windows-nt/Source/XPSP1/NT/base/win32/winnls/datetime.c
2020-09-26 16:20:57 +08:00

3547 lines
113 KiB
C
Raw Permalink Blame History

/*++
Copyright (c) 1991-2000, Microsoft Corporation All rights reserved.
Module Name:
datetime.c
Abstract:
This file contains the API functions that form properly formatted date
and time strings for a given locale.
APIs found in this file:
GetTimeFormatW
GetDateFormatW
Revision History:
05-31-91 JulieB Created.
--*/
//
// Include Files.
//
#include "nls.h"
#include "nlssafe.h"
//
// Constant Declarations.
//
#define MAX_DATETIME_BUFFER 256 // max size of buffer
#define NLS_CHAR_LTR_MARK L'\x200e' // left to right reading order mark
#define NLS_CHAR_RTL_MARK L'\x200f' // right to left reading order mark
#define NLS_HEBREW_JUNE 6 // month of June (Hebrew lunar)
//
// Forward Declarations.
//
BOOL
IsValidTime(
LPSYSTEMTIME lpTime);
BOOL
IsValidDate(
LPSYSTEMTIME lpDate);
WORD
GetCalendarYear(
LPWORD *ppRange,
CALID CalNum,
PCALENDAR_VAR pCalInfo,
WORD Year,
WORD Month,
WORD Day);
int
ParseTime(
PLOC_HASH pHashN,
LPSYSTEMTIME pLocalTime,
LPWSTR pFormat,
LPWSTR pTimeStr,
DWORD dwFlags);
int
ParseDate(
PLOC_HASH pHashN,
DWORD dwFlags,
LPSYSTEMTIME pLocalDate,
LPWSTR pFormat,
LPWSTR pDateStr,
CALID CalNum,
PCALENDAR_VAR pCalInfo,
BOOL fLunarLeap);
DWORD
GetAbsoluteDate(
WORD Year,
WORD Month,
WORD Day);
void
GetHijriDate(
LPSYSTEMTIME pDate,
DWORD dwFlags);
LONG
GetAdvanceHijriDate(
DWORD dwFlags);
DWORD
DaysUpToHijriYear(
DWORD HijriYear);
BOOL
GetHebrewDate(
LPSYSTEMTIME pDate,
LPBOOL pLunarLeap);
BOOL
IsValidDateForHebrew(
WORD Year,
WORD Month,
WORD Day);
BOOL
NumberToHebrewLetter(
DWORD Number,
LPWSTR szHebrewNum,
int cchSize);
//-------------------------------------------------------------------------//
// INTERNAL MACROS //
//-------------------------------------------------------------------------//
////////////////////////////////////////////////////////////////////////////
//
// NLS_COPY_UNICODE_STR
//
// Copies a zero terminated string from pSrc to the pDest buffer. The
// pDest pointer is advanced to the end of the string. Also, the cchDest
// member will be updated with the amount remaining
//
// SECURITY: If the copy fails due to exceeding cchDest, then this macro
// will exit the calling function, returning rcFailure.
//
// DEFINED AS A MACRO.
//
// 04-30-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
#define NLS_COPY_UNICODE_STR( pDest, \
cchDest, \
pSrc, \
rcFailure) \
{ \
/* \
* Copy the string to the result buffer. \
*/ \
if(FAILED(StringCchCopyExW(pDest, \
cchDest, \
pSrc, \
&pDest, \
&cchDest, \
0))) \
{ \
return(rcFailure); \
} \
}
////////////////////////////////////////////////////////////////////////////
//
// NLS_PAD_INT_TO_UNICODE_STR
//
// Converts an integer value to a unicode string and stores it in the
// buffer provided with the appropriate number of leading zeros. The
// pResultBuf pointer is advanced to the end of the string and the
// cchResultBuf parasm is updated to the amount of space left.
//
// SECURITY: Note that if an attempt is made to overrun our static buffer,
// this macro will exit the calling function (returning rcFailure).
//
// DEFINED AS A MACRO.
//
// 04-30-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
#define NLS_PAD_INT_TO_UNICODE_STR( Value, \
Base, \
Padding, \
pResultBuf, \
cchResultBuf, \
rcFailure) \
{ \
UNICODE_STRING ObString; /* value string */ \
WCHAR pBuffer[MAX_SMALL_BUF_LEN]; /* ptr to buffer */ \
UINT LpCtr; /* loop counter */ \
\
\
/* \
* Set up unicode string structure. \
*/ \
ObString.Length = MAX_SMALL_BUF_LEN * sizeof(WCHAR); \
ObString.MaximumLength = MAX_SMALL_BUF_LEN * sizeof(WCHAR); \
ObString.Buffer = pBuffer; \
\
/* \
* Get the value as a string. If there is an error, then do nothing. \
*/ \
if (!RtlIntegerToUnicodeString(Value, Base, &ObString)) \
{ \
/* \
* Pad the string with the appropriate number of zeros. \
*/ \
for (LpCtr = GET_WC_COUNT(ObString.Length); \
LpCtr < Padding; \
LpCtr++, pResultBuf++, cchResultBuf--) \
{ \
*pResultBuf = NLS_CHAR_ZERO; \
} \
\
/* \
* Copy the string to the result buffer. \
* The pResultBuf pointer will be advanced in the macro. \
* The cchResultsBuf value will be updated in the macro. \
*/ \
NLS_COPY_UNICODE_STR(pResultBuf, \
cchResultBuf, \
ObString.Buffer, rcFailure) \
} \
}
////////////////////////////////////////////////////////////////////////////
//
// NLS_STRING_TO_INTEGER
//
// Converts a string to an integer value.
//
// DEFINED AS A MACRO.
//
// 10-19-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
#define NLS_STRING_TO_INTEGER( CalNum, \
pCalId ) \
{ \
UNICODE_STRING ObUnicodeStr; /* value string */ \
\
\
/* \
* No need to check return value since the calendar number \
* will be validated after this anyway. \
*/ \
RtlInitUnicodeString(&ObUnicodeStr, pCalId); \
RtlUnicodeStringToInteger(&ObUnicodeStr, 10, &CalNum); \
}
////////////////////////////////////////////////////////////////////////////
//
// NLS_INSERT_BIDI_MARK
//
// Based on the user's bidi mark preference, it either adds a
// left to right mark or a right to left mark.
// The pDest pointer is advanced to the next position.
// The cchDest value is updated to the amount of space remaining in pDest.
//
// SECURITY: Note that if an attempt is made to overrun our static buffer,
// this macro will exit the calling function (returning rcFailure).
//
// DEFINED AS A MACRO.
//
// 12-03-96 JulieB Created.
////////////////////////////////////////////////////////////////////////////
#define NLS_INSERT_BIDI_MARK(pDest, dwFlags, cchDest, rcFailure) \
{ \
if (dwFlags & (DATE_LTRREADING | DATE_RTLREADING)) \
{ \
if(cchDest <= 1) \
{ \
return(rcFailure); \
} \
if (dwFlags & DATE_RTLREADING) \
{ \
*pDest = NLS_CHAR_RTL_MARK; \
} \
else \
{ \
*pDest = NLS_CHAR_LTR_MARK; \
} \
pDest++; \
cchDest--; \
} \
}
////////////////////////////////////////////////////////////////////////////
//
// NLS_GREGORIAN_LEAP_YEAR
//
// True if the given Gregorian year is a leap year. False otherwise.
//
// A year is a leap year if it is divisible by 4 and is not a century
// year (multiple of 100) or if it is divisible by 400.
//
// DEFINED AS A MACRO.
//
// 12-04-96 JulieB Created.
////////////////////////////////////////////////////////////////////////////
#define NLS_GREGORIAN_LEAP_YEAR(Year) \
((Year % 4 == 0) && ((Year % 100 != 0) || (Year % 400 == 0)))
////////////////////////////////////////////////////////////////////////////
//
// NLS_HIJRI_LEAP_YEAR
//
// True if the given Hijri year is a leap year. False otherwise.
//
// A year is a leap year if it is the 2nd, 5th, 7th, 10th, 13th, 16th,
// 18th, 21st, 24th, 26th, or 29th year of a 30-year cycle.
//
// DEFINED AS A MACRO.
//
// 12-04-96 JulieB Created.
////////////////////////////////////////////////////////////////////////////
#define NLS_HIJRI_LEAP_YEAR(Year) \
((((Year * 11) + 14) % 30) < 11)
////////////////////////////////////////////////////////////////////////////
//
// ARRAYSIZE
//
// Hnady utility macro to get the size of an array (such as an array of
// WCHARs).
////////////////////////////////////////////////////////////////////////////
#ifndef ARRAYSIZE
#define ARRAYSIZE(x) (sizeof(x)/sizeof((x)[0]))
#endif
//-------------------------------------------------------------------------//
// API ROUTINES //
//-------------------------------------------------------------------------//
////////////////////////////////////////////////////////////////////////////
//
// GetTimeFormatW
//
// Returns a properly formatted time string for the given locale. It uses
// either the system time or the specified time. This call also indicates
// how much memory is necessary to contain the desired information.
//
// 04-30-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int WINAPI GetTimeFormatW(
LCID Locale,
DWORD dwFlags,
CONST SYSTEMTIME *lpTime,
LPCWSTR lpFormat,
LPWSTR lpTimeStr,
int cchTime)
{
PLOC_HASH pHashN; // ptr to LOC hash node
SYSTEMTIME LocalTime; // local time structure
LPWSTR pFormat; // ptr to time format string
int Length = 0; // number of characters written
WCHAR pString[MAX_DATETIME_BUFFER]; // ptr to temporary buffer
WCHAR pTemp[MAX_REG_VAL_SIZE]; // temp buffer
//
// Invalid Parameter Check:
// - validate LCID
// - count is negative
// - NULL data pointer AND count is not zero
// - lpFormat length > MAX_DATETIME_BUFFER if not null
//
VALIDATE_LOCALE(Locale, pHashN, FALSE);
if ( (pHashN == NULL) ||
(cchTime < 0) ||
((lpTimeStr == NULL) && (cchTime != 0)) ||
((lpFormat) && (NlsStrLenW(lpFormat) >= MAX_DATETIME_BUFFER)) )
{
SetLastError(ERROR_INVALID_PARAMETER);
return (0);
}
//
// Invalid Flags Check:
// - flags other than valid ones
// - lpFormat not NULL AND NoUserOverride flag is set
//
if ( (dwFlags & GTF_INVALID_FLAG) ||
((lpFormat != NULL) && (dwFlags & LOCALE_NOUSEROVERRIDE)) )
{
SetLastError(ERROR_INVALID_FLAGS);
return (0);
}
//
// Set pFormat to point at the proper format string.
//
if (lpFormat == NULL)
{
//
// Get either the user's time format from the registry or
// the default time format from the locale file.
// This string may be a null string.
