c) 1990 Microsoft Corporation
Copyright (c) 1992 Digital Equipment Corporation
Module Name:
mialpha.h
Abstract:
This module contains the private data structures and procedure
prototypes for the hardware dependent portion of the
memory management system.
It is specifically tailored for the DEC ALPHA architecture.
Author:
Lou Perazzoli (loup) 12-Mar-1990
Joe Notarangelo 23-Apr-1992 ALPHA version
Revision History:
--*/
/*++
Virtual Memory Layout on an ALPHA is:
+------------------------------------+
00000000 | |
| |
| |
| User Mode Addresses |
| |
| All pages within this range |
| are potentially accessible while |
| the CPU is in USER mode. |
| |
| |
+------------------------------------+
7ffff000 | 64k No Access Area |
+------------------------------------+
80000000 | | KSEG_0
| HAL loads kernel and initial |
| boot drivers in first 16mb |
| of this region. |
| Kernel mode access only. |
| |
| Initial NonPaged Pool is within |
| KEG_0 |
| |
+------------------------------------+
C0000000 | Page Table Pages mapped through |
| this 16mb region |
| Kernel mode access only. |
| (only using 2MB) |
+------------------------------------+
C1000000 | HyperSpace - working set lists |
| and per process memory management |
| structures mapped in this 16mb |
| region. |
| Kernel mode access only. |
+------------------------------------+
C2000000 | VLM PTEs |
| |
| |
+------------------------------------+
C3000000 | System Cache Structures |
| reside in this 16mb region |
| Kernel mode access only. |
+------------------------------------+
C4000000 | System cache resides here. |
| Kernel mode access only. |
| |
| |
+------------------------------------+
DE000000 | System mapped views |
| |
| |
+------------------------------------+
E1000000 | Start of paged system area |
| Kernel mode access only. |
| |
| |
| |
F0000000 +------------------------------------+
| |
| Kernel mode access only. |
| |
| |
| NonPaged System area |
+------------------------------------+
FE000000 | |
| Reserved for the HAL. |
| |
| |
FFFFFFFF | |
+------------------------------------+
--*/
#define _MI_PAGING_LEVELS 2
//
// Define empty list markers.
//
#define MM_EMPTY_LIST ((ULONG)0xFFFFFFFF) //
#define MM_EMPTY_PTE_LIST ((ULONG)0xFFFFF) // N.B. tied to MMPTE definition
#define MI_PTE_BASE_FOR_LOWEST_KERNEL_ADDRESS (MiGetPteAddress (0x80000000))
//
// Define start of KSEG0.
//
#define MM_KSEG0_BASE ((ULONG)0x80000000)
//
// Address space definitions.
//
#define MmProtopte_Base ((ULONG)0xE1000000)
#define PTE_TOP (0xC01FFFFF)
#define PDE_TOP (0xC01FFFFF)
#define PDE_BASE64 ((ULONG)0xC0184000)
#define PTE_BASE64 ((ULONG)0xC2000000)
#define MM_PAGES_IN_KSEG0 (((ULONG)KSEG2_BASE - (ULONG)KSEG0_BASE) >> PAGE_SHIFT)
#define MM_USER_ADDRESS_RANGE_LIMIT 0xFFFFFFFF // user address range limit
#define MM_MAXIMUM_ZERO_BITS 21 // maximum number of zero bits
#define MM_SYSTEM_SPACE_START (0xC3000000)
#define MM_SYSTEM_CACHE_START (0xC4000000)
#define MM_SYSTEM_CACHE_END (0xDE000000)
#define MM_SESSION_SPACE_DEFAULT (0xDE000000)
#define MM_MAXIMUM_SYSTEM_CACHE_SIZE \
( ((ULONG)MM_SYSTEM_CACHE_END - (ULONG)MM_SYSTEM_CACHE_START) >> PAGE_SHIFT )
#define MM_SYSTEM_CACHE_WORKING_SET (0xC3000000)
//
// Define area for mapping views into system space.
//
#define MM_SYSTEM_VIEW_START (0xDE000000)
#define MM_SYSTEM_VIEW_SIZE (16*1024*1024)
#define MM_PAGED_POOL_START ((PVOID)0xE1000000)
#define MM_LOWEST_NONPAGED_SYSTEM_START ((PVOID)0xEB000000)
#define MM_NONPAGED_POOL_END ((PVOID)(0xFE000000-(16*PAGE_SIZE)))
#define NON_PAGED_SYSTEM_END ((PVOID)0xFFFFFFF0) //quadword aligned.
#define MM_SYSTEM_SPACE_END (0xFFFFFFFF)
#define HYPER_SPACE_END (0xC1FFFFFF)
//
// Define absolute minimum and maximum count for system PTEs.
//
#define MM_MINIMUM_SYSTEM_PTES 5000
#define MM_MAXIMUM_SYSTEM_PTES 20000
#define MM_DEFAULT_SYSTEM_PTES 11000
//
// Pool limits.
//
//
// The maximum amount of nonpaged pool that can be initially created.
//
#define MM_MAX_INITIAL_NONPAGED_POOL ((ULONG)(128*1024*1024))
//
// The total amount of nonpaged expansion pool.
//
#define MM_MAX_ADDITIONAL_NONPAGED_POOL ((ULONG)(128*1024*1024))
//
// The maximum amount of paged pool that can be created.
//
#define MM_MAX_PAGED_POOL ((ULONG)(240*1024*1024))
//
// Define the maximum default for pool (user specified 0 in registry).
//
#define MM_MAX_DEFAULT_NONPAGED_POOL ((ULONG)(128*1024*1024))
#define MM_MAX_DEFAULT_PAGED_POOL ((ULONG)(128*1024*1024))
//
// The maximum total pool.
//
#define MM_MAX_TOTAL_POOL \
(((ULONG)MM_NONPAGED_POOL_END) - ((ULONG)MM_PAGED_POOL_START))
//
// Granularity Hint definitions
//
//
// Granularity Hint = 3, page size = 8**3 * PAGE_SIZE
//
#define GH3 (3)
#define GH3_PAGE_SIZE (PAGE_SIZE << 9)
//
// Granularity Hint = 2, page size = 8**2 * PAGE_SIZE
//
#define GH2 (2)
#define GH2_PAGE_SIZE (PAGE_SIZE << 6)
//
// Granularity Hint = 1, page size = 8**1 * PAGE_SIZE
//
#define GH1 (1)
#define GH1_PAGE_SIZE (PAGE_SIZE << 3)
//
// Granularity Hint = 0, page size = PAGE_SIZE
//
#define GH0 (0)
#define GH0_PAGE_SIZE PAGE_SIZE
//
// Physical memory size and boundary constants.
//
#define __1GB (0x40000000)
//
// PAGE_SIZE for ALPHA (at least current implementation) is 8k
// PAGE_SHIFT bytes for an offset leaves 19
//
#define MM_VIRTUAL_PAGE_FILLER 1
#define MM_VIRTUAL_PAGE_SIZE 19
#define MM_PROTO_PTE_ALIGNMENT ((ULONG)MM_MAXIMUM_NUMBER_OF_COLORS * (ULONG)PAGE_SIZE)
//
// Define maximum number of paging files
//
#define MAX_PAGE_FILES (8)
#define PAGE_DIRECTORY_MASK ((ULONG)0x00FFFFFF)
#define MM_VA_MAPPED_BY_PDE (0x1000000)
#define LOWEST_IO_ADDRESS (0)
#define PTE_SHIFT (2)
//
// 64-bit VA support.
//
#if 0
#define MM_LOWEST_USER_ADDRESS64 ((PVOID64)(0x100000000))
#define MM_HIGHEST_USER_ADDRESS64 ((PVOID64)(0x7FFFFFFFF))
#endif
#define MM_HIGHEST_VAD_ADDRESS64 ((PVOID64)(0x800000000))
//
// Number of physical address bits, maximum for ALPHA architecture = 48.
//
#define PHYSICAL_ADDRESS_BITS (48)
#define MM_MAXIMUM_NUMBER_OF_COLORS (1)
//
// i386 does not require support for colored pages.
//
#define MM_NUMBER_OF_COLORS (1)
//
// Mask for obtaining color from a physical page number.
//
#define MM_COLOR_MASK (0)
//
// Boundary for aligned pages of like color upon.
