windows-nt/Source/XPSP1/NT/drivers/video/ms/weitek/mini/wtkp91vl.c
2020-09-26 16:20:57 +08:00

986 lines
26 KiB
C
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (c) 1993, 1994 Weitek Corporation
Module Name:
wtkp91vl.c
Abstract:
This module contains OEM specific functions for the Weitek P9100
VL evaluation board.
Environment:
Kernel mode
Revision History may be found at the end of this file.
--*/
#include "p9.h"
#include "p9gbl.h"
#include "wtkp9xvl.h"
#include "bt485.h"
#include "vga.h"
#include "p91regs.h"
#include "p91dac.h"
#include "pci.h"
#include "p9000.h"
/***********************************************************************
*
**********************************************************************/
VOID vDumpPCIConfig(PHW_DEVICE_EXTENSION HwDeviceExtension,
PUCHAR psz)
{
ULONG i, j;
ULONG ulPciData[64];
VideoDebugPrint((1, "\n%s\n", psz));
VideoPortGetBusData(HwDeviceExtension,
PCIConfiguration,
HwDeviceExtension->PciSlotNum,
(PVOID) ulPciData,
0,
sizeof(ulPciData));
for (i = 0, j = 0; i < (64 / 4); i++)
{
VideoDebugPrint((1,
"0x%04.4x\t %08.8x, %08.8x, %08.8x, %08.8x\n",
j * sizeof(ULONG),
ulPciData[j], ulPciData[j+1],
ulPciData[j+2], ulPciData[j+3]));
j += 4;
}
}
BOOLEAN
VLGetBaseAddrP91(
PHW_DEVICE_EXTENSION HwDeviceExtension
)
/*++
Routine Description:
Perform board detection and if present return the P9100 base address.
Arguments:
HwDeviceExtension - Pointer to the miniport driver's device extension.
Return Value:
TRUE - Board found, P9100 and Frame buffer address info was placed in
the device extension.
FALSE - Board not found.
--*/
{
VP_STATUS status;
VIDEO_ACCESS_RANGE VLAccessRange;
USHORT usTemp;
VideoDebugPrint((1, "VLGetBaseAddrP91 - Entry\n"));
//
// Only the viper p9000 works on the Siemens boxes
//
if (HwDeviceExtension->MachineType == SIEMENS)
{
return FALSE;
}
//
// Always use the defined address for the p9100
//
if (HwDeviceExtension->MachineType != SIEMENS_P9100_VLB)
{
HwDeviceExtension->P9PhysAddr.LowPart = MemBase;
}
//
// Set the bus-type for accessing the VLB configuration space...
//
HwDeviceExtension->usBusType = VESA;
//
// Now, detect the board
//
//
//
// OEM Notice:
//
// Here we assume that the configuration space will always
// be mapped to 0x9100 for VL cards. Since this is determined
// by pull-down resistors on the VL cards this is probably
// a safe assumption. If anyone decides to use a different
// address then we should scan for the P9100 chip. The danger
// with scanning is that it is potentially destructive.
//
// Note that we cannot read the power-up configuration register
// until we setup addressability for the VESA local bus adapter.
//
// Also, on VESA LB you must read the VL configuration registers
// using byte port reads.
//
VLAccessRange.RangeInIoSpace = TRUE;
VLAccessRange.RangeVisible = TRUE;
VLAccessRange.RangeShareable = TRUE;
VLAccessRange.RangeStart.LowPart = P91_CONFIG_INDEX;
if (HwDeviceExtension->MachineType == SIEMENS_P9100_VLB)
{
VLAccessRange.RangeStart.LowPart |=
((DriverAccessRanges[1].RangeStart.LowPart & 0xff000000)) ;
}
VLAccessRange.RangeStart.HighPart = 0;
VLAccessRange.RangeLength = P91_CONFIG_CKSEL+1;
if (VideoPortVerifyAccessRanges(HwDeviceExtension,
1,
&VLAccessRange) != NO_ERROR)
{
return(FALSE);
}
VideoDebugPrint((1, "VLGetBaseAddrP91: RangeStart = %lx\n",
VLAccessRange.RangeStart));
VideoDebugPrint((1, "VLGetBaseAddrP91: RangeLength = %lx\n",
VLAccessRange.RangeLength));
if ((HwDeviceExtension->ConfigAddr =
VideoPortGetDeviceBase(HwDeviceExtension,
VLAccessRange.RangeStart,
VLAccessRange.RangeLength,
VLAccessRange.RangeInIoSpace)) == 0)
{
return(FALSE);
}
// Verify that we can write to the index registers...
