windows-nt/Source/XPSP1/NT/base/ntsetup/win95upg/common/migutil/poolmem.c
2020-09-26 16:20:57 +08:00

982 lines
23 KiB
C

/*++
Copyright (c) 1996 Microsoft Corporation
Module Name:
poolmem.c
Abstract:
poolmem provides a managed allocation scheme in which large blocks of memory are
allocated (pools) and then divided up by request into low overhead memory chunks
upon request. poolmem provides for easy creation/clean-up of memory, freeing the
developer for more important tasks.
Author:
Marc R. Whitten (marcw) 13-Feb-1997
Revision History:
jimschm 28-Sep-1998 Debug message fixes
--*/
#include "pch.h"
#include "migutilp.h"
#ifdef UNICODE
#error UNICODE not allowed
#endif
#define DBG_POOLMEM "Poolmem"
// Tree Memory Allocation structure.
#ifdef DEBUG
#define VALIDDOGTAG 0x021371
#define FREEDOGTAG 0x031073
#endif
#define MAX_POOL_NAME 32
typedef struct _POOLMEMORYBLOCK POOLMEMORYBLOCK, *PPOOLMEMORYBLOCK;
struct _POOLMEMORYBLOCK {
DWORD Index; // Tracks into RawMemory.
DWORD Size; // the size in bytes of RawMemory.
PPOOLMEMORYBLOCK NextBlock; // A pointer to the next block in the pool chain.
PPOOLMEMORYBLOCK PrevBlock; // A pointer to the prev block in the pool chain.
DWORD UseCount; // The number of allocations currently referring
// to this block.
PBYTE RawMemory; // The actual bytes of allocable memory in this block.
};
typedef struct _ALLOCATION ALLOCATION, * PALLOCATION;
struct _ALLOCATION {
#ifdef DEBUG
DWORD DogTag; // A signature to ensure validity.
PALLOCATION Next; // The next allocation in the list.
PALLOCATION Prev; // The previous allocation in the list.
#endif
PPOOLMEMORYBLOCK ParentBlock; // A reference to the block from which this allocation
// was created.
};
typedef enum {
FREE_NOT_CALLED,
FREE_CALLED,
WHO_CARES
} FREESTATE;
typedef struct _POOLHEADER {
PPOOLMEMORYBLOCK PoolHead; // The active memory block in this pool.
DWORD MinimumBlockSize; // minimum size to allocate when a new block is needed.
#ifdef DEBUG
CHAR Name[MAX_POOL_NAME];
DWORD TotalAllocationRequestBytes;
DWORD MaxAllocationSize;
DWORD CurrentlyAllocatedMemory;
DWORD MaximumAllocatedMemory;
DWORD NumAllocationRequests;
DWORD NumFreeRequests;
DWORD NumBlockFrees;
DWORD NumBlockClears;
DWORD NumBlockAllocations;
PALLOCATION AllocationList; // A linked list of all of the allocations active in the
// pool.
FREESTATE FreeCalled; // A state variable indicating that PoolMemReleaseMemory()
// has been called at least once on this pool.
#endif
} POOLHEADER, *PPOOLHEADER;
#ifdef DEBUG
DWORD g_PoolMemDisplayed;
DWORD g_PoolMemNotDisplayed;
#endif
BOOL
pPoolMemAddMemory (
IN POOLHANDLE Handle,
IN DWORD Size
)
/*++
Routine Description:
pPoolMemAddMemory is the function responsible for actually growing the size of
the pool by adding a new block of memory. This function is used by
PoolMemInitPool and PoolMemGetMemory.
when called, this function attempts to allocate at least poolHeader ->
MinimumBlockSize bytes of memory. If the requested size is actually larger
than the minimum, the requested size is allocated instead. This is consistent
with PoolMem's main purpose: An efficient allocator for larger numbers of small
objects. If PoolMem is being used to allocate very large objects, the benefits
are lost and poolmem becomes a very inefficient allocator.
Arguments:
Handle - A Handle to a Pool of Memory.
Size - Size to allocate.
Return Value:
returns TRUE if memory was successfully added, FALSE otherwise.
--*/
{
PBYTE allocedMemory;
PPOOLMEMORYBLOCK newBlock;
PPOOLHEADER poolHeader = (PPOOLHEADER) Handle;
DWORD sizeNeeded;
MYASSERT(poolHeader != NULL);
//
// Determine size needed and attempt to allocate memory.