//
#define MM_COLOR_ALIGNMENT (0)
//
// Mask for isolating color from virtual address.
//
#define MM_COLOR_MASK_VIRTUAL (0)
//
// Define 1mb worth of secondary colors.
//
#define MM_SECONDARY_COLORS_DEFAULT ((1024*1024) >> PAGE_SHIFT)
#define MM_SECONDARY_COLORS_MIN (2)
#define MM_SECONDARY_COLORS_MAX (2048)
//
// Hyper space definitions.
//
#define HYPER_SPACE ((PVOID)0xC1000000)
#define FIRST_MAPPING_PTE ((ULONG)0xC1000000)
#define NUMBER_OF_MAPPING_PTES (1023)
#define LAST_MAPPING_PTE \
((ULONG)((ULONG)FIRST_MAPPING_PTE + (NUMBER_OF_MAPPING_PTES * PAGE_SIZE)))
#define IMAGE_MAPPING_PTE ((PMMPTE)((ULONG)LAST_MAPPING_PTE + PAGE_SIZE))
#define ZEROING_PAGE_PTE ((PMMPTE)((ULONG)IMAGE_MAPPING_PTE + PAGE_SIZE))
#define WORKING_SET_LIST ((PVOID)((ULONG)ZEROING_PAGE_PTE + PAGE_SIZE))
#define MM_MAXIMUM_WORKING_SET \
((ULONG)((ULONG)2*1024*1024*1024 - 64*1024*1024) >> PAGE_SHIFT) //2Gb-64Mb
#define MM_WORKING_SET_END ((ULONG)0xC2000000)
#define MmWorkingSetList ((PMMWSL)WORKING_SET_LIST)
#define MmWsle ((PMMWSLE)((PUCHAR)WORKING_SET_LIST + sizeof(MMWSL)))
#define MM_PTE_VALID_MASK (0x1)
#define MM_PTE_PROTOTYPE_MASK (0x2)
#define MM_PTE_DIRTY_MASK (0x4)
#define MM_PTE_TRANSITION_MASK (0x4)
#define MM_PTE_GLOBAL_MASK (0x10)
#define MM_PTE_WRITE_MASK (0x80)
#define MM_PTE_COPY_ON_WRITE_MASK (0x100)
#define MM_PTE_OWNER_MASK (0x2)
//
// Bit fields to or into PTE to make a PTE valid based on the
// protection field of the invalid PTE.
//
#define MM_PTE_NOACCESS (0x0) // not expressable on ALPHA
#define MM_PTE_READONLY (0x0)
#define MM_PTE_READWRITE (MM_PTE_WRITE_MASK)
#define MM_PTE_WRITECOPY (MM_PTE_WRITE_MASK | MM_PTE_COPY_ON_WRITE_MASK)
#define MM_PTE_EXECUTE (0x0) // read-only on ALPHA
#define MM_PTE_EXECUTE_READ (0x0)
#define MM_PTE_EXECUTE_READWRITE (MM_PTE_WRITE_MASK)
#define MM_PTE_EXECUTE_WRITECOPY (MM_PTE_WRITE_MASK | MM_PTE_COPY_ON_WRITE_MASK)
#define MM_PTE_NOCACHE (0x0) // not expressable on ALPHA
#define MM_PTE_GUARD (0x0) // not expressable on ALPHA
#define MM_PTE_CACHE (0x0)
#define MM_PROTECT_FIELD_SHIFT 3
//
// Bits available for the software working set index within the hardware PTE.
//
#define MI_MAXIMUM_PTE_WORKING_SET_INDEX 0
//
// Zero PTE
//
#define MM_ZERO_PTE 0
//
// Zero Kernel PTE
//
#define MM_ZERO_KERNEL_PTE 0
//
// A demand zero PTE with a protection or PAGE_READWRITE.
//
#define MM_DEMAND_ZERO_WRITE_PTE (MM_READWRITE << MM_PROTECT_FIELD_SHIFT)
//
// A demand zero PTE with a protection or PAGE_READWRITE for system space.
//
#define MM_KERNEL_DEMAND_ZERO_PTE (MM_READWRITE << MM_PROTECT_FIELD_SHIFT)
//
// A no access PTE for system space.
//
#define MM_KERNEL_NOACCESS_PTE (MM_NOACCESS << MM_PROTECT_FIELD_SHIFT)
//
// Dirty bit definitions for clean and dirty.
//
#define MM_PTE_CLEAN 0
#define MM_PTE_DIRTY 1
//
// Kernel stack alignment requirements.
//
#define MM_STACK_ALIGNMENT (0x0)
#define MM_STACK_OFFSET (0x0)
//
// System process definitions
//
#define PDE_PER_PAGE ((ULONG)256)
#define PTE_PER_PAGE ((ULONG)2048)
//
// Number of page table pages for user addresses.
//
#define MM_USER_PAGE_TABLE_PAGES (128)
//++
//VOID
//MI_MAKE_VALID_PTE (
// OUT OUTPTE,
// IN FRAME,
// IN PMASK,
// IN PPTE
// );
//
// Routine Description:
//
// This macro makes a valid PTE from a page frame number, protection mask,
// and owner.
//
// Arguments
//
// OUTPTE - Supplies the PTE in which to build the transition PTE.
//
// FRAME - Supplies the page frame number for the PTE.
//
// PMASK - Supplies the protection to set in the transition PTE.
//
// PPTE - Supplies a pointer to the PTE which is being made valid.
// For prototype PTEs NULL should be specified.
//
// Return Value:
//
// None.
//
//--
#define MI_MAKE_VALID_PTE(OUTPTE,FRAME,PMASK,PPTE) \
{ \
(OUTPTE).u.Long = ( (FRAME << 9) | \
(MmProtectToPteMask[PMASK]) | \
MM_PTE_VALID_MASK ); \
(OUTPTE).u.Hard.Owner = MI_DETERMINE_OWNER(PPTE); \
if (((PMMPTE)PPTE) >= MiGetPteAddress(MM_SYSTEM_SPACE_START)) { \
if (MI_IS_SESSION_PTE((PMMPTE)PPTE)) { \
(OUTPTE).u.Hard.Global = 0; \
} else { \
(OUTPTE).u.Hard.Global = 1; \
} \
} else { \
(OUTPTE).u.Hard.Global = 0; \
} \
}
//++
//VOID
//MI_MAKE_VALID_PTE_TRANSITION (
// IN OUT OUTPTE
// IN PROTECT
// );
//
// Routine Description:
//
// This macro takes a valid pte and turns it into a transition PTE.
//
// Arguments
//
// OUTPTE - Supplies the current valid PTE. This PTE is then
// modified to become a transition PTE.
//
// PROTECT - Supplies the protection to set in the transition PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_MAKE_VALID_PTE_TRANSITION(OUTPTE,PROTECT) \
(OUTPTE).u.Soft.Transition = 1; \
(OUTPTE).u.Soft.Valid = 0; \
(OUTPTE).u.Soft.Prototype = 0; \
(OUTPTE).u.Soft.Protection = PROTECT;
//++
//VOID
//MI_MAKE_TRANSITION_PTE (
// OUT OUTPTE,
// IN PAGE,
// IN PROTECT,
// IN PPTE
// );
//
// Routine Description:
//
// This macro takes a valid pte and turns it into a transition PTE.
//
// Arguments
//
// OUTPTE - Supplies the PTE in which to build the transition PTE.
//
// PAGE - Supplies the page frame number for the PTE.
//
// PROTECT - Supplies the protection to set in the transition PTE.
//
// PPTE - Supplies a pointer to the PTE, this is used to determine
// the owner of the PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_MAKE_TRANSITION_PTE(OUTPTE,PAGE,PROTECT,PPTE) \
(OUTPTE).u.Long = 0; \
(OUTPTE).u.Trans.PageFrameNumber = PAGE; \
(OUTPTE).u.Trans.Transition = 1; \
(OUTPTE).u.Trans.Protection = PROTECT;
//++
//VOID
//MI_MAKE_TRANSITION_PTE_VALID (
// OUT OUTPTE,
// IN PPTE
// );
//
// Routine Description:
//
// This macro takes a transition pte and makes it a valid PTE.
//
// Arguments
//
// OUTPTE - Supplies the PTE in which to build the valid PTE.