//
if (!(dwFlags & LOCALE_NOUSEROVERRIDE) &&
GetUserInfo( Locale,
LOCALE_STIMEFORMAT,
FIELD_OFFSET(NLS_USER_INFO, sTimeFormat),
NLS_VALUE_STIMEFORMAT,
pTemp,
ARRAYSIZE(pTemp),
FALSE ))
{
pFormat = pTemp;
}
else
{
pFormat = (LPWORD)(pHashN->pLocaleHdr) +
pHashN->pLocaleHdr->STimeFormat;
}
}
else
{
//
// Use the format string given by the caller.
//
pFormat = (LPWSTR)lpFormat;
}
//
// Get the current local system time if one is not given.
//
if (lpTime != NULL)
{
//
// Time is given by user. Store in local structure and
// validate it.
//
LocalTime.wHour = lpTime->wHour;
LocalTime.wMinute = lpTime->wMinute;
LocalTime.wSecond = lpTime->wSecond;
LocalTime.wMilliseconds = lpTime->wMilliseconds;
if (!IsValidTime(&LocalTime))
{
SetLastError(ERROR_INVALID_PARAMETER);
return (0);
}
}
else
{
GetLocalTime(&LocalTime);
}
//
// Parse the time format string.
//
Length = ParseTime( pHashN,
&LocalTime,
pFormat,
pString,
dwFlags );
//
// Check cchTime for size of given buffer.
//
if (cchTime == 0)
{
//
// If cchTime is 0, then we can't use lpTimeStr. In this
// case, we simply want to return the length (in characters) of
// the string to be copied.
//
return (Length);
}
else if (cchTime < Length)
{
//
// The buffer is too small for the string, so return an error
// and zero bytes written.
//
SetLastError(ERROR_INSUFFICIENT_BUFFER);
return (0);
}
else if (0 == Length)
{
//
// The buffer is too small for the string, so return an error
// and zero bytes written. A good candidate for a return of
// ERROR_STACK_BUFFER_OVERRUN but thats a bit too much information
//
SetLastError(ERROR_INVALID_PARAMETER);
return (0);
}
//
// Copy the time string to lpTimeStr and null terminate it.
// Return the number of characters copied.
//
if(FAILED(StringCchCopyW(lpTimeStr, Length, pString)))
{
//
// Failure should in theory be impossible, but if we ignore the
// return value, PREfast will complain.
//
SetLastError(ERROR_OUTOFMEMORY);
return (0);
}
return (Length);
}
////////////////////////////////////////////////////////////////////////////
//
// GetDateFormatW
//
// Returns a properly formatted date string for the given locale. It uses
// either the system date or the specified date. The user may specify
// either the short date format or the long date format. This call also
// indicates how much memory is necessary to contain the desired information.
//
// 04-30-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int WINAPI GetDateFormatW(
LCID Locale,
DWORD dwFlags,
CONST SYSTEMTIME *lpDate,
LPCWSTR lpFormat,
LPWSTR lpDateStr,
int cchDate)
{
PLOC_HASH pHashN; // ptr to LOC hash node
LPWSTR pFormat; // ptr to format string
SYSTEMTIME LocalDate; // local date structure
int Length = 0; // number of characters written
WCHAR pString[MAX_DATETIME_BUFFER]; // ptr to temporary buffer
BOOL fAltCalendar; // if alternate cal flag set
LPWSTR pOptCal; // ptr to optional calendar
PCAL_INFO pCalInfo; // ptr to calendar info
CALID CalNum = 0; // calendar number
ULONG CalDateOffset; // offset to calendar data
ULONG LocDateOffset; // offset to locale data
SIZE_T CacheOffset = 0; // Offset to field in the cache.
LPWSTR pValue; // ptr to registry value to get
WCHAR pTemp[MAX_REG_VAL_SIZE]; // temp buffer
BOOL fLunarLeap = FALSE; // if Hebrew Lunar leap year
LCTYPE LCType;
//
// Invalid Parameter Check:
// - validate LCID
// - count is negative
// - NULL data pointer AND count is not zero
// - lpFormat length > MAX_DATETIME_BUFFER if not null
//
VALIDATE_LOCALE(Locale, pHashN, FALSE);
if ( (pHashN == NULL) ||
(cchDate < 0) ||
((lpDateStr == NULL) && (cchDate != 0)) ||
((lpFormat) && (NlsStrLenW(lpFormat) >= MAX_DATETIME_BUFFER)) )
{
SetLastError(ERROR_INVALID_PARAMETER);
return (0);
}
//
// Invalid Flags Check:
// - flags other than valid ones
// - more than one of either ltr reading or rtl reading
// - lpFormat not NULL AND flags not zero
//
if ( (dwFlags & GDF_INVALID_FLAG) ||
(MORE_THAN_ONE(dwFlags, GDF_SINGLE_FLAG)) ||
((lpFormat != NULL) &&
(dwFlags & (DATE_SHORTDATE | DATE_LONGDATE |
DATE_YEARMONTH | LOCALE_NOUSEROVERRIDE))) )
{
SetLastError(ERROR_INVALID_FLAGS);
return (0);
}
//
// See if the alternate calendar should be used.
//
if (fAltCalendar = (dwFlags & DATE_USE_ALT_CALENDAR))
{
//
// Get the default optional calendar.
//
pOptCal = (LPWORD)(pHashN->pLocaleHdr) +
pHashN->pLocaleHdr->IOptionalCal;
//
// If there is an optional calendar, store the calendar id.
//
if (((POPT_CAL)pOptCal)->CalId != CAL_NO_OPTIONAL)
{
CalNum = ((POPT_CAL)pOptCal)->CalId;
}
}
//
// If there was no alternate calendar, then try (in order):
// - the user's calendar type
// - the system default calendar type
//
if (CalNum == 0)
{
//
// Get the user's calendar type.
//
if ( !(dwFlags & LOCALE_NOUSEROVERRIDE) &&
GetUserInfo( Locale,
LOCALE_ICALENDARTYPE,
FIELD_OFFSET(NLS_USER_INFO, iCalType),
NLS_VALUE_ICALENDARTYPE,
pTemp,
ARRAYSIZE(pTemp),
TRUE ) &&
(pOptCal = IsValidCalendarTypeStr( pHashN, pTemp )) )
{
CalNum = ((POPT_CAL)pOptCal)->CalId;
}
else
{
//
// Get the system default calendar type.
//
NLS_STRING_TO_INTEGER( CalNum,
pHashN->pLocaleFixed->szICalendarType );
}
}
//
// Get the pointer to the appropriate calendar information.
//
if (GetCalendar(CalNum, &pCalInfo))
{
SetLastError(ERROR_INVALID_PARAMETER);
return (0);
}
//
// Set pFormat to point at the proper format string.
//
if (lpFormat == NULL)
{
//
// Find out which flag is set and save the appropriate
// information.
//
switch (dwFlags & (DATE_SHORTDATE | DATE_LONGDATE | DATE_YEARMONTH))
{
case ( 0 ) :
case ( DATE_SHORTDATE ) :
{
//
// Get the offset values for the shortdate.
//
CalDateOffset = (ULONG)FIELD_OFFSET(CALENDAR_VAR, SShortDate);
LocDateOffset = (ULONG)FIELD_OFFSET(LOCALE_VAR, SShortDate);
CacheOffset = FIELD_OFFSET(NLS_USER_INFO, sShortDate);
pValue = NLS_VALUE_SSHORTDATE;
LCType = LOCALE_SSHORTDATE;
break;
}
case ( DATE_LONGDATE ) :
{
//
// Get the offset values for the longdate.
//
CalDateOffset = (ULONG)FIELD_OFFSET(CALENDAR_VAR, SLongDate);
LocDateOffset = (ULONG)FIELD_OFFSET(LOCALE_VAR, SLongDate);
CacheOffset = FIELD_OFFSET(NLS_USER_INFO, sLongDate);
pValue = NLS_VALUE_SLONGDATE;
LCType = LOCALE_SLONGDATE;
break;
}
case ( DATE_YEARMONTH ) :
{
//
// Get the offset values for the year/month.
//
CalDateOffset = (ULONG)FIELD_OFFSET(CALENDAR_VAR, SYearMonth);
LocDateOffset = (ULONG)FIELD_OFFSET(LOCALE_VAR, SYearMonth);
CacheOffset = FIELD_OFFSET(NLS_USER_INFO, sYearMonth);
pValue = NLS_VALUE_SYEARMONTH;
LCType = LOCALE_SYEARMONTH;
break;
}
default :
{
SetLastError(ERROR_INVALID_FLAGS);
return (0);
}
}
//
// Get the proper format string for the given locale.
// This string may be a null string.
//
pFormat = NULL;
if (fAltCalendar && (CalNum != CAL_GREGORIAN))
{
pFormat = (LPWORD)pCalInfo +
*((LPWORD)((LPBYTE)(pCalInfo) + CalDateOffset));
if (*pFormat == 0)
{
pFormat = NULL;
}
}
if (pFormat == NULL)
{
if (!(dwFlags & LOCALE_NOUSEROVERRIDE) &&
GetUserInfo(Locale, LCType, CacheOffset, pValue, pTemp, ARRAYSIZE(pTemp), TRUE))
{
pFormat = pTemp;
}
else
{
pFormat = (LPWORD)pCalInfo +
*((LPWORD)((LPBYTE)(pCalInfo) + CalDateOffset));
if (*pFormat == 0)
{
pFormat = (LPWORD)(pHashN->pLocaleHdr) +
*((LPWORD)((LPBYTE)(pHashN->pLocaleHdr) +
LocDateOffset));
}
}
}
}
else
{
//
// Use the format string given by the caller.
//
pFormat = (LPWSTR)lpFormat;
}
//
// Get the current local system date if one is not given.
//
if (lpDate != NULL)
{
//
// Date is given by user. Store in local structure and
// validate it.
//
LocalDate.wYear = lpDate->wYear;
LocalDate.wMonth = lpDate->wMonth;
LocalDate.wDayOfWeek = lpDate->wDayOfWeek;
LocalDate.wDay = lpDate->wDay;
if (!IsValidDate(&LocalDate))
{
SetLastError(ERROR_INVALID_PARAMETER);
return (0);
}
}
else
{
GetLocalTime(&LocalDate);
}
//
// See if we're dealing with the Hijri or the Hebrew calendar.
//
if (CalNum == CAL_HIJRI)
{
GetHijriDate(&LocalDate, dwFlags);
}
else if (CalNum == CAL_HEBREW)
{
if (!GetHebrewDate(&LocalDate, &fLunarLeap))
{
SetLastError(ERROR_INVALID_PARAMETER);
return (0);
}
}
//
// Parse the date format string.
//
Length = ParseDate( pHashN,
dwFlags,
&LocalDate,
pFormat,
pString,
CalNum,
(PCALENDAR_VAR)pCalInfo,
fLunarLeap );
//
// Check cchDate for size of given buffer.
//
if (cchDate == 0)
{
//
// If cchDate is 0, then we can't use lpDateStr. In this
// case, we simply want to return the length (in characters) of
// the string to be copied.
//
return (Length);
}
else if (cchDate < Length)
{
//
// The buffer is too small for the string, so return an error
// and zero bytes written.
