windows-nt/Source/XPSP1/NT/drivers/video/ms/8514a/disp/bltio.c
2020-09-26 16:20:57 +08:00

1687 lines
54 KiB
C
Raw Permalink Blame History

/******************************Module*Header*******************************\
* Module Name: bltio.c
*
* Contains the low-level in/out blt functions.
*
* Hopefully, if you're basing your display driver on this code, to
* support all of DrvBitBlt and DrvCopyBits, you'll only have to implement
* the following routines. You shouldn't have to modify anything in
* 'bitblt.c'. I've tried to make these routines as few, modular, simple,
* and efficient as I could, while still accelerating as many calls as
* possible that would be cost-effective in terms of performance wins
* versus size and effort.
*
* Note: In the following, 'relative' coordinates refers to coordinates
* that haven't yet had the offscreen bitmap (DFB) offset applied.
* 'Absolute' coordinates have had the offset applied. For example,
* we may be told to blt to (1, 1) of the bitmap, but the bitmap may
* be sitting in offscreen memory starting at coordinate (0, 768) --
* (1, 1) would be the 'relative' start coordinate, and (1, 769)
* would be the 'absolute' start coordinate'.
*
* Copyright (c) 1992-1994 Microsoft Corporation
*
\**************************************************************************/
#include "precomp.h"
#if DBG
// Useful aid for disabling any ATI extensions for debugging purposes:
BOOL gb8514a = FALSE;
#endif // DBG
/******************************Public*Routine******************************\
* VOID vIoFillSolid
*
* Fills a list of rectangles with a solid colour.
*
\**************************************************************************/
VOID vIoFillSolid( // Type FNFILL
PDEV* ppdev,
LONG c, // Can't be zero
RECTL* prcl, // List of rectangles to be filled, in relative
// coordinates
ULONG ulHwForeMix, // Hardware mix mode
ULONG ulHwBackMix, // Not used
RBRUSH_COLOR rbc, // Drawing colour is rbc.iSolidColor
POINTL* pptlBrush) // Not used
{
ASSERTDD(c > 0, "Can't handle zero rectangles");
ASSERTDD(ulHwForeMix <= 15, "Weird hardware Rop");
// It's quite likely that we've just been called from GDI, so it's
// even more likely that the accelerator's graphics engine has been
// sitting around idle. Rather than doing a FIFO_WAIT(3) here and
// then a FIFO_WAIT(5) before outputing the actual rectangle,
// we can avoid an 'in' (which can be quite expensive, depending on
// the card) by doing a single FIFO_WAIT(8) right off the bat:
IO_FIFO_WAIT(ppdev, 8);
IO_PIX_CNTL(ppdev, ALL_ONES);
IO_FRGD_MIX(ppdev, FOREGROUND_COLOR | ulHwForeMix);
IO_FRGD_COLOR(ppdev, rbc.iSolidColor);
while(TRUE)
{
IO_CUR_X(ppdev, prcl->left);
IO_CUR_Y(ppdev, prcl->top);
IO_MAJ_AXIS_PCNT(ppdev, prcl->right - prcl->left - 1);
IO_MIN_AXIS_PCNT(ppdev, prcl->bottom - prcl->top - 1);
IO_CMD(ppdev, RECTANGLE_FILL | DRAWING_DIR_TBLRXM |
DRAW | DIR_TYPE_XY |
LAST_PIXEL_ON | MULTIPLE_PIXELS |
WRITE);
if (--c == 0)
return;
prcl++;
IO_FIFO_WAIT(ppdev, 5);
}
}
/******************************Public*Routine******************************\
* VOID vIoSlowPatRealize
*
* This routine transfers an 8x8 pattern to off-screen display memory, and
* duplicates it to make a 64x64 cached realization which is then used by
* vIoFillPatSlow as the basic building block for doing 'slow' pattern output
* via repeated screen-to-screen blts.
*
\**************************************************************************/
VOID vIoSlowPatRealize(
PDEV* ppdev,
RBRUSH* prb, // Points to brush realization structure
BOOL bTransparent) // FALSE for normal patterns; TRUE for
// patterns with a mask when the background
// mix is LEAVE_ALONE.
{
BRUSHENTRY* pbe;
LONG iBrushCache;
LONG x;
LONG y;
BYTE* pjSrc;
BYTE* pjDst;
BYTE jSrc;
LONG i;
WORD awBuf[8];
pbe = prb->pbe;
if ((pbe == NULL) || (pbe->prbVerify != prb))
{
// We have to allocate a new off-screen cache brush entry for
// the brush:
iBrushCache = ppdev->iBrushCache;
pbe = &ppdev->abe[iBrushCache];
iBrushCache++;
if (iBrushCache >= ppdev->cBrushCache)
iBrushCache = 0;
ppdev->iBrushCache = iBrushCache;
// Update our links:
pbe->prbVerify = prb;
prb->pbe = pbe;
}
// Load some pointer variables onto the stack, so that we don't have
// to keep dereferencing their pointers:
x = pbe->x;
y = pbe->y;
prb->bTransparent = bTransparent;
// I considered doing the colour expansion for 1bpp brushes in
// software, but by letting the hardware do it, we don't have
// to do as many OUTs to transfer the pattern.
if (prb->fl & RBRUSH_2COLOR)
{
// We're going to do a colour-expansion ('across the plane')
// bitblt of the 1bpp 8x8 pattern to the screen.
if (!bTransparent)
{
IO_FIFO_WAIT(ppdev, 4);
IO_FRGD_MIX(ppdev, FOREGROUND_COLOR | OVERPAINT);
IO_BKGD_MIX(ppdev, BACKGROUND_COLOR | OVERPAINT);
IO_FRGD_COLOR(ppdev, prb->ulForeColor);
IO_BKGD_COLOR(ppdev, prb->ulBackColor);
IO_FIFO_WAIT(ppdev, 5);
}
else
{
IO_FIFO_WAIT(ppdev, 7);
IO_FRGD_MIX(ppdev, LOGICAL_1);
IO_BKGD_MIX(ppdev, LOGICAL_0);
}
IO_PIX_CNTL(ppdev, CPU_DATA);
IO_ABS_CUR_X(ppdev, x);
IO_ABS_CUR_Y(ppdev, y);
IO_MAJ_AXIS_PCNT(ppdev, 7); // Brush is 8 wide
IO_MIN_AXIS_PCNT(ppdev, 7); // Brush is 8 high
IO_GP_WAIT(ppdev);
IO_CMD(ppdev, RECTANGLE_FILL | BUS_SIZE_16 | WAIT |
DRAWING_DIR_TBLRXM | DRAW | LAST_PIXEL_ON |
MULTIPLE_PIXELS | WRITE | BYTE_SWAP);
CHECK_DATA_READY(ppdev);
pjSrc = (BYTE*) &prb->aulPattern[0];
pjDst = (BYTE*) &awBuf[0];
// Convert in-line to nibble arrangment:
// LATER: This should be done in DrvRealizeBrush!
