546 lines
18 KiB
C
546 lines
18 KiB
C
/******************************Module*Header*******************************\
|
|
* Module Name: fastfill.c
|
|
*
|
|
* Draws fast unclipped, non-complex rectangles.
|
|
*
|
|
* Copyright (c) 1993-1995 Microsoft Corporation
|
|
\**************************************************************************/
|
|
|
|
#include "precomp.h"
|
|
|
|
#define RIGHT 0
|
|
#define LEFT 1
|
|
#define SWAP(a, b, tmp) { tmp = a; a = b; b = tmp; }
|
|
|
|
typedef struct _EDGEDATA {
|
|
LONG x; // Current x position
|
|
LONG dx; // # pixels to advance x on each scan
|
|
LONG lError; // Current DDA error
|
|
LONG lErrorUp; // DDA error increment on each scan
|
|
LONG lErrorDown; // DDA error adjustment
|
|
POINTFIX* pptfx; // Points to start of current edge
|
|
LONG dptfx; // Delta (in bytes) from pptfx to next point
|
|
LONG cy; // Number of scans to go for this edge
|
|
} EDGEDATA; /* ed, ped */
|
|
|
|
/******************************Public*Routine******************************\
|
|
* BOOL bFastFill
|
|
*
|
|
* Draws a non-complex, unclipped polygon. 'Non-complex' is defined as
|
|
* having only two edges that are monotonic increasing in 'y'. That is,
|
|
* the polygon cannot have more than one disconnected segment on any given
|
|
* scan. Note that the edges of the polygon can self-intersect, so hourglass
|
|
* shapes are permissible. This restriction permits this routine to run two
|
|
* simultaneous DDAs, and no sorting of the edges is required.
|
|
*
|
|
* Note that NT's fill convention is different from that of Win 3.1 or 4.0.
|
|
* With the additional complication of fractional end-points, our convention
|
|
* is the same as in 'X-Windows'. But a DDA is a DDA is a DDA, so once you
|
|
* figure out how we compute the DDA terms for NT, you're golden.
|
|
*
|
|
* Returns TRUE if the polygon was drawn; FALSE if the polygon was complex.
|
|
*
|
|
\**************************************************************************/
|
|
|
|
BOOL bFastFill(
|
|
PDEV* ppdev,
|
|
LONG cEdges, // Includes close figure edge
|
|
POINTFIX* pptfxFirst,
|
|
ULONG ulHwMix,
|
|
ULONG iSolidColor,
|
|
RBRUSH* prb,
|
|
POINTL* pptlBrush)
|
|
{
|
|
BYTE* pjBase;
|
|
ULONG ulStat;
|
|
LONG yTrapezoid; // Top scan for next trapezoid
|
|
LONG cyTrapezoid; // Number of scans in current trapezoid
|
|
LONG yStart; // y-position of start point in current edge
|
|
LONG dM; // Edge delta in FIX units in x direction
|
|
LONG dN; // Edge delta in FIX units in y direction
|
|
LONG i;
|
|
POINTFIX* pptfxLast; // Points to the last point in the polygon array
|
|
POINTFIX* pptfxTop; // Points to the top-most point in the polygon
|
|
POINTFIX* pptfxOld; // Start point in current edge
|
|
POINTFIX* pptfxScan; // Current edge pointer for finding pptfxTop
|
|
LONG cScanEdges; // Number of edges scanned to find pptfxTop
|
|
// (doesn't include the closefigure edge)
|
|
ULONG* pulPattern;
|
|
ULONG ulPattern;
|
|
LONG iEdge;
|
|
LONG lQuotient;
|
|
LONG lRemainder;
|
|
|
|
EDGEDATA aed[2]; // DDA terms and stuff
|
|
EDGEDATA* ped;
|
|
|
|
// Most polygons will be convex, and so
|
|
|
|
pjBase = ppdev->pjBase;
|
|
|
|
if (iSolidColor == -1)
|
|
{
|
|
/////////////////////////////////////////////////////////////////
|
|
// Setup for patterns
|
|
|
|
// Make sure accelerator is not buy for all types.