//
SetLastError(ERROR_INSUFFICIENT_BUFFER);
return (0);
}
else if (0 == Length)
{
//
// The buffer is too small for the string, so return an error
// and zero bytes written. A good candidate for a return of
// ERROR_STACK_BUFFER_OVERRUN but thats a bit too much information
//
SetLastError(ERROR_INVALID_PARAMETER);
return(0);
}
//
// Copy the date string to lpDateStr and null terminate it.
// Return the number of characters copied.
//
if(FAILED(StringCchCopyW(lpDateStr, Length, pString)))
{
//
// Failure should in theory be impossible, but if we ignore the
// return value, PREfast will complain.
//
SetLastError(ERROR_OUTOFMEMORY);
return (0);
}
return (Length);
}
//-------------------------------------------------------------------------//
// INTERNAL ROUTINES //
//-------------------------------------------------------------------------//
////////////////////////////////////////////////////////////////////////////
//
// IsValidTime
//
// Returns TRUE if the given time is valid. Otherwise, it returns FALSE.
//
// 04-30-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
BOOL IsValidTime(
LPSYSTEMTIME pTime)
{
//
// Check for invalid time values.
//
if ( (pTime->wHour > 23) ||
(pTime->wMinute > 59) ||
(pTime->wSecond > 59) ||
(pTime->wMilliseconds > 999) )
{
return (FALSE);
}
//
// Return success.
//
return (TRUE);
}
////////////////////////////////////////////////////////////////////////////
//
// IsValidDate
//
// Returns TRUE if the given date is valid. Otherwise, it returns FALSE.
//
// 04-30-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
BOOL IsValidDate(
LPSYSTEMTIME pDate)
{
LARGE_INTEGER Time; // time as a large integer
TIME_FIELDS TimeFields; // time fields structure
//
// Set up time fields structure with the given date.
// Only want to check the DATE values, so pass in a valid time.
//
TimeFields.Year = pDate->wYear;
TimeFields.Month = pDate->wMonth;
TimeFields.Day = pDate->wDay;
TimeFields.Hour = 0;
TimeFields.Minute = 0;
TimeFields.Second = 0;
TimeFields.Milliseconds = 0;
//
// Check for invalid date values.
//
// NOTE: This routine ignores the Weekday field.
//
if (!RtlTimeFieldsToTime(&TimeFields, &Time))
{
return (FALSE);
}
//
// Make sure the given day of the week is valid for the given date.
//
RtlTimeToTimeFields(&Time, &TimeFields);
pDate->wDayOfWeek = TimeFields.Weekday;
//
// Return success.
//
return (TRUE);
}
////////////////////////////////////////////////////////////////////////////
//
// GetCalendarYear
//
// Adjusts the given year to the given calendar's year.
//
// 10-15-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
WORD GetCalendarYear(
LPWORD *ppRange,
CALID CalNum,
PCALENDAR_VAR pCalInfo,
WORD Year,
WORD Month,
WORD Day)
{
LPWORD pRange; // ptr to range position
LPWORD pEndRange; // ptr to the end of the range
//
// Initialize range pointer.
//
*ppRange = NULL;
//
// Adjust the year based on the given calendar
//
switch (CalNum)
{
case ( 0 ) :
case ( CAL_GREGORIAN ) :
case ( CAL_GREGORIAN_US ) :
default :
{
//
// Year value is not changed.
//
break;
}
case ( CAL_JAPAN ) :
case ( CAL_TAIWAN ) :
{
//
// Get pointer to ranges.
//
pRange = ((LPWORD)pCalInfo) + pCalInfo->SEraRanges;
pEndRange = ((LPWORD)pCalInfo) + pCalInfo->SShortDate;
//
// Find the appropriate range.
//
while (pRange < pEndRange)
{
if ((Year > ((PERA_RANGE)pRange)->Year) ||
((Year == ((PERA_RANGE)pRange)->Year) &&
((Month > ((PERA_RANGE)pRange)->Month) ||
((Month == ((PERA_RANGE)pRange)->Month) &&
(Day >= ((PERA_RANGE)pRange)->Day)))))
{
break;
}
pRange += ((PERA_RANGE)pRange)->Offset;
}
//
// Make sure the year is within the given ranges. If it
// is not, then leave the year in the Gregorian format.
//
if (pRange < pEndRange)
{
//
// Convert the year to the appropriate Era year.
// Year = Year - EraYear + 1
//
Year = Year - ((PERA_RANGE)pRange)->Year + 1;
//
// Save the pointer to the range.
//
*ppRange = pRange;
}
break;
}
case ( CAL_KOREA ) :
case ( CAL_THAI ) :
{
//
// Get the first range.
//
pRange = ((LPWORD)pCalInfo) + pCalInfo->SEraRanges;
//
// Add the year offset to the given year.
// Year = Year + EraYear
//
Year += ((PERA_RANGE)pRange)->Year;
//
// Save the range.
//
*ppRange = pRange;
break;
}
}
//
// Return the year.
//
return (Year);
}
////////////////////////////////////////////////////////////////////////////
//
// ParseTime
//
// Parses the time format string and puts the properly formatted
// local time into the given string buffer. It returns the number of
// characters written to the string buffer.
//
// SECURITY: If an attempt is made to overrun our static buffer, return 0
// to trigger failure.
//
// 04-30-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int ParseTime(
PLOC_HASH pHashN,
LPSYSTEMTIME pLocalTime,
LPWSTR pFormat,
LPWSTR pTimeStr,
DWORD dwFlags)
{
LPWSTR pPos; // ptr to pTimeStr current position
LPWSTR pLastPos; // ptr to pTimeStr last valid position
LPWSTR pLastFormatPos; // ptr to pFormat last parsed string
int Repeat; // number of repetitions of same letter
int BufferedSpaces; // buffered spaces to copy to output buffer
WORD wHour; // hour
WCHAR wchar; // character in format string
LPWSTR pAMPM; // ptr to AM/PM designator
WCHAR pTemp[MAX_REG_VAL_SIZE]; // temp buffer
BOOL bInQuote; // are we in a quoted string or not ?
size_t cchRemaining; // Count of how many charactrs are left in pTimeStr
size_t cchLastRemaining; // How many charactrs are left in pTimeStr at last valid pos
//
// Initialize position pointer.
//
pPos = pTimeStr;
pLastPos = pPos;
pLastFormatPos = pFormat;
cchRemaining = MAX_DATETIME_BUFFER;
cchLastRemaining = cchRemaining;
BufferedSpaces = 0L;
//
// Parse through loop and store the appropriate time information
// in the pTimeStr buffer.
//
while (*pFormat)
{
switch (*pFormat)
{
case ( L'h' ) :
{
//
// Check for forced 24 hour time format.
//
wHour = pLocalTime->wHour;
if (!(dwFlags & TIME_FORCE24HOURFORMAT))
{
//
// Use 12 hour format.
//
if (!(wHour %= 12))
{
wHour = 12;
}
}
//
// Get the number of 'h' repetitions in the format string.
//
pFormat++;
for (Repeat = 0; (*pFormat == L'h'); Repeat++, pFormat++)
;
//
// Put any buffered spaces into the output buffer.
//
while (BufferedSpaces > 0)
{
if( cchRemaining <= 1 )
{
// Our static buffer will be overrun if we continue, so bail
return(0);
}
BufferedSpaces--;
*pPos++ = L' ';
cchRemaining--;
}
switch (Repeat)
{
case ( 0 ) :
{
//
// Use NO leading zero for the hour.
// The pPos pointer will be advanced in the macro.
// The cchRemaining value will be updated in the macro.
//
NLS_PAD_INT_TO_UNICODE_STR( wHour,
10,
1,
pPos,
cchRemaining,
0 );
break;
}
case ( 1 ) :
default :
{
//
// Use leading zero for the hour.
// The pPos pointer will be advanced in the macro.
// The cchRemaining value will be updated in the macro.
//
NLS_PAD_INT_TO_UNICODE_STR( wHour,
10,
2,
pPos,
cchRemaining,
0 );
break;
}
}
//
// Save the last position in case one of the NO_xxx
// flags is set.
//
pLastPos = pPos;
cchLastRemaining = cchRemaining;
pLastFormatPos = pFormat;
break;
}
case ( L'H' ) :
{
//
// Get the number of 'H' repetitions in the format string.
//
pFormat++;
for (Repeat = 0; (*pFormat == L'H'); Repeat++, pFormat++)
;
//
// Put any buffered spaces into the output buffer.
//
while (BufferedSpaces > 0)
{
if( cchRemaining <= 1 )
{
// Our static buffer will be overrun if we continue, so bail
return(0);
}
BufferedSpaces--;
*pPos++ = L' ';
cchRemaining--;
}
switch (Repeat)
{
case ( 0 ) :
{
//
// Use NO leading zero for the hour.
// The pPos pointer will be advanced in the macro.
// The cchRemaining value will be updated in the macro.
//
NLS_PAD_INT_TO_UNICODE_STR( pLocalTime->wHour,
10,
1,
pPos,
cchRemaining,
0 );
break;
}
case ( 1 ) :
default :
{
//
// Use leading zero for the hour.
// The pPos pointer will be advanced in the macro.
// The cchRemaining value will be updated in the macro.
//
NLS_PAD_INT_TO_UNICODE_STR( pLocalTime->wHour,
10,
2,
pPos,
cchRemaining,
0 );
break;
}
}
//
// Save the last position in case one of the NO_xxx
// flags is set.
//
pLastPos = pPos;
cchLastRemaining = cchRemaining;
pLastFormatPos = pFormat;
break;
}
case ( L'm' ) :
{
//
// Get the number of 'm' repetitions in the format string.
//
pFormat++;
for (Repeat = 0; (*pFormat == L'm'); Repeat++, pFormat++)
;
//
// If the flag TIME_NOMINUTESORSECONDS is set, then
// skip over the minutes.
//
if (dwFlags & TIME_NOMINUTESORSECONDS)
{
//
// Reset position pointer to last postion and break
// out of this case statement.
//
// This will remove any separator(s) between the
// hours and minutes.
//
// 1- Go backward and leave only quoted text
// 2- Go forward and remove everything until hitting {hHt}
//
bInQuote = FALSE;
while (pFormat != pLastFormatPos)
{
if (*pLastFormatPos == NLS_CHAR_QUOTE)
{
bInQuote = !bInQuote;
pLastFormatPos++;
continue;
}
if (bInQuote)
{
*pLastPos = *pLastFormatPos;
pLastPos++;
cchLastRemaining--;
}
pLastFormatPos++;
}
bInQuote = FALSE;
BufferedSpaces = 0;
while (*pFormat)
{
if (*pLastFormatPos == NLS_CHAR_QUOTE)
{
bInQuote = !bInQuote;
}
if (!bInQuote)
{
if (*pFormat == L' ')
{
BufferedSpaces++;
}
else
{
if ((*pFormat == L'h') ||
(*pFormat == L'H') ||
(*pFormat == L't'))
{
break;
}
}
}
pFormat++;
}
pPos = pLastPos;
cchRemaining = cchLastRemaining;
break;
}
//
// Put any buffered spaces into the output buffer.