//
if (Size + sizeof(POOLMEMORYBLOCK) > poolHeader -> MinimumBlockSize) {
sizeNeeded = Size + sizeof(POOLMEMORYBLOCK);
}
else {
sizeNeeded = poolHeader -> MinimumBlockSize;
}
allocedMemory = MemAlloc(g_hHeap,0,sizeNeeded);
if (allocedMemory) {
//
// Use the beginning of the alloc'ed block as the poolblock structure.
//
newBlock = (PPOOLMEMORYBLOCK) allocedMemory;
newBlock -> Size = sizeNeeded - sizeof(POOLMEMORYBLOCK);
newBlock -> RawMemory = allocedMemory + sizeof(POOLMEMORYBLOCK);
newBlock -> Index = 0;
newBlock -> UseCount = 0;
//
// Link the block into the list.
//
if (poolHeader -> PoolHead) {
poolHeader -> PoolHead -> PrevBlock = newBlock;
}
newBlock -> NextBlock = poolHeader -> PoolHead;
newBlock -> PrevBlock = NULL;
poolHeader -> PoolHead = newBlock;
#ifdef DEBUG
//
// Keep track of pool statistics.
//
poolHeader -> CurrentlyAllocatedMemory += sizeNeeded;
poolHeader -> MaximumAllocatedMemory =
max(poolHeader -> MaximumAllocatedMemory,poolHeader -> CurrentlyAllocatedMemory);
poolHeader -> NumBlockAllocations++;
#endif
}
//
// Assuming allocedMemory is non-NULL, we have succeeded.
//
return allocedMemory != NULL;
}
POOLHANDLE
PoolMemInitPool (
VOID
)
/*++
Routine Description:
Initializes a new memory pool and returns a handle to it.
Arguments:
None.
Return Value:
If the function completes succssessfully, it returns a valid POOLHANDLE, otherwise,
it returns NULL.
--*/
{
BOOL ableToAddMemory;
PPOOLHEADER header = NULL;
EnterCriticalSection (&g_PoolMemCs);
__try {
//
// Allocate the header of this pool.
//
header = MemAlloc(g_hHeap,0,sizeof(POOLHEADER));
//
// Allocation was successful. Now, initialize the pool.
//
header -> MinimumBlockSize = POOLMEMORYBLOCKSIZE;
header -> PoolHead = NULL;
#ifdef DEBUG
//
// Statistics for the debug version.
//
header -> TotalAllocationRequestBytes = 0;
header -> MaxAllocationSize = 0;
header -> CurrentlyAllocatedMemory = 0;
header -> MaximumAllocatedMemory = 0;
header -> NumAllocationRequests = 0;
header -> NumFreeRequests = 0;
header -> NumBlockFrees = 0;
header -> NumBlockClears = 0;
header -> NumBlockAllocations = 0;
header -> Name[0] = 0;
#endif
//
// Actually add some memory to the pool.
//
ableToAddMemory = pPoolMemAddMemory(header,0);
if (!ableToAddMemory) {
//
// Unable to add memory to the pool.
//
MemFree(g_hHeap,0,header);
header = NULL;
DEBUGMSG((DBG_ERROR,"PoolMem: Unable to initialize memory pool."));
}
#ifdef DEBUG
//
// These are 'cookie' variables that hold tracking information when dogtag checking
// is enabled.
//
g_PoolMemNotDisplayed = 12;
g_PoolMemDisplayed = 24;
if (ableToAddMemory) {
header -> AllocationList = NULL;
header -> FreeCalled = FREE_NOT_CALLED;
}
#endif
} __finally {
LeaveCriticalSection (&g_PoolMemCs);
}
return (POOLHANDLE) header;
}
VOID
pDeregisterPoolAllocations (
PPOOLHEADER PoolHeader
)
{
#ifdef DEBUG
PALLOCATION p,cur;
if (PoolHeader -> FreeCalled == WHO_CARES) {
return;
}
p = PoolHeader -> AllocationList;
while (p) {
cur = p;
p = p -> Next;
DebugUnregisterAllocation(POOLMEM_POINTER,cur);
}
PoolHeader -> AllocationList = NULL;
#endif
}
VOID
PoolMemEmptyPool (
IN POOLHANDLE Handle
)
/*++
Routine Description:
PoolMemEmptyPool resets the index pointer of the index block back
to zero, so the next allocation will come from the already allocated
active block.
Calling this function invalidates all pointers previously allocated from
the active block.
Arguments:
Handle - Specifies the pool to reset
Return Value:
None.