|
|
//
|
|
CP_WAIT(ppdev, pjBase);
|
|
|
|
if (P9000(ppdev))
|
|
{
|
|
CP_PATTERN_ORGX(ppdev, pjBase, ppdev->xOffset + pptlBrush->x);
|
|
CP_PATTERN_ORGY(ppdev, pjBase, ppdev->yOffset + pptlBrush->y);
|
|
CP_BACKGROUND(ppdev, pjBase, prb->ulColor[0]);
|
|
CP_FOREGROUND(ppdev, pjBase, prb->ulColor[1]);
|
|
pulPattern = &prb->aulPattern[0];
|
|
for (i = 0; i < 4; i++)
|
|
{
|
|
ulPattern = *pulPattern++;
|
|
CP_PATTERN(ppdev, pjBase, i, ulPattern);
|
|
CP_PATTERN(ppdev, pjBase, i + 4, ulPattern);
|
|
}
|
|
|
|
if (((ulHwMix >> 8) & 0xff) == (ulHwMix & 0xff))
|
|
{
|
|
ulHwMix = gaulP9000OpaqueFromRop2[(ulHwMix & 0x3C) >> 2];
|
|
CP_RASTER(ppdev, pjBase, ulHwMix | P9000_ENABLE_PATTERN);
|
|
}
|
|
else
|
|
{
|
|
ulHwMix = gaulP9000TransparentFromRop2[(ulHwMix & 0x3C) >> 2];
|
|
CP_RASTER(ppdev, pjBase, ulHwMix | P9000_ENABLE_PATTERN);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
CP_PATTERN_ORGX(ppdev, pjBase, -(ppdev->xOffset + pptlBrush->x));
|
|
CP_PATTERN_ORGY(ppdev, pjBase, -(ppdev->yOffset + pptlBrush->y));
|
|
CP_COLOR0_FAST(ppdev, pjBase, prb->ulColor[0]);
|
|
CP_COLOR1_FAST(ppdev, pjBase, prb->ulColor[1]);
|
|
CP_PATTERN(ppdev, pjBase, 0, prb->aulPattern[0]);
|
|
CP_PATTERN(ppdev, pjBase, 1, prb->aulPattern[1]);
|
|
CP_PATTERN(ppdev, pjBase, 2, prb->aulPattern[2]);
|
|
CP_PATTERN(ppdev, pjBase, 3, prb->aulPattern[3]);
|
|
if (prb->fl & RBRUSH_2COLOR)
|
|
{
|
|
if (((ulHwMix >> 8) & 0xff) == (ulHwMix & 0xff))
|
|
{
|
|
CP_RASTER(ppdev, pjBase, (ulHwMix & 0xff)
|
|
| P9100_ENABLE_PATTERN);
|
|
}
|
|
else
|
|
{
|
|
CP_RASTER(ppdev, pjBase, (ulHwMix & 0xff)
|
|
| P9100_ENABLE_PATTERN | P9100_TRANSPARENT_PATTERN);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
CP_COLOR2_FAST(ppdev, pjBase, prb->ulColor[2]);
|
|
CP_COLOR3_FAST(ppdev, pjBase, prb->ulColor[3]);
|
|
CP_RASTER(ppdev, pjBase, (ulHwMix & 0xff)
|
|
| P9100_ENABLE_PATTERN | P9100_FOUR_COLOR_PATTERN);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/////////////////////////////////////////////////////////////////
|
|
// Setup the hardware for solid colours
|
|
|
|
CP_WAIT(ppdev, pjBase);
|
|
if (P9000(ppdev))
|
|
{
|
|
CP_BACKGROUND(ppdev, pjBase, iSolidColor);
|
|
CP_RASTER(ppdev, pjBase, ulHwMix);
|
|
}
|
|
else
|
|
{
|
|
CP_COLOR0(ppdev, pjBase, iSolidColor);
|
|
CP_RASTER(ppdev, pjBase, ulHwMix & 0xff);
|
|
}
|
|
}
|
|
|
|
// We can do all integer triangles and convex quadrilaterals directly
|
|
// with the hardware:
|
|
|