//
while (BufferedSpaces > 0)
{
if( cchRemaining <= 1 )
{
// Our static buffer will be overrun if we continue, so bail
return(0);
}
BufferedSpaces--;
*pPos++ = L' ';
cchRemaining--;
}
switch (Repeat)
{
case ( 0 ) :
{
//
// Use NO leading zero for the minute.
// The pPos pointer will be advanced in the macro.
// The cchRemaining value will be updated in the macro.
//
NLS_PAD_INT_TO_UNICODE_STR( pLocalTime->wMinute,
10,
1,
pPos,
cchRemaining,
0 );
break;
}
case ( 1 ) :
default :
{
//
// Use leading zero for the minute.
// The pPos pointer will be advanced in the macro.
// The cchRemaining value will be updated in the macro.
//
NLS_PAD_INT_TO_UNICODE_STR( pLocalTime->wMinute,
10,
2,
pPos,
cchRemaining,
0 );
break;
}
}
//
// Save the last position in case one of the NO_xxx
// flags is set.
//
pLastPos = pPos;
cchLastRemaining = cchRemaining;
pLastFormatPos = pFormat;
break;
}
case ( L's' ) :
{
//
// Get the number of 's' repetitions in the format string.
//
pFormat++;
for (Repeat = 0; (*pFormat == L's'); Repeat++, pFormat++)
;
//
// If the flag TIME_NOMINUTESORSECONDS and/or TIME_NOSECONDS
// is set, then skip over the seconds.
//
if (dwFlags & (TIME_NOMINUTESORSECONDS | TIME_NOSECONDS))
{
//
// Reset position pointer to last postion and break
// out of this case statement.
//
// This will remove any separator(s) between the
// minutes and seconds.
//
//
// 1- Go backward and leave only quoted text
// 2- Go forward and remove everything till hitting {hmHt}
//
bInQuote = FALSE;
while (pFormat != pLastFormatPos)
{
if (*pLastFormatPos == NLS_CHAR_QUOTE)
{
bInQuote = !bInQuote;
pLastFormatPos++;
continue;
}
if (bInQuote)
{
*pLastPos = *pLastFormatPos;
pLastPos++;
cchLastRemaining--;
}
pLastFormatPos++;
}
bInQuote = FALSE;
BufferedSpaces = 0;
while (*pFormat)
{
if (*pLastFormatPos == NLS_CHAR_QUOTE)
{
bInQuote = !bInQuote;
}
if (!bInQuote)
{
if (*pFormat == L' ')
{
BufferedSpaces++;
}
else
{
if ((*pFormat == L'h') ||
(*pFormat == L'H') ||
(*pFormat == L't') ||
(*pFormat == L'm'))
{
break;
}
}
}
pFormat++;
}
pPos = pLastPos;
cchRemaining = cchLastRemaining;
break;
}
//
// Put any buffered spaces into the output buffer.
//
while (BufferedSpaces > 0)
{
if( cchRemaining <= 1 )
{
// Our static buffer will be overrun if we continue, so bail
return(0);
}
BufferedSpaces--;
*pPos++ = L' ';
cchRemaining--;
}
switch (Repeat)
{
case ( 0 ) :
{
//
// Use NO leading zero for the second.
// The pPos pointer will be advanced in the macro.
// The cchRemaining value will be updated in the macro.
//
NLS_PAD_INT_TO_UNICODE_STR( pLocalTime->wSecond,
10,
1,
pPos,
cchRemaining,
0 );
break;
}
case ( 1 ) :
default :
{
//
// Use leading zero for the second.
// The pPos pointer will be advanced in the macro.
// The cchRemaining value will be updated in the macro.
//
NLS_PAD_INT_TO_UNICODE_STR( pLocalTime->wSecond,
10,
2,
pPos,
cchRemaining,
0 );
break;
}
}
//
// Save the last position in case one of the NO_xxx
// flags is set.
//
pLastPos = pPos;
cchLastRemaining = cchRemaining;
pLastFormatPos = pFormat;
break;
}
case ( L't' ) :
{
//
// Get the number of 't' repetitions in the format string.
//
pFormat++;
for (Repeat = 0; (*pFormat == L't'); Repeat++, pFormat++)
;
//
// Put any buffered spaces into the output buffer.
//
while (BufferedSpaces > 0)
{
if( cchRemaining <= 1 )
{
// Our static buffer will be overrun if we continue, so bail
return(0);
}
BufferedSpaces--;
*pPos++ = L' ';
cchRemaining--;
}
//
// If the flag TIME_NOTIMEMARKER is set, then skip over
// the time marker info.
//
if (dwFlags & TIME_NOTIMEMARKER)
{
//
// Reset position pointer to last postion.
//
// This will remove any separator(s) between the
// time (hours, minutes, seconds) and the time
// marker.
//
pPos = pLastPos;
cchRemaining = cchLastRemaining;
pLastFormatPos = pFormat;
//
// Increment the format pointer until it reaches
// an h, H, m, or s. This will remove any
// separator(s) following the time marker.
//
while ( (wchar = *pFormat) &&
(wchar != L'h') &&
(wchar != L'H') &&
(wchar != L'm') &&
(wchar != L's') )
{
pFormat++;
}
//
// Break out of this case statement.
//
break;
}
else
{
//
// Get AM/PM designator.
// This string may be a null string.
//
if (pLocalTime->wHour < 12)
{
if (!(dwFlags & LOCALE_NOUSEROVERRIDE) &&
GetUserInfo( pHashN->Locale,
LOCALE_S1159,
FIELD_OFFSET(NLS_USER_INFO, s1159),
NLS_VALUE_S1159,
pTemp,
ARRAYSIZE(pTemp),
FALSE ))
{
pAMPM = pTemp;
}
else
{
pAMPM = (LPWORD)(pHashN->pLocaleHdr) +
pHashN->pLocaleHdr->S1159;
}
}
else
{
if (!(dwFlags & LOCALE_NOUSEROVERRIDE) &&
GetUserInfo( pHashN->Locale,
LOCALE_S2359,
FIELD_OFFSET(NLS_USER_INFO, s2359),
NLS_VALUE_S2359,
pTemp,
ARRAYSIZE(pTemp),
FALSE ))
{
pAMPM = pTemp;
}
else
{
pAMPM = (LPWORD)(pHashN->pLocaleHdr) +
pHashN->pLocaleHdr->S2359;
}
}
if (*pAMPM == 0)
{
//
// Reset position pointer to last postion and break
// out of this case statement.
//
// This will remove any separator(s) between the
// time (hours, minutes, seconds) and the time
// marker.
//
pPos = pLastPos;
cchRemaining = cchLastRemaining;
pLastFormatPos = pFormat;
break;
}
}
switch (Repeat)
{
case ( 0 ) :
{
if( cchRemaining <= 1 )
{
// Our static buffer will be overrun if we continue, so bail
return(0);
}
//
// One letter of AM/PM designator.
//
*pPos = *pAMPM;
pPos++;
cchRemaining--;
break;
}
case ( 1 ) :
default :
{
//
// Use entire AM/PM designator string.
// The pPos pointer will be advanced in the macro.
// The cchRemaining value will be updated in the macro.
//
NLS_COPY_UNICODE_STR(pPos, cchRemaining, pAMPM, 0);
break;
}
}
//
// Save the last position in case one of the NO_xxx
// flags is set.
//
pLastPos = pPos;
cchLastRemaining = cchRemaining;
pLastFormatPos = pFormat;
break;
}
case ( NLS_CHAR_QUOTE ) :
{
//
// Any text enclosed within single quotes should be left
// in the time string in its exact form (without the
// quotes), unless it is an escaped single quote ('').
//
pFormat++;
while (*pFormat)
{
if (*pFormat != NLS_CHAR_QUOTE)
{
if( cchRemaining <= 1 )
{
// Our static buffer will be overrun if we continue, so bail
return(0);
}
//
// Still within the single quote, so copy
// the character to the buffer.
//
*pPos = *pFormat;
pFormat++;
pPos++;
cchRemaining--;
}
else
{
//
// Found another quote, so skip over it.
//
pFormat++;
//
// Make sure it's not an escaped single quote.
//
if (*pFormat == NLS_CHAR_QUOTE)
{
if( cchRemaining <= 1 )
{
// Our static buffer will be overrun if we continue, so bail
return(0);
}
//
// Escaped single quote, so just write the
// single quote.
//
*pPos = *pFormat;
pFormat++;
pPos++;
cchRemaining--;
}
else
{
//
// Found the end quote, so break out of loop.
//
break;
}
}
}
break;
}
default :
{
if( cchRemaining <= 1 )
{
// Our static buffer will be overrun if we continue, so bail
return(0);
}
//
// Store the character in the buffer. Should be the
// separator, but copy it even if it isn't.
//
*pPos = *pFormat;
pFormat++;
pPos++;
cchRemaining--;
break;
}
}
}
//
// Zero terminate the string.
//
*pPos = 0;
//
// Return the number of characters written to the buffer, including
// the null terminator.
//
return ((int)((pPos - pTimeStr) + 1));
}
////////////////////////////////////////////////////////////////////////////
//
// ParseDate
//
// Parses the date format string and puts the properly formatted
// local date into the given string buffer. It returns the number of
// characters written to the string buffer.
//
// SECURITY: If an attempt is made to overrun our static buffer, return 0
// to trigger failure.
//
// 04-30-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int ParseDate(
PLOC_HASH pHashN,
DWORD dwFlags,
LPSYSTEMTIME pLocalDate,
LPWSTR pFormat,
LPWSTR pDateStr,
CALID CalNum,
PCALENDAR_VAR pCalInfo,
BOOL fLunarLeap)
{
LPWSTR pPos; // ptr to pDateStr current position
LPWSTR pTemp; // ptr to temp position in format string
int Repeat; // number of repetitions of same letter
LPWORD pIncr; // ptr to increment amount (day, month)
WORD Incr; // increment amount
BOOL fDayExists = FALSE; // numeric day precedes or follows month
WORD Year; // year value
LPWORD pRange = NULL; // ptr to era ranges
LPWORD pInfo; // ptr to locale or calendar info
LPWORD pInfoC; // ptr to calendar info
WCHAR szHebrew[10]; // buffer for Hebrew
size_t cchRemaining; // Count of how many charactrs are left in pDateStr
//
// Initialize position pointer.
//
pPos = pDateStr;
cchRemaining = MAX_DATETIME_BUFFER;
//
// Parse through loop and store the appropriate date information
// in the pDateStr buffer.
//
while (*pFormat)
{
switch (*pFormat)
{
case ( L'd' ) :
{
//
// Insert the layout direction flag, if requested.
//
NLS_INSERT_BIDI_MARK(pPos, dwFlags, cchRemaining, 0);
//
// Get the number of 'd' repetitions in the format string.
//
pFormat++;
for (Repeat = 0; (*pFormat == L'd'); Repeat++, pFormat++)
;
switch (Repeat)
{
case ( 0 ) :
case ( 1 ) :
{
//
// Set flag for day preceding month. The flag
// will be used when the MMMM case follows the
// d or dd case.