--*/
{
PPOOLHEADER poolHeader = (PPOOLHEADER) Handle;
MYASSERT(poolHeader != NULL);
EnterCriticalSection (&g_PoolMemCs);
__try {
poolHeader -> PoolHead -> UseCount = 0;
poolHeader -> PoolHead -> Index = 0;
#ifdef DEBUG
poolHeader -> NumBlockClears++;
#endif
#ifdef DEBUG
pDeregisterPoolAllocations(poolHeader);
#endif
} __finally {
LeaveCriticalSection (&g_PoolMemCs);
}
}
VOID
PoolMemSetMinimumGrowthSize (
IN POOLHANDLE Handle,
IN DWORD Size
)
/*++
Routine Description:
Sets the minimum growth size for a memory pool. This value is used when new blocks
are actually added to the pool. The PoolMem allocator will attempt to allocate at
least this minimum size.
Arguments:
Handle - A valid POOLHANDLE.
Size - The minimum size in bytes to grow the pool by on each allocation.
Return Value:
None.
--*/
{
PPOOLHEADER poolHeader = (PPOOLHEADER) Handle;
MYASSERT(Handle != NULL);
poolHeader -> MinimumBlockSize = max(Size,0);
}
VOID
PoolMemDestroyPool (
POOLHANDLE Handle
)
/*++
Routine Description:
PoolMemDestroyPool completely cleans up the memory pool identified by Handle. It
simply walks the list of memory blocks associated with the memory pool, freeing each of them.
Arguments:
Handle - A valid POOLHANDLE.
Return Value:
None.
--*/
{
PPOOLMEMORYBLOCK nextBlock;
PPOOLMEMORYBLOCK blockToFree;
PPOOLHEADER poolHeader;
MYASSERT(Handle != NULL);
poolHeader = (PPOOLHEADER) Handle;
#ifdef DEBUG
if (poolHeader->NumAllocationRequests) {
CHAR FloatWorkaround[32];
_gcvt (
((DOUBLE) (poolHeader -> TotalAllocationRequestBytes)) / poolHeader -> NumAllocationRequests,
8,
FloatWorkaround
);
//
// Spew the statistics of this pool to the debug log.
//
DEBUGMSG ((
DBG_POOLMEM,
"Pool Statistics for %s\n"
"\n"
"Requested Size in Bytes\n"
" Average: %s\n"
" Maximum: %u\n"
"\n"
"Pool Size in Bytes\n"
" Current: %u\n"
" Maximum: %u\n"
"\n"
"Allocation Requests\n"
" Caller Requests: %u\n"
" Block Allocations: %u\n"
"\n"
"Free Requests\n"
" Caller Requests: %u\n"
" Block Frees: %u\n"
" Block Clears: %u",
poolHeader -> Name[0] ? poolHeader -> Name : TEXT("[Unnamed Pool]"),
FloatWorkaround,
poolHeader -> MaxAllocationSize,
poolHeader -> CurrentlyAllocatedMemory,
poolHeader -> MaximumAllocatedMemory,
poolHeader -> NumAllocationRequests,
poolHeader -> NumBlockAllocations,
poolHeader -> NumFreeRequests,
poolHeader -> NumBlockFrees,
poolHeader -> NumBlockClears
));
} else if (poolHeader->Name[0]) {
DEBUGMSG ((
DBG_POOLMEM,
"Pool %s was allocated but was never used",
poolHeader->Name
));
}
//
// Free all allocations that have not yet been freed.
//
pDeregisterPoolAllocations(poolHeader);
#endif
//
// Walk the list, freeing as we go.
//
blockToFree = poolHeader -> PoolHead;
while (blockToFree != NULL) {
nextBlock = blockToFree->NextBlock;
MemFree(g_hHeap,0,blockToFree);
blockToFree = nextBlock;
}
//
// Also, deallocate the poolheader itself.
//
MemFree(g_hHeap,0,poolHeader);
}
PVOID
PoolMemRealGetMemory (
IN POOLHANDLE Handle,
IN DWORD Size,
IN DWORD AlignSize /*,*/
ALLOCATION_TRACKING_DEF
)
/*++
Routine Description:
PoolMemRealGetMemory is the worker routine that processes all requests to retrieve memory
from a pool. Other calls eventually decay into a call to this common routine. This routine
attempts to service the request out of the current memory block, or, if it cannot, out of
a newly allocated block.
Arguments:
(File) - The File from whence the call orignated. This is used for memory tracking and checking
in the debug version.
(Line) - The Line from whence the call orignated.
Handle - A valid POOLHANDLE.
Size - Contains the size in bytes that the caller needs from the pool.
AlignSize - Provides an alignment value. The returned memory will be aligned on <alignsize> byte
boundaries.
Return Value:
The allocated memory, or, NULL if no memory could be allocated.