for (i = 8; i != 0; i--)
{
jSrc = *pjSrc;
pjSrc += 2; // We had an extra byte on every row
*pjDst++ = jSrc >> 3;
*pjDst++ = jSrc + jSrc;
}
vDataPortOut(ppdev, &awBuf[0], 8);
// Each word transferred comprises one row of the
// pattern, and there are 8 rows in the pattern
CHECK_DATA_COMPLETE(ppdev);
}
else
{
ASSERTDD(!bTransparent,
"Shouldn't have been asked for transparency with a non-1bpp brush");
IO_FIFO_WAIT(ppdev, 6);
IO_PIX_CNTL(ppdev, ALL_ONES);
IO_FRGD_MIX(ppdev, SRC_CPU_DATA | OVERPAINT);
IO_ABS_CUR_X(ppdev, x);
IO_ABS_CUR_Y(ppdev, y);
IO_MAJ_AXIS_PCNT(ppdev, 7); // Brush is 8 wide
IO_MIN_AXIS_PCNT(ppdev, 7); // Brush is 8 high
IO_GP_WAIT(ppdev);
IO_CMD(ppdev, RECTANGLE_FILL | BUS_SIZE_16| WAIT |
DRAWING_DIR_TBLRXM | DRAW | LAST_PIXEL_ON |
SINGLE_PIXEL | WRITE | BYTE_SWAP);
CHECK_DATA_READY(ppdev);
vDataPortOut(ppdev, &prb->aulPattern[0],
((TOTAL_BRUSH_SIZE / 2) << ppdev->cPelSize));
CHECK_DATA_COMPLETE(ppdev);
}
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ŀ
// <20>0<EFBFBD>2<EFBFBD>3 <20>4 <20>1<EFBFBD> We now have an 8x8 colour-expanded copy of
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ĵ the pattern sitting in off-screen memory,
// <20>5 <20> represented here by square '0'.
// <20> <20>
// <20> <20> We're now going to expand the pattern to
// <20> <20> 72x72 by repeatedly copying larger rectangles
// <20> <20> in the indicated order, and doing a 'rolling'
// <20> <20> blt to copy vertically.
// <20> <20>
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
// Copy '1':
IO_FIFO_WAIT(ppdev, 7);
IO_PIX_CNTL(ppdev, ALL_ONES);
IO_FRGD_MIX(ppdev, SRC_DISPLAY_MEMORY | OVERPAINT);
// Note that 'maj_axis_pcnt' and 'min_axis_pcnt' are already
// correct.
IO_ABS_CUR_X(ppdev, x);
IO_ABS_CUR_Y(ppdev, y);
IO_ABS_DEST_X(ppdev, x + 64);
IO_ABS_DEST_Y(ppdev, y);
IO_CMD(ppdev, BITBLT | DRAW | DIR_TYPE_XY | WRITE |
MULTIPLE_PIXELS | DRAWING_DIR_TBLRXM);
// Copy '2':
IO_FIFO_WAIT(ppdev, 8);
IO_ABS_DEST_X(ppdev, x + 8);
IO_ABS_DEST_Y(ppdev, y);
IO_CMD(ppdev, BITBLT | DRAW | DIR_TYPE_XY | WRITE |
MULTIPLE_PIXELS | DRAWING_DIR_TBLRXM);
// Copy '3':
IO_ABS_DEST_X(ppdev, x + 16);
IO_ABS_DEST_Y(ppdev, y);
IO_MAJ_AXIS_PCNT(ppdev, 15);
IO_CMD(ppdev, BITBLT | DRAW | DIR_TYPE_XY | WRITE |
MULTIPLE_PIXELS | DRAWING_DIR_TBLRXM);
IO_ABS_DEST_X(ppdev, x + 32);
// Copy '4':
IO_FIFO_WAIT(ppdev, 8);
IO_ABS_DEST_Y(ppdev, y);
IO_MAJ_AXIS_PCNT(ppdev, 31);
IO_CMD(ppdev, BITBLT | DRAW | DIR_TYPE_XY | WRITE |
MULTIPLE_PIXELS | DRAWING_DIR_TBLRXM);
// Copy '5':
IO_ABS_DEST_X(ppdev, x);
IO_ABS_DEST_Y(ppdev, y + 8);
IO_MAJ_AXIS_PCNT(ppdev, 71);
IO_MIN_AXIS_PCNT(ppdev, 63);
IO_CMD(ppdev, BITBLT | DRAW | DIR_TYPE_XY | WRITE |
MULTIPLE_PIXELS | DRAWING_DIR_TBLRXM);
}
/******************************Public*Routine******************************\
* VOID vIoFillPatSlow
*
* Uses the screen-to-screen blting ability of the accelerator to fill a
* list of rectangles with a specified pattern. This routine is 'slow'
* merely in the sense that it doesn't use any built-in hardware pattern
* support that may be built into the accelerator.
*
\**************************************************************************/
VOID vIoFillPatSlow( // Type FNFILL
PDEV* ppdev,
LONG c, // Can't be zero
RECTL* prcl, // List of rectangles to be filled, in relative
// coordinates
ULONG ulHwForeMix, // Hardware mix mode (foreground mix mode if
// the brush has a mask)
ULONG ulHwBackMix, // Not used (unless the brush has a mask, in
// which case it's the background mix mode)
RBRUSH_COLOR rbc, // rbc.prb points to brush realization structure
POINTL* pptlBrush) // Pattern alignment
{
BOOL bTransparent;
BOOL bExponential;
LONG x;
LONG y;
LONG yTmp;
LONG cxToGo;
LONG cyToGo;
LONG cxThis;
LONG cyThis;
LONG xOrg;
LONG yOrg;
LONG xBrush;
LONG yBrush;
LONG cyOriginal;
BRUSHENTRY* pbe; // Pointer to brush entry data, which is used
// for keeping track of the location and status
// of the pattern bits cached in off-screen
// memory
// C'est dommage que je ne connais pas quoi je fais.
ASSERTDD(c > 0, "Can't handle zero rectangles");
ASSERTDD(rbc.prb->pbe != NULL, "Unexpected Null pbe in vIoSlowPatBlt");
ASSERTDD(ulHwForeMix <= 15, "Weird hardware Rop");
ASSERTDD((ulHwForeMix == ulHwBackMix) || (ulHwBackMix == LEAVE_ALONE),
"Only expect transparency from GDI for masked brushes");
bTransparent = (ulHwForeMix != ulHwBackMix);
if ((rbc.prb->pbe->prbVerify != rbc.prb) ||
(rbc.prb->bTransparent != bTransparent))
{
vIoSlowPatRealize(ppdev, rbc.prb, bTransparent);
}
ASSERTDD(rbc.prb->bTransparent == bTransparent,
"Not realized with correct transparency");
if (!bTransparent)
{
IO_FIFO_WAIT(ppdev, 2);
IO_PIX_CNTL(ppdev, ALL_ONES);
IO_FRGD_MIX(ppdev, SRC_DISPLAY_MEMORY | ulHwForeMix);
// We special case OVERPAINT mixes because we can implement
// an exponential fill: every blt will double the size of
// the current rectangle by using the portion of the pattern
// that has already been done for this rectangle as the source.