//
// PPTE - Supplies a pointer to the transition PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_MAKE_TRANSITION_PTE_VALID(OUTPTE,PPTE) \
(OUTPTE).u.Long = (((PPTE)->u.Long & 0xFFFFFE00) | \
(MmProtectToPteMask[(PPTE)->u.Trans.Protection]) | \
MM_PTE_VALID_MASK); \
(OUTPTE).u.Hard.Owner = MI_DETERMINE_OWNER( PPTE ); \
if (((PMMPTE)PPTE) >= MiGetPteAddress(MM_SYSTEM_SPACE_START)) { \
if (MI_IS_SESSION_PTE((PMMPTE)PPTE)) { \
(OUTPTE).u.Hard.Global = 0; \
} else { \
(OUTPTE).u.Hard.Global = 1; \
} \
} else { \
(OUTPTE).u.Hard.Global = 0; \
}
//++
//VOID
//MI_SET_PTE_IN_WORKING_SET (
// OUT PMMPTE PTE,
// IN ULONG WSINDEX
// );
//
// Routine Description:
//
// This macro inserts the specified working set index into the argument PTE.
// Since the Alpha32 PTE has no free bits nothing needs to be done on this
// architecture.
//
// Arguments
//
// OUTPTE - Supplies the PTE in which to insert the working set index.
//
// WSINDEX - Supplies the working set index for the PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_SET_PTE_IN_WORKING_SET(PTE, WSINDEX)
//++
//ULONG WsIndex
//MI_GET_WORKING_SET_FROM_PTE(
// IN PMMPTE PTE
// );
//
// Routine Description:
//
// This macro returns the working set index from the argument PTE.
// Since the Alpha32 PTE has no free bits nothing needs to be done on this
// architecture.
//
// Arguments
//
// PTE - Supplies the PTE to extract the working set index from.
//
// Return Value:
//
// This macro returns the working set index for the argument PTE.
//
//--
#define MI_GET_WORKING_SET_FROM_PTE(PTE) 0
//++
//VOID
//MI_SET_PTE_WRITE_COMBINE (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro sets the write combined bit(s) in the specified PTE.
//
// Arguments
//
// PTE - Supplies the PTE to set dirty.
//
// Return Value:
//
// None.
//
//--
#define MI_SET_PTE_WRITE_COMBINE(PTE)
//++
//VOID
//MI_SET_PTE_DIRTY (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro sets the dirty bit(s) in the specified PTE.
//
// Arguments
//
// PTE - Supplies the PTE to set dirty.
//
// Return Value:
//
// None.
//
//--
#define MI_SET_PTE_DIRTY(PTE) (PTE).u.Hard.Dirty = MM_PTE_DIRTY
//++
//VOID
//MI_SET_PTE_CLEAN (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro clears the dirty bit(s) in the specified PTE.
//
// Arguments
//
// PTE - Supplies the PTE to set clear.
//
// Return Value:
//
// None.
//
//--
#define MI_SET_PTE_CLEAN(PTE) (PTE).u.Hard.Dirty = MM_PTE_CLEAN
//++
//VOID
//MI_IS_PTE_DIRTY (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro checks the dirty bit(s) in the specified PTE.
//
// Arguments
//
// PTE - Supplies the PTE to check.
//
// Return Value:
//
// TRUE if the page is dirty (modified), FALSE otherwise.
//
//--
#define MI_IS_PTE_DIRTY(PTE) ((PTE).u.Hard.Dirty != MM_PTE_CLEAN)
//++
//VOID
//MI_SET_GLOBAL_BIT_IF_SYSTEM (
// OUT OUTPTE,
// IN PPTE
// );
//
// Routine Description:
//
// This macro sets the global bit if the pointer PTE is within
// system space.
//
// Arguments
//
// OUTPTE - Supplies the PTE in which to build the valid PTE.
//
// PPTE - Supplies a pointer to the PTE becoming valid.
//
// Return Value:
//
// None.
//
//--
// Global not implemented in software PTE for Alpha
#define MI_SET_GLOBAL_BIT_IF_SYSTEM(OUTPTE,PPTE)
//++
//VOID
//MI_SET_GLOBAL_STATE (
// IN MMPTE PTE,
// IN ULONG STATE
// );
//
// Routine Description:
//
// This macro sets the global bit in the PTE. if the pointer PTE is within
//
// Arguments
//
// PTE - Supplies the PTE to set global state into.
//
// Return Value:
//
// None.
//
//--
#define MI_SET_GLOBAL_STATE(PTE,STATE) \
(PTE).u.Hard.Global = STATE;
//++
//VOID
//MI_ENABLE_CACHING (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro takes a valid PTE and sets the caching state to be
// enabled.
//
// Arguments
//
// PTE - Supplies a valid PTE.
//
// Return Value:
//
// None.
//
//--
// not implemented on ALPHA
#define MI_ENABLE_CACHING(PTE)
//++
//VOID
//MI_DISABLE_CACHING (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro takes a valid PTE and sets the caching state to be
// disabled.
//
// Arguments
//
// PTE - Supplies a valid PTE.
//
// Return Value:
//
// None.
//
//--
// not implemented on ALPHA
#define MI_DISABLE_CACHING(PTE)
//++
//BOOLEAN
//MI_IS_CACHING_DISABLED (
// IN PMMPTE PPTE
// );
//
// Routine Description:
//
// This macro takes a valid PTE and returns TRUE if caching is
// disabled.
//
// Arguments
//
// PPTE - Supplies a pointer to the valid PTE.
//
// Return Value:
//
// TRUE if caching is disabled, FALSE if it is enabled.
//
//--
// caching is always on for ALPHA
#define MI_IS_CACHING_DISABLED(PPTE) (FALSE)
//++
//VOID
//MI_SET_PFN_DELETED (
// IN PMMPFN PPFN
// );
//
// Routine Description:
//
// This macro takes a pointer to a PFN element and indicates that
// the PFN is no longer in use.
//
// Arguments
//
// PPTE - Supplies a pointer to the PFN element.
//
// Return Value:
//
// none.
//
//--
#define MI_SET_PFN_DELETED(PPFN) \
(((ULONG)(PPFN)->PteAddress &= (ULONG)0x7FFFFFFF))
//++
//BOOLEAN
//MI_IS_PFN_DELETED (
// IN PMMPFN PPFN
// );
//
// Routine Description:
//
// This macro takes a pointer to a PFN element and determines if
// the PFN is no longer in use.
//
// Arguments
//
// PPTE - Supplies a pointer to the PFN element.
//
// Return Value:
//
// TRUE if PFN is no longer used, FALSE if it is still being used.
//
//--
#define MI_IS_PFN_DELETED(PPFN) \
( ( (ULONG)((PPFN)->PteAddress) & 0x80000000 ) == 0 )
//++
//VOID
//MI_CHECK_PAGE_ALIGNMENT (
// IN ULONG PAGE,
// IN ULONG COLOR
// );
//
// Routine Description:
//
// This macro takes a PFN element number (Page) and checks to see
// if the virtual alignment for the previous address of the page
// is compatible with the new address of the page. If they are
// not compatible, the D cache is flushed.
//
// Arguments
//
// PAGE - Supplies the PFN element.
// COLOR - Supplies the new page color of the page.
//
// Return Value:
//
// none.
//
//--
#define MI_CHECK_PAGE_ALIGNMENT(PAGE,COLOR)
//++
//VOID
//MI_INITIALIZE_HYPERSPACE_MAP (
// VOID
// );
//
// Routine Description:
//
// This macro initializes the PTEs reserved for double mapping within
// hyperspace.
//
// Arguments
//
// None.
//
// Return Value:
//
// None.
//
//--
// not implemented for ALPHA, we use super-pages
#define MI_INITIALIZE_HYPERSPACE_MAP(HYPER_PAGE)
//++
//ULONG
//MI_GET_PAGE_COLOR_FROM_PTE (
// IN PMMPTE PTEADDRESS
// );
//
// Routine Description:
//
// This macro determines the pages color based on the PTE address
// that maps the page.
//
// Arguments
//
// PTEADDRESS - Supplies the PTE address the page is (or was) mapped at.
//
// Return Value:
//
// The page's color.