|
if (cEdges <= 4)
|
|
{
|
|
ASSERTDD(cEdges >= 3, "What's with the degenerate polygon?");
|
|
|
|
if ((((pptfxFirst)->x | (pptfxFirst)->y |
|
|
(pptfxFirst+1)->x | (pptfxFirst+1)->y |
|
|
(pptfxFirst+2)->x | (pptfxFirst+2)->y) & 0xF) == 0)
|
|
{
|
|
if (cEdges == 3)
|
|
{
|
|
CP_METATRI(ppdev, pjBase, (pptfxFirst)->x >> 4, (pptfxFirst)->y >> 4);
|
|
CP_METATRI(ppdev, pjBase, (pptfxFirst+1)->x >> 4, (pptfxFirst+1)->y >> 4);
|
|
CP_METATRI(ppdev, pjBase, (pptfxFirst+2)->x >> 4, (pptfxFirst+2)->y >> 4);
|
|
|
|
CP_START_QUAD(ppdev, pjBase);
|
|
return(TRUE);
|
|
}
|
|
else
|
|
{
|
|
if ((((pptfxFirst+3)->x | (pptfxFirst+3)->y) & 0xF) == 0)
|
|
{
|
|
CP_METAQUAD(ppdev, pjBase, (pptfxFirst)->x >> 4, (pptfxFirst)->y >> 4);
|
|
CP_METAQUAD(ppdev, pjBase, (pptfxFirst+1)->x >> 4, (pptfxFirst+1)->y >> 4);
|
|
CP_METAQUAD(ppdev, pjBase, (pptfxFirst+2)->x >> 4, (pptfxFirst+2)->y >> 4);
|
|
CP_METAQUAD(ppdev, pjBase, (pptfxFirst+3)->x >> 4, (pptfxFirst+3)->y >> 4);
|
|
|
|
CP_START_QUAD_STAT(ppdev, pjBase, ulStat);
|
|
return(!(ulStat & QUADFAIL));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////
|
|
// See if the polygon is 'non-complex'
|
|
|
|
pptfxScan = pptfxFirst;
|
|
pptfxTop = pptfxFirst; // Assume for now that the first
|
|
// point in path is the topmost
|
|
pptfxLast = pptfxFirst + cEdges - 1;
|
|
|
|
// 'pptfxScan' will always point to the first point in the current
|
|
// edge, and 'cScanEdges' will the number of edges remaining, including
|
|
// the current one:
|
|
|
|
cScanEdges = cEdges - 1; // The number of edges, not counting close figure
|
|
|
|
if ((pptfxScan + 1)->y > pptfxScan->y)
|
|
{
|
|
// Collect all downs:
|
|
|
|
do {
|
|
if (--cScanEdges == 0)
|
|
goto SetUpForFilling;
|
|
pptfxScan++;
|
|
} while ((pptfxScan + 1)->y >= pptfxScan->y);
|
|
|
|
// Collect all ups:
|
|
|
|
do {
|
|
if (--cScanEdges == 0)
|
|
goto SetUpForFillingCheck;
|
|
pptfxScan++;
|
|
} while ((pptfxScan + 1)->y <= pptfxScan->y);
|
|
|
|
// Collect all downs:
|
|
|
|
pptfxTop = pptfxScan;
|
|
|
|
do {
|
|
if ((pptfxScan + 1)->y > pptfxFirst->y)
|
|
break;
|
|
|
|
if (--cScanEdges == 0)
|
|
goto SetUpForFilling;
|
|
pptfxScan++;
|
|
} while ((pptfxScan + 1)->y >= pptfxScan->y);
|
|
|
|
return(FALSE);
|
|
}
|
|
else
|
|
{
|
|
// Collect all ups:
|
|
|
|
do {
|
|
pptfxTop++; // We increment this now because we
|
|
// want it to point to the very last
|
|
// point if we early out in the next
|
|
// statement...