//
// Note that there's no point in also checking for LOGICAL_0
// or LOGICAL_1 because those will be taken care of by the
// solid fill routines, and I can't be bothered to check for
// NOTNEW:
bExponential = (ulHwForeMix == OVERPAINT);
}
else
{
IO_FIFO_WAIT(ppdev, 5);
IO_PIX_CNTL(ppdev, DISPLAY_MEMORY);
IO_FRGD_MIX(ppdev, FOREGROUND_COLOR | ulHwForeMix);
IO_BKGD_MIX(ppdev, BACKGROUND_COLOR | LEAVE_ALONE);
IO_FRGD_COLOR(ppdev, rbc.prb->ulForeColor);
IO_RD_MASK(ppdev, 1); // Pick a plane, any plane
bExponential = FALSE;
}
// Note that since we do our brush alignment calculations in
// relative coordinates, we should keep the brush origin in
// relative coordinates as well:
xOrg = pptlBrush->x;
yOrg = pptlBrush->y;
pbe = rbc.prb->pbe;
xBrush = pbe->x;
yBrush = pbe->y;
do {
x = prcl->left;
y = prcl->top;
cxToGo = prcl->right - x;
cyToGo = prcl->bottom - y;
if ((cxToGo <= SLOW_BRUSH_DIMENSION) &&
(cyToGo <= SLOW_BRUSH_DIMENSION))
{
IO_FIFO_WAIT(ppdev, 7);
IO_ABS_CUR_X(ppdev, ((x - xOrg) & 7) + xBrush);
IO_ABS_CUR_Y(ppdev, ((y - yOrg) & 7) + yBrush);
IO_DEST_X(ppdev, x);
IO_DEST_Y(ppdev, y);
IO_MAJ_AXIS_PCNT(ppdev, cxToGo - 1);
IO_MIN_AXIS_PCNT(ppdev, cyToGo - 1);
IO_CMD(ppdev, BITBLT | DRAW | DIR_TYPE_XY | WRITE |
MULTIPLE_PIXELS | DRAWING_DIR_TBLRXM);
}
else if (bExponential)
{
cyThis = SLOW_BRUSH_DIMENSION;
cyToGo -= cyThis;
if (cyToGo < 0)
cyThis += cyToGo;
cxThis = SLOW_BRUSH_DIMENSION;
cxToGo -= cxThis;
if (cxToGo < 0)
cxThis += cxToGo;
IO_FIFO_WAIT(ppdev, 7);
IO_MAJ_AXIS_PCNT(ppdev, cxThis - 1);
IO_MIN_AXIS_PCNT(ppdev, cyThis - 1);
IO_DEST_X(ppdev, x);
IO_DEST_Y(ppdev, y);
IO_ABS_CUR_X(ppdev, ((x - xOrg) & 7) + xBrush);
IO_ABS_CUR_Y(ppdev, ((y - yOrg) & 7) + yBrush);
IO_CMD(ppdev, BITBLT | DRAW | DIR_TYPE_XY | WRITE |
MULTIPLE_PIXELS | DRAWING_DIR_TBLRXM);
IO_FIFO_WAIT(ppdev, 2);
IO_CUR_X(ppdev, x);
IO_CUR_Y(ppdev, y);
x += cxThis;
while (cxToGo > 0)
{
// First, expand out to the right, doubling our size
// each time:
cxToGo -= cxThis;
if (cxToGo < 0)
cxThis += cxToGo;
IO_FIFO_WAIT(ppdev, 4);
IO_MAJ_AXIS_PCNT(ppdev, cxThis - 1);
IO_DEST_X(ppdev, x);
IO_DEST_Y(ppdev, y);
IO_CMD(ppdev, BITBLT | DRAW | DIR_TYPE_XY | WRITE |
MULTIPLE_PIXELS | DRAWING_DIR_TBLRXM);
x += cxThis;
cxThis *= 2;
}
if (cyToGo > 0)
{
// Now do a 'rolling blt' to pattern the rest vertically:
IO_FIFO_WAIT(ppdev, 5);
IO_DEST_X(ppdev, prcl->left);
IO_DEST_Y(ppdev, prcl->top + cyThis);
IO_MAJ_AXIS_PCNT(ppdev, prcl->right - prcl->left - 1);
IO_MIN_AXIS_PCNT(ppdev, cyToGo - 1);
IO_CMD(ppdev, BITBLT | DRAW | DIR_TYPE_XY | WRITE |
MULTIPLE_PIXELS | DRAWING_DIR_TBLRXM);
}
}
else
{
// We handle arbitrary mixes simply by repeatedly tiling
// our cached pattern over the entire rectangle:
IO_FIFO_WAIT(ppdev, 2);
IO_ABS_CUR_X(ppdev, ((x - xOrg) & 7) + xBrush);
IO_ABS_CUR_Y(ppdev, ((y - yOrg) & 7) + yBrush);
cyOriginal = cyToGo; // Have to remember for later...
do {
cxThis = SLOW_BRUSH_DIMENSION;
cxToGo -= cxThis;
if (cxToGo < 0)
cxThis += cxToGo;
IO_FIFO_WAIT(ppdev, 2);
IO_MAJ_AXIS_PCNT(ppdev, cxThis - 1);
IO_DEST_X(ppdev, x);
x += cxThis; // Get ready for next column
cyToGo = cyOriginal; // Have to reset for each new column
yTmp = y;
do {
cyThis = SLOW_BRUSH_DIMENSION;
cyToGo -= cyThis;
if (cyToGo < 0)
cyThis += cyToGo;
IO_FIFO_WAIT(ppdev, 3);
IO_DEST_Y(ppdev, yTmp);
yTmp += cyThis;
IO_MIN_AXIS_PCNT(ppdev, cyThis - 1);
IO_CMD(ppdev, BITBLT | DRAW | DIR_TYPE_XY | WRITE |
MULTIPLE_PIXELS | DRAWING_DIR_TBLRXM);
} while (cyToGo > 0);
} while (cxToGo > 0);
}
prcl++;
} while (--c != 0);
}
/******************************Public*Routine******************************\
* VOID vIoXfer1bpp
*
* This routine colours expands a monochrome bitmap, possibly with different
* Rop2's for the foreground and background. It will be called in the
* following cases:
*
* 1) To colour-expand the monochrome text buffer for the vFastText routine.
* 2) To blt a 1bpp source with a simple Rop2 between the source and
* destination.
* 3) To blt a true Rop3 when the source is a 1bpp bitmap that expands to
* white and black, and the pattern is a solid colour.
* 4) To handle a true Rop4 that works out to be Rop2's between the pattern
* and destination.
*
* Needless to say, making this routine fast can leverage a lot of
* performance.