//
fDayExists = TRUE;
//
// Special case the Hebrew calendar.
//
if (CalNum == CAL_HEBREW)
{
//
// Convert Day number to Hebrew letter and
// write it to the buffer.
//
if( ! (NumberToHebrewLetter( pLocalDate->wDay,
szHebrew,
ARRAYSIZE(szHebrew) )))
{
//
// Operation tried to overrun the static buffer on the stack
//
return(0);
}
NLS_COPY_UNICODE_STR(pPos, cchRemaining, szHebrew, 0);
break;
}
//
// Repeat Value:
// 0 : Use NO leading zero for the day of the month
// 1 : Use leading zero for the day of the month
// The pPos pointer will be advanced in the macro.
// The cchRemaining value will be updated in the macro.
//
NLS_PAD_INT_TO_UNICODE_STR( pLocalDate->wDay,
10,
(UINT)(Repeat + 1),
pPos,
cchRemaining,
0 );
break;
}
case ( 2 ) :
{
//
// Set flag for day preceding month to be FALSE.
//
fDayExists = FALSE;
//
// Get the abbreviated name for the day of the
// week.
// The pPos pointer will be advanced in the macro.
// The cchRemaining value will be updated in the macro.
//
// NOTE: LocalTime structure uses:
// 0 = Sun, 1 = Mon, etc.
// Locale file uses:
// SAbbrevDayName1 = Mon, etc.
//
if (pCalInfo->IfNames &&
(pHashN->Locale != MAKELCID(MAKELANGID(LANG_DIVEHI,SUBLANG_DEFAULT),SORT_DEFAULT )))
{
pInfo = (LPWORD)pCalInfo;
pIncr = &(pCalInfo->SAbbrevDayName1);
}
else
{
pInfo = (LPWORD)(pHashN->pLocaleHdr);
pIncr = &(pHashN->pLocaleHdr->SAbbrevDayName1);
}
pIncr += (((pLocalDate->wDayOfWeek) + 6) % 7);
//
// Copy the abbreviated day name.
//
NLS_COPY_UNICODE_STR(pPos, cchRemaining, ((LPWORD)(pInfo) + *pIncr), 0);
break;
}
case ( 3 ) :
default :
{
//
// Set flag for day preceding month to be FALSE.
//
fDayExists = FALSE;
//
// Get the full name for the day of the week.
// The pPos pointer will be advanced in the macro.
// The cchRemaining value will be updated in the macro.
//
// NOTE: LocalTime structure uses:
// 0 = Sunday, 1 = Monday, etc.
// Locale file uses:
// SAbbrevDayName1 = Monday, etc.
//
if (pCalInfo->IfNames &&
(pHashN->Locale != MAKELCID(MAKELANGID(LANG_DIVEHI,SUBLANG_DEFAULT),SORT_DEFAULT )))
{
pInfo = (LPWORD)pCalInfo;
pIncr = &(pCalInfo->SDayName1);
}
else
{
pInfo = (LPWORD)(pHashN->pLocaleHdr);
pIncr = &(pHashN->pLocaleHdr->SDayName1);
}
pIncr += (((pLocalDate->wDayOfWeek) + 6) % 7);
//
// Copy the abbreviated day name.
//
NLS_COPY_UNICODE_STR(pPos, cchRemaining, ((LPWORD)(pInfo) + *pIncr), 0);
break;
}
}
break;
}
case ( L'M' ) :
{
//
// Insert the layout direction flag, if requested.
//
NLS_INSERT_BIDI_MARK(pPos, dwFlags, cchRemaining, 0);
//
// Get the number of 'M' repetitions in the format string.
//
pFormat++;
for (Repeat = 0; (*pFormat == L'M'); Repeat++, pFormat++)
;
switch (Repeat)
{
case ( 0 ) :
case ( 1 ) :
{
//
// Special case the Hebrew calendar.
//
if (CalNum == CAL_HEBREW)
{
//
// Convert Month number to Hebrew letter and
// write it to the buffer.
//
if( ! (NumberToHebrewLetter( pLocalDate->wMonth,
szHebrew,
ARRAYSIZE(szHebrew) )))
{
//
// Operation tried to overrun the static buffer on the stack
//
return(0);
}
NLS_COPY_UNICODE_STR(pPos, cchRemaining, szHebrew, 0);
break;
}
//
// Repeat Value:
// 0 : Use NO leading zero for the month
// 1 : Use leading zero for the month
// The pPos pointer will be advanced in the macro.
// The cchRemaining value will be updated in the macro.
//
NLS_PAD_INT_TO_UNICODE_STR( pLocalDate->wMonth,
10,
(UINT)(Repeat + 1),
pPos,
cchRemaining,
0 );
break;
}
case ( 2 ) :
case ( 3 ) :
default :
{
//
// Check for abbreviated or full month name.
//
if (Repeat == 2)
{
pInfoC = &(pCalInfo->SAbbrevMonthName1);
pInfo = &(pHashN->pLocaleHdr->SAbbrevMonthName1);
}
else
{
pInfoC = &(pCalInfo->SMonthName1);
pInfo = &(pHashN->pLocaleHdr->SMonthName1);
}
//
// Get the abbreviated name of the month.
// The pPos pointer will be advanced in the macro.
// The cchRemaining value will be updated in the macro.
//
if (pCalInfo->IfNames &&
(pHashN->Locale != MAKELCID(MAKELANGID(LANG_DIVEHI,SUBLANG_DEFAULT),SORT_DEFAULT )))
{
if ((CalNum == CAL_HEBREW) &&
(!fLunarLeap) &&
(pLocalDate->wMonth > NLS_HEBREW_JUNE))
{
//
// Go passed Addar_B.
//
pIncr = (pInfoC) +
(pLocalDate->wMonth);
}
else
{
pIncr = (pInfoC) +
(pLocalDate->wMonth - 1);
}
//
// Copy the abbreviated month name.
//
NLS_COPY_UNICODE_STR(pPos, cchRemaining, ((LPWORD)(pCalInfo) + *pIncr), 0);
}
else
{
pIncr = (pInfo) +
(pLocalDate->wMonth - 1);
//
// If we don't already have a numeric day
// preceding the month name, then check for
// a numeric day following the month name.
//
if (!fDayExists)
{
pTemp = pFormat;
while (*pTemp)
{
if ((*pTemp == L'g') || (*pTemp == L'y'))
{
break;
}
if (*pTemp == L'd')
{
for (Repeat = 0;
(*pTemp == L'd');
Repeat++, pTemp++)
;
if ((Repeat == 1) || (Repeat == 2))
{
fDayExists = TRUE;
}
break;
}
pTemp++;
}
}
//
// Check for numeric day immediately preceding
// or following the month name.
//
if (fDayExists)
{
Incr = *pIncr + 1 +
NlsStrLenW(((LPWORD)(pHashN->pLocaleHdr) +
*pIncr));
if (Incr != *(pIncr + 1))
{
//
// Copy the special month name -
// 2nd one in list.
//
NLS_COPY_UNICODE_STR(pPos, cchRemaining, ((LPWORD)(pHashN->pLocaleHdr) + Incr), 0);
break;
}
}
//
// Just copy the month name.
//
NLS_COPY_UNICODE_STR(pPos, cchRemaining, ((LPWORD)(pHashN->pLocaleHdr) + *pIncr), 0);
}
break;
}
}
//
// Set flag for day preceding month to be FALSE.
//
fDayExists = FALSE;
break;
}
case ( L'y' ) :
{
//
// Insert the layout direction flag, if requested.
//
NLS_INSERT_BIDI_MARK(pPos, dwFlags, cchRemaining, 0);
//
// Get the number of 'y' repetitions in the format string.
//
pFormat++;
for (Repeat = 0; (*pFormat == L'y'); Repeat++, pFormat++)
;
//
// Get proper year for calendar.
//
if (pCalInfo->NumRanges)
{
if (!pRange)
{
//
// Adjust the year for the given calendar.
//
Year = GetCalendarYear( &pRange,
CalNum,
pCalInfo,
pLocalDate->wYear,
pLocalDate->wMonth,
pLocalDate->wDay );
}
}
else
{
Year = pLocalDate->wYear;
}
//
// Special case the Hebrew calendar.
//
if (CalNum == CAL_HEBREW)
{
//
// Convert Year number to Hebrew letter and
// write it to the buffer.
//
if( ! (NumberToHebrewLetter(Year, szHebrew, ARRAYSIZE(szHebrew))))
{
//
// Operation tried to overrun the static buffer on the stack
//
return(0);
}
NLS_COPY_UNICODE_STR(pPos, cchRemaining, szHebrew, 0);
}
else
{
//
// Write the year string to the buffer.
//
switch (Repeat)
{
case ( 0 ) :
case ( 1 ) :
{
//
// 1-digit century or 2-digit century.
// The pPos pointer will be advanced in the macro.
// The cchRemaining value will be updated in the macro.
//
NLS_PAD_INT_TO_UNICODE_STR( (Year % 100),
10,
(UINT)(Repeat + 1),
pPos,
cchRemaining,
0 );
break;
}
case ( 2 ) :
case ( 3 ) :
default :
{
//
// Full century.
// The pPos pointer will be advanced in the macro.
// The cchRemaining value will be updated in the macro.
//
NLS_PAD_INT_TO_UNICODE_STR( Year,
10,
2,
pPos,
cchRemaining,
0 );
break;
}
}
}
//
// Set flag for day preceding month to be FALSE.
//
fDayExists = FALSE;
break;
}
case ( L'g' ) :
{
//
// Insert the layout direction flag, if requested.
//
NLS_INSERT_BIDI_MARK(pPos, dwFlags, cchRemaining, 0);
//
// Get the number of 'g' repetitions in the format string.
//
// NOTE: It doesn't matter how many g repetitions
// there are. They all mean 'gg'.
//
pFormat++;
while (*pFormat == L'g')
{
pFormat++;
}
//
// Copy the era string for the current calendar.
//
if (pCalInfo->NumRanges)
{
//
// Make sure we have the pointer to the
// appropriate range.
//
if (!pRange)
{
//
// Get the pointer to the correct range and
// adjust the year for the given calendar.
//
Year = GetCalendarYear( &pRange,
CalNum,
pCalInfo,
pLocalDate->wYear,
pLocalDate->wMonth,
pLocalDate->wDay );
}
//
// Copy the era string to the buffer, if one exists.
//
if (pRange)
{
NLS_COPY_UNICODE_STR(pPos,
cchRemaining,
((PERA_RANGE)pRange)->pYearStr +
NlsStrLenW(((PERA_RANGE)pRange)->pYearStr) + 1,
0);
}
}
//
// Set flag for day preceding month to be FALSE.
//
fDayExists = FALSE;
break;
}
case ( NLS_CHAR_QUOTE ) :
{
//
// Insert the layout direction flag, if requested.
//
NLS_INSERT_BIDI_MARK(pPos, dwFlags, cchRemaining, 0);
//
// Any text enclosed within single quotes should be left
// in the date string in its exact form (without the
// quotes), unless it is an escaped single quote ('').