//
VideoPortWritePortUchar(
(PUCHAR) HwDeviceExtension->ConfigAddr, 0x55);
if (VideoPortReadPortUchar(
(PUCHAR) HwDeviceExtension->ConfigAddr) != 0x55)
{
VideoDebugPrint((1, "VLGetBaseAddrP91: Could not access VESA LB Config space!\n"));
VideoDebugPrint((1, "VLGetBaseAddrP91: Wrote: 0x55, Read: %lx\n",
VideoPortReadPortUchar((PUCHAR) HwDeviceExtension->ConfigAddr)));
return(FALSE);
}
//
// Verify Vendor ID...
//
usTemp = ReadP9ConfigRegister(HwDeviceExtension,
P91_CONFIG_VENDOR_HIGH) << 8;
usTemp |= ReadP9ConfigRegister(HwDeviceExtension,
P91_CONFIG_VENDOR_LOW);
if (usTemp != WTK_VENDOR_ID)
{
VideoDebugPrint((1, "Invalid Vendor ID: %x\n", usTemp));
return(FALSE);
}
//
// Verify Device ID...
//
usTemp = ReadP9ConfigRegister(HwDeviceExtension,
P91_CONFIG_DEVICE_HIGH) << 8;
usTemp |= ReadP9ConfigRegister(HwDeviceExtension,
P91_CONFIG_DEVICE_LOW);
if (usTemp != WTK_9100_ID)
{
VideoDebugPrint((1, "Invalid Device ID: %x\n", usTemp));
return(FALSE);
}
//
// Now program the P9100 to respond to the requested physical address...
//
if (HwDeviceExtension->MachineType != SIEMENS_P9100_VLB)
{
WriteP9ConfigRegister(HwDeviceExtension, P91_CONFIG_WBASE,
(UCHAR)(((HwDeviceExtension->P9PhysAddr.LowPart >> 24) & 0xFF)));
}
else
{
//
// The physical address base put on the VL-bus (in its memory space)
// is always set to zero by the FirmWare (in the MapVLBase register).
//
WriteP9ConfigRegister (HwDeviceExtension ,P91_CONFIG_WBASE ,0) ;
}
VideoDebugPrint((1, "VLGetBaseAddrP91: Found a P9100 VLB Adapter!\n"));
return(TRUE);
}
VOID
VLSetModeP91(
PHW_DEVICE_EXTENSION HwDeviceExtension
)
/*++
Routine Description:
This routine sets the video mode. Different OEM adapter implementations
require that initialization operations be performed in a certain
order. This routine uses the standard order which addresses most
implementations (VL, Ajax, Weitek PCI, Tulip).
Arguments:
HwDeviceExtension - Pointer to the miniport driver's device extension.
Return Value:
None.
--*/
{
VideoDebugPrint((2, "VLSetModeP91 - Entry\n"));
//
// Enable P9100 video if not already enabled.
//
if (!HwDeviceExtension->p91State.bEnabled)
HwDeviceExtension->AdapterDesc.P9EnableVideo(HwDeviceExtension);
//
// If this mode uses the palette, clear it to all 0s.
//
if (P9Modes[HwDeviceExtension->CurrentModeNumber].modeInformation.AttributeFlags
& VIDEO_MODE_PALETTE_DRIVEN)
{
HwDeviceExtension->Dac.DACClearPalette(HwDeviceExtension);
}
VideoDebugPrint((2, "VLSetModeP91 - Exit\n"));
} // End of VLSetModeP91()
VOID
VLEnableP91(
PHW_DEVICE_EXTENSION HwDeviceExtension
)
/*++
Routine Description:
Perform the OEM specific tasks necessary to enable P9100 Video. These
include memory mapping, setting the sync polarities, and enabling the
P9100 video output.