*
\**************************************************************************/
VOID vIoXfer1bpp( // Type FNXFER
PDEV* ppdev,
LONG c, // Count of rectangles, can't be zero
RECTL* prcl, // List of destination rectangles, in relative
// coordinates
ULONG ulHwForeMix,// Foreground hardware mix
ULONG ulHwBackMix,// Background hardware mix
SURFOBJ* psoSrc, // Source surface
POINTL* pptlSrc, // Original unclipped source point
RECTL* prclDst, // Original unclipped destination rectangle
XLATEOBJ* pxlo) // Translate that provides colour-expansion information
{
LONG dxSrc;
LONG dySrc;
LONG cx;
LONG cy;
LONG lSrcDelta;
BYTE* pjSrcScan0;
BYTE* pjSrc;
LONG cjSrc;
LONG xLeft;
LONG xRight;
LONG yTop;
LONG yBottom;
LONG xRotateLeft;
LONG cBitsNeededForFirstNibblePair;
ASSERTDD(c > 0, "Can't handle zero rectangles");
ASSERTDD(ulHwForeMix <= 15, "Weird hardware Rop");
ASSERTDD(ulHwBackMix <= 15, "Weird hardware Rop");
ASSERTDD(pptlSrc != NULL && psoSrc != NULL, "Can't have NULL sources");
IO_FIFO_WAIT(ppdev, 5);
IO_PIX_CNTL(ppdev, CPU_DATA);
IO_BKGD_MIX(ppdev, BACKGROUND_COLOR | ulHwBackMix);
IO_FRGD_MIX(ppdev, FOREGROUND_COLOR | ulHwForeMix);
IO_BKGD_COLOR(ppdev, pxlo->pulXlate[0]);
IO_FRGD_COLOR(ppdev, pxlo->pulXlate[1]);
dxSrc = pptlSrc->x - prclDst->left;
dySrc = pptlSrc->y - prclDst->top; // Add to destination to get source
lSrcDelta = psoSrc->lDelta;
pjSrcScan0 = psoSrc->pvScan0;
do {
IO_FIFO_WAIT(ppdev, 6);
yBottom = prcl->bottom;
yTop = prcl->top;
xRight = prcl->right;
xLeft = prcl->left;
cBitsNeededForFirstNibblePair = 8 - (xLeft & 7);
IO_SCISSORS_L(ppdev, xLeft);
xLeft = (xLeft) & ~7;
IO_SCISSORS_R(ppdev, xRight - 1);
xRight = (xRight + 7) & ~7;
IO_CUR_X(ppdev, xLeft);
IO_CUR_Y(ppdev, yTop);
cx = xRight - xLeft;
cy = yBottom - yTop;
IO_MAJ_AXIS_PCNT(ppdev, cx - 1);
IO_MIN_AXIS_PCNT(ppdev, cy - 1);
cjSrc = cx >> 3; // We'll be transferring WORDs,
// but every word accounts for
// 8 pels = 1 byte of the source
pjSrc = pjSrcScan0 + (yTop + dySrc) * lSrcDelta
+ ((xLeft + dxSrc) >> 3);
// Start is byte aligned
xRotateLeft = (dxSrc) & 7; // Amount by which to rotate left
IO_GP_WAIT(ppdev);
IO_CMD(ppdev, RECTANGLE_FILL | BUS_SIZE_16| WAIT |
DRAWING_DIR_TBLRXM | DRAW | LAST_PIXEL_ON |
MULTIPLE_PIXELS | WRITE | BYTE_SWAP);
CHECK_DATA_READY(ppdev);
_asm {
; eax = scratch
; ebx = count of words output per scan
; ecx = amount to rotate left
; edx = port
; esi = source pointer
; edi = source delta between end of last scan and start of next
mov ecx,xRotateLeft
mov edx,PIX_TRANS
mov esi,pjSrc
mov edi,lSrcDelta
sub edi,cjSrc
test ecx,ecx
jz UnrotatedScanLoop
RotatedScanLoop:
mov ebx,cjSrc
cmp ecx,cBitsNeededForFirstNibblePair
jge RotatedDontNeedFirstByte
RotatedWordLoop:
mov ah,[esi]
RotatedDontNeedFirstByte:
mov al,[esi + 1]
shl eax,cl
inc esi
mov al,ah
shr al,3
add ah,ah
out dx,ax
dec ebx
jnz RotatedWordLoop
add esi,edi
dec cy
jnz RotatedScanLoop
jmp AllDone
UnrotatedScanLoop:
mov ebx,cjSrc
UnrotatedWordLoop:
mov ah,[esi]
inc esi
mov al,ah
shr al,3
add ah,ah
out dx,ax
dec ebx
jnz UnrotatedWordLoop
add esi,edi
dec cy
jnz UnrotatedScanLoop
AllDone:
}
CHECK_DATA_COMPLETE(ppdev);
prcl++;
} while (--c != 0);
// We always have to reset the clipping:
IO_FIFO_WAIT(ppdev, 2);
IO_ABS_SCISSORS_L(ppdev, 0);
IO_ABS_SCISSORS_R(ppdev, ppdev->cxMemory - 1);
}
/******************************Public*Routine******************************\
* VOID vIoXfer1bppPacked
*
* This is the same routine as 'vIoXfer1bpp', except that it takes
* advantage of the ATI's packed bit transfers to improve speed.
*
* Needless to say, this routine can only be called when running
* on an ATI adapter.
*
\**************************************************************************/
VOID vIoXfer1bppPacked( // Type FNXFER
PDEV* ppdev,
LONG c, // Count of rectangles, can't be zero
RECTL* prcl, // List of destination rectangles, in relative
// coordinates
ULONG ulHwForeMix,// Foreground hardware mix
ULONG ulHwBackMix,// Background hardware mix
SURFOBJ* psoSrc, // Source surface
POINTL* pptlSrc, // Original unclipped source point
RECTL* prclDst, // Original unclipped destination rectangle
XLATEOBJ* pxlo) // Translate that provides colour-expansion information
{
LONG dxSrc;
LONG dySrc;
LONG cy;
LONG lSrcDelta;
LONG lTmpDelta;
BYTE* pjSrcScan0;
BYTE* pjSrc;
LONG cwSrc;
LONG xLeft;
LONG xRight;
LONG yTop;
LONG yBottom;
LONG xBiasLeft;
LONG xBiasRight;
#if DBG
{
if (gb8514a)
{
vIoXfer1bpp(ppdev, c, prcl, ulHwForeMix, ulHwBackMix, psoSrc,
pptlSrc, prclDst, pxlo);
return;
}
}
#endif // DBG
ASSERTDD(c > 0, "Can't handle zero rectangles");
ASSERTDD(ulHwForeMix <= 15, "Weird hardware Rop");
ASSERTDD(ulHwBackMix <= 15, "Weird hardware Rop");
ASSERTDD(pptlSrc != NULL && psoSrc != NULL, "Can't have NULL sources");
while (INPW(EXT_FIFO_STATUS) & FOURTEEN_WORDS)
;
OUT_WORD(ALU_FG_FN, ulHwForeMix);
OUT_WORD(ALU_BG_FN, ulHwBackMix);
OUT_WORD(FRGD_COLOR, pxlo->pulXlate[1]);
OUT_WORD(BKGD_COLOR, pxlo->pulXlate[0]);
// Add 'dxSrc' and 'dySrc' to a destination coordinate to get source.