--*/
{
BOOL haveEnoughMemory = TRUE;
PVOID rMemory = NULL;
PPOOLHEADER poolHeader = (PPOOLHEADER) Handle;
PPOOLMEMORYBLOCK currentBlock;
PALLOCATION allocation;
DWORD sizeNeeded;
DWORD padLength;
MYASSERT(poolHeader != NULL);
EnterCriticalSection (&g_PoolMemCs);
__try {
//
// Assume that the current block of memory will be sufficient.
//
currentBlock = poolHeader -> PoolHead;
#ifdef DEBUG
//
// Update stats.
//
poolHeader -> MaxAllocationSize =
max(poolHeader -> MaxAllocationSize,Size);
poolHeader -> NumAllocationRequests++;
poolHeader -> TotalAllocationRequestBytes += Size;
#endif
//
// Determine if more memory is needed, attempt to add if needed. Note that the size
// must include the size of an ALLOCATION struct in addition to the size required
// by the callee. Note the references to AlignSize in the test below. This is to ensure
// that there is enough memory to allocate after taking into acount data alignment.
//
sizeNeeded = Size + sizeof(ALLOCATION);
if (currentBlock -> Size - currentBlock -> Index < sizeNeeded + AlignSize) {
haveEnoughMemory = pPoolMemAddMemory(poolHeader,sizeNeeded + AlignSize);
//
// Make sure that the currentBlock is correctly set
//
currentBlock = poolHeader -> PoolHead;
}
//
// If there is enough memory available, return it.
//
if (haveEnoughMemory) {
if (AlignSize) {
padLength = (DWORD) currentBlock + sizeof(POOLMEMORYBLOCK)
+ currentBlock -> Index + sizeof(ALLOCATION);
currentBlock -> Index += (AlignSize - (padLength % AlignSize)) % AlignSize;
}
//
// Save a reference to this block in the memorys ALLOCATION structure.
// This will be used to decrease the use count on a block when releasing
// memory.
//
(PBYTE) allocation = &(currentBlock -> RawMemory[currentBlock -> Index]);
allocation -> ParentBlock = currentBlock;
#ifdef DEBUG
//
// Track this memory.
//
allocation -> DogTag = VALIDDOGTAG;
allocation -> Next = poolHeader -> AllocationList;
allocation -> Prev = NULL;
if (poolHeader -> AllocationList) {
poolHeader -> AllocationList -> Prev = allocation;
}
poolHeader -> AllocationList = allocation;
if (poolHeader -> FreeCalled != WHO_CARES) {
DebugRegisterAllocation(POOLMEM_POINTER, allocation, File, Line);
}
#endif
//
// Ok, get a reference to the actual memory to return to the user.
//
rMemory = (PVOID)
&(currentBlock->RawMemory[currentBlock -> Index + sizeof(ALLOCATION)]);
//
// Update memory block data fields.
//
currentBlock->Index += sizeNeeded;
currentBlock->UseCount++;
}
else {
DEBUGMSG((DBG_ERROR,
"GetPoolMemory Failed. Size: %u",Size));
}
} __finally {
LeaveCriticalSection (&g_PoolMemCs);
}
return rMemory;
}
VOID
PoolMemReleaseMemory (
IN POOLHANDLE Handle,
IN LPVOID Memory
)
/*++
Routine Description:
PoolMemReleaseMemory notifies the Pool that a piece of memory is no longer needed.
if all memory within a non-active block (i.e. not the first block) is released,
that block will be freed. If all memory is released within an active block, that blocks
stats are simply cleared, effectively reclaiming its space.
Arguments:
Handle - A Handle to a Pool of Memory.
Memory - Contains the address of the memory that is no longer needed.
Return Value:
None.
--*/
{
PALLOCATION allocation;
PPOOLHEADER poolHeader = (PPOOLHEADER) Handle;
MYASSERT(poolHeader != NULL && Memory != NULL);
EnterCriticalSection (&g_PoolMemCs);
__try {
//
// Get a reference to the ALLOCATION struct that precedes the actual memory.
//
allocation = (PALLOCATION) Memory - 1;
#ifdef DEBUG
//
// Update stats.
//
poolHeader -> NumFreeRequests++;
#endif
#ifdef DEBUG
if (poolHeader -> FreeCalled == FREE_NOT_CALLED) {
poolHeader -> FreeCalled = FREE_CALLED;
}
//
// Check the dog tag on the allocation to provide sanity checking on the memory passed in.