//
pFormat++;
while (*pFormat)
{
if (*pFormat != NLS_CHAR_QUOTE)
{
if( cchRemaining <= 1 )
{
// Our static buffer will be overrun if we continue, so bail
return(0);
}
//
// Still within the single quote, so copy
// the character to the buffer.
//
*pPos = *pFormat;
pFormat++;
pPos++;
cchRemaining--;
}
else
{
//
// Found another quote, so skip over it.
//
pFormat++;
//
// Make sure it's not an escaped single quote.
//
if (*pFormat == NLS_CHAR_QUOTE)
{
if( cchRemaining <= 1 )
{
// Our static buffer will be overrun if we continue, so bail
return(0);
}
//
// Escaped single quote, so just write the
// single quote.
//
*pPos = *pFormat;
pFormat++;
pPos++;
cchRemaining--;
}
else
{
//
// Found the end quote, so break out of loop.
//
break;
}
}
}
break;
}
default :
{
if( cchRemaining <= 1 )
{
// Our static buffer will be overrun if we continue, so bail
return(0);
}
//
// Store the character in the buffer. Should be the
// separator, but copy it even if it isn't.
//
*pPos = *pFormat;
pFormat++;
pPos++;
cchRemaining--;
break;
}
}
}
//
// Zero terminate the string.
//
*pPos = 0;
//
// Return the number of characters written to the buffer, including
// the null terminator.
//
return ((int)((pPos - pDateStr) + 1));
}
//-------------------------------------------------------------------------//
// MIDDLE EAST CALENDAR ROUTINES //
//-------------------------------------------------------------------------//
////////////////////////////////////////////////////////////////////////////
//
// GetAbsoluteDate
//
// Gets the Absolute date for the given Gregorian date.
//
// Computes:
// Number of Days in Prior Years (both common and leap years) +
// Number of Days in Prior Months of Current Year +
// Number of Days in Current Month
//
// 12-04-96 JulieB Created.
////////////////////////////////////////////////////////////////////////////
DWORD GetAbsoluteDate(
WORD Year,
WORD Month,
WORD Day)
{
DWORD AbsoluteDate = 0; // absolute date
DWORD GregMonthDays[13] = {0,31,59,90,120,151,181,212,243,273,304,334,365};
//
// Check to see if the current year is a Gregorian leap year.
// If so, add a day.
//
if (NLS_GREGORIAN_LEAP_YEAR(Year) && (Month > 2))
{
AbsoluteDate++;
}
//
// Add the Number of Days in the Prior Years.
//
if (Year = Year - 1)
{
AbsoluteDate += ((Year * 365L) + (Year / 4L) - (Year / 100L) + (Year / 400L));
}
//
// Add the Number of Days in the Prior Months of the Current Year.
//
AbsoluteDate += GregMonthDays[Month - 1];
//
// Add the Number of Days in the Current Month.
//
AbsoluteDate += (DWORD)Day;
//
// Return the absolute date.
//
return (AbsoluteDate);
}
//-------------------------------------------------------------------------//
// HIJRI CALENDAR ROUTINES //
//-------------------------------------------------------------------------//
////////////////////////////////////////////////////////////////////////////
//
// GetHijriDate
//
// Converts the given Gregorian date to its equivalent Hijri (Islamic)
// date.
//
// Rules for the Hijri calendar:
// - The Hijri calendar is a strictly Lunar calendar.
// - Days begin at sunset.
// - Islamic Year 1 (Muharram 1, 1 A.H.) is equivalent to absolute date
// 227015 (Friday, July 16, 622 C.E. - Julian).
// - Leap Years occur in the 2, 5, 7, 10, 13, 16, 18, 21, 24, 26, & 29th
// years of a 30-year cycle. Year = leap iff ((11y+14) mod 30 < 11).
// - There are 12 months which contain alternately 30 and 29 days.
// - The 12th month, Dhu al-Hijjah, contains 30 days instead of 29 days
// in a leap year.
// - Common years have 354 days. Leap years have 355 days.
// - There are 10,631 days in a 30-year cycle.
// - The Islamic months are:
// 1. Muharram (30 days) 7. Rajab (30 days)
// 2. Safar (29 days) 8. Sha'ban (29 days)
// 3. Rabi I (30 days) 9. Ramadan (30 days)
// 4. Rabi II (29 days) 10. Shawwal (29 days)
// 5. Jumada I (30 days) 11. Dhu al-Qada (30 days)
// 6. Jumada II (29 days) 12. Dhu al-Hijjah (29 days) {30}
//
// 12-04-96 JulieB Created.
////////////////////////////////////////////////////////////////////////////
void GetHijriDate(
LPSYSTEMTIME pDate,
DWORD dwFlags)
{
DWORD AbsoluteDate; // absolute date
DWORD HijriYear; // Hijri year
DWORD HijriMonth; // Hijri month
DWORD HijriDay; // Hijri day
DWORD NumDays; // number of days
DWORD HijriMonthDays[13] = {0,30,59,89,118,148,177,207,236,266,295,325,355};
//
// Get the absolute date.
//
AbsoluteDate = GetAbsoluteDate(pDate->wYear, pDate->wMonth, pDate->wDay);
//
// See how much we need to backup or advance
//
(LONG)AbsoluteDate += GetAdvanceHijriDate(dwFlags);
//
// Calculate the Hijri Year.
//
HijriYear = ((AbsoluteDate - 227013L) * 30L / 10631L) + 1;
if (AbsoluteDate <= DaysUpToHijriYear(HijriYear))
{
HijriYear--;
}
else if (AbsoluteDate > DaysUpToHijriYear(HijriYear + 1))
{
HijriYear++;
}
//
// Calculate the Hijri Month.
//
HijriMonth = 1;
NumDays = AbsoluteDate - DaysUpToHijriYear(HijriYear);
while ((HijriMonth <= 12) && (NumDays > HijriMonthDays[HijriMonth - 1]))
{
HijriMonth++;
}
HijriMonth--;
//
// Calculate the Hijri Day.
//
HijriDay = NumDays - HijriMonthDays[HijriMonth - 1];
//
// Save the Hijri date and return.
//
pDate->wYear = (WORD)HijriYear;
pDate->wMonth = (WORD)HijriMonth;
pDate->wDay = (WORD)HijriDay;
}
////////////////////////////////////////////////////////////////////////////
//
// GetAdvanceHijriDate
//
// Gets the AddHijriDate value from the registry.
//
// 12-04-96 JulieB Created.
// 05-15-99 SamerA Support +/-3 Advance Hijri Date
////////////////////////////////////////////////////////////////////////////
LONG GetAdvanceHijriDate(
DWORD dwFlags)
{
LONG lAdvance = 0L; // advance hijri date
HANDLE hKey = NULL; // handle to intl key
PKEY_VALUE_FULL_INFORMATION pKeyValueFull; // ptr to query info
BYTE pStatic[MAX_KEY_VALUE_FULLINFO]; // ptr to static buffer
BOOL IfAlloc = FALSE; // if buffer was allocated
WCHAR wszAddHijriRegValue[] = L"AddHijriDate"; // registry value
WCHAR wszAddHijriTempValue[] = L"AddHijriDateTemp"; // temp registry to use (intl.cpl use)
INT AddHijriStringLength;
PWSTR pwszValue;
LONG lData;
UNICODE_STRING ObUnicodeStr;
ULONG rc = 0L; // result code
//
// Open the Control Panel International registry key.
//
OPEN_CPANEL_INTL_KEY(hKey, lAdvance, KEY_READ);
//
// Query the registry for the AddHijriDate value.
//
pKeyValueFull = (PKEY_VALUE_FULL_INFORMATION)pStatic;
rc = QueryRegValue( hKey,
(dwFlags & DATE_ADDHIJRIDATETEMP) ?
wszAddHijriTempValue :
wszAddHijriRegValue,
&pKeyValueFull,
MAX_KEY_VALUE_FULLINFO,
&IfAlloc );
//
// Close the registry key.
//
CLOSE_REG_KEY(hKey);
//
// Get the base value length without the NULL terminating char.
//
AddHijriStringLength = (sizeof(wszAddHijriRegValue) / sizeof(WCHAR)) - 1;
//
// See if the AddHijriDate value is present.
//
if (rc != NO_ERROR)
{
return (lAdvance);
}
//
// See if the AddHijriDate data is present. If it is, parse the
// Advance Hijri amount.
//
pwszValue = GET_VALUE_DATA_PTR(pKeyValueFull);
if ((pKeyValueFull->DataLength > 2) &&
(wcsncmp(pwszValue, wszAddHijriRegValue, AddHijriStringLength) == 0))
{
RtlInitUnicodeString( &ObUnicodeStr,
&pwszValue[AddHijriStringLength]);
if (NT_SUCCESS(RtlUnicodeStringToInteger(&ObUnicodeStr,
10,
&lData)))
{
if ((lData > -3L) && (lData < 3L))
{
//
// AddHijriDate and AddHijriDate-1 both mean -1.
//
if (lData == 0L)
{
lAdvance = -1L;
}
else
{
lAdvance = lData;
}
}
}
}
//
// Free the buffer used for the query.
//
if (IfAlloc)
{
NLS_FREE_MEM(pKeyValueFull);
}
//
// Return the result.
//
return (lAdvance);
}
////////////////////////////////////////////////////////////////////////////
//
// DaysUpToHijriYear
//
// Gets the total number of days (absolute date) up to the given Hijri
// Year.
//
// 12-04-96 JulieB Created.
////////////////////////////////////////////////////////////////////////////
DWORD DaysUpToHijriYear(
DWORD HijriYear)
{
DWORD NumDays; // number of absolute days
DWORD NumYear30; // number of years up to current 30 year cycle
DWORD NumYearsLeft; // number of years into 30 year cycle
//
// Compute the number of years up to the current 30 year cycle.
//
NumYear30 = ((HijriYear - 1) / 30) * 30;
//
// Compute the number of years left. This is the number of years
// into the 30 year cycle for the given year.
//
NumYearsLeft = HijriYear - NumYear30 - 1;
//
// Compute the number of absolute days up to the given year.
//
NumDays = ((NumYear30 * 10631L) / 30L) + 227013L;
while (NumYearsLeft)
{
NumDays += 354L + NLS_HIJRI_LEAP_YEAR(NumYearsLeft);
NumYearsLeft--;
}
//
// Return the number of absolute days.
//
return (NumDays);
}
//-------------------------------------------------------------------------//
// HEBREW CALENDAR ROUTINES //
//-------------------------------------------------------------------------//
//
// Jewish Era in use today is dated from the supposed year of the
// Creation with its beginning in 3761 B.C.
//
#define NLS_LUNAR_ERA_DIFF 3760
//
// Hebrew Translation Table.