|
|
if (--cScanEdges == 0)
|
|
goto SetUpForFilling;
|
|
} while ((pptfxTop + 1)->y <= pptfxTop->y);
|
|
|
|
// Collect all downs:
|
|
|
|
pptfxScan = pptfxTop;
|
|
do {
|
|
if (--cScanEdges == 0)
|
|
goto SetUpForFilling;
|
|
pptfxScan++;
|
|
} while ((pptfxScan + 1)->y >= pptfxScan->y);
|
|
|
|
// Collect all ups:
|
|
|
|
do {
|
|
if ((pptfxScan + 1)->y < pptfxFirst->y)
|
|
break;
|
|
|
|
if (--cScanEdges == 0)
|
|
goto SetUpForFilling;
|
|
pptfxScan++;
|
|
} while ((pptfxScan + 1)->y <= pptfxScan->y);
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
SetUpForFillingCheck:
|
|
|
|
// We check to see if the end of the current edge is higher
|
|
// than the top edge we've found so far:
|
|
|
|
if ((pptfxScan + 1)->y < pptfxTop->y)
|
|
pptfxTop = pptfxScan + 1;
|
|
|
|
SetUpForFilling:
|
|
|
|
/////////////////////////////////////////////////////////////////
|
|
// Some Initialization
|
|
|
|
yTrapezoid = (pptfxTop->y + 15) >> 4;
|
|
|
|
// Make sure we initialize the DDAs appropriately:
|
|
|
|
aed[LEFT].cy = 0;
|
|
aed[RIGHT].cy = 0;
|
|
|
|
// For now, guess as to which is the left and which is the right edge:
|
|
|
|
aed[LEFT].dptfx = -(LONG) sizeof(POINTFIX);
|
|
aed[RIGHT].dptfx = sizeof(POINTFIX);
|
|
aed[LEFT].pptfx = pptfxTop;
|
|
aed[RIGHT].pptfx = pptfxTop;
|
|
|
|
NewTrapezoid:
|
|
|
|
/////////////////////////////////////////////////////////////////
|
|
// DDA initialization
|
|
|
|
for (iEdge = 1; iEdge >= 0; iEdge--)
|
|
{
|
|
ped = &aed[iEdge];
|
|
if (ped->cy == 0)
|
|
{
|
|
// Need a new DDA:
|
|
|
|
do {
|
|
cEdges--;
|
|
if (cEdges < 0)
|
|
return(TRUE);
|
|
|
|
// Find the next left edge, accounting for wrapping:
|
|
|
|
pptfxOld = ped->pptfx;
|
|
ped->pptfx = (POINTFIX*) ((BYTE*) ped->pptfx + ped->dptfx);
|
|
|
|
if (ped->pptfx < pptfxFirst)
|
|
ped->pptfx = pptfxLast;
|
|
else if (ped->pptfx > pptfxLast)
|
|
ped->pptfx = pptfxFirst;
|
|
|
|
// Have to find the edge that spans yTrapezoid:
|
|
|
|
ped->cy = ((ped->pptfx->y + 15) >> 4) - yTrapezoid;
|
|
|
|
// With fractional coordinate end points, we may get edges
|
|
// that don't cross any scans, in which case we try the
|
|
// next one:
|
|
|
|
} while (ped->cy <= 0);
|
|
|
|
// 'pptfx' now points to the end point of the edge spanning
|
|
// the scan 'yTrapezoid'.