Arguments:
HwDeviceExtension - Pointer to the miniport driver's device extension.
Return Value:
None.
--*/
{
USHORT usMemClkInUse;
VideoDebugPrint((2, "VLEnableP91 - Entry\n"));
//
// Enable native mode to: No RAMDAC shadowing, memory & I/O enabled.
//
if (HwDeviceExtension->usBusType == VESA)
{
WriteP9ConfigRegister(HwDeviceExtension, P91_CONFIG_CONFIGURATION, 3);
}
WriteP9ConfigRegister(HwDeviceExtension, P91_CONFIG_MODE, 0); // Native mode
//
// Only initialize the P9100 once...
//
if (!HwDeviceExtension->p91State.bInitialized)
{
HwDeviceExtension->p91State.bInitialized = TRUE;
//
// Now read the power-up configuration register to determine the actual
// board-options.
//
HwDeviceExtension->p91State.ulPuConfig = P9_RD_REG(P91_PU_CONFIG);
#if 0
vDumpPCIConfig(HwDeviceExtension, "VLEnableP91, just after reading P91_PU_CONFIG");
#endif
//
// Determine the VRAM type:
//
HwDeviceExtension->p91State.bVram256 =
(HwDeviceExtension->p91State.ulPuConfig & P91_PUC_MEMORY_DEPTH)
? FALSE : TRUE;
//
// Determine the type of Clock Synthesizer:
//
switch((HwDeviceExtension->p91State.ulPuConfig &
P91_PUC_FREQ_SYNTH_TYPE) >> P91_PUC_SYNTH_SHIFT_CNT)
{
case CLK_ID_ICD2061A:
HwDeviceExtension->p91State.usClockID = CLK_ID_ICD2061A;
break;
case CLK_ID_FIXED_MEMCLK:
HwDeviceExtension->p91State.usClockID = CLK_ID_FIXED_MEMCLK;
break;
default: // Set to ICD2061a & complain... (but continue)
HwDeviceExtension->p91State.usClockID = CLK_ID_ICD2061A;
VideoDebugPrint((1, "Unrecognized frequency synthesizer; Assuming ICD2061A.\n"));
break;
}
//
// Determine the type of RAMDAC:
//
switch((HwDeviceExtension->p91State.ulPuConfig &
P91_PUC_RAMDAC_TYPE) >> P91_PUC_RAMDAC_SHIFT_CNT)
{
case DAC_ID_BT485:
HwDeviceExtension->Dac.usRamdacID = DAC_ID_BT485;
HwDeviceExtension->Dac.usRamdacWidth = 32;
HwDeviceExtension->Dac.bRamdacUsePLL = FALSE;
break;
case DAC_ID_BT489:
HwDeviceExtension->Dac.usRamdacID = DAC_ID_BT489;
HwDeviceExtension->Dac.usRamdacWidth = 64;
HwDeviceExtension->Dac.bRamdacUsePLL = FALSE;
break;
case DAC_ID_IBM525:
HwDeviceExtension->Dac.usRamdacID = DAC_ID_IBM525;
HwDeviceExtension->Dac.usRamdacWidth = 64;
HwDeviceExtension->Dac.bRamdacUsePLL = TRUE; // Assume PLL
break;
default: // Set to BT485 & complain... (but continue)
HwDeviceExtension->Dac.usRamdacID = DAC_ID_BT485;
HwDeviceExtension->Dac.usRamdacWidth = 32;
HwDeviceExtension->Dac.bRamdacUsePLL = FALSE;
VideoDebugPrint((1, "Unrecognized RAMDAC specified; Assuming BT485.\n"));
break;
}
//
// Read and store P9100 revision ID for later reference...