// Because we will be explicitly dealing with absolute destination
// coordinates (we're not using the normal accelerator macros), we have
// to explicitly account for the DFB offset:
dxSrc = pptlSrc->x - (prclDst->left + ppdev->xOffset);
dySrc = pptlSrc->y - (prclDst->top + ppdev->yOffset);
lSrcDelta = psoSrc->lDelta;
pjSrcScan0 = psoSrc->pvScan0;
while (TRUE)
{
// Since we're not using the normal accelerator register macros,
// we have to explicitly account for the DFB offset:
yBottom = prcl->bottom + ppdev->yOffset;
yTop = prcl->top + ppdev->yOffset;
xRight = prcl->right + ppdev->xOffset;
xLeft = prcl->left + ppdev->xOffset;
// Make sure we're word aligned on the source, because we're
// going to be transferring words and we don't want to risk
// reading past the end of the bitmap:
xBiasLeft = (xLeft + dxSrc) & 15;
if (xBiasLeft != 0)
{
// Rev 3 ATI chips have goofy timing bugs on 66 MHz DX-2
// computers where some extended will not be correctly
// set the first time. The extended scissors registers
// have this problem, but setting them twice seems to work:
OUT_WORD(EXT_SCISSOR_L, xLeft);
OUT_WORD(EXT_SCISSOR_L, xLeft);
xLeft -= xBiasLeft;
}
// The width has to be a word multiple:
xBiasRight = (xRight - xLeft) & 15;
if (xBiasRight != 0)
{
OUT_WORD(EXT_SCISSOR_R, xRight - 1);
OUT_WORD(EXT_SCISSOR_R, xRight - 1);
xRight += 16 - xBiasRight;
}
OUT_WORD(DP_CONFIG, FG_COLOR_SRC_FG | BG_COLOR_SRC_BG | DATA_ORDER |
EXT_MONO_SRC_HOST | DRAW | WRITE | DATA_WIDTH);
OUT_WORD(DEST_X_START, xLeft);
OUT_WORD(CUR_X, xLeft);
OUT_WORD(DEST_X_END, xRight);
OUT_WORD(CUR_Y, yTop);
OUT_WORD(DEST_Y_END, yBottom);
cwSrc = (xRight - xLeft) / 16; // We'll be transferring WORDs
pjSrc = pjSrcScan0 + (yTop + dySrc) * lSrcDelta
+ (xLeft + dxSrc) / 8;
// Start is byte aligned (note
// that we don't have to add
// xBiasLeft)
cy = yBottom - yTop;
lTmpDelta = lSrcDelta - 2 * cwSrc;
// To be safe, we make sure there are always as many free FIFO entries
// as we'll transfer (note that this implementation isn't particularly
// efficient, especially for short scans):
_asm {
; eax = used for IN
; ebx = count of words remaining on current scan
; ecx = used for REP
; edx = used for IN and OUT
; esi = current source pointer
; edi = count of scans
mov esi,pjSrc
mov edi,cy
Scan_Loop:
mov ebx,cwSrc
Batch_Loop:
mov edx,EXT_FIFO_STATUS
in ax,dx
and eax,SIXTEEN_WORDS
jnz short Batch_Loop
mov edx,PIX_TRANS
sub ebx,16
jle short Finish_Scan
mov ecx,16
rep outsw
jmp short Batch_Loop
Finish_Scan:
add ebx,16
mov ecx,ebx
rep outsw
add esi,lTmpDelta
dec edi
jnz Scan_Loop
}
if ((xBiasLeft | xBiasRight) != 0)
{
// Reset the clipping only if we used it:
while (INPW(EXT_FIFO_STATUS) & FOUR_WORDS)
;
OUT_WORD(EXT_SCISSOR_L, 0);
OUT_WORD(EXT_SCISSOR_R, ppdev->cxMemory - 1);
OUT_WORD(EXT_SCISSOR_L, 0);
OUT_WORD(EXT_SCISSOR_R, ppdev->cxMemory - 1);
}
if (--c == 0)
return;
prcl++;
// Do the wait for the next round now:
while (INPW(EXT_FIFO_STATUS) & TEN_WORDS)
;
}
}
/******************************Public*Routine******************************\
* VOID vIoXfer4bpp
*
* Does a 4bpp transfer from a bitmap to the screen.
*
* NOTE: The screen must be 8bpp for this function to be called!
*
* The reason we implement this is that a lot of resources are kept as 4bpp,
* and used to initialize DFBs, some of which we of course keep off-screen.
*
\**************************************************************************/
// XLATE_BUFFER_SIZE defines the size of the stack-based buffer we use
// for doing the translate. Note that in general stack buffers should
// be kept as small as possible. The OS guarantees us only 8k for stack
// from GDI down to the display driver in low memory situations; if we
// ask for more, we'll access violate. Note also that at any time the
// stack buffer cannot be larger than a page (4k) -- otherwise we may
// miss touching the 'guard page' and access violate then too.
#define XLATE_BUFFER_SIZE 256
VOID vIoXfer4bpp( // Type FNXFER
PDEV* ppdev,
LONG c, // Count of rectangles, can't be zero
RECTL* prcl, // List of destination rectangles, in relative
// coordinates
ULONG ulHwForeMix,// Hardware mix
ULONG ulHwBackMix,// Not used
SURFOBJ* psoSrc, // Source surface
POINTL* pptlSrc, // Original unclipped source point
RECTL* prclDst, // Original unclipped destination rectangle
XLATEOBJ* pxlo) // Translate that provides colour-expansion information
{
LONG dx;
LONG dy;
LONG cx;
LONG cy;
LONG lSrcDelta;
BYTE* pjSrcScan0;
BYTE* pjScan;
BYTE* pjSrc;
BYTE* pjDst;
LONG cxThis;
LONG cxToGo;
LONG xSrc;
LONG iLoop;
BYTE jSrc;
ULONG* pulXlate;
BOOL bResetScissors;
BYTE ajBuf[XLATE_BUFFER_SIZE];
ASSERTDD(ppdev->iBitmapFormat == BMF_8BPP, "Screen must be 8bpp");
ASSERTDD(psoSrc->iBitmapFormat == BMF_4BPP, "Source must be 4bpp");
ASSERTDD(c > 0, "Can't handle zero rectangles");
ASSERTDD(ulHwForeMix <= 15, "Weird hardware Rop");
dx = pptlSrc->x - prclDst->left;
dy = pptlSrc->y - prclDst->top; // Add to destination to get source
lSrcDelta = psoSrc->lDelta;
pjSrcScan0 = psoSrc->pvScan0;
IO_FIFO_WAIT(ppdev, 7);
IO_PIX_CNTL(ppdev, ALL_ONES);
IO_FRGD_MIX(ppdev, SRC_CPU_DATA | ulHwForeMix);
while(TRUE)
{
cy = prcl->bottom - prcl->top;
cx = prcl->right - prcl->left;
bResetScissors = FALSE;
if (cx & 1)
{
// When using word transfers, the 8514/A will 'byte wrap'
// transfers of odd byte width, such that end words will
// be split so that on byte is the end of one scan, and the
// other byte is the start of the next scan.