//
//--
#define MI_GET_PAGE_COLOR_FROM_PTE(PTEADDRESS) \
((ULONG)((MI_SYSTEM_PAGE_COLOR++) & MmSecondaryColorMask))
//++
//ULONG
//MI_GET_PAGE_COLOR_FROM_VA (
// IN PVOID ADDRESS
// );
//
// Routine Description:
//
// This macro determines the pages color based on the PTE address
// that maps the page.
//
// Arguments
//
// ADDRESS - Supplies the address the page is (or was) mapped at.
//
// Return Value:
//
// The pages color.
//
//--
#define MI_GET_PAGE_COLOR_FROM_VA(ADDRESS) \
((ULONG)((MI_SYSTEM_PAGE_COLOR++) & MmSecondaryColorMask))
//++
//ULONG
//MI_GET_PAGE_COLOR_FROM_SESSION (
// IN PMM_SESSION_SPACE SessionSpace
// );
//
// Routine Description:
//
// This macro determines the page's color based on the PTE address
// that maps the page.
//
// Arguments
//
// SessionSpace - Supplies the session space the page will be mapped into.
//
// Return Value:
//
// The page's color.
//
//--
#define MI_GET_PAGE_COLOR_FROM_SESSION(_SessionSpace) \
((ULONG)((_SessionSpace->Color++) & MmSecondaryColorMask))
//++
//ULONG
//MI_PAGE_COLOR_PTE_PROCESS (
// IN PMMPTE PTE,
// IN PUSHORT COLOR
// );
//
// Routine Description:
//
// Select page color for this process.
//
// Arguments
//
// PTE Not used.
// COLOR Value from which color is determined. This
// variable is incremented.
//
// Return Value:
//
// Page color.
//
//--
#define MI_PAGE_COLOR_PTE_PROCESS(PTE,COLOR) \
((ULONG)((*(COLOR))++) & MmSecondaryColorMask)
//++
//ULONG
//MI_PAGE_COLOR_VA_PROCESS (
// IN PVOID ADDRESS,
// IN PEPROCESS COLOR
// );
//
// Routine Description:
//
// This macro determines the pages color based on the PTE address
// that maps the page.
//
// Arguments
//
// ADDRESS - Supplies the address the page is (or was) mapped at.
//
// Return Value:
//
// The pages color.
//
//--
#define MI_PAGE_COLOR_VA_PROCESS(ADDRESS,COLOR) \
((ULONG)((*(COLOR))++) & MmSecondaryColorMask)
//++
//ULONG
//MI_GET_NEXT_COLOR (
// IN ULONG COLOR
// );
//
// Routine Description:
//
// This macro returns the next color in the sequence.
//
// Arguments
//
// COLOR - Supplies the color to return the next of.
//
// Return Value:
//
// Next color in sequence.
//
//--
#define MI_GET_NEXT_COLOR(COLOR) ((COLOR+1) & MM_COLOR_MASK)
//++
//ULONG
//MI_GET_PREVIOUS_COLOR (
// IN ULONG COLOR
// );
//
// Routine Description:
//
// This macro returns the previous color in the sequence.
//
// Arguments
//
// COLOR - Supplies the color to return the previous of.
//
// Return Value:
//
// Previous color in sequence.
//
//--
#define MI_GET_PREVIOUS_COLOR(COLOR) ((COLOR-1) & MM_COLOR_MASK)
#define MI_GET_SECONDARY_COLOR(PAGE,PFN) (PAGE & MmSecondaryColorMask)
#define MI_GET_COLOR_FROM_SECONDARY(SECONDARY_COLOR) (0)
//++
//VOID
//MI_GET_MODIFIED_PAGE_BY_COLOR (
// OUT ULONG PAGE,
// IN ULONG COLOR
// );
//
// Routine Description:
//
// This macro returns the first page destined fro a paging
// file with the desired color. It does NOT remove the page
// from its list.
//
// Arguments
//
// PAGE - Returns the page located, the value MM_EMPTY_LIST is
// returned if there is no page of the specified color.
//
// COLOR - Supplies the color of page to locate.
//
// Return Value:
//
// None.
//
//--
#define MI_GET_MODIFIED_PAGE_BY_COLOR(PAGE,COLOR) \
PAGE = MmModifiedPageListByColor[COLOR].Flink
//++
//VOID
//MI_GET_MODIFIED_PAGE_ANY_COLOR (
// OUT ULONG PAGE,
// IN OUT ULONG COLOR
// );
//
// Routine Description:
//
// This macro returns the first page destined for a paging
// file with the desired color. If not page of the desired
// color exists, all colored lists are searched for a page.
// It does NOT remove the page from its list.
//
// Arguments
//
// PAGE - Returns the page located, the value MM_EMPTY_LIST is
// returned if there is no page of the specified color.
//
// COLOR - Supplies the color of the page to locate and returns the
// color of the page located.
//
// Return Value:
//
// None.
//
//--
#define MI_GET_MODIFIED_PAGE_ANY_COLOR(PAGE,COLOR) \
{ \
if( MmTotalPagesForPagingFile == 0 ){ \
PAGE = MM_EMPTY_LIST; \
} else { \
while( MmModifiedPageListByColor[COLOR].Flink == MM_EMPTY_LIST ){ \
COLOR = MI_GET_NEXT_COLOR(COLOR); \
} \
PAGE = MmModifiedPageListByColor[COLOR].Flink; \
} \
}
//++
//VOID
//MI_MAKE_VALID_PTE_WRITE_COPY (
// IN OUT PMMPTE PTE
// );
//
// Routine Description:
//
// This macro checks to see if the PTE indicates that the
// page is writable and if so it clears the write bit and
// sets the copy-on-write bit.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// None.
//
//--
#define MI_MAKE_VALID_PTE_WRITE_COPY(PPTE) \
if ((PPTE)->u.Hard.Write == 1) { \
(PPTE)->u.Hard.CopyOnWrite = 1; \
(PPTE)->u.Hard.Dirty = MM_PTE_CLEAN; \
}
//++
//ULONG
//MI_DETERMINE_OWNER (
// IN MMPTE PPTE
// );
//
// Routine Description:
//
// This macro examines the virtual address of the PTE and determines
// if the PTE resides in system space or user space.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// 1 if the owner is USER_MODE, 0 if the owner is KERNEL_MODE.
//
//--
#define MI_DETERMINE_OWNER(PPTE) \
(((PMMPTE)(PPTE) <= MiHighestUserPte) ? 1 : 0)
//++
//VOID
//MI_SET_ACCESSED_IN_PTE (
// IN OUT MMPTE PPTE
// );
//
// Routine Description:
//
// This macro sets the ACCESSED field in the PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// 1 if the owner is USER_MODE, 0 if the owner is KERNEL_MODE.
//
//--
#define MI_SET_ACCESSED_IN_PTE(PPTE,ACCESSED)
//++
//ULONG
//MI_GET_ACCESSED_IN_PTE (
// IN OUT MMPTE PPTE
// );
//
// Routine Description:
//
// This macro returns the state of the ACCESSED field in the PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// The state of the ACCESSED field.
//
//--
#define MI_GET_ACCESSED_IN_PTE(PPTE) 0
//++
//VOID
//MI_SET_OWNER_IN_PTE (
// IN PMMPTE PPTE
// IN ULONG OWNER
// );
//
// Routine Description:
//
// This macro sets the owner field in the PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// None.
//
//--
#define MI_SET_OWNER_IN_PTE(PPTE,OWNER) \
( (PPTE)->u.Hard.Owner = OWNER )
//++
//ULONG
//MI_GET_OWNER_IN_PTE (
// IN PMMPTE PPTE
// );
//
// Routine Description:
//
// This macro gets the owner field from the PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// The state of the OWNER field.
//
//--
#define MI_GET_OWNER_IN_PTE(PPTE) \
( (PPTE)->u.Hard.Owner )
//
// bit mask to clear out fields in a PTE to or in prototype pte offset.
//
#define CLEAR_FOR_PROTO_PTE_ADDRESS ((ULONG)0x7)
// bit mask to clear out fields in a PTE to or in paging file location.
#define CLEAR_FOR_PAGE_FILE 0x000000F8
//++
//VOID
//MI_SET_PAGING_FILE_INFO (
// OUT MMPTE OUTPTE,
// IN MMPTE PPTE,
// IN ULONG FILEINFO,
// IN ULONG OFFSET
// );
//
// Routine Description:
//
// This macro sets into the specified PTE the supplied information
// to indicate where the backing store for the page is located.
