windows-nt/Source/XPSP1/NT/inetsrv/iis/inc/lkrhash.h
2020-09-26 16:20:57 +08:00

2735 lines
91 KiB
C++
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (c) 1998-2001 Microsoft Corporation
Module Name :
LKRhash.h
Abstract:
Declares LKRhash: a fast, scalable, cache- and MP-friendly hash table
Deprecated: Use the version in %sdxroot%\inetsrv\iis\iisrearc\core\inc
instead.
Author:
Paul (Per-Ake) Larson, palarson@microsoft.com, July 1997
Murali R. Krishnan (MuraliK)
George V. Reilly (GeorgeRe) 06-Jan-1998
Environment:
Win32 - User Mode
Project:
Internet Information Server RunTime Library
Revision History:
10/01/1998 - Change name from LKhash to LKRhash
--*/
#define LKR_COMPACT_DELETE 1
#define LKR_NEWCODE 1
// #define LKR_FIND_FIRST 1
#define LKR_SUBTABLE 1
#define LKR_MASK 1
#ifndef __LKRHASH_H__
#define __LKRHASH_H__
//=====================================================================
// The class CLKRLinearHashTable defined in this file provides dynamic hash
// tables, i.e. tables that grow and shrink dynamically with
// the number of records in the table.
// The basic method used is linear hashing, as explained in:
//
// P.-A. Larson, Dynamic Hash Tables, Comm. of the ACM, 31, 4 (1988)
//
// This version has the following characteristics:
// - It is thread-safe and uses spin locks for synchronization.
// - It was designed to support very high rates of concurrent
// operations (inserts/deletes/lookups). It achieves this by
// (a) partitioning a CLKRHashTable into a collection of
// CLKRLinearHashTables to reduce contention on the global table lock.
// (b) minimizing the hold time on a table lock, preferring to lock
// down a bucket chain instead.
// - The design is L1 cache-conscious. See CNodeClump.
// - It is designed for sets varying in size from a dozen
// elements to several million.
//
// Main classes:
// CLKRLinearHashTable: thread-safe linear hash table
// CLKRHashTable: collection of CLKRLinearHashTables
// CTypedHashTable: typesafe wrapper for CLKRHashTable
//
//
// Paul Larson, palarson@microsoft.com, July 1997
// Original implementation with input from Murali R. Krishnan,
// muralik@microsoft.com.
//
// George V. Reilly, georgere@microsoft.com, Dec 1997-Jan 1998
// Massive cleanup and rewrite. Added templates.
//=====================================================================
// 1) Linear Hashing
// ------------------
//
// Linear hash tables grow and shrink dynamically with the number of
// records in the table. The growth or shrinkage is smooth: logically,
// one bucket at a time but physically in larger increments
// (64 buckets). An insertion (deletion) may cause an expansion
// (contraction) of the table. This causes relocation of a small number
// of records (at most one bucket worth). All operations (insert,
// delete, lookup) take constant expected time, regardless of the
// current size or the growth of the table.
//
// 2) LKR extensions to Linear hash table
// --------------------------------------
//
// Larson-Krishnan-Reilly extensions to Linear hash tables for multiprocessor
// scalability and improved cache performance.
//
// Traditional implementations of linear hash tables use one global lock
// to prevent interference between concurrent operations
// (insert/delete/lookup) on the table. The single lock easily becomes
// the bottleneck in SMP scenarios when multiple threads are used.
//
// Traditionally, a (hash) bucket is implemented as a chain of
// single-item nodes. Every operation results in chasing down a chain
// looking for an item. However, pointer chasing is very slow on modern
// systems because almost every jump results in a cache miss. L2 (or L3)
// cache misses are very expensive in missed CPU cycles and the cost is
// increasing (going to 100s of cycles in the future).
//
// LKR extensions offer
// 1) Partitioning (by hashing) of records among multiple subtables.
// Each subtable has locks but there is no global lock. Each
// subtable receives a much lower rate of operations, resulting in
// fewer conflicts.
//
// 2) Improved cache locality by grouping keys and their hash values
// into contigous chunks that fit exactly into one (or a few)
// cache lines.