//
if (allocation -> DogTag != VALIDDOGTAG) {
if (allocation -> DogTag == FREEDOGTAG) {
DEBUGMSG((
DBG_WHOOPS,
"Poolmem Error! This dogtag has already been freed! Pool: %s",
poolHeader->Name
));
} else {
DEBUGMSG ((
DBG_WHOOPS,
"Poolmem Error! Unknown value found in allocation dogtag. Pool: %s",
poolHeader->Name
));
MYASSERT (FALSE);
}
__leave;
} else {
allocation -> DogTag = FREEDOGTAG;
}
if (allocation -> Next) {
allocation -> Next -> Prev = allocation -> Prev;
}
if (poolHeader -> AllocationList == allocation) {
poolHeader -> AllocationList = allocation -> Next;
} else {
allocation -> Prev -> Next = allocation -> Next;
}
if (poolHeader -> FreeCalled != WHO_CARES) {
DebugUnregisterAllocation(POOLMEM_POINTER,allocation);
}
#endif
//
// Check to make sure this memory has not previously been freed.
//
if (allocation -> ParentBlock == NULL) {
DEBUGMSG((
DBG_WHOOPS,
"PoolMem Error! previously freed memory passed to PoolMemReleaseMemory. Pool: %s",
poolHeader->Name
));
__leave;
}
//
// Update the use count on this allocations parent block.
//
allocation -> ParentBlock -> UseCount--;
if (allocation -> ParentBlock -> UseCount == 0) {
//
// This was the last allocation still referring to the parent block.
//
if (allocation -> ParentBlock != poolHeader -> PoolHead) {
//
// Since the parent block isn't the active block, simply delete it.
//
#ifdef DEBUG
//
// Adjust stats.
//
poolHeader -> NumBlockFrees++;
poolHeader -> CurrentlyAllocatedMemory -=
allocation -> ParentBlock -> Size + sizeof(POOLMEMORYBLOCK);
#endif
if (allocation -> ParentBlock -> NextBlock) {
allocation -> ParentBlock -> NextBlock -> PrevBlock =
allocation -> ParentBlock -> PrevBlock;
}
allocation -> ParentBlock -> PrevBlock -> NextBlock =
allocation -> ParentBlock -> NextBlock;
MemFree(g_hHeap,0,allocation -> ParentBlock);
}
else {
//
// Since this is the active block, reset it.
//
allocation -> ParentBlock -> Index = 0;
allocation -> ParentBlock = NULL;
#ifdef DEBUG
poolHeader -> NumBlockClears++;
#endif
}
}
else {
allocation -> ParentBlock = NULL;
}
} __finally {
LeaveCriticalSection (&g_PoolMemCs);
}
}
#ifdef DEBUG
POOLHANDLE
PoolMemInitNamedPool (
IN PCSTR Name
)
{
POOLHANDLE pool;
PPOOLHEADER poolHeader;
pool = PoolMemInitPool();
if (pool) {
poolHeader = (PPOOLHEADER) pool;
_mbssafecpy (poolHeader->Name, Name, MAX_POOL_NAME);
MYASSERT (!poolHeader->TotalAllocationRequestBytes);
}
return pool;
}
#endif
PSTR
PoolMemDuplicateMultiSzA (
IN POOLHANDLE Handle,
IN PCSTR MultiSzToCopy
)
{
PSTR tmpString = (PSTR)MultiSzToCopy;
DWORD size;
if (MultiSzToCopy == NULL) {
return NULL;
}
while (tmpString [0] != 0) {
tmpString = GetEndOfStringA (tmpString) + 1;
}
size = tmpString - MultiSzToCopy + 1;
tmpString = PoolMemGetAlignedMemory(Handle, size);
memcpy (tmpString, MultiSzToCopy, size);
return tmpString;
}
PWSTR
PoolMemDuplicateMultiSzW (
IN POOLHANDLE Handle,
IN PCWSTR MultiSzToCopy
)
{
PWSTR tmpString = (PWSTR)MultiSzToCopy;
DWORD size;
if (MultiSzToCopy == NULL) {
return NULL;
}
while (tmpString [0] != 0) {
tmpString = GetEndOfStringW (tmpString) + 1;
}
size = (tmpString - MultiSzToCopy + 1) * sizeof(WCHAR);
tmpString = PoolMemGetAlignedMemory(Handle, size);
memcpy (tmpString, MultiSzToCopy, size);
return tmpString;
}
#ifdef DEBUG
VOID
PoolMemDisableTracking (
IN POOLHANDLE Handle
)
/*++
Routine Description:
PoolMemDisableTracking suppresses the debug output caused by a pool
that has a mix of freed and non-freed blocks.
Arguments:
Handle - A Handle to a Pool of Memory.
Return Value:
None.
--*/
{
PPOOLHEADER poolHeader = (PPOOLHEADER) Handle;
MYASSERT(poolHeader != NULL);
poolHeader -> FreeCalled = WHO_CARES;
}
#endif