//
// Arguments
//
// OUTPTE - Supplies the PTE in which to store the result.
//
// PTE - Supplies the PTE to operate upon.
//
// FILEINFO - Supplies the number of the paging file.
//
// OFFSET - Supplies the offset into the paging file.
//
// Return Value:
//
// None.
//
//--
#define MI_SET_PAGING_FILE_INFO(OUTPTE,PPTE,FILEINFO,OFFSET) \
(OUTPTE).u.Long = (PPTE).u.Long; \
(OUTPTE).u.Long &= CLEAR_FOR_PAGE_FILE; \
(OUTPTE).u.Long |= ((((FILEINFO) & 0xF) << 8) | ((OFFSET) << 12));
//++
//PMMPTE
//MiPteToProto (
// IN OUT MMPTE PPTE,
// IN ULONG FILEINFO,
// IN ULONG OFFSET
// );
//
// Routine Description:
//
// This macro returns the address of the corresponding prototype which
// was encoded earlier into the supplied PTE.
//
// NOTE THAT A PROTOPTE CAN ONLY RESIDE IN PAGED POOL!!!!!!
//
// MAX SIZE = 2^(2+7+21) = 2^30 = 1GB.
//
// NOTE, that the valid bit must be zero!
//
// Arguments
//
// lpte - Supplies the PTE to operate upon.
//
// Return Value:
//
// Pointer to the prototype PTE that backs this PTE.
//
//--
//
//
#define MiPteToProto(lpte) \
( (PMMPTE)( ( ((lpte)->u.Long >> 4 ) << 2 ) + \
MmProtopte_Base ) )
//++
//ULONG
//MiProtoAddressForPte (
// IN PMMPTE proto_va
// );
//
// Routine Description:
//
// This macro sets into the specified PTE the supplied information
// to indicate where the backing store for the page is located.
// MiProtoAddressForPte returns the bit field to OR into the PTE to
// reference a prototype PTE. And set the protoPTE bit,
// MM_PTE_PROTOTYPE_MASK.
//
// Arguments
//
// proto_va - Supplies the address of the prototype PTE.
//
// Return Value:
//
// Mask to set into the PTE.
//
//--
#define MiProtoAddressForPte(proto_va) \
(((((ULONG)proto_va - MmProtopte_Base) << 2) & 0xfffffff0) | \
MM_PTE_PROTOTYPE_MASK )
//++
//ULONG
//MiProtoAddressForKernelPte (
// IN PMMPTE proto_va
// );
//
// Routine Description:
//
// This macro sets into the specified PTE the supplied information
// to indicate where the backing store for the page is located.
// MiProtoAddressForPte returns the bit field to OR into the PTE to
// reference a prototype PTE. And set the protoPTE bit,
// MM_PTE_PROTOTYPE_MASK.
//
// This macro also sets any other information (such as global bits)
// required for kernel mode PTEs.
//
// Arguments
//
// proto_va - Supplies the address of the prototype PTE.
//
// Return Value:
//
// Mask to set into the PTE.
//
//--
// not different on alpha.
#define MiProtoAddressForKernelPte(proto_va) MiProtoAddressForPte(proto_va)
#define MM_SUBSECTION_MAP (128*1024*1024)
//++
//PSUBSECTION
//MiGetSubsectionAddress (
// IN PMMPTE lpte
// );
//
// Routine Description:
//
// This macro takes a PTE and returns the address of the subsection that
// the PTE refers to. Subsections are quadword structures allocated
// from nonpaged pool.
//
// NOTE THIS MACRO LIMITS THE SIZE OF NON-PAGED POOL!
// MAXIMUM NONPAGED POOL = 2^(24+3) = 2^27 = 128 MB in both pools.
//
//
// Arguments
//
// lpte - Supplies the PTE to operate upon.
//
// Return Value:
//
// A pointer to the subsection referred to by the supplied PTE.
//
//--
#define MiGetSubsectionAddress(lpte) \
( ((lpte)->u.Subsect.WhichPool == 1) ? \
((PSUBSECTION)((ULONG)MmSubsectionBase + \
(((lpte)->u.Long >> 8) << 3) )) \
: ((PSUBSECTION)((ULONG)MM_NONPAGED_POOL_END - \
(((lpte)->u.Long >> 8) << 3))) )
//++
//ULONG
//MiGetSubsectionAddressForPte (
// IN PSUBSECTION VA
// );
//
// Routine Description:
//
// This macro takes the address of a subsection and encodes it for use
// in a PTE.
//
// NOTE - THE SUBSECTION ADDRESS MUST BE QUADWORD ALIGNED!
//
// Arguments
//
// VA - Supplies a pointer to the subsection to encode.
//
// Return Value:
//
// The mask to set into the PTE to make it reference the supplied
// subsection.
//
//--
#define MiGetSubsectionAddressForPte(VA) \
( ((ULONG)VA < (ULONG)KSEG2_BASE) ? \
( (((ULONG)VA - (ULONG)MmSubsectionBase) << 5) | 0x4 ) \
: ( (((ULONG)MM_NONPAGED_POOL_END - (ULONG)VA) << 5 ) ) )
//++
//PMMPTE
//MiGetPdeAddress (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPdeAddress returns the address of the PDE which maps the
// given virtual address.
//
// Arguments
//
// Va - Supplies the virtual address to locate the PDE for.
//
// Return Value:
//
// The address of the PDE.
//
//--
#define MiGetPdeAddress(va) \
((PMMPTE)(((((ULONG)(va)) >> PDI_SHIFT) << 2) + PDE_BASE))
#define MiGetPdeAddress64(va) \
((PMMPTE)((ULONG)((((ULONGLONG)(va)) >> PDI_SHIFT) << 2) + PDE_BASE64))
//++
//PMMPTE
//MiGetPteAddress (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPteAddress returns the address of the PTE which maps the
// given virtual address.
//
// Arguments
//
// Va - Supplies the virtual address to locate the PTE for.
//
// Return Value:
//
// The address of the PTE.
//
//--
#define MiGetPteAddress(va) \
((PMMPTE)(((((ULONG)(va)) >> PTI_SHIFT) << 2) + PTE_BASE))
#define MiGetPteAddress64(va) \
((PMMPTE)((ULONG)((((ULONGLONG)(va)) >> PTI_SHIFT) << 2) + PTE_BASE64))
//++
//ULONG
//MiGetPpeOffset (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPpeOffset returns the offset into a page root
// for a given virtual address.
//
// Arguments
//
// Va - Supplies the virtual address to locate the offset for.
//
// Return Value:
//
// The offset into the page root table the corresponding PPE is at.
//
//--
#define MiGetPpeOffset(va) (0)
//++
//ULONG
//MiGetPdeOffset (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPdeOffset returns the offset into a page directory
// for a given virtual address.
//
// Arguments
//
// Va - Supplies the virtual address to locate the offset for.
//
// Return Value:
//
// The offset into the page directory table the corresponding PDE is at.
//
//--
#define MiGetPdeOffset(va) (((ULONG)(va)) >> PDI_SHIFT)
//++
//ULONG
//MiGetPdeIndex (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPdeIndex returns the page directory index
// for a given virtual address.
//
// Arguments
//
// Va - Supplies the virtual address to locate the offset for.
//
// Return Value:
//
// The index into the page directory - ie: the virtual page table number.
// This is different from the page directory offset because this spans
// page directories on supported platforms.
//
//--
#define MiGetPdeIndex MiGetPdeOffset
//++
//ULONG
//MiGetPteOffset (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPteOffset returns the offset into a page table page
// for a given virtual address.
//
// Arguments
//
// Va - Supplies the virtual address to locate the offset for.
//
// Return Value:
//
// The offset into the page table page table the corresponding PTE is at.
//
//--
#define MiGetPteOffset(va) \
( (((ULONG)(va)) << (32-PDI_SHIFT)) >> ((32-PDI_SHIFT) + PTI_SHIFT) )
//++
//PVOID
//MiGetVirtualAddressMappedByPpe (
// IN PMMPTE PTE
// );
//
// Routine Description:
//
// MiGetVirtualAddressMappedByPpe returns the virtual address
// which is mapped by a given PPE address.
//
// Arguments
//
// PPE - Supplies the PPE to get the virtual address for.