//
// Specifically the implementation that exists here achieves this using
// the following techniques.
//
// Class CLKRHashTable is the top-level data structure that dynamically
// creates m_cSubTables linear hash tables. The CLKRLinearHashTables act as
// the subtables to which items and accesses are fanned out. A good
// hash function multiplexes requests uniformly to various subtables,
// thus minimizing traffic to any single subtable. The implemenation
// uses a home-grown version of bounded spinlocks, that is, a thread
// does not spin on a lock indefinitely, instead yielding after a
// predetermined number of loops.
//
// Each CLKRLinearHashTable consists of a CDirEntry pointing to segments
// each holding m_dwSegSize CBuckets. Each CBucket in turn consists of a
// chain of CNodeClumps. Each CNodeClump contains a group of
// NODES_PER_CLUMP hash values (aka hash keys or signatures) and
// pointers to the associated data items. Keeping the signatures
// together increases the cache locality in scans for lookup.
//
// Traditionally, people store a link-list element right inside the
// object that is hashed and use this link-list for the chaining of data
// blocks. However, keeping just the pointers to the data object and
// not chaining through them limits the need for bringing in the data
// object to the cache. We need to access the data object only if the
// hash values match. This limits the cache-thrashing behaviour
// exhibited by conventional implementations. It has the additional
// benefit that the objects themselves do not need to be modified
// in order to be collected in the hash table (i.e., it's non-invasive).
//--------------------------------------------------------------------
// TODO
// * Debugging support for iisprobe and inetdbg?
// * Use auto_ptrs.
// * Provide ReplaceRecord and DeleteRecord methods on iterators.
// * Sloppy iterators
// * Provide implementations of the STL collection classes, map, set,
// multimap, and multiset.
// * Make exception safe.
//--------------------------------------------------------------------
#include <irtldbg.h>
#include <lstentry.h>
#include <hashfn.h>
#include <limits.h>
#ifdef __LKRHASH_NAMESPACE__
namespace LKRHash {
#endif // __LKRHASH_NAMESPACE__
enum LK_TABLESIZE {
LK_SMALL_TABLESIZE= 1, // < 200 elements
LK_MEDIUM_TABLESIZE= 2, // 200...10,000 elements
LK_LARGE_TABLESIZE= 3, // 10,000+ elements
};
// Default values for the hashtable constructors
enum {
LK_DFLT_MAXLOAD= 4, // Default upperbound on average chain length.
LK_DFLT_INITSIZE=LK_MEDIUM_TABLESIZE, // Default initial size of hash table
LK_DFLT_NUM_SUBTBLS= 0, // Use a heuristic to choose #subtables
};
// build fix hack
enum {
DFLT_LK_MAXLOAD= LK_DFLT_MAXLOAD,
DFLT_LK_INITSIZE= LK_DFLT_INITSIZE,
DFLT_LK_NUM_SUBTBLS= LK_DFLT_NUM_SUBTBLS,
};
//--------------------------------------------------------------------
// forward declarations
class IRTL_DLLEXP CLKRLinearHashTable;
class IRTL_DLLEXP CLKRHashTable;
template <class _Der, class _Rcd, class _Ky, class _HT, class _Iter>
class CTypedHashTable;
//--------------------------------------------------------------------
// Possible return codes from public member functions of
// CLKRLinearHashTable, CLKRHashTable, and CTypedHashTable
enum LK_RETCODE {
// severe errors < 0
LK_UNUSABLE = -99, // Table corrupted: all bets are off
LK_ALLOC_FAIL, // ran out of memory
LK_BAD_ITERATOR, // invalid iterator; e.g., points to another table
LK_BAD_RECORD, // invalid record; e.g., NULL for InsertRecord
LK_BAD_PARAMETERS, // invalid parameters; e.g., NULL fnptrs to ctor
LK_NOT_INITIALIZED, // LKRHashTableInit was not called
LK_SUCCESS = 0, // everything's okay
LK_KEY_EXISTS, // key already present for InsertRecord(no-overwrite)
LK_NO_SUCH_KEY, // key not found
LK_NO_MORE_ELEMENTS,// iterator exhausted
};
#define LK_SUCCEEDED(lkrc) ((lkrc) >= LK_SUCCESS)
//--------------------------------------------------------------------
// Return codes from PFnRecordPred.