|
|
|
|
dN = ped->pptfx->y - pptfxOld->y;
|
|
dM = ped->pptfx->x - pptfxOld->x;
|
|
|
|
ASSERTDD(dN > 0, "Should be going down only");
|
|
|
|
// Compute the DDA increment terms:
|
|
|
|
if (dM < 0)
|
|
{
|
|
dM = -dM;
|
|
if (dM < dN) // Can't be '<='
|
|
{
|
|
ped->dx = -1;
|
|
ped->lErrorUp = dN - dM;
|
|
}
|
|
else
|
|
{
|
|
QUOTIENT_REMAINDER(dM, dN, lQuotient, lRemainder);
|
|
|
|
ped->dx = -lQuotient; // - dM / dN
|
|
ped->lErrorUp = lRemainder; // dM % dN
|
|
if (ped->lErrorUp > 0)
|
|
{
|
|
ped->dx--;
|
|
ped->lErrorUp = dN - ped->lErrorUp;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (dM < dN) // Can't be '<='
|
|
{
|
|
ped->dx = 0;
|
|
ped->lErrorUp = dM;
|
|
}
|
|
else
|
|
{
|
|
QUOTIENT_REMAINDER(dM, dN, lQuotient, lRemainder);
|
|
|
|
ped->dx = lQuotient; // dM / dN
|
|
ped->lErrorUp = lRemainder; // dM % dN
|
|
}
|
|
}
|
|
|
|
ped->lErrorDown = dN; // DDA limit
|
|
ped->lError = -1; // Error is initially zero (add dN - 1 for
|
|
// the ceiling, but subtract off dN so that
|
|
// we can check the sign instead of comparing
|
|
// to dN)
|
|
|
|
ped->x = pptfxOld->x;
|
|
yStart = pptfxOld->y;
|
|
|
|
if ((yStart & 15) != 0)
|
|
{
|
|
// Advance to the next integer y coordinate
|
|
|
|
for (i = 16 - (yStart & 15); i != 0; i--)
|
|
{
|
|
ped->x += ped->dx;
|
|
ped->lError += ped->lErrorUp;
|
|
if (ped->lError >= 0)
|
|
{
|
|
ped->lError -= ped->lErrorDown;
|
|
ped->x++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((ped->x & 15) != 0)
|
|
{
|
|
ped->lError -= ped->lErrorDown * (16 - (ped->x & 15));
|
|
ped->x += 15; // We'll want the ceiling in just a bit...
|
|
}
|
|
|
|
// Chop off those fractional bits:
|
|
|
|
ped->x >>= 4;
|
|
ped->lError >>= 4;
|
|
}
|
|
}
|
|
|
|
cyTrapezoid = min(aed[LEFT].cy, aed[RIGHT].cy); // # of scans in this trap
|
|
aed[LEFT].cy -= cyTrapezoid;
|
|
aed[RIGHT].cy -= cyTrapezoid;
|
|
|
|
// If the left and right edges are vertical, simply output as
|
|
// a rectangle:
|
|
|
|
if (((aed[LEFT].lErrorUp | aed[RIGHT].lErrorUp) == 0) &&
|
|
((aed[LEFT].dx | aed[RIGHT].dx) == 0))
|
|
{
|
|
/////////////////////////////////////////////////////////////////
|
|
// Vertical-edge special case
|
|
|
|
ContinueVertical:
|
|
|
|
if (aed[LEFT].x < aed[RIGHT].x)
|
|
{
|
|
CP_METARECT(ppdev, pjBase, aed[LEFT].x, yTrapezoid);
|
|
yTrapezoid += cyTrapezoid;