//
// This complicates things too much, so we simply always do
// word transfers of even byte width by making use of the
// clipping register:
bResetScissors = TRUE;
IO_SCISSORS_R(ppdev, prcl->right - 1);
IO_MAJ_AXIS_PCNT(ppdev, cx);
}
else
{
IO_MAJ_AXIS_PCNT(ppdev, cx - 1);
}
IO_MIN_AXIS_PCNT(ppdev, cy - 1);
IO_CUR_X(ppdev, prcl->left);
IO_CUR_Y(ppdev, prcl->top);
pulXlate = pxlo->pulXlate;
xSrc = prcl->left + dx;
pjScan = pjSrcScan0 + (prcl->top + dy) * lSrcDelta + (xSrc >> 1);
IO_GP_WAIT(ppdev);
IO_CMD(ppdev, RECTANGLE_FILL | BUS_SIZE_16| WAIT |
DRAWING_DIR_TBLRXM | DRAW | LAST_PIXEL_ON |
SINGLE_PIXEL | WRITE | BYTE_SWAP);
CHECK_DATA_READY(ppdev);
do {
pjSrc = pjScan;
cxToGo = cx; // # of pels per scan in 4bpp source
do {
cxThis = XLATE_BUFFER_SIZE;
// We can handle XLATE_BUFFER_SIZE number
// of pels in this xlate batch
cxToGo -= cxThis; // cxThis will be the actual number of
// pels we'll do in this xlate batch
if (cxToGo < 0)
cxThis += cxToGo;
pjDst = ajBuf; // Points to our temporary batch buffer
// We handle alignment ourselves because it's easy to
// do, rather than pay the cost of setting/resetting
// the scissors register:
if (xSrc & 1)
{
// When unaligned, we have to be careful not to read
// past the end of the 4bpp bitmap (that could
// potentially cause us to access violate):
iLoop = cxThis >> 1; // Each loop handles 2 pels;
// we'll handle odd pel
// separately
jSrc = *pjSrc;
while (iLoop-- != 0)
{
*pjDst++ = (BYTE) pulXlate[jSrc & 0xf];
jSrc = *(++pjSrc);
*pjDst++ = (BYTE) pulXlate[jSrc >> 4];
}
if (cxThis & 1)
*pjDst = (BYTE) pulXlate[jSrc & 0xf];
}
else
{
iLoop = (cxThis + 1) >> 1; // Each loop handles 2 pels
do {
jSrc = *pjSrc++;
*pjDst++ = (BYTE) pulXlate[jSrc >> 4];
*pjDst++ = (BYTE) pulXlate[jSrc & 0xf];
} while (--iLoop != 0);
}
// The number of bytes we'll transfer is equal to the number
// of pels we've processed in the batch. Since we're
// transferring words, we have to round up to get the word
// count:
vDataPortOut(ppdev, ajBuf, (cxThis + 1) >> 1);
} while (cxToGo > 0);
pjScan += lSrcDelta; // Advance to next source scan. Note
// that we could have computed the
// value to advance 'pjSrc' directly,
// but this method is less
// error-prone.
} while (--cy != 0);
CHECK_DATA_COMPLETE(ppdev);
// Don't forget to restore the right scissors:
if (bResetScissors)
{
IO_FIFO_WAIT(ppdev, 1);
IO_ABS_SCISSORS_R(ppdev, ppdev->cxMemory - 1);
}
if (--c == 0)
return;
prcl++;
IO_FIFO_WAIT(ppdev, 5);
}
}
/******************************Public*Routine******************************\
* VOID vIoXferNative
*
* Transfers a bitmap that is the same colour depth as the display to
* the screen via the data transfer register, with no palette translation.
*
\**************************************************************************/
VOID vIoXferNative( // Type FNXFER
PDEV* ppdev,
LONG c, // Count of rectangles, can't be zero
RECTL* prcl, // Array of relative coordinates destination rectangles
ULONG ulHwForeMix,// Hardware mix
ULONG ulHwBackMix,// Not used
SURFOBJ* psoSrc, // Source surface
POINTL* pptlSrc, // Original unclipped source point
RECTL* prclDst, // Original unclipped destination rectangle
XLATEOBJ* pxlo) // Not used
{
LONG dx;
LONG dy;
LONG cx;
LONG cy;
LONG lSrcDelta;
BYTE* pjSrcScan0;
BYTE* pjSrc;
LONG cwSrc;
BOOL bResetScissors;
LONG xLeft;
LONG xRight;
LONG yTop;
ASSERTDD((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL),
"Can handle trivial xlate only");
ASSERTDD(psoSrc->iBitmapFormat == ppdev->iBitmapFormat,
"Source must be same colour depth as screen");
ASSERTDD(c > 0, "Can't handle zero rectangles");
ASSERTDD(ulHwForeMix <= 15, "Weird hardware Rop");
dx = pptlSrc->x - prclDst->left;
dy = pptlSrc->y - prclDst->top; // Add to destination to get source
lSrcDelta = psoSrc->lDelta;
pjSrcScan0 = psoSrc->pvScan0;
IO_FIFO_WAIT(ppdev, 8);
IO_PIX_CNTL(ppdev, ALL_ONES);
IO_FRGD_MIX(ppdev, SRC_CPU_DATA | ulHwForeMix);
while(TRUE)
{
bResetScissors = FALSE;
IO_CUR_Y(ppdev, prcl->top);
yTop = prcl->top;
cy = prcl->bottom - prcl->top;
IO_MIN_AXIS_PCNT(ppdev, cy - 1);
xLeft = prcl->left;
xRight = prcl->right;
// Make sure we're word aligned on the source, because we're
// going to be transferring words and we don't want to risk
// reading past the end of the bitmap:
if ((xLeft + dx) & 1)
{
IO_SCISSORS_L(ppdev, xLeft);
xLeft--;
bResetScissors = TRUE;
}
IO_CUR_X(ppdev, xLeft);
cx = xRight - xLeft;
if (cx & 1)
{
IO_SCISSORS_R(ppdev, xRight - 1);
cx++;
bResetScissors = TRUE;
}
IO_MAJ_AXIS_PCNT(ppdev, cx - 1);
cwSrc = ((cx << ppdev->cPelSize) + 1) >> 1;
pjSrc = pjSrcScan0 + (yTop + dy) * lSrcDelta
+ ((xLeft + dx) << ppdev->cPelSize);
IO_GP_WAIT(ppdev);
IO_CMD(ppdev, RECTANGLE_FILL | BUS_SIZE_16| WAIT |
DRAWING_DIR_TBLRXM | DRAW | LAST_PIXEL_ON |
SINGLE_PIXEL | WRITE | BYTE_SWAP);
CHECK_DATA_READY(ppdev);
do {
vDataPortOut(ppdev, pjSrc, cwSrc);
pjSrc += lSrcDelta;
} while (--cy != 0);
CHECK_DATA_COMPLETE(ppdev);
if (bResetScissors)
{
IO_FIFO_WAIT(ppdev, 2);
IO_ABS_SCISSORS_L(ppdev, 0);
IO_ABS_SCISSORS_R(ppdev, ppdev->cxMemory - 1);
}
if (--c == 0)
return;
prcl++;
IO_FIFO_WAIT(ppdev, 6);
}
}
/******************************Public*Routine******************************\
* VOID vIoCopyBlt
*
* Does a screen-to-screen blt of a list of rectangles.