//
// Return Value:
//
// Virtual address mapped by the PPE.
//
//--
#define MiGetVirtualAddressMappedByPpe(PPE) (NULL)
//++
//PVOID
//MiGetVirtualAddressMappedByPde (
// IN PMMPTE PDE
// );
//
// Routine Description:
//
// MiGetVirtualAddressMappedByPte returns the virtual address
// which is mapped by a given PDE address.
//
// Arguments
//
// PDE - Supplies the PDE to get the virtual address for.
//
// Return Value:
//
// Virtual address mapped by the PDE.
//
//--
#define MiGetVirtualAddressMappedByPde(va) \
((PVOID)((ULONG)(va) << (PDI_SHIFT-2)))
//++
//PVOID
//MiGetVirtualAddressMappedByPte (
// IN PMMPTE PTE
// );
//
// Routine Description:
//
// MiGetVirtualAddressMappedByPte returns the virtual address
// which is mapped by a given PTE address.
//
// Arguments
//
// PTE - Supplies the PTE to get the virtual address for.
//
// Return Value:
//
// Virtual address mapped by the PTE.
//
//--
#define MiGetVirtualAddressMappedByPte(va) \
((PVOID)((ULONG)(va) << (PAGE_SHIFT-2)))
#define MiGetVirtualAddressMappedByPte64(PTE) \
((PVOID64)(((ULONGLONG)((ULONG)(PTE) - PTE_BASE64)) << 11))
#define MiGetVirtualPageNumberMappedByPte64(PTE) \
(((ULONG)(PTE) - PTE_BASE64) >> 2)
//++
//LOGICAL
//MiIsVirtualAddressOnPpeBoundary (
// IN PVOID VA
// );
//
// Routine Description:
//
// MiIsVirtualAddressOnPpeBoundary returns TRUE if the virtual address is
// on a page directory entry boundary.
//
// Arguments
//
// VA - Supplies the virtual address to check.
//
// Return Value:
//
// TRUE if on a boundary, FALSE if not.
//
//--
#define MiIsVirtualAddressOnPpeBoundary(VA) (FALSE)
//++
//LOGICAL
//MiIsVirtualAddressOnPdeBoundary (
// IN PVOID VA
// );
//
// Routine Description:
//
// MiIsVirtualAddressOnPdeBoundary returns TRUE if the virtual address is
// on a page directory entry boundary.
//
// Arguments
//
// VA - Supplies the virtual address to check.
//
// Return Value:
//
// TRUE if on a 4MB PDE boundary, FALSE if not.
//
//--
#define MiIsVirtualAddressOnPdeBoundary(VA) (((ULONG_PTR)(VA) & PAGE_DIRECTORY_MASK) == 0)
//++
//LOGICAL
//MiIsPteOnPdeBoundary (
// IN PVOID PTE
// );
//
// Routine Description:
//
// MiIsPteOnPdeBoundary returns TRUE if the PTE is
// on a page directory entry boundary.
//
// Arguments
//
// PTE - Supplies the PTE to check.
//
// Return Value:
//
// TRUE if on a 16MB PDE boundary, FALSE if not.
//
//--
#define MiIsPteOnPdeBoundary(PTE) (((ULONG_PTR)(PTE) & (PAGE_SIZE - 1)) == 0)
//++
//ULONG
//GET_PAGING_FILE_NUMBER (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro extracts the paging file number from a PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// The paging file number.
//
//--
#define GET_PAGING_FILE_NUMBER(PTE) ( ((PTE).u.Long << 20) >> 28 )
//++
//ULONG
//GET_PAGING_FILE_OFFSET (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro extracts the offset into the paging file from a PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// The paging file offset.
//
//--
#define GET_PAGING_FILE_OFFSET(PTE) ((((PTE).u.Long) >> 12) & 0x000FFFFF)
//++
//ULONG
//IS_PTE_NOT_DEMAND_ZERO (
// IN PMMPTE PPTE
// );
//
// Routine Description:
//
// This macro checks to see if a given PTE is NOT a demand zero PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// Returns 0 if the PTE is demand zero, non-zero otherwise.
//
//--
#define IS_PTE_NOT_DEMAND_ZERO(PTE) ((PTE).u.Long & (ULONG)0xFFFFFF01)
//++
//VOID
//MI_MAKING_VALID_PTE_INVALID(
// IN PMMPTE PPTE
// );
//
// Routine Description:
//
// Prepare to make a single valid PTE invalid.
// No action is required on x86.
//
// Arguments
//
// SYSTEM_WIDE - Supplies TRUE if this will happen on all processors.
//
// Return Value:
//
// None.
//
//--
// No action is required.
#define MI_MAKING_VALID_PTE_INVALID(SYSTEM_WIDE)
//++
//VOID
//MI_MAKING_VALID_MULTIPLE_PTES_INVALID(
// IN PMMPTE PPTE
// );
//
// Routine Description:
//
// Prepare to make multiple valid PTEs invalid.
// No action is required on x86.
//
// Arguments
//
// SYSTEM_WIDE - Supplies TRUE if this will happen on all processors.
//
// Return Value:
//
// None.
//
//--
// No action is required.
#define MI_MAKING_MULTIPLE_PTES_INVALID(SYSTEM_WIDE)
//++
//VOID
//MI_MAKE_PROTECT_WRITE_COPY (
// IN OUT MMPTE PPTE
// );
//
// Routine Description:
//
// This macro makes a writable PTE a writable-copy PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// NONE
//
//--
#define MI_MAKE_PROTECT_WRITE_COPY(PTE) \
if ((PTE).u.Long & 0x20) { \
((PTE).u.Long |= 0x8); \
}
//++
//VOID
//MI_SET_PAGE_DIRTY(
// IN PMMPTE PPTE,
// IN PVOID VA,
// IN PVOID PFNHELD
// );
//
// Routine Description:
//
// This macro sets the dirty bit (and release page file space).
//
// Arguments
//
// TEMP - Supplies a temporary for usage.
//
// PPTE - Supplies a pointer to the PTE that corresponds to VA.
//
// VA - Supplies a the virtual address of the page fault.
//
// PFNHELD - Supplies TRUE if the PFN lock is held.
//
// Return Value:
//
// None.
//
//--
#define MI_SET_PAGE_DIRTY(PPTE,VA,PFNHELD) \
if ((PPTE)->u.Hard.Dirty == MM_PTE_CLEAN) { \
MiSetDirtyBit ((VA),(PPTE),(PFNHELD)); \
}
//++
//VOID
//MI_NO_FAULT_FOUND(
// IN TEMP,
// IN PMMPTE PPTE,
// IN PVOID VA,
// IN PVOID PFNHELD
// );
//
// Routine Description:
//
// This macro handles the case when a page fault is taken and no
// PTE with the valid bit clear is found.
//
// Arguments
//
// TEMP - Supplies a temporary for usage.
//
// PPTE - Supplies a pointer to the PTE that corresponds to VA.
//
// VA - Supplies a the virtual address of the page fault.
//
// PFNHELD - Supplies TRUE if the PFN lock is held.
//
// Return Value:
//
// None.
//
//--
#define MI_NO_FAULT_FOUND(TEMP,PPTE,VA,PFNHELD) \
if (StoreInstruction && ((PPTE)->u.Hard.Dirty == MM_PTE_CLEAN)) { \
MiSetDirtyBit ((VA),(PPTE),(PFNHELD)); \
} else { \
KiFlushSingleTb( 1, VA ); \
}
//++
//ULONG
//MI_CAPTURE_DIRTY_BIT_TO_PFN (
// IN PMMPTE PPTE,
// IN PMMPFN PPFN
// );
//
// Routine Description:
//
// This macro gets captures the state of the dirty bit to the PFN
// and frees any associated page file space if the PTE has been
// modified element.
//
// NOTE - THE PFN LOCK MUST BE HELD!
//
// Arguments
//
// PPTE - Supplies the PTE to operate upon.