//
CONST BYTE HebrewTable[] =
{
99,99,99,99,99,99,99,99,99,99,
99,99,99,99,99,99,99,99,99,99,
99,99,99,99,99,99,99,99,99,99,
99,99,99,99,99,99,99,99,99,99,
99,99,99,99,99,99,99,99,99,99,
99,99,99,99,99,99,99,99,99,99,
99,99,99,99,99,99,99,99,99,99,
99,99,99,99,99,99,99,99,99,99,
99,99,99,99,99,99,99,99,99,99,
99,99,99,99,99,99,99,99,99,99,
99,99,99,99,99,99,99,99,99,99,
99,99,99,99,99,99,99,99,99,99,
99,99,99,99,99,99,99,99,99,99,
99,99,99,99,99,99,99,99,99,99,
99,99,99,99,99,99,99,99,99,99,
99,99,99,99,99,99,99,99,99,99,
99,99,99,99,99,99,7,3,17,3,
0,4,11,2,21,6,1,3,13,2,
25,4,5,3,16,2,27,6,9,1,
20,2,0,6,11,3,23,4,4,2,
14,3,27,4,8,2,18,3,28,6,
11,1,22,5,2,3,12,3,25,4,
6,2,16,3,26,6,8,2,20,1,
0,6,11,2,24,4,4,3,15,2,
25,6,8,1,19,2,29,6,9,3,
22,4,3,2,13,3,25,4,6,3,
17,2,27,6,7,3,19,2,31,4,
11,3,23,4,5,2,15,3,25,6,
6,2,19,1,29,6,10,2,22,4,
3,3,14,2,24,6,6,1,17,3,
28,5,8,3,20,1,32,5,12,3,
22,6,4,1,16,2,26,6,6,3,
17,2,0,4,10,3,22,4,3,2,
14,3,24,6,5,2,17,1,28,6,
9,2,19,3,31,4,13,2,23,6,
3,3,15,1,27,5,7,3,17,3,
29,4,11,2,21,6,3,1,14,2,
25,6,5,3,16,2,28,4,9,3,
20,2,0,6,12,1,23,6,4,2,
14,3,26,4,8,2,18,3,0,4,
10,3,21,5,1,3,13,1,24,5,
5,3,15,3,27,4,8,2,19,3,
29,6,10,2,22,4,3,3,14,2,
26,4,6,3,18,2,28,6,10,1,
20,6,2,2,12,3,24,4,5,2,
16,3,28,4,8,3,19,2,0,6,
12,1,23,5,3,3,14,3,26,4,
7,2,17,3,28,6,9,2,21,4,
1,3,13,2,25,4,5,3,16,2,
27,6,9,1,19,3,0,5,11,3,
23,4,4,2,14,3,25,6,7,1,
18,2,28,6,9,3,21,4,2,2,
12,3,25,4,6,2,16,3,26,6,
8,2,20,1,0,6,11,2,22,6,
4,1,15,2,25,6,6,3,18,1,
29,5,9,3,22,4,2,3,13,2,
23,6,4,3,15,2,27,4,7,3,
19,2,31,4,11,3,21,6,3,2,
15,1,25,6,6,2,17,3,29,4,
10,2,20,6,3,1,13,3,24,5,
4,3,16,1,27,5,7,3,17,3,
0,4,11,2,21,6,1,3,13,2,
25,4,5,3,16,2,29,4,9,3,
19,6,30,2,13,1,23,6,4,2,
14,3,27,4,8,2,18,3,0,4,
11,3,22,5,2,3,14,1,26,5,
6,3,16,3,28,4,10,2,20,6,
30,3,11,2,24,4,4,3,15,2,
25,6,8,1,19,2,29,6,9,3,
22,4,3,2,13,3,25,4,7,2,
17,3,27,6,9,1,21,5,1,3,
11,3,23,4,5,2,15,3,25,6,
6,2,19,1,29,6,10,2,22,4,
3,3,14,2,24,6,6,1,18,2,
28,6,8,3,20,4,2,2,12,3,
24,4,4,3,16,2,26,6,6,3,
17,2,0,4,10,3,22,4,3,2,
14,3,24,6,5,2,17,1,28,6,
9,2,21,4,1,3,13,2,23,6,
5,1,15,3,27,5,7,3,19,1,
0,5,10,3,22,4,2,3,13,2,
24,6,4,3,15,2,27,4,8,3,
20,4,1,2,11,3,22,6,3,2,
15,1,25,6,7,2,17,3,29,4,
10,2,21,6,1,3,13,1,24,5,
5,3,15,3,27,4,8,2,19,6,
1,1,12,2,22,6,3,3,14,2,
26,4,6,3,18,2,28,6,10,1,
20,6,2,2,12,3,24,4,5,2,
16,3,28,4,9,2,19,6,30,3,
12,1,23,5,3,3,14,3,26,4,
7,2,17,3,28,6,9,2,21,4,
1,3,13,2,25,4,5,3,16,2,
27,6,9,1,19,6,30,2,11,3,
23,4,4,2,14,3,27,4,7,3,
18,2,28,6,11,1,22,5,2,3,
12,3,25,4,6,2,16,3,26,6,
8,2,20,4,30,3,11,2,24,4,
4,3,15,2,25,6,8,1,18,3,
29,5,9,3,22,4,3,2,13,3,
23,6,6,1,17,2,27,6,7,3,
20,4,1,2,11,3,23,4,5,2,
15,3,25,6,6,2,19,1,29,6,
10,2,20,6,3,1,14,2,24,6,
4,3,17,1,28,5,8,3,20,4,
1,3,12,2,22,6,2,3,14,2,
26,4,6,3,17,2,0,4,10,3,
20,6,1,2,14,1,24,6,5,2,
15,3,28,4,9,2,19,6,1,1,
12,3,23,5,3,3,15,1,27,5,
7,3,17,3,29,4,11,2,21,6,
1,3,12,2,25,4,5,3,16,2,
28,4,9,3,19,6,30,2,12,1,
23,6,4,2,14,3,26,4,8,2,
18,3,0,4,10,3,22,5,2,3,
14,1,25,5,6,3,16,3,28,4,
9,2,20,6,30,3,11,2,23,4,
4,3,15,2,27,4,7,3,19,2,
29,6,11,1,21,6,3,2,13,3,
25,4,6,2,17,3,27,6,9,1,
20,5,30,3,10,3,22,4,3,2,
14,3,24,6,5,2,17,1,28,6,
9,2,21,4,1,3,13,2,23,6,
5,1,16,2,27,6,7,3,19,4,
30,2,11,3,23,4,3,3,14,2,
25,6,5,3,16,2,28,4,9,3,
21,4,2,2,12,3,23,6,4,2,
16,1,26,6,8,2,20,4,30,3,
11,2,22,6,4,1,14,3,25,5,
6,3,18,1,29,5,9,3,22,4,
2,3,13,2,23,6,4,3,15,2,
27,4,7,3,20,4,1,2,11,3,
21,6,3,2,15,1,25,6,6,2,
17,3,29,4,10,2,20,6,3,1,
13,3,24,5,4,3,17,1,28,5,
8,3,18,6,1,1,12,2,22,6,
2,3,14,2,26,4,6,3,17,2,
28,6,10,1,20,6,1,2,12,3,
24,4,5,2,15,3,28,4,9,2,
19,6,33,3,12,1,23,5,3,3,
13,3,25,4,6,2,16,3,26,6,
8,2,20,4,30,3,11,2,24,4,
4,3,15,2,25,6,8,1,18,6,
33,2,9,3,22,4,3,2,13,3,
25,4,6,3,17,2,27,6,9,1,
21,5,1,3,11,3,23,4,5,2,
15,3,25,6,6,2,19,4,33,3,
10,2,22,4,3,3,14,2,24,6,
6,1,99,99,99,99,99,99,99,99,
99,99,99,99,99,99,99,99,99,99,
99,99
};
//
// The lunar calendar has 6 different variations of month lengths
// within a year.
//
CONST BYTE LunarMonthLen[7][14] =
{
0,00,00,00,00,00,00,00,00,00,00,00,00,0,
0,30,29,29,29,30,29,30,29,30,29,30,29,0, // 3 common year variations
0,30,29,30,29,30,29,30,29,30,29,30,29,0,
0,30,30,30,29,30,29,30,29,30,29,30,29,0,
0,30,29,29,29,30,30,29,30,29,30,29,30,29, // 3 leap year variations
0,30,29,30,29,30,30,29,30,29,30,29,30,29,
0,30,30,30,29,30,30,29,30,29,30,29,30,29
};
////////////////////////////////////////////////////////////////////////////
//
// GetHebrewDate
//
// Converts the given Gregorian date to its equivalent Hebrew date.
//
// Rules for the Hebrew calendar:
// - The Hebrew calendar is both a Lunar (months) and Solar (years)
// calendar, but allows for a week of seven days.
// - Days begin at sunset.
// - Leap Years occur in the 3, 6, 8, 11, 14, 17, & 19th years of a
// 19-year cycle. Year = leap iff ((7y+1) mod 19 < 7).
// - There are 12 months in a common year and 13 months in a leap year.
// - In a common year, the 12th month, Adar, has 29 days. In a leap
// year, the 12th month, Adar I, has 30 days and the 13th month,
// Adar II, has 29 days.
// - Common years have 353-355 days. Leap years have 383-385 days.
// - The Hebrew new year (Rosh HaShanah) begins on the 1st of Tishri,
// the 7th month in the list below.
// - The new year may not begin on Sunday, Wednesday, or Friday.
// - If the new year would fall on a Tuesday and the conjunction of
// the following year were at midday or later, the new year is
// delayed until Thursday.
// - If the new year would fall on a Monday after a leap year, the
// new year is delayed until Tuesday.
// - The length of the 8th and 9th months vary from year to year,
// depending on the overall length of the year.
// - The length of a year is determined by the dates of the new
// years (Tishri 1) preceding and following the year in question.
// - The 8th month is long (30 days) if the year has 355 or 385 days.
// - The 9th month is short (29 days) if the year has 353 or 383 days.
// - The Hebrew months are:
// 1. Nisan (30 days) 7. Tishri (30 days)
// 2. Iyyar (29 days) 8. Heshvan (29 or 30 days)
// 3. Sivan (30 days) 9. Kislev (29 or 30 days)
// 4. Tammuz (29 days) 10. Teveth (29 days)
// 5. Av (30 days) 11. Shevat (30 days)
// 6. Elul (29 days) {12. Adar I (30 days)}
// 12. {13.} Adar {II}(29 days)
//
// 12-04-96 JulieB Created.
////////////////////////////////////////////////////////////////////////////
BOOL GetHebrewDate(
LPSYSTEMTIME pDate,
LPBOOL pLunarLeap)
{
WORD Year, Month, Day; // initial year, month, day
WORD WeekDay; // day of the week
BYTE LunarYearCode; // lunar year code
BYTE LunarMonth, LunarDay; // lunar month and day for Jan 1
DWORD Absolute1600; // absolute date 1/1/1600
DWORD AbsoluteDate; // absolute date - absolute date 1/1/1600
LONG NumDays; // number of days since 1/1
CONST BYTE *pLunarMonthLen; // ptr to lunar month length array
//
// Save the Gregorian date values.
//
Year = pDate->wYear;
Month = pDate->wMonth;
Day = pDate->wDay;
//
// Make sure we have a valid Gregorian date that will fit into our
// Hebrew conversion limits.