//
P9_WR_REG(P91_SYSCONFIG, 0x00000000);
HwDeviceExtension->p91State.usRevisionID = (USHORT)
(P9_RD_REG(P91_SYSCONFIG) & 0x00000007);
}
//
// Now program the detected hardware...
//
//
// A1/A2 silicon SPLIT SHIFT TRANSFER BUG FIX
//
// This is the main logic for the split shift transfer bug software work
// around. The current assumption is that the RAMDAC will always be doing
// the dividing of the clock.
//
HwDeviceExtension->Dac.bRamdacDivides = TRUE;
HwDeviceExtension->Dac.DACRestore(HwDeviceExtension);
//
// First setup the MEMCLK frequency...
//
usMemClkInUse = (HwDeviceExtension->p91State.usRevisionID ==
WTK_9100_REV1) ? DEF_P9100_REV1_MEMCLK :
DEF_P9100_MEMCLK;
// Program MEMCLK
ProgramClockSynth(HwDeviceExtension, usMemClkInUse, TRUE, FALSE);
//
// Next setup the pixel clock frequency. We have to handle potential
// clock multiplicaiton by the RAMDAC. On the BT485 if the dotfreq
// is greater than the maximum clock freq then we will adjust the
// dot frequency to program the clock with.
//
//
// Program Pix clk
//
ProgramClockSynth(HwDeviceExtension,
(USHORT) HwDeviceExtension->VideoData.dotfreq1,
FALSE,
TRUE);
//
// Determine size of Vram (ulFrameBufferSize)...
//
if (HwDeviceExtension->p91State.bVram256)
{
if (HwDeviceExtension->p91State.ulFrameBufferSize == 0x0400000)
{
P9_WR_REG(P91_MEM_CONFIG, 0x00000007);
}
else
{
P9_WR_REG(P91_MEM_CONFIG, 0x00000005);
}
}
else
{
P9_WR_REG(P91_MEM_CONFIG, 0x00000003);
}
#if 0
//
// Here we will attempt to attempt to free the virtual address space
// for the initial frame buffer setting, and we will attempt to re-map
// the frambuffer into system virtual address space to reflect the
// actual size of the framebuffer.
//
VideoPortFreeDeviceBase(HwDeviceExtension, HwDeviceExtension->FrameAddress);
// Set the actual size
DriverAccessRanges[2].RangeLength = HwDeviceExtension->p91State.ulFrameBufferSize;
if ( (HwDeviceExtension->FrameAddress = (PVOID)
VideoPortGetDeviceBase(HwDeviceExtension,
DriverAccessRanges[2].RangeStart,
DriverAccessRanges[2].RangeLength,
DriverAccessRanges[2].RangeInIoSpace)) == 0)
{
return;
}
#endif
//
// Setup actual framebuffer length...
//
HwDeviceExtension->FrameLength =
HwDeviceExtension->p91State.ulFrameBufferSize;
//
// Init system config & clipping registers...
//
P91_SysConf(HwDeviceExtension);
//
// Calculate memconfig and srtctl register values...
//
CalcP9100MemConfig(HwDeviceExtension);
//
// Now apply the AND and OR masks specified in the mode information
// structure.
//
// Note: It is assumed that if these values are not specified in the .DAT
// file, then they will be initialized as 0xFFFFFFFF for the AND
// mask and 0x00000000 for the OR mask.
//
// Only the blank_edge (bit 19) and the blnkdly (bits 27-28) are valid
// fields for override.
//
// Apply the AND mask to clear the specified bits.
//
HwDeviceExtension->p91State.ulMemConfVal &=
((ULONG) HwDeviceExtension->VideoData.ulMemCfgClr |
~((ULONG) P91_MC_BLANK_EDGE_MSK |
(ULONG) P91_MC_BLNKDLY_MSK));
//
// Apply the OR mask to set the specified bits.
//
HwDeviceExtension->p91State.ulMemConfVal |=
((ULONG) HwDeviceExtension->VideoData.ulMemCfgSet &
((ULONG) P91_MC_BLANK_EDGE_MSK |
(ULONG) P91_MC_BLNKDLY_MSK));
//
// Load the video timing registers...
//
P91_WriteTiming(HwDeviceExtension);
//
// Setup the RAMDAC to the current mode...
//
HwDeviceExtension->Dac.DACInit(HwDeviceExtension);
//
// Setup MEMCONFIG and SRTCTL regs
//
SetupVideoBackend(HwDeviceExtension);
//
// Set the native-mode enabled flag...
//
HwDeviceExtension->p91State.bEnabled = TRUE;
#ifdef _MIPS_
if(HwDeviceExtension->MachineType == SIEMENS_P9100_VLB) {
// SNI specific
// First point:
// Od: 27-11-95 The vram_miss_adj/vram_read_adj/vram_read_sample bits
// are documented to be set to 1 by WEITECK or risk some troubles...
// anyway, on our Mips/VL architecture, it helps hardfully when
// they are cleared; otherwhise, we lost about 1 bit every 1500 Kilo bytes
// during largescreen to host transfers...
// Any Way we feel it confortable because it should speed up our graphics...
{
ULONG ulMemConfig;
// 1/ read the value programmed by CalcP9100MemConfig
ulMemConfig = P9_RD_REG(P91_MEM_CONFIG);
// 2/ clear the 3 read-delaies bits
ulMemConfig &= ~(P91_MC_MISS_ADJ_1|P91_MC_READ_ADJ_1
|P91_MC_READ_SMPL_ADJ_1);
// 3/ write it back
P9_WR_REG(P91_MEM_CONFIG, ulMemConfig);
}
// Second point:
// Od: 2/10/95B: with large resolution, the frame buffer will overlap
// with the good old ROM Bios, around xC0000 to xE0000, x=8,9,...
// since ROM relocation does NOT run on VLB systems (hard wired..)
// we relocate the frame buffer instead:
{
unsigned char * HiOrderByteReg, HiOrderByteVal;
// to achieve that goal,
// 1/ we ask the P9100 to respond to 8xxxxxxxx address rather than 0xxxxxxxx
HiOrderByteVal=0x80; // Od: why not ?
WriteP9ConfigRegister(HwDeviceExtension,P91_CONFIG_WBASE,HiOrderByteVal);
// 2/ we tell the mother board to set the high order byte for each
// related addresses
{
extern VP_STATUS GetCPUIdCallback(
PVOID HwDeviceExtension,
PVOID Context,
VIDEO_DEVICE_DATA_TYPE DeviceDataType,
PVOID Identifier,
ULONG IdentifierLength,
PVOID ConfigurationData,
ULONG ConfigurationDataLength,
PVOID ComponentInformation,
ULONG ComponentInformationLength
);
if(VideoPortIsCpu(L"RM200"))
HiOrderByteReg = (unsigned char *) 0xBFCC0000;
else
if(VideoPortIsCpu(L"RM400-MT"))
{
HiOrderByteReg = (unsigned char *) 0xBC010000;
HiOrderByteVal = ~HiOrderByteVal;
}
else
if(VideoPortIsCpu(L"RM400-T")
|| VideoPortIsCpu(L"RM400-T MP"))
{
HiOrderByteReg = (unsigned char *) 0xBC0C0000;
HiOrderByteVal = ~HiOrderByteVal;
}
}
*HiOrderByteReg = HiOrderByteVal;
// NOTE that at this point (Dll ending up init by enabling the surface),
// we will not be able to switch back to VGA;
}
}
#endif // SIEMENS_P9100_VLB
VideoDebugPrint((2, "VLEnableP91 - Exit\n"));
return;
} // End of VLEnableP91()
BOOLEAN
VLDisableP91(
PHW_DEVICE_EXTENSION HwDeviceExtension
)
/*++
Routine Description:
Disables native mode (switches to emulation mode (VGA)) and does
an INT10 for mode 3. Note that this will also reset the DAC to
VGA mode/3.
Arguments:
HwDeviceExtension - Pointer to the miniport driver's device extension.
pPal - Pointer to the array of pallete entries.
StartIndex - Specifies the first pallete entry provided in pPal.
Count - Number of palette entries in pPal
Return Value:
FALSE, indicating an int10 modeset needs to be done to complete the
switch.
--*/
{
VideoDebugPrint((2, "VLDisableP91 - Entry\n"));
//
// Disable native-mode (set emulation-mode) only if native-mode is
// already enabled...
//
if (!HwDeviceExtension->p91State.bEnabled)
return (HwDeviceExtension->MachineType != SIEMENS_P9100_VLB) ?
TRUE : FALSE;
//
// Set emulation-mode (VGA)...
//
WriteP9ConfigRegister(HwDeviceExtension, P91_CONFIG_MODE, 0x02);
//
// Set enabled flag
//
HwDeviceExtension->p91State.bEnabled = FALSE;
VideoDebugPrint((2, "VLDisableP91 - Exit\n"));
return (HwDeviceExtension->MachineType != SIEMENS_P9100_VLB) ?
FALSE : TRUE;
} // End of VLDisableP91()
UCHAR
ReadP9ConfigRegister(
PHW_DEVICE_EXTENSION HwDeviceExtension,
UCHAR regnum
)
/*++
Routine Description:
Reads and returns value from the specified VLB or PCI configuration space.
Arguments:
regnum - register to read.
Return Value:
Returns specified registers 8-bit value.
--*/
{
ULONG ulTemp;
VideoDebugPrint((2, "ReadP9ConfigRegister - Entry\n"));
ulTemp = 0;
switch (HwDeviceExtension->usBusType)
{
case VESA:
//
// Select the register, and return the value.
//
VideoPortWritePortUchar((PUCHAR) HwDeviceExtension->ConfigAddr, regnum);
ulTemp = VideoPortReadPortUchar((PUCHAR) HwDeviceExtension->ConfigAddr + 4L);
break;
case PCI:
if (!VideoPortGetBusData(HwDeviceExtension,
PCIConfiguration,
HwDeviceExtension->PciSlotNum,
&ulTemp,
regnum,
sizeof(ulTemp)))
{
VideoDebugPrint((1, "ReadP9ConfigRegister: Cannot read from PCI Config Space!\n"));
}
break;
default:
VideoDebugPrint((1, "ReadP9ConfigRegister: Unknown bus-type!\n"));
ulTemp = 0;
break;
}
VideoDebugPrint((2, "ReadP9ConfigRegister - Exit\n"));
return ((UCHAR) ulTemp);
} // End of ReadP9ConfigRegister()
VOID
WriteP9ConfigRegister(
PHW_DEVICE_EXTENSION HwDeviceExtension,
UCHAR regnum,
UCHAR jValue
)
/*++
Routine Description:
Writes the specified value to the specified register within the VLB
or PCI configuration space.
Arguments:
regnum - desired register,
value - value to write.
Return Value:
None.
--*/
{
VideoDebugPrint((3, "WriteP9ConfigRegister - Entry\n"));
switch (HwDeviceExtension->usBusType)
{
case VESA:
//
// Select the register, and write the value.
//
VideoPortWritePortUchar((PUCHAR) HwDeviceExtension->ConfigAddr, regnum);
VideoPortWritePortUchar((PUCHAR) HwDeviceExtension->ConfigAddr+4L, jValue);
break;
case PCI:
if (!VideoPortSetBusData(HwDeviceExtension,
PCIConfiguration,
HwDeviceExtension->PciSlotNum,
&jValue,
regnum,
1))
{
VideoDebugPrint((1, "WriteP9ConfigRegister: Cannot write to PCI Config Space!\n"));
}
break;
default:
VideoDebugPrint((1, "ERROR: WriteP9ConfigRegister - Unknown bus-type!\n"));
break;
}
VideoDebugPrint((3, "WriteP9ConfigRegister - Exit\n"));
} // End of WriteP9ConfigRegister()
VOID
SetupVideoBackend(
PHW_DEVICE_EXTENSION HwDeviceExtension
)
/*++
Routine Description:
Program the MEMCONFIG and SRTCTL registers (see comments). For the
Power 9100 only.
Arguments:
HwDeviceExtension - Pointer to the miniport driver's device extension.
Return Value:
None.
--*/
{
ULONG ulSRTCTL2;
VideoDebugPrint((2, "SetupVideoBackend - Entry\n"));
//
// Program the MEMCONFIG and SRTCTL registers
//
// There are two main modes in which the video backend can operate:
// One is a mode in which the P9100 gets the pixel clock (pixclk) and
// divides it to generate the RAMDAC load clock, and the other is
// a mode in which the RAMDAC divides the clock and supplies it through
// the divpixclk input.
//
// If you are using the mode where the RAMDAC provides the divided clock
// then you must make sure that the RAMDAC is generating the divided clock
// before you switch MEMCONFIG to use the divided clock. Otherwise, you
// run the risk of hanging the P9100 since certain synchronizers depend
// upon a video clock to operate. For instance: when you write to a video
// register you must have a video clock running or the P9100 will not be
// able to complete the write, and it will hang the system.
//
// Note that the Ramdac should always divide the pixclk in 24(bits)pp mode.
//
//
// The SRTCTL2 register controls the sync polarities and can also force
// the syncs high or low for the monitor power-down modes.
//
ulSRTCTL2 = 0L;
ulSRTCTL2 |= (HwDeviceExtension->VideoData.hp) ? P91_HSYNC_HIGH_TRUE :
P91_HSYNC_LOW_TRUE;
ulSRTCTL2 |= (HwDeviceExtension->VideoData.vp) ? P91_VSYNC_HIGH_TRUE :
P91_VSYNC_LOW_TRUE;
P9_WR_REG(P91_MEM_CONFIG, HwDeviceExtension->p91State.ulMemConfVal);
P9_WR_REG(P91_SRTCTL, HwDeviceExtension->p91State.ulSrctlVal);
P9_WR_REG(P91_SRTCTL2, ulSRTCTL2);
VideoDebugPrint((2, "SetupVideoBackend: ulMemConfVal = %lx\n",
HwDeviceExtension->p91State.ulMemConfVal));
VideoDebugPrint((2, "SetupVideoBackend: ulSrctlVal = %lx\n",
HwDeviceExtension->p91State.ulSrctlVal));
VideoDebugPrint((2, "SetupVideoBackend: ulSRTCTL2 = %lx\n", ulSRTCTL2));
VideoDebugPrint((2, "SetupVideoBackend: dotfreq1 = %ld\n",
HwDeviceExtension->VideoData.dotfreq1));
VideoDebugPrint((2, "SetupVideoBackend: XSize = %ld\n",
HwDeviceExtension->VideoData.XSize));
VideoDebugPrint((2, "SetupVideoBackend: YSize = %ld\n",
HwDeviceExtension->VideoData.YSize));
VideoDebugPrint((2, "SetupVideoBackend: usBitsPixel = %ld\n",
HwDeviceExtension->usBitsPixel));
VideoDebugPrint((2, "SetupVideoBackend: iClkDiv = %ld\n",
HwDeviceExtension->AdapterDesc.iClkDiv));
VideoDebugPrint((2, "SetupVideoBackend: bRamdacDivides: %d\n",
HwDeviceExtension->Dac.bRamdacDivides));
VideoDebugPrint((2, "SetupVideoBackend: bRamdacUsePLL: %d\n",
HwDeviceExtension->Dac.bRamdacUsePLL));
VideoDebugPrint((2, "SetupVideoBackend: usRevisionID: %d\n",
HwDeviceExtension->p91State.usRevisionID));
VideoDebugPrint((2, "SetupVideoBackend: usBlnkDlyAdj: %d\n",
HwDeviceExtension->p91State.ulBlnkDlyAdj));
VideoDebugPrint((2, "SetupVideoBackend - Exit\n"));
return;
} // End of SetupVideoBackend()