//
// PPFN - Supplies a pointer to the PFN database element that corresponds
// to the page mapped by the PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_CAPTURE_DIRTY_BIT_TO_PFN(PPTE,PPFN) \
if (((PPFN)->u3.e1.Modified == 0) && \
((PPTE)->u.Hard.Dirty == MM_PTE_DIRTY)) { \
(PPFN)->u3.e1.Modified = 1; \
if (((PPFN)->OriginalPte.u.Soft.Prototype == 0) && \
((PPFN)->u3.e1.WriteInProgress == 0)) { \
MiReleasePageFileSpace ((PPFN)->OriginalPte); \
(PPFN)->OriginalPte.u.Soft.PageFileHigh = 0; \
} \
}
//++
//BOOLEAN
//MI_IS_PHYSICAL_ADDRESS (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro determines if a give virtual address is really a
// physical address.
//
// Arguments
//
// VA - Supplies the virtual address.
//
// Return Value:
//
// FALSE if it is not a physical address, TRUE if it is.
//
//--
#define MI_IS_PHYSICAL_ADDRESS(Va) \
( ((ULONG)Va >= KSEG0_BASE) && ((ULONG)Va < KSEG2_BASE) )
//++
//ULONG
//MI_CONVERT_PHYSICAL_TO_PFN (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro converts a physical address (see MI_IS_PHYSICAL_ADDRESS)
// to its corresponding physical frame number.
//
// Arguments
//
// VA - Supplies a pointer to the physical address.
//
// Return Value:
//
// Returns the PFN for the page.
//
//--
#define MI_CONVERT_PHYSICAL_TO_PFN(Va) \
(((ULONG)Va << 2) >> (PAGE_SHIFT + 2))
//++
// ULONG
// MI_CONVERT_PHYSICAL_BUS_TO_PFN(
// PHYSICAL_ADDRESS Pa,
// )
//
// Routine Description:
//
// This macro takes a physical address and returns the pfn to which
// it corresponds.
//
// Arguments
//
// Pa - Supplies the physical address to convert.
//
// Return Value:
//
// The Pfn that corresponds to the physical address is returned.
//
//--
#define MI_CONVERT_PHYSICAL_BUS_TO_PFN(Pa) \
((ULONG)( (Pa).QuadPart >> ((CCHAR)PAGE_SHIFT)))
typedef struct _MMCOLOR_TABLES {
ULONG Flink;
PVOID Blink;
} MMCOLOR_TABLES, *PMMCOLOR_TABLES;
typedef struct _MMPRIMARY_COLOR_TABLES {
LIST_ENTRY ListHead;
} MMPRIMARY_COLOR_TABLES, *PMMPRIMARY_COLOR_TABLES;
#if MM_MAXIMUM_NUMBER_OF_COLORS > 1
extern MMPFNLIST MmFreePagesByPrimaryColor[2][MM_MAXIMUM_NUMBER_OF_COLORS];
#endif
extern PMMCOLOR_TABLES MmFreePagesByColor[2];
extern ULONG MmTotalPagesForPagingFile;
#define MI_PTE_LOOKUP_NEEDED (0xfffff)
//
// The hardware PTE is defined in ...sdk/inc/ntalpha.h
//
//
// Invalid PTEs have the following definition.
//
typedef struct _MMPTE_SOFTWARE {
ULONG Valid: 1;
ULONG Prototype : 1;
ULONG Transition : 1;
ULONG Protection : 5;
ULONG PageFileLow : 4;
ULONG PageFileHigh : 20;
} MMPTE_SOFTWARE;
typedef struct _MMPTE_TRANSITION {
ULONG Valid : 1;
ULONG Prototype : 1;
ULONG Transition : 1;
ULONG Protection : 5;
ULONG filler01 : 1;
ULONG PageFrameNumber : 23;
} MMPTE_TRANSITION;
typedef struct _MMPTE_PROTOTYPE {
ULONG Valid : 1;
ULONG Prototype : 1;
ULONG ReadOnly : 1;
ULONG filler02 : 1;
ULONG ProtoAddress : 28;
} MMPTE_PROTOTYPE;
typedef struct _MMPTE_LIST {
ULONG Valid : 1;
ULONG filler07 : 7;
ULONG OneEntry : 1;
ULONG filler03 : 3;
ULONG NextEntry : 20;
} MMPTE_LIST;
typedef struct _MMPTE_SUBSECTION {
ULONG Valid : 1;
ULONG Prototype : 1;
ULONG WhichPool : 1;
ULONG Protection : 5;
ULONG SubsectionAddress : 24;
} MMPTE_SUBSECTION;
//
// A Valid Page Table Entry on a DEC ALPHA (ev4) has the following definition.
//
//
//
//typedef struct _HARDWARE_PTE {
// ULONG Valid: 1;
// ULONG Owner: 1;
// ULONG Dirty: 1;
// ULONG reserved: 1;
// ULONG Global: 1;
// ULONG filler2: 2;
// ULONG Write: 1;
// ULONG CopyOnWrite: 1;
// ULONG PageFrameNumber: 23;
//} HARDWARE_PTE, *PHARDWARE_PTE;
//
#define MI_GET_PAGE_FRAME_FROM_PTE(PTE) ((PTE)->u.Hard.PageFrameNumber)
#define MI_GET_PAGE_FRAME_FROM_TRANSITION_PTE(PTE) ((PTE)->u.Trans.PageFrameNumber)
#define MI_GET_PROTECTION_FROM_SOFT_PTE(PTE) ((PTE)->u.Soft.Protection)
#define MI_GET_PROTECTION_FROM_TRANSITION_PTE(PTE) ((PTE)->u.Trans.Protection)
//
// A Page Table Entry on a DEC ALPHA (ev4) has the following definition.
//
typedef struct _MMPTE {
union {
ULONG Long;
HARDWARE_PTE Hard;
HARDWARE_PTE Flush;
MMPTE_PROTOTYPE Proto;
MMPTE_SOFTWARE Soft;
MMPTE_TRANSITION Trans;
MMPTE_LIST List;
MMPTE_SUBSECTION Subsect;
} u;
} MMPTE;
typedef MMPTE *PMMPTE;
//++
//VOID
//MI_WRITE_VALID_PTE (
// IN PMMPTE PointerPte,
// IN MMPTE PteContents
// );
//
// Routine Description:
//
// MI_WRITE_VALID_PTE fills in the specified PTE making it valid with the
// specified contents.
//
// Arguments
//
// PointerPte - Supplies a PTE to fill.
//
// PteContents - Supplies the contents to put in the PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_WRITE_VALID_PTE(_PointerPte, _PteContents) \
(*(_PointerPte) = (_PteContents))
//++
//VOID
//MI_WRITE_INVALID_PTE (
// IN PMMPTE PointerPte,
// IN MMPTE PteContents
// );
//
// Routine Description:
//
// MI_WRITE_INVALID_PTE fills in the specified PTE making it invalid with the
// specified contents.
//
// Arguments
//
// PointerPte - Supplies a PTE to fill.
//
// PteContents - Supplies the contents to put in the PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_WRITE_INVALID_PTE(_PointerPte, _PteContents) \
(*(_PointerPte) = (_PteContents))
//++
//VOID
//MI_WRITE_VALID_PTE_NEW_PROTECTION (
// IN PMMPTE PointerPte,
// IN MMPTE PteContents
// );
//
// Routine Description:
//
// MI_WRITE_VALID_PTE_NEW_PROTECTION fills in the specified PTE (which was
// already valid) changing only the protection or the dirty bit.
//
// Arguments
//
// PointerPte - Supplies a PTE to fill.
//
// PteContents - Supplies the contents to put in the PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_WRITE_VALID_PTE_NEW_PROTECTION(_PointerPte, _PteContents) \
(*(_PointerPte) = (_PteContents))
//++
//VOID
//MiFillMemoryPte (
// IN PMMPTE Destination,
// IN ULONG Length,
// IN MMPTE Pattern,
// };
//
// Routine Description:
//
// This function fills memory with the specified PTE pattern.
//
// Arguments
//
// Destination - Supplies a pointer to the memory to fill.
//
// Length - Supplies the length, in bytes, of the memory to be
// filled.
//
// Pattern - Supplies the PTE fill pattern.
//
// Return Value:
//
// None.
//
//--
#define MiFillMemoryPte(Destination, Length, Pattern) \
RtlFillMemoryUlong ((Destination), (Length), (Pattern))
//++
//BOOLEAN
//MI_IS_PAGE_TABLE_ADDRESS (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro takes a virtual address and determines if
// it is a page table address.
//
// Arguments
//
// VA - Supplies a virtual address.
//
// Return Value:
//
// TRUE if the address is a page table address, FALSE if not.
//
//--
#define MI_IS_PAGE_TABLE_ADDRESS(VA) \
((PVOID)(VA) >= (PVOID)PTE_BASE && (PVOID)(VA) <= (PVOID)PDE_TOP)
//++
//BOOLEAN
//MI_IS_KERNEL_PAGE_TABLE_ADDRESS (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro takes a virtual address and determines if
// it is a page table address for a kernel address.
//
// Arguments
//
// VA - Supplies a virtual address.
//
// Return Value:
//
// TRUE if the address is a kernel page table address, FALSE if not.
//
//--
#define MI_IS_KERNEL_PAGE_TABLE_ADDRESS(VA) \
((PVOID)(VA) >= (PVOID)MiGetPteAddress(MmSystemRangeStart) && (PVOID)(VA) <= (PVOID)PDE_TOP)
//++
//BOOLEAN
//MI_IS_PAGE_DIRECTORY_ADDRESS (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro takes a virtual address and determines if
// it is a page directory address.
//
// Arguments
//
// VA - Supplies a virtual address.
//
// Return Value:
//
// TRUE if the address is a page directory address, FALSE if not.
//
//--
#define MI_IS_PAGE_DIRECTORY_ADDRESS(VA) \
((PVOID)(VA) >= (PVOID)PDE_BASE && (PVOID)(VA) <= (PVOID)PDE_TOP)
//++
//BOOLEAN
//MI_IS_HYPER_SPACE_ADDRESS (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro takes a virtual address and determines if
// it is a hyper space address.
//
// Arguments
//
// VA - Supplies a virtual address.
//
// Return Value:
//
// TRUE if the address is a hyper space address, FALSE if not.
//
//--
#define MI_IS_HYPER_SPACE_ADDRESS(VA) \
((PVOID)(VA) >= (PVOID)HYPER_SPACE && (PVOID)(VA) <= (PVOID)HYPER_SPACE_END)
//++
//BOOLEAN
//MI_IS_PROCESS_SPACE_ADDRESS (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro takes a virtual address and determines if
// it is a process-specific address. This is an address in user space
// or page table pages or hyper space.
//
// Arguments
//
// VA - Supplies a virtual address.
//
// Return Value:
//
// TRUE if the address is a process-specific address, FALSE if not.
//
//--
#define MI_IS_PROCESS_SPACE_ADDRESS(VA) \
(((PVOID)(VA) <= (PVOID)MM_HIGHEST_USER_ADDRESS) || \
((PVOID)(VA) >= (PVOID)PTE_BASE && (PVOID)(VA) <= (PVOID)HYPER_SPACE_END))
//++
//BOOLEAN
//MI_IS_PTE_PROTOTYPE (
// IN PMMPTE PTE
// );
//
// Routine Description:
//
// This macro takes a PTE address and determines if it is a prototype PTE.
//
// Arguments
//
// PTE - Supplies the virtual address of the PTE to check.
//
// Return Value:
//
// TRUE if the PTE is in a segment (ie, a prototype PTE), FALSE if not.
//
//--
#define MI_IS_PTE_PROTOTYPE(PTE) \
((PTE) > (PMMPTE)PDE_TOP)
//++
//BOOLEAN
//MI_IS_SYSTEM_CACHE_ADDRESS (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro takes a virtual address and determines if
// it is a system cache address.
//
// Arguments
//
// VA - Supplies a virtual address.
//
// Return Value:
//
// TRUE if the address is in the system cache, FALSE if not.
//
//--
#define MI_IS_SYSTEM_CACHE_ADDRESS(VA) \
(((PVOID)(VA) >= (PVOID)MmSystemCacheStart && \
(PVOID)(VA) <= (PVOID)MmSystemCacheEnd))
//++
//VOID
//MI_BARRIER_SYNCHRONIZE (
// IN ULONG TimeStamp
// );
//
// Routine Description:
//
// MI_BARRIER_SYNCHRONIZE compares the argument timestamp against the
// current IPI barrier sequence stamp. When equal, all processors will
// issue memory barriers to ensure that newly created pages remain coherent.
//
// When a page is put in the zeroed or free page list the current
// barrier sequence stamp is read (interlocked - this is necessary
// to get the correct value - memory barriers won't do the trick)
// and stored in the pfn entry for the page. The current barrier
// sequence stamp is maintained by the IPI send logic and is
// incremented (interlocked) when the target set of an IPI send
// includes all processors, but the one doing the send. When a page
// is needed its sequence number is compared against the current
// barrier sequence number. If it is equal, then the contents of
// the page may not be coherent on all processors, and an IPI must
// be sent to all processors to ensure a memory barrier is
// executed (generic call can be used for this). Sending the IPI
// automatically updates the barrier sequence number. The compare
// is for equality as this is the only value that requires the IPI
// (i.e., the sequence number wraps, values in both directions are
// older). When a page is removed in this fashion and either found
// to be coherent or made coherent, it cannot be modified between
// that time and writing the PTE. If the page is modified between
// these times, then an IPI must be sent.
//
// Arguments
//
// TimeStamp - Supplies the timestamp at the time when the page was zeroed.
//
// Return Value:
//
// None.
//
//--
#if defined(NT_UP)
#define MI_BARRIER_SYNCHRONIZE(TimeStamp) \
__MB();
#else
#define MI_BARRIER_SYNCHRONIZE(TimeStamp) \
if ((ULONG)TimeStamp == KeReadMbTimeStamp()) { \
KeSynchronizeMemoryAccess(); \
}
#endif
//++
//VOID
//MI_BARRIER_STAMP_ZEROED_PAGE (
// IN PULONG PointerTimeStamp
// );
//
// Routine Description:
//
// MI_BARRIER_STAMP_ZEROED_PAGE issues an interlocked read to get the
// current IPI barrier sequence stamp. This is called AFTER a page is
// zeroed.
//
// Arguments
//
// PointerTimeStamp - Supplies a timestamp pointer to fill with the
// current IPI barrier sequence stamp.
//
// Return Value:
//
// None.
//
//--
#if defined(NT_UP)
#define MI_BARRIER_STAMP_ZEROED_PAGE(PointerTimeStamp) NOTHING
#else
#define MI_BARRIER_SUPPORTED 1
#define MI_BARRIER_STAMP_ZEROED_PAGE(PointerTimeStamp) (*(PULONG)PointerTimeStamp = KeReadMbTimeStamp())
#endif
//++
//VOID
//MI_FLUSH_SINGLE_SESSION_TB (
// IN PVOID Virtual,
// IN ULONG Invalid,
// IN LOGICAL AllProcessors,
// IN PMMPTE PtePointer,
// IN MMPTE PteValue,
// IN MMPTE PreviousPte
// );
//
// Routine Description:
//
// MI_FLUSH_SINGLE_SESSION_TB flushes the requested single address
// translation from the TB.
//
// Since Alpha supports ASNs and session space doesn't have one, the entire
// TB needs to be flushed.
//
// Arguments
//
// Virtual - Supplies the virtual address to invalidate.
//
// Invalid - TRUE if invalidating.
//
// AllProcessors - TRUE if all processors need to be IPI'd.
//
// PtePointer - Supplies the PTE to invalidate.
//
// PteValue - Supplies the new PTE value.
//
// PreviousPte - The previous PTE value is returned here.
//
// Return Value:
//
// None.
//
//--
#define MI_FLUSH_SINGLE_SESSION_TB(Virtual, Invalid, AllProcessors, PtePointer, PteValue, PreviousPte) \
PreviousPte.u.Flush = *PtePointer; \
*PtePointer = PteValue; \
KeFlushEntireTb (TRUE, TRUE);
//++
//VOID
//MI_FLUSH_ENTIRE_SESSION_TB (
// IN ULONG Invalid,
// IN LOGICAL AllProcessors
// );
//
// Routine Description:
//
// MI_FLUSH_ENTIRE_SESSION_TB flushes the entire TB on Alphas since
// the Alpha supports ASNs.
//
// Arguments
//
// Invalid - TRUE if invalidating.
//
// AllProcessors - TRUE if all processors need to be IPI'd.
//
// Return Value:
//
// None.
//
#define MI_FLUSH_ENTIRE_SESSION_TB(Invalid, AllProcessors) \
KeFlushEntireTb (Invalid, AllProcessors);