|
|
CP_METARECT(ppdev, pjBase, aed[RIGHT].x, yTrapezoid);
|
|
|
|
CP_START_QUAD_WAIT(ppdev, pjBase);
|
|
}
|
|
else if (aed[LEFT].x == aed[RIGHT].x)
|
|
{
|
|
// If the rectangle was too thin to light any pels, we still
|
|
// have to advance the y current position:
|
|
|
|
yTrapezoid += cyTrapezoid;
|
|
}
|
|
else
|
|
{
|
|
LONG lTmp;
|
|
POINTFIX* pptfxTmp;
|
|
|
|
SWAP(aed[LEFT].x, aed[RIGHT].x, lTmp);
|
|
SWAP(aed[LEFT].cy, aed[RIGHT].cy, lTmp);
|
|
SWAP(aed[LEFT].dptfx, aed[RIGHT].dptfx, lTmp);
|
|
SWAP(aed[LEFT].pptfx, aed[RIGHT].pptfx, pptfxTmp);
|
|
goto ContinueVertical;
|
|
}
|
|
|
|
goto NewTrapezoid;
|
|
}
|
|
|
|
while (TRUE)
|
|
{
|
|
/////////////////////////////////////////////////////////////////
|
|
// Run the DDAs
|
|
|
|
if (aed[LEFT].x < aed[RIGHT].x)
|
|
{
|
|
CP_METARECT(ppdev, pjBase, aed[LEFT].x, yTrapezoid);
|
|
yTrapezoid++;
|
|
CP_METARECT(ppdev, pjBase, aed[RIGHT].x, yTrapezoid);
|
|
|
|
CP_START_QUAD_WAIT(ppdev, pjBase);
|
|
|
|
ContinueAfterZero:
|
|
|
|
// Advance the right wall:
|
|
|
|
aed[RIGHT].x += aed[RIGHT].dx;
|
|
aed[RIGHT].lError += aed[RIGHT].lErrorUp;
|
|
|
|
if (aed[RIGHT].lError >= 0)
|
|
{
|
|
aed[RIGHT].lError -= aed[RIGHT].lErrorDown;
|
|
aed[RIGHT].x++;
|
|
}
|
|
|
|
// Advance the left wall:
|
|
|
|
aed[LEFT].x += aed[LEFT].dx;
|
|
aed[LEFT].lError += aed[LEFT].lErrorUp;
|
|
|
|
if (aed[LEFT].lError >= 0)
|
|
{
|
|
aed[LEFT].lError -= aed[LEFT].lErrorDown;
|
|
aed[LEFT].x++;
|
|
}
|
|
|
|
cyTrapezoid--;
|
|
if (cyTrapezoid == 0)
|
|
goto NewTrapezoid;
|
|
}
|
|
else if (aed[LEFT].x == aed[RIGHT].x)
|
|
{
|
|
yTrapezoid++;
|
|
goto ContinueAfterZero;
|
|
}
|
|
else
|
|
{
|
|
// We certainly don't want to optimize for this case because we
|
|
// should rarely get self-intersecting polygons (if we're slow,
|
|
// the app gets what it deserves):
|
|
|
|
LONG lTmp;
|
|
POINTFIX* pptfxTmp;
|
|
|
|
SWAP(aed[LEFT].x, aed[RIGHT].x, lTmp);
|
|
SWAP(aed[LEFT].dx, aed[RIGHT].dx, lTmp);
|
|
SWAP(aed[LEFT].lError, aed[RIGHT].lError, lTmp);
|
|
SWAP(aed[LEFT].lErrorUp, aed[RIGHT].lErrorUp, lTmp);
|
|
SWAP(aed[LEFT].lErrorDown, aed[RIGHT].lErrorDown, lTmp);
|
|
SWAP(aed[LEFT].cy, aed[RIGHT].cy, lTmp);
|
|
SWAP(aed[LEFT].dptfx, aed[RIGHT].dptfx, lTmp);
|
|
SWAP(aed[LEFT].pptfx, aed[RIGHT].pptfx, pptfxTmp);
|
|
|
|
continue;
|
|
}
|
|
}
|
|
}
|