*
\**************************************************************************/
VOID vIoCopyBlt( // Type FNCOPY
PDEV* ppdev,
LONG c, // Can't be zero
RECTL* prcl, // Array of relative coordinates destination rectangles
ULONG ulHwMix, // Hardware mix
POINTL* pptlSrc, // Original unclipped source point
RECTL* prclDst) // Original unclipped destination rectangle
{
LONG dx;
LONG dy; // Add delta to destination to get source
LONG cx;
LONG cy; // Size of current rectangle - 1
ASSERTDD(c > 0, "Can't handle zero rectangles");
ASSERTDD(ulHwMix <= 15, "Weird hardware Rop");
IO_FIFO_WAIT(ppdev, 2);
IO_FRGD_MIX(ppdev, SRC_DISPLAY_MEMORY | ulHwMix);
IO_PIX_CNTL(ppdev, ALL_ONES);
dx = pptlSrc->x - prclDst->left;
dy = pptlSrc->y - prclDst->top;
// The accelerator may not be as fast at doing right-to-left copies, so
// only do them when the rectangles truly overlap:
if (!OVERLAP(prclDst, pptlSrc))
goto Top_Down_Left_To_Right;
if (prclDst->top <= pptlSrc->y)
{
if (prclDst->left <= pptlSrc->x)
{
Top_Down_Left_To_Right:
do {
IO_FIFO_WAIT(ppdev, 7);
cx = prcl->right - prcl->left - 1;
IO_MAJ_AXIS_PCNT(ppdev, cx);
IO_DEST_X(ppdev, prcl->left);
IO_CUR_X(ppdev, prcl->left + dx);
cy = prcl->bottom - prcl->top - 1;
IO_MIN_AXIS_PCNT(ppdev, cy);
IO_DEST_Y(ppdev, prcl->top);
IO_CUR_Y(ppdev, prcl->top + dy);
IO_CMD(ppdev, BITBLT | DRAW | DIR_TYPE_XY | WRITE |
DRAWING_DIR_TBLRXM);
prcl++;
} while (--c != 0);
}
else
{
do {
IO_FIFO_WAIT(ppdev, 7);
cx = prcl->right - prcl->left - 1;
IO_MAJ_AXIS_PCNT(ppdev, cx);
IO_DEST_X(ppdev, prcl->left + cx);
IO_CUR_X(ppdev, prcl->left + cx + dx);
cy = prcl->bottom - prcl->top - 1;
IO_MIN_AXIS_PCNT(ppdev, cy);
IO_DEST_Y(ppdev, prcl->top);
IO_CUR_Y(ppdev, prcl->top + dy);
IO_CMD(ppdev, BITBLT | DRAW | DIR_TYPE_XY | WRITE |
DRAWING_DIR_TBRLXM);
prcl++;
} while (--c != 0);
}
}
else
{
if (prclDst->left <= pptlSrc->x)
{
do {
IO_FIFO_WAIT(ppdev, 7);
cx = prcl->right - prcl->left - 1;
IO_MAJ_AXIS_PCNT(ppdev, cx);
IO_DEST_X(ppdev, prcl->left);
IO_CUR_X(ppdev, prcl->left + dx);
cy = prcl->bottom - prcl->top - 1;
IO_MIN_AXIS_PCNT(ppdev, cy);
IO_DEST_Y(ppdev, prcl->top + cy);
IO_CUR_Y(ppdev, prcl->top + cy + dy);
IO_CMD(ppdev, BITBLT | DRAW | DIR_TYPE_XY | WRITE |
DRAWING_DIR_BTLRXM);
prcl++;
} while (--c != 0);
}
else
{
do {
IO_FIFO_WAIT(ppdev, 7);
cx = prcl->right - prcl->left - 1;
IO_MAJ_AXIS_PCNT(ppdev, cx);
IO_DEST_X(ppdev, prcl->left + cx);
IO_CUR_X(ppdev, prcl->left + cx + dx);
cy = prcl->bottom - prcl->top - 1;
IO_MIN_AXIS_PCNT(ppdev, cy);
IO_DEST_Y(ppdev, prcl->top + cy);
IO_CUR_Y(ppdev, prcl->top + cy + dy);
IO_CMD(ppdev, BITBLT | DRAW | DIR_TYPE_XY | WRITE |
DRAWING_DIR_BTRLXM);
prcl++;
} while (--c != 0);
}
}
}
/******************************Public*Routine******************************\
* VOID vIoMaskCopy
*
* This routine performs a screen-to-screen masked blt.
*
* NT has a new API called MaskBlt (which has also been added to Win4.0)
* which allows an app to specify a monochrome mask on a colour blt. This
* API is relatively cool because the programmer no longer has to do two
* separate SRCAND and SRCPAINT calls to do transparency. We can accelerate
* the call using the hardware, and there is no longer any chance of
* 'flashing' occuring on the screen.
*
* Most often, the colour bitmap for MaskBlt is a compatible-bitmap that
* we've already stashed in off-screen memory. We do the maskblt by
* transferring the monochrome bitmap via the data transfer register,
* and setting the foreground and background mixes to use the on-screen
* bitmap as appropriate.
*
* If you can implement this call and accelerate it using your hardware,
* please do. It is really useful for app developers and is a big win.
* Plus, you'll have a head-start for Win4.0 (although the Win4.0 version
* is simpler because they only allow 0xccaa or 0xaacc rops -- the
* foreground and background mixes can only be OVERPAINT or LEAVE_ALONE).
*
\**************************************************************************/
VOID vIoMaskCopy( // Type FNMASK
PDEV* ppdev,
LONG c, // Can't be zero
RECTL* prcl, // Array of relative coordinates destination
// rectangles
ULONG ulHwForeMix, // Foreground mix
ULONG ulHwBackMix, // Background mix
SURFOBJ* psoMsk, // Mask surface
POINTL* pptlMsk, // Original unclipped mask source point
SURFOBJ* psoSrc, // Not used
POINTL* pptlSrc, // Original unclipped source point
RECTL* prclDst, // Original unclipped destination rectangle
ULONG iSolidColor, // Not used
RBRUSH* prb, // Not used
POINTL* pptlBrush, // Not used
XLATEOBJ* pxlo) // Not used
{
LONG dxSrc;
LONG dySrc;
LONG dxMsk;
LONG dyMsk;
LONG cy;
LONG lMskDelta;
LONG lTmpDelta;
BYTE* pjMskScan0;
BYTE* pjMsk;
LONG cwMsk;
LONG xLeft;
LONG xRight;
LONG yTop;
LONG yBottom;
LONG xBiasLeft;
LONG xBiasRight;
ASSERTDD(c > 0, "Can't handle zero rectangles");
ASSERTDD(ulHwForeMix <= 15, "Weird hardware Rop");
ASSERTDD(ulHwBackMix <= 15, "Weird hardware Rop");
ASSERTDD(pptlMsk != NULL && psoMsk != NULL, "Can't have NULL masks");
ASSERTDD(psoMsk->iBitmapFormat == BMF_1BPP, "Mask has to be 1bpp");
ASSERTDD(!OVERLAP(prclDst, pptlSrc), "Source and dest can't overlap!");
while (INPW(EXT_FIFO_STATUS) & TWO_WORDS)
;
OUT_WORD(ALU_FG_FN, ulHwForeMix);
OUT_WORD(ALU_BG_FN, ulHwBackMix);
dxSrc = pptlSrc->x - (prclDst->left + ppdev->xOffset);
dySrc = pptlSrc->y - (prclDst->top + ppdev->yOffset);
// Add to the absolute coordinate destination rectangle to
// get the corresponding absolute coordinate source rectangle
dxMsk = pptlMsk->x - (prclDst->left + ppdev->xOffset);
dyMsk = pptlMsk->y - (prclDst->top + ppdev->yOffset);
// Add to the absolute coordinate destination rectangle to
// get the corresponding absolute coordinate mask rectangle
lMskDelta = psoMsk->lDelta;
pjMskScan0 = psoMsk->pvScan0;