enum LK_PREDICATE {
LKP_ABORT = 1, // Stop walking the table immediately
LKP_NO_ACTION = 2, // No action, just keep walking
LKP_PERFORM = 3, // Perform action and continue walking
LKP_PERFORM_STOP = 4, // Perform action, then stop
LKP_DELETE = 5, // Delete record and keep walking
LKP_DELETE_STOP = 6, // Delete record, then stop
};
//--------------------------------------------------------------------
// Return codes from PFnRecordAction.
enum LK_ACTION {
LKA_ABORT = 1, // Stop walking the table immediately
LKA_FAILED = 2, // Action failed; continue walking the table
LKA_SUCCEEDED = 3, // Action succeeded; continue walking the table
};
//--------------------------------------------------------------------
// Parameter to Apply and ApplyIf.
enum LK_LOCKTYPE {
LKL_READLOCK = 1, // Lock the table for reading (for constness)
LKL_WRITELOCK = 2, // Lock the table for writing
};
//--------------------------------------------------------------------
// Global table lock code. This is only used to measure how much a
// slowdown having a global lock on the CLKRHashTable causes. It is *never*
// used in production code.
// #define LKRHASH_GLOBAL_LOCK CCritSec
#ifdef LKRHASH_GLOBAL_LOCK
# define LKRHASH_GLOBAL_LOCK_DECLARATIONS() \
typedef LKRHASH_GLOBAL_LOCK GlobalLock; \
mutable GlobalLock m_lkGlobal;
# define LKRHASH_GLOBAL_READ_LOCK() m_lkGlobal.ReadLock()
# define LKRHASH_GLOBAL_WRITE_LOCK() m_lkGlobal.WriteLock()
# define LKRHASH_GLOBAL_READ_UNLOCK() m_lkGlobal.ReadUnlock()
# define LKRHASH_GLOBAL_WRITE_UNLOCK() m_lkGlobal.WriteUnlock()
#else // !LKRHASH_GLOBAL_LOCK
# define LKRHASH_GLOBAL_LOCK_DECLARATIONS()
// These ones will be optimized away by the compiler
# define LKRHASH_GLOBAL_READ_LOCK() ((void)0)
# define LKRHASH_GLOBAL_WRITE_LOCK() ((void)0)
# define LKRHASH_GLOBAL_READ_UNLOCK() ((void)0)
# define LKRHASH_GLOBAL_WRITE_UNLOCK() ((void)0)
#endif // !LKRHASH_GLOBAL_LOCK
//--------------------------------------------------------------------
// Statistical information returned by GetStatistics
//--------------------------------------------------------------------
#ifdef LOCK_INSTRUMENTATION
class IRTL_DLLEXP CAveragedLockStats : public CLockStatistics
{
public:
int m_nItems;
CAveragedLockStats()
: m_nItems(1)
{}
};
#endif // LOCK_INSTRUMENTATION
class IRTL_DLLEXP CLKRHashTableStats
{
public:
int RecordCount; // number of records in the table
int TableSize; // table size in number of slots
int DirectorySize; // number of entries in directory
int LongestChain; // longest hash chain in the table
int EmptySlots; // number of unused hash slots
double SplitFactor; // fraction of buckets split
double AvgSearchLength; // average length of a successful search
double ExpSearchLength; // theoretically expected length
double AvgUSearchLength; // average length of an unsuccessful search
double ExpUSearchLength; // theoretically expected length
int NodeClumpSize; // number of slots in a node clump
int CBucketSize; // sizeof(CBucket)
#ifdef LOCK_INSTRUMENTATION
CAveragedLockStats m_alsTable; // stats for table lock
CAveragedLockStats m_alsBucketsAvg; // avg of stats for bucket locks
CGlobalLockStatistics m_gls; // global statistics for all locks
#endif // LOCK_INSTRUMENTATION
enum {
MