windows-nt/Source/XPSP1/NT/base/ntsetup/textmode/kernel/spdbsfmt.c
2020-09-26 16:20:57 +08:00

779 lines
24 KiB
C

/*++
Copyright (c) 1993 Microsoft Corporation
Module Name:
spdblfmt.c
Abstract:
This file contains the functions that format an existing compressed
drive.
To format a compressed drive we have to unmount the drive, map its
cvf file in memory, initialize its varios regions, unmap the file
from memory, and mount the drive.
Author:
Jaime Sasson (jaimes) 15-October-1993
Revision History:
--*/
#include "spprecmp.h"
#pragma hdrstop
#include "cvf.h"
#define MIN_CLUS_BIG 4085 // Minimum clustre for a big fat.
//
// This variable is needed since it contains a buffer that can
// be used in kernel mode. The buffer is used by NtSetInformationFile,
// since the Zw API is not exported
//
extern PSETUP_COMMUNICATION CommunicationParams;
//
// Global variables
//
HANDLE _FileHandle = NULL;
HANDLE _SectionHandle = NULL;
PVOID _FileBaseAddress = NULL;
ULONG _ViewSize = 0;
ULONG _Maximumcapacity = 0;
NTSTATUS
SpChangeFileAttribute(
IN PWSTR FileName,
IN ULONG FileAttributes
)
/*++
Routine Description:
Change the attributes of a file.
Arguments:
FileName - Contains the file's full path (NT name).
FileAttributes - New desired file attributes.
Return Value:
NTSTATUS - Returns a NT status code indicating whether or not
the operation succeeded.
--*/
{
NTSTATUS Status;
UNICODE_STRING UnicodeFileName;
OBJECT_ATTRIBUTES ObjectAttributes;
IO_STATUS_BLOCK IoStatusBlock;
PIO_STATUS_BLOCK KernelModeIoStatusBlock;
HANDLE Handle;
PFILE_BASIC_INFORMATION KernelModeBasicInfo;
// KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_INFO_LEVEL, "SETUP: Entering SpChangeFileAttribute() \n" ) );
RtlInitUnicodeString( &UnicodeFileName,
FileName );
InitializeObjectAttributes( &ObjectAttributes,
&UnicodeFileName,
OBJ_CASE_INSENSITIVE,
NULL,
NULL );
Status = ZwOpenFile( &Handle,
FILE_WRITE_ATTRIBUTES | SYNCHRONIZE,
&ObjectAttributes,
&IoStatusBlock,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
FILE_SYNCHRONOUS_IO_NONALERT | FILE_OPEN_FOR_BACKUP_INTENT );
if( !NT_SUCCESS( Status ) ) {
KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_ERROR_LEVEL, "SETUP: ZwOpenFile() failed. Status = %x\n",Status ) );
return( Status );
}
//
// Set attributes.
// Note that since we use the NtSetInformationFile API instead of the
// Zw API (this one is not exported), we need a buffer for IoStatusBlock
// and for FileBasicInformation, that can be used in kernel mode.
// We use the the region of memory pointed by CommunicationParams for this
// purpose.
//
KernelModeIoStatusBlock = ( PIO_STATUS_BLOCK )( &(CommunicationParams->Buffer[0]) );
*KernelModeIoStatusBlock = IoStatusBlock;
KernelModeBasicInfo = ( PFILE_BASIC_INFORMATION )( &(CommunicationParams->Buffer[128]) );
RtlZeroMemory( KernelModeBasicInfo, sizeof( FILE_BASIC_INFORMATION ) );
KernelModeBasicInfo->FileAttributes = ( FileAttributes & FILE_ATTRIBUTE_VALID_FLAGS ) | FILE_ATTRIBUTE_NORMAL;
Status = NtSetInformationFile( Handle,
KernelModeIoStatusBlock,
KernelModeBasicInfo,
sizeof( FILE_BASIC_INFORMATION ),
FileBasicInformation );
if( !NT_SUCCESS( Status ) ) {
KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_ERROR_LEVEL, "SETUP: NtSetInformationFile failed, Status = %x\n", Status) );
}
ZwClose( Handle );
// KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_INFO_LEVEL, "SETUP: Exiting SpChangeFileAttribute() \n" ) );
return( Status );
}
NTSTATUS
SpMapCvfFileInMemory(
IN PWSTR FileName
)
/*++
Routine Description:
Map a CVF file in memory.
Arguments:
FileName - Contains the file's full path (NT name).
Return Value:
NTSTATUS - Returns a NT status code indicating whether or not
the operation succeeded.
If the file is mapped successfully, this function will
initialize the global variables _FileHandle, _SectionHandle,
and _FileBaseAddress.
--*/
{
NTSTATUS Status;
UNICODE_STRING UnicodeFileName;
OBJECT_ATTRIBUTES ObjectAttributes;
IO_STATUS_BLOCK IoStatusBlock;
LARGE_INTEGER SectionOffset;
//
// Open the CVF file for READ and WRITE access
//
RtlInitUnicodeString( &UnicodeFileName,
FileName );
InitializeObjectAttributes( &ObjectAttributes,
&UnicodeFileName,
OBJ_CASE_INSENSITIVE,
NULL,
NULL );
Status = ZwOpenFile( &_FileHandle,
FILE_GENERIC_READ | FILE_GENERIC_WRITE,
&ObjectAttributes,
&IoStatusBlock,
0,
FILE_SYNCHRONOUS_IO_NONALERT );
if( !NT_SUCCESS( Status ) ) {
KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_ERROR_LEVEL, "SETUP: ZwOpenFile() failed. Status = %x\n",Status ) );
return( Status );
}
//
// Map the CVF file in memory
//
Status =
ZwCreateSection( &_SectionHandle,
STANDARD_RIGHTS_REQUIRED | SECTION_QUERY | SECTION_MAP_READ | SECTION_MAP_WRITE,
NULL,
NULL, // entire file.
PAGE_READWRITE,
SEC_COMMIT,
_FileHandle
);
if(!NT_SUCCESS(Status)) {
KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_ERROR_LEVEL, "SETUP: ZwCreateSection failed, Status = %x\n",Status));
ZwClose( _FileHandle );
_FileHandle = NULL;
return(Status);
}
SectionOffset.LowPart = 0;
SectionOffset.HighPart = 0;
_ViewSize = 0;
Status = ZwMapViewOfSection( _SectionHandle,
NtCurrentProcess(),
&_FileBaseAddress,
0,
0,
&SectionOffset,
&_ViewSize,
ViewShare,
0,
PAGE_READWRITE
);
// KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_INFO_LEVEL, "File size = %x\n", _ViewSize ) );
if(!NT_SUCCESS(Status)) {
KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_ERROR_LEVEL, "SETUP: ZwMapViewOfSection failed, Status = %x\n", Status));
ZwClose( _SectionHandle );
ZwClose( _FileHandle );
_FileBaseAddress = NULL;
_SectionHandle = NULL;
_FileHandle = NULL;
return(Status);
}
return( Status );
}
NTSTATUS
SpUnmapCvfFileFromMemory(
IN BOOLEAN SaveChanges
)
/*++
Routine Description:
Unmap the CFV file previously mapped in memory.
Arguments:
SaveChanges - Indicates whether or not the caller wants the changes made
to the file flushed to disk.
Return Value:
NTSTATUS - Returns a NT status code indicating whether or not
the operation succeeded.
This function clears the global variables _FileHandle, _SectionHandle,
and _FileBaseAddress.
--*/
{
NTSTATUS Status;
NTSTATUS PreviousStatus;
// KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_INFO_LEVEL, "SETUP: Entering SpUnmapCvfFileFromMemory \n" ) );
PreviousStatus = STATUS_SUCCESS;
if( SaveChanges ) {
Status = SpFlushVirtualMemory( _FileBaseAddress,
_ViewSize );
//
// Status = NtFlushVirtualMemory( NtCurrentProcess(),
// &_FileBaseAddress,
// &_ViewSize,
// &IoStatus );
//
if( !NT_SUCCESS( Status ) ) {
PreviousStatus = Status;
KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_ERROR_LEVEL, "SETUP: SpFlushVirtualMemory() failed, Status = %x\n", Status ) );
}
}
Status = ZwUnmapViewOfSection( NtCurrentProcess(), _FileBaseAddress );
if( !NT_SUCCESS( Status ) ) {
KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_ERROR_LEVEL, "SETUP: ZwUnmapViewOfSection() failed, Status = %x \n", Status ) );
}
ZwClose( _SectionHandle );
ZwClose( _FileHandle );
_FileHandle = NULL;
_SectionHandle = NULL;
_FileBaseAddress = NULL;
if( !NT_SUCCESS( PreviousStatus ) ) {
return( PreviousStatus );
}
// KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_INFO_LEVEL, "SETUP: Exiting SpUnmapCvfFileFromMemory \n" ) );
return( Status );
}
ULONG
ComputeMaximumCapacity(
IN ULONG HostDriveSize
)
/*++
Routine Description:
This function computes the maximum capacity for a compressed
volume file on a host volume of a given size.
Arguments:
HostDriveSize -- Supplies the size in bytes of the host drive.
Return Value:
The appropriate Maximum Capacity.
--*/
{
ULONG MaxCap;
if( HostDriveSize < 20 * 1024L * 1024L ) {
MaxCap = 16 * HostDriveSize;
} else if ( HostDriveSize < 64 * 1024L * 1024L ) {
MaxCap = 8 * HostDriveSize;
} else {
MaxCap = 4 * HostDriveSize;
}
if( MaxCap < 4 * 1024L * 1024L ) {
MaxCap = 4 * 1024L * 1024L;
} else if( MaxCap > 512 * 1024L * 1024L ) {
MaxCap = 512 * 1024L * 1024L;
}
return MaxCap;
}
BOOLEAN
CreateCvfHeader(
OUT PCVF_HEADER CvfHeader,
IN ULONG MaximumCapacity
)
/*++
Routine Description:
This function creates a Compressed Volume File and fills in
the first sector with a valid CVF Header. The number of sectors
in the DOS BPB is set to zero, to indicate that this volume
file is not initialized.
Arguments:
CvfHeader -- Receives the created CVF header.
MaximumCapacity -- Supplies the maximum capacity for the
double-space volume, in bytes.
Return Value:
TRUE upon successful completion.
--*/
{
ULONG Sectors, Clusters, Offset, SectorsInBitmap, SectorsInCvfFatExtension;
if( MaximumCapacity % (8L * 1024L * 1024L) ) {
// The volume maximum capacity must be a multiple of
// eight megabytes.
//
return FALSE;
}
// Most of the fields in the DOS BPB have fixed values:
//
CvfHeader->Jump = 0xEB;
CvfHeader->JmpOffset = 0x903c;
memcpy( CvfHeader->Oem, "MSDSP6.0", 8 );
CvfHeader->Bpb.BytesPerSector = DoubleSpaceBytesPerSector;
CvfHeader->Bpb.SectorsPerCluster = DoubleSpaceSectorsPerCluster;
// ReservedSectors computed below.
CvfHeader->Bpb.Fats = DoubleSpaceFats;
CvfHeader->Bpb.RootEntries = DoubleSpaceRootEntries;
CvfHeader->Bpb.Sectors = 0;
CvfHeader->Bpb.Media = DoubleSpaceMediaByte;
// SectorsPerFat computed below.
CvfHeader->Bpb.SectorsPerTrack = DoubleSpaceSectorsPerTrack;
CvfHeader->Bpb.Heads = DoubleSpaceHeads;
CvfHeader->Bpb.HiddenSectors = DoubleSpaceHiddenSectors;
CvfHeader->Bpb.LargeSectors = 0;
// Compute the number of sectors and clusters for the given
// maximum capacity:
//
Sectors = MaximumCapacity / CvfHeader->Bpb.BytesPerSector;
Clusters = Sectors / CvfHeader->Bpb.SectorsPerCluster;
// Reserve space for a 16-bit FAT that's big enough for the
// maximum number of clusters.
//
CvfHeader->Bpb.SectorsPerFat =
( USHORT )( (2 * Clusters + CvfHeader->Bpb.BytesPerSector - 1)/
CvfHeader->Bpb.BytesPerSector );
// DOS 6.2 requires that the first sector of the Sector Heap
// be cluster aligned; since the Root Directory is one cluster,
// this means that ReservedSectors plus SectorsPerFat must be
// a multiple of SectorsPerCluster.
//
CvfHeader->Bpb.ReservedSectors = DoubleSpaceReservedSectors;
Offset = (CvfHeader->Bpb.ReservedSectors + CvfHeader->Bpb.SectorsPerFat) %
CvfHeader->Bpb.SectorsPerCluster;
if( Offset != 0 ) {
CvfHeader->Bpb.ReservedSectors +=
( USHORT )( CvfHeader->Bpb.SectorsPerCluster - Offset );
}
// So much for the DOS BPB. Now for the Double Space
// BPB extensions. The location of the CVFFatExtension
// table is preceded by sector zero, the bitmap, and
// one reserved sector. Note that MaximumCapacity must
// be a multiple of 8 Meg (8 * 1024 * 1024), which simplifies
// calculation of SectorsInBitmap, SectorsInCvfFatExtension,
// and CvfBitmap2KSize.
//
SectorsInBitmap = (Sectors / 8) / CvfHeader->Bpb.BytesPerSector;
SectorsInCvfFatExtension = (Clusters * 4) / CvfHeader->Bpb.BytesPerSector;
CvfHeader->CvfFatExtensionsLbnMinus1 = ( UCHAR )( SectorsInBitmap + 1 );
CvfHeader->LogOfBytesPerSector = DoubleSpaceLog2BytesPerSector;
CvfHeader->DosBootSectorLbn = ( USHORT )( DoubleSpaceReservedSectors2 +
CvfHeader->CvfFatExtensionsLbnMinus1 + 1 +
SectorsInCvfFatExtension );
CvfHeader->DosRootDirectoryOffset =
CvfHeader->Bpb.ReservedSectors + CvfHeader->Bpb.SectorsPerFat;
CvfHeader->CvfHeapOffset =
CvfHeader->DosRootDirectoryOffset + DoubleSpaceSectorsInRootDir;
CvfHeader->CvfFatFirstDataEntry =
CvfHeader->CvfHeapOffset / CvfHeader->Bpb.SectorsPerCluster - 2;
CvfHeader->CvfBitmap2KSize = ( UCHAR )( SectorsInBitmap / DSSectorsPerBitmapPage );
CvfHeader->LogOfSectorsPerCluster = DoubleSpaceLog2SectorsPerCluster;
CvfHeader->Is12BitFat = 1;
CvfHeader->MinFile = 32L * DoubleSpaceRootEntries +
( CvfHeader->DosBootSectorLbn +
CvfHeader->Bpb.ReservedSectors +
CvfHeader->Bpb.SectorsPerFat +
CVF_MIN_HEAP_SECTORS ) *
CvfHeader->Bpb.BytesPerSector;
CvfHeader->CvfMaximumCapacity = (USHORT)(MaximumCapacity/(1024L * 1024L));
return TRUE;
}
ULONG
ComputeVirtualSectors(
IN PCVF_HEADER CvfHeader,
IN ULONG HostFileSize
)
/*++
Routine Description:
This function computes the appropriate number of virtual
sectors for the given Compressed Volume File. Note that
it always uses a ratio of 2.
Arguments:
CvfHeader -- Supplies the Compressed Volume File Header.
HostFileSize -- Supplies the size of the host file in bytes.
Return Value:
The number of virtual sectors appropriate to this Compressed
Volume File.
--*/
{
CONST DefaultRatio = 2;
ULONG SystemOverheadSectors, SectorsInFile,
VirtualSectors, MaximumSectors, VirtualClusters;
if( CvfHeader == NULL ||
CvfHeader->Bpb.BytesPerSector == 0 ||
CvfHeader->Bpb.SectorsPerCluster == 0 ) {
return 0;
}
SystemOverheadSectors = CvfHeader->DosBootSectorLbn +
CvfHeader->CvfHeapOffset +
2;
SectorsInFile = HostFileSize / CvfHeader->Bpb.BytesPerSector;
if( SectorsInFile < SystemOverheadSectors ) {
return 0;
}
VirtualSectors = (SectorsInFile - SystemOverheadSectors) * DefaultRatio +
CvfHeader->CvfHeapOffset;
// VirtualSectors cannot result in more that 0xfff8 clusters on
// the volume, nor can it be greater than the volume's maximum
// capacity.
//
VirtualSectors = min( VirtualSectors,
( ULONG )( 0xfff8L * CvfHeader->Bpb.SectorsPerCluster ) );
MaximumSectors = (CvfHeader->CvfMaximumCapacity * 1024L * 1024L) /
CvfHeader->Bpb.BytesPerSector;
VirtualSectors = min( VirtualSectors, MaximumSectors );
// To avoid problems with DOS, do not create a volume with
// a number-of-clusters value in the range [0xFEF, 0xFF7].
//
VirtualClusters = VirtualSectors / CvfHeader->Bpb.SectorsPerCluster;
if( VirtualClusters >= 0xFEF && VirtualClusters <= 0xFF7 ) {
VirtualSectors = 0xFEEL * CvfHeader->Bpb.SectorsPerCluster;
}
return VirtualSectors;
}
NTSTATUS
SpDoubleSpaceFormat(
IN PDISK_REGION Region
)
/*++
Routine Description:
This routine does a DoubleSpace format on the given partition.
The caller should have cleared the screen and displayed
any message in the upper portion; this routine will
maintain the gas gauge in the lower portion of the screen.
Arguments:
Region - supplies the disk region descriptor for the
partition to be formatted.
Return Value:
--*/
{
WCHAR CvfFileName[ 512 ];
NTSTATUS Status;
PUCHAR BaseAddress;
ULONG BytesPerSector;
PHARD_DISK pHardDisk;
ULONG MaximumCapacity;
CVF_HEADER CvfHeader;
ULONG BitFatSize;
ULONG MdFatSize;
ULONG Reserved2Size;
ULONG SuperAreaSize;
UCHAR SystemId;
ULONG max_sec_per_sa;
ULONG FatSize;
ULONG RootDirectorySize;
ASSERT(Region->Filesystem == FilesystemDoubleSpace);
// KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_INFO_LEVEL, "SETUP: Entering SpFormatDoubleSpace() \n") );
SpNtNameFromRegion(
Region,
CvfFileName,
sizeof(CvfFileName),
PartitionOrdinalCurrent
);
CvfFileName[ wcslen( CvfFileName ) - (3+1+8+1) ] = ( WCHAR )'\\';
//
// Change the CVF file attribute to NORMAL
//
Status = SpChangeFileAttribute( CvfFileName, FILE_ATTRIBUTE_NORMAL );
if( !NT_SUCCESS( Status ) ) {
KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_ERROR_LEVEL, "SETUP: Unable to change attribute of %ls \n", CvfFileName ) );
return( Status );
}
// KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_INFO_LEVEL, "SETUP: CvfFileName = %ls \n", CvfFileName ) );
Status = SpMapCvfFileInMemory( CvfFileName );
if( !NT_SUCCESS( Status ) ) {
KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_ERROR_LEVEL, "SETUP: Unable to map CVF file in memory \n" ) );
SpChangeFileAttribute( CvfFileName,
FILE_ATTRIBUTE_READONLY |
FILE_ATTRIBUTE_HIDDEN |
FILE_ATTRIBUTE_SYSTEM );
return( Status );
}
// KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_INFO_LEVEL, "SETUP: CVF file is mapped in memory \n" ) );
//
// Compute the maximum capacity of the compressed drive.
// The capacity of the compressed drive is based on the
// size of the host size.
//
// Note that MaximumCapacity is rounded up to the next
// highest multiple of 8 Meg.
//
pHardDisk = &HardDisks[Region->HostRegion->DiskNumber];
BytesPerSector = pHardDisk->Geometry.BytesPerSector;
MaximumCapacity = ComputeMaximumCapacity( Region->HostRegion->SectorCount * BytesPerSector );
MaximumCapacity = ( ( MaximumCapacity + EIGHT_MEG - 1 ) / EIGHT_MEG ) * EIGHT_MEG;
// KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_INFO_LEVEL, "SETUP: MaximumCapacity = %x\n", MaximumCapacity ));
//
// Create the Compressed Volume File Header:
//
CreateCvfHeader( &CvfHeader, MaximumCapacity );
//
// Now fill in the value of Virtual Sectors.
//
CvfHeader.Bpb.LargeSectors = ComputeVirtualSectors( &CvfHeader, _ViewSize );
if( CvfHeader.Bpb.LargeSectors >= ( ULONG )( MIN_CLUS_BIG*DoubleSpaceSectorsPerCluster ) ) {
CvfHeader.Is12BitFat = ( UCHAR )0;
}
BaseAddress = ( PUCHAR )_FileBaseAddress;
memset( BaseAddress, 0, BytesPerSector );
//
// Write the CVF Header
//
CvfPackCvfHeader( ( PPACKED_CVF_HEADER )_FileBaseAddress, &CvfHeader );
#if 0
KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_INFO_LEVEL, "SETUP: CalculatedMaximumCapacity = %x, MaximumCapacity = %x \n",
(USHORT)CvfHeader.CvfMaximumCapacity,
*((PUSHORT)((ULONG)_FileBaseAddress + 62))
) );
#endif
//
// Initialize the BitFAT area
//
BaseAddress += BytesPerSector;
BitFatSize = MaximumCapacity / ( BytesPerSector*8 );
memset( BaseAddress, 0, BitFatSize );
// KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_INFO_LEVEL, "SETUP: BitFAT address = %x, BitFAT size = %x\n", BaseAddress, BitFatSize ));
//
// Initialize the 1st reserved area (Reserved1)
//
BaseAddress += BitFatSize;
memset( BaseAddress, 0, BytesPerSector );
// KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_INFO_LEVEL, "SETUP: Reserved1 address = %x, Reserved1 size = %x\n", BaseAddress, BytesPerSector ));
//
// Initialize MDFAT
//
BaseAddress += BytesPerSector;
MdFatSize = 4*( MaximumCapacity/( BytesPerSector*CvfHeader.Bpb.SectorsPerCluster ) );
memset( BaseAddress, 0, MdFatSize );
// KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_INFO_LEVEL, "SETUP: MDFAT address = %x, MDFAT size = %x\n", BaseAddress, MdFatSize ));
//
// Initialize the 2nd reserved area (Reserved2)
//
BaseAddress += MdFatSize;
Reserved2Size = DoubleSpaceReservedSectors2*BytesPerSector;
memset( BaseAddress, 0, Reserved2Size );
// KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_INFO_LEVEL, "SETUP: Reserved2 address = %x, Reserved2 size = %x\n", BaseAddress, Reserved2Size ));
//
// Initialize Boot Sector
//
max_sec_per_sa = 1 +
2*((2*65536 - 1)/BytesPerSector + 1) +
((512*32 - 1)/BytesPerSector + 1);
BaseAddress += Reserved2Size;
FmtFillFormatBuffer( ( ULONG )CvfHeader.Bpb.LargeSectors,
( ULONG )( ( USHORT )CvfHeader.Bpb.BytesPerSector ),
( ULONG )( ( USHORT )CvfHeader.Bpb.SectorsPerTrack ),
( ULONG )( ( USHORT )CvfHeader.Bpb.Heads ),
( ULONG )CvfHeader.Bpb.HiddenSectors,
BaseAddress,
max_sec_per_sa,
&SuperAreaSize,
NULL,
0,
&SystemId );
//
// Initialize the 3rd reserved area (Reserved3)
//
BaseAddress += BytesPerSector;
memcpy( BaseAddress, FirstDbSignature, DbSignatureLength );
//
// Initialize the FAT area
//
BaseAddress += ( ( ULONG )CvfHeader.Bpb.ReservedSectors - 1 )*BytesPerSector;;
FatSize = ( ULONG )CvfHeader.Bpb.SectorsPerFat * BytesPerSector;
memset( BaseAddress, 0, FatSize );
*BaseAddress = 0xF8;
*( BaseAddress + 1 ) = 0xFF;
*( BaseAddress + 2 ) = 0xFF;
if( CvfHeader.Is12BitFat == 0 ) {
*( BaseAddress + 3 ) = 0xFF;
}
// KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_INFO_LEVEL, "SETUP: FAT address = %x, Fat size = %x\n", BaseAddress, FatSize ));
//
// Initialize the Root Directory area
//
BaseAddress += FatSize;
RootDirectorySize = DoubleSpaceSectorsInRootDir*BytesPerSector;
memset( BaseAddress, 0, RootDirectorySize );
// KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_INFO_LEVEL, "SETUP: RootDirectory address = %x, RootDirectory size = %x\n", BaseAddress, RootDirectorySize ));
//
// Initialization of the 4th reserved area (Reserved4) is not necessary
//
//
// Initialization of the sector heap is not necessary
//
//
// Initialize the 2nd stamp
//
BaseAddress = ( PUCHAR )(( ULONG )_FileBaseAddress + _ViewSize - BytesPerSector);
memset( BaseAddress, 0, BytesPerSector );
memcpy( BaseAddress, SecondDbSignature, DbSignatureLength );
// KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_INFO_LEVEL, "SETUP: SecondStamp address = %x, SecondStamp size = %x\n", BaseAddress, BytesPerSector ));
// KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_INFO_LEVEL, "SETUP: _FileBaseAddress = %lx, _ViewSize = %lx\n", _FileBaseAddress, _ViewSize ) );
SpUnmapCvfFileFromMemory( TRUE );
SpChangeFileAttribute( CvfFileName,
FILE_ATTRIBUTE_READONLY |
FILE_ATTRIBUTE_HIDDEN |
FILE_ATTRIBUTE_SYSTEM );
return( Status );
}