//
if (!IsValidDateForHebrew(Year, Month, Day))
{
return (FALSE);
}
//
// Get the offset into the LunarMonthLen array and the lunar day
// for January 1st.
//
LunarYearCode = HebrewTable[(Year - 1500) * 2 + 1];
LunarDay = HebrewTable[(Year - 1500) * 2];
//
// See if it's a Lunar leap year.
//
*pLunarLeap = (LunarYearCode >= 4);
//
// Get the Lunar Month.
//
switch (LunarDay)
{
case ( 0 ) : // 1/1 is on Shvat 1
{
LunarMonth = 5;
LunarDay = 1;
break;
}
case ( 30 ) : // 1/1 is on Kislev 30
{
LunarMonth = 3;
break;
}
case ( 31 ) : // 1/1 is on Shvat 2
{
LunarMonth = 5;
LunarDay = 2;
break;
}
case ( 32 ) : // 1/1 is on Shvat 3
{
LunarMonth = 5;
LunarDay = 3;
break;
}
case ( 33 ) : // 1/1 is on Kislev 29
{
LunarMonth = 3;
LunarDay = 29;
break;
}
default : // 1/1 is on Tevet
{
LunarMonth = 4;
break;
}
}
//
// Store the values for the start of the new year - 1/1.
//
pDate->wYear = Year + NLS_LUNAR_ERA_DIFF;
pDate->wMonth = (WORD)LunarMonth;
pDate->wDay = (WORD)LunarDay;
//
// Get the absolute date from 1/1/1600.
//
Absolute1600 = GetAbsoluteDate(1600, 1, 1);
AbsoluteDate = GetAbsoluteDate(Year, Month, Day) - Absolute1600;
//
// Compute and save the day of the week (Sunday = 0).
//
WeekDay = (WORD)(AbsoluteDate % 7);
pDate->wDayOfWeek = (WeekDay) ? (WeekDay - 1) : 6;
//
// If the requested date was 1/1, then we're done.
//
if ((Month == 1) && (Day == 1))
{
return (TRUE);
}
//
// Calculate the number of days between 1/1 and the requested date.
//
NumDays = (LONG)(AbsoluteDate - (GetAbsoluteDate(Year, 1, 1) - Absolute1600));
//
// If the requested date is within the current lunar month, then
// we're done.
//
pLunarMonthLen = &(LunarMonthLen[LunarYearCode][0]);
if ((NumDays + (LONG)LunarDay) <= (LONG)(pLunarMonthLen[LunarMonth]))
{
pDate->wDay += (WORD)NumDays;
return (TRUE);
}
//
// Adjust for the current partial month.
//
pDate->wMonth++;
pDate->wDay = 1;
//
// Adjust the Lunar Month and Year (if necessary) based on the number
// of days between 1/1 and the requested date.
//
// Assumes Jan 1 can never translate to the last Lunar month, which
// is true.
//
NumDays -= (LONG)(pLunarMonthLen[LunarMonth] - LunarDay);
if (NumDays == 1)
{
return (TRUE);
}
//
// Get the final Hebrew date.
//
do
{
//
// See if we're on the correct Lunar month.
//
if (NumDays <= (LONG)(pLunarMonthLen[pDate->wMonth]))
{
//
// Found the right Lunar month.
//
pDate->wDay += (WORD)(NumDays - 1);
return (TRUE);
}
else
{
//
// Adjust the number of days and move to the next month.
//
NumDays -= (LONG)(pLunarMonthLen[pDate->wMonth++]);
//
// See if we need to adjust the Year.
// Must handle both 12 and 13 month years.
//
if ((pDate->wMonth > 13) || (pLunarMonthLen[pDate->wMonth] == 0))
{
//
// Adjust the Year.
//
pDate->wYear++;
LunarYearCode = HebrewTable[(Year + 1 - 1500) * 2 + 1];
pLunarMonthLen = &(LunarMonthLen[LunarYearCode][0]);
//
// Adjust the Month.
//
pDate->wMonth = 1;
//
// See if this new Lunar year is a leap year.
//
*pLunarLeap = (LunarYearCode >= 4);
}
}
} while (NumDays > 0);
//
// Return success.
//
return (TRUE);
}
////////////////////////////////////////////////////////////////////////////
//
// IsValidDateForHebrew
//
// Checks to be sure the given Gregorian date is valid. This validation
// requires that the year be between 1600 and 2239. If it is, it
// returns TRUE. Otherwise, it returns FALSE.
//
// 12-04-96 JulieB Created.
////////////////////////////////////////////////////////////////////////////
BOOL IsValidDateForHebrew(
WORD Year,
WORD Month,
WORD Day)
{
WORD GregMonthLen[13] = {0,31,28,31,30,31,30,31,31,30,31,30,31};
//
// Make sure the Year is between 1600 and 2239.
//
if ((Year < 1600) || (Year > 2239))
{
return (FALSE);
}
//
// Make sure the Month is between 1 and 12.
//
if ((Month < 1) || (Month > 12))
{
return (FALSE);
}
//
// See if it's a Gregorian leap year. If so, make sure February
// is allowed to have 29 days.
//
if (NLS_GREGORIAN_LEAP_YEAR(Year))
{
GregMonthLen[2] = 29;
}
//
// Make sure the Day is within the correct range for the given Month.
//
if ((Day < 1) || (Day > GregMonthLen[Month]))
{
return (FALSE);
}
//
// Return success.
//
return (TRUE);
}
////////////////////////////////////////////////////////////////////////////
//
// NumberToHebrewLetter
//
// Converts the given number to Hebrew letters according to the numeric
// value of each Hebrew letter. Basically, this converts the lunar year
// and the lunar month to letters.
//
// The character of a year is described by three letters of the Hebrew
// alphabet, the first and third giving, respectively, the days of the
// weeks on which the New Year occurs and Passover begins, while the
// second is the initial of the Hebrew word for defective, normal, or
// complete.
//
// Defective Year : Both Heshvan and Kislev are defective (353 or 383 days)
// Normal Year : Heshvan is defective, Kislev is full (354 or 384 days)
// Complete Year : Both Heshvan and Kislev are full (355 or 385 days)
//
// 12-04-96 JulieB Created.
////////////////////////////////////////////////////////////////////////////
BOOL NumberToHebrewLetter(
DWORD Number,
LPWSTR szHebrew,
int cchSize)
{
WCHAR szHundreds[4]; // temp buffer for hundreds
WCHAR cTens, cUnits; // tens and units chars
DWORD Hundreds, Tens; // hundreds and tens values
WCHAR szTemp[10]; // temp buffer
LPWSTR pTemp = szTemp; // temp ptr to temp buffer
int Length, Ctr; // loop counters
//
// Sanity check.
//
if (cchSize > 10)
{
return (FALSE);
}
//
// Adjust the number if greater than 5000.
//
if (Number > 5000)
{
Number -= 5000;
}
//
// Clear out the temp buffer.
//
RtlZeroMemory(szHundreds, sizeof(szHundreds));
//
// Get the Hundreds.
//
Hundreds = Number / 100;
if (Hundreds)
{
Number -= Hundreds * 100;
if (Hundreds > 3)
{
szHundreds[2] = L'\x05ea'; // Hebrew Letter Tav
Hundreds -= 4;
}
if (Hundreds > 3)
{
szHundreds[1] = L'\x05ea'; // Hebrew Letter Tav
Hundreds -= 4;
}
if (Hundreds > 0)
{
if (!szHundreds[1])
{
szHundreds[1] = (WCHAR)(L'\x05e6' + Hundreds);
}
else
{
szHundreds[0] = (WCHAR)(L'\x05e6' + Hundreds);
}
}
if (!szHundreds[1])
{
szHundreds[0] = szHundreds[2];
}
else
{
if (!szHundreds[0])
{
szHundreds[0] = szHundreds[1];
szHundreds[1] = szHundreds[2];
szHundreds[2] = 0;
}
}
}
//
// Get the Tens.
//
Tens = Number / 10;
if (Tens)
{
Number -= Tens * 10;
switch (Tens)
{
case ( 1 ) :
{
cTens = L'\x05d9'; // Hebrew Letter Yod
break;
}
case ( 2 ) :
{
cTens = L'\x05db'; // Hebrew Letter Kaf
break;
}
case ( 3 ) :
{
cTens = L'\x05dc'; // Hebrew Letter Lamed
break;
}
case ( 4 ) :
{
cTens = L'\x05de'; // Hebrew Letter Mem
break;
}
case ( 5 ) :
{
cTens = L'\x05e0'; // Hebrew Letter Nun
break;
}
case ( 6 ) :
{
cTens = L'\x05e1'; // Hebrew Letter Samekh
break;
}
case ( 7 ) :
{
cTens = L'\x05e2'; // Hebrew Letter Ayin
break;
}
case ( 8 ) :
{
cTens = L'\x05e4'; // Hebrew Letter Pe
break;
}
case ( 9 ) :
{
cTens = L'\x05e6'; // Hebrew Letter Tsadi
break;
}
}
}
else
{
cTens = 0;
}
//
// Get the Units.
//
cUnits = (WCHAR)(Number ? (L'\x05d0' + Number - 1) : 0);
if ((cUnits == L'\x05d4') && // Hebrew Letter He
(cTens == L'\x05d9')) // Hebrew Letter Yod
{
cUnits = L'\x05d5'; // Hebrew Letter Vav
cTens = L'\x05d8'; // Hebrew Letter Tet
}
if ((cUnits == L'\x05d5') && // Hebrew Letter Vav
(cTens == L'\x05d9')) // Hebrew Letter Yod
{
cUnits = L'\x05d6'; // Hebrew Letter Zayin
cTens = L'\x05d8'; // Hebrew Letter Tet
}
//
// Clear out the temp buffer.
//
RtlZeroMemory(pTemp, sizeof(szTemp));
//
// Copy the appropriate info to the given buffer.
//
if (cUnits)
{
*pTemp++ = cUnits;
}
if (cTens)
{
*pTemp++ = cTens;
}
if(FAILED(StringCchCopyW(pTemp, ARRAYSIZE(szTemp) - (pTemp - szTemp), szHundreds)))
{
//
// Operation tried to overrun the static buffer on the stack
//
return(FALSE);
}
if(NlsStrLenW(szTemp) > 1)
{
RtlMoveMemory(szTemp + 2, szTemp + 1, NlsStrLenW(szTemp + 1) * sizeof(WCHAR));
szTemp[1] = L'"';
}
else
{
szTemp[1] = szTemp[0];
szTemp[0] = L'\'';
}
//
// Reverse the final string and store it in the given buffer.
//
Length = NlsStrLenW(szTemp) - 1;
if( Length > (cchSize - 1) )
{
// Make sure that we won<6F>t overrun the szHebrew.
return (FALSE);
}
for (Ctr = 0; Length >= 0; Ctr++)
{
szHebrew[Ctr] = szTemp[Length];
Length--;
}
szHebrew[Ctr] = 0;
//
// Return success.
//
return (TRUE);
}