while (TRUE)
{
while (INPW(EXT_FIFO_STATUS) & FIFTEEN_WORDS)
;
// Since we're not using the normal accelerator register macros,
// we have to explicitly account for the DFB offset:
yBottom = prcl->bottom + ppdev->yOffset;
yTop = prcl->top + ppdev->yOffset;
xRight = prcl->right + ppdev->xOffset;
xLeft = prcl->left + ppdev->xOffset;
// The start has to be word aligned:
xBiasLeft = (xLeft + dxMsk) & 15;
if (xBiasLeft != 0)
{
// Rev 3 ATI chips have goofy timing bugs on 66 MHz DX-2
// computers where some extended will not be correctly
// set the first time. The extended scissors registers
// have this problem, but setting them twice seems to work:
OUT_WORD(EXT_SCISSOR_L, xLeft);
OUT_WORD(EXT_SCISSOR_L, xLeft);
xLeft -= xBiasLeft;
}
// The width has to be a word multiple:
xBiasRight = (xRight - xLeft) & 15;
if (xBiasRight != 0)
{
OUT_WORD(EXT_SCISSOR_R, xRight - 1);
OUT_WORD(EXT_SCISSOR_R, xRight - 1);
xRight += 16 - xBiasRight;
}
OUT_WORD(DP_CONFIG, FG_COLOR_SRC_BLIT | BG_COLOR_SRC_BLIT | DATA_ORDER |
EXT_MONO_SRC_HOST | DRAW | WRITE | DATA_WIDTH);
OUT_WORD(SRC_X, xLeft + dxSrc);
OUT_WORD(SRC_X_START, xLeft + dxSrc);
OUT_WORD(SRC_X_END, xRight + dxSrc);
OUT_WORD(SRC_Y, yTop + dySrc);
OUT_WORD(SRC_Y_DIR, TOP_TO_BOTTOM);
OUT_WORD(DEST_X_START, xLeft);
OUT_WORD(CUR_X, xLeft);
OUT_WORD(DEST_X_END, xRight);
OUT_WORD(CUR_Y, yTop);
OUT_WORD(DEST_Y_END, yBottom);
cwMsk = (xRight - xLeft) / 16; // We'll be transferring WORDs
pjMsk = pjMskScan0 + (yTop + dyMsk) * lMskDelta
+ (xLeft + dxMsk) / 8;
// Start is byte aligned (note
// that we don't have to add
// xBiasLeft)
cy = yBottom - yTop;
lTmpDelta = lMskDelta - 2 * cwMsk;
// To be safe, we make sure there are always as many free FIFO entries
// as we'll transfer (note that this implementation isn't particularly
// efficient, especially for short scans):
_asm {
; eax = used for IN
; ebx = count of words remaining on current scan
; ecx = used for REP
; edx = used for IN and OUT
; esi = current source pointer
; edi = count of scans
mov esi,pjMsk
mov edi,cy
Scan_Loop:
mov ebx,cwMsk
Batch_Loop:
mov edx,EXT_FIFO_STATUS
in ax,dx
and eax,SIXTEEN_WORDS
jnz short Batch_Loop
mov edx,PIX_TRANS
sub ebx,16
jle short Finish_Scan
mov ecx,16
rep outsw
jmp short Batch_Loop
Finish_Scan:
add ebx,16
mov ecx,ebx
rep outsw
add esi,lTmpDelta
dec edi
jnz Scan_Loop
}
if ((xBiasLeft | xBiasRight) != 0)
{
// Reset the clipping only if we used it:
while (INPW(EXT_FIFO_STATUS) & FOUR_WORDS)
;
OUT_WORD(EXT_SCISSOR_L, 0);
OUT_WORD(EXT_SCISSOR_R, ppdev->cxMemory - 1);
OUT_WORD(EXT_SCISSOR_L, 0);
OUT_WORD(EXT_SCISSOR_R, ppdev->cxMemory - 1);
}
if (--c == 0)
return;
prcl++;
}
}
/******************************Public*Routine******************************\
* VOID vPutBits
*
* Copies the bits from the given surface to the screen, using the memory
* aperture. Must be pre-clipped.
*
* LATER: Do we really need this routine?
*
\**************************************************************************/
VOID vPutBits(
PDEV* ppdev,
SURFOBJ* psoSrc, // Source surface
RECTL* prclDst, // Destination rectangle in absolute coordinates!
POINTL* pptlSrc) // Source point
{
LONG xOffset;
LONG yOffset;
// This is ugly. Oh well.
xOffset = ppdev->xOffset;
yOffset = ppdev->yOffset;
ppdev->xOffset = 0;
ppdev->yOffset = 0;
vIoXferNative(ppdev, 1, prclDst, OVERPAINT, OVERPAINT, psoSrc, pptlSrc,
prclDst, NULL);
ppdev->xOffset = xOffset;
ppdev->yOffset = yOffset;
}
/******************************Public*Routine******************************\
* VOID vGetBits
*
* Copies the bits to the given surface from the screen, using the data
* transfer register. Must be pre-clipped.
*
\**************************************************************************/
VOID vGetBits(
PDEV* ppdev,
SURFOBJ* psoDst, // Destination surface
RECTL* prclDst, // Destination rectangle
POINTL* pptlSrc) // Source point in absolute coordinates!
{
LONG cx;
LONG cy;
LONG lDstDelta;
BYTE* pjDst;
DWORD wOdd; // Think of it as a WORD
ULONG cwDst;
ULONG cjEndByte;
IO_FIFO_WAIT(ppdev, 7);
IO_PIX_CNTL(ppdev, ALL_ONES);
// LATER: Do we have to set FRGD_MIX?
IO_FRGD_MIX(ppdev, SRC_CPU_DATA | OVERPAINT);
IO_ABS_CUR_X(ppdev, pptlSrc->x);
IO_ABS_CUR_Y(ppdev, pptlSrc->y);
cx = prclDst->right - prclDst->left;
cy = prclDst->bottom - prclDst->top;
IO_MAJ_AXIS_PCNT(ppdev, cx - 1);
IO_MIN_AXIS_PCNT(ppdev, cy - 1);
IO_CMD(ppdev, RECTANGLE_FILL | BUS_SIZE_16| WAIT |
DRAWING_DIR_TBLRXM | DRAW | LAST_PIXEL_ON |
READ | BYTE_SWAP);
lDstDelta = psoDst->lDelta;
pjDst = (BYTE*) psoDst->pvScan0 + prclDst->top * lDstDelta
+ prclDst->left;
cwDst = (cx >> 1);
WAIT_FOR_DATA_AVAILABLE(ppdev);
if ((cx & 1) == 0)
{
// Even destination scan length. Life is truly great.
do {
vDataPortIn(ppdev, pjDst, cwDst);
pjDst += lDstDelta;
} while (--cy != 0);
}
else
{
// Odd destination scan length.
//
// We have to be careful of this case because we want to do WORD
// transfers, but we can't overwrite either the beginning or ending
// of the scan. Note that since it's not legal to write a byte past
// the end of the bitmap or a byte before the beginning of the bitmap
// as that may cause an access violation, we cannot temporarily save
// and restore any extra bytes in the destination bitmap.
cjEndByte = cx - 1; // Byte offset from beginning of scan to
// last byte in scan. This is the offset
// to the odd byte that happens because
// we're inputting WORDs but the length
// of the destination scan is not a
// multiple of two.
while (TRUE)
{
vDataPortIn(ppdev, pjDst, cwDst);
IO_PIX_TRANS_IN(ppdev, wOdd);
*(pjDst + cjEndByte) = (BYTE) wOdd;
if (--cy == 0)
break;
pjDst += lDstDelta;
*(pjDst) = (BYTE) (wOdd >> 8);
vDataPortIn(ppdev, pjDst + 1, cwDst);
pjDst += lDstDelta;
if (--cy == 0)
break;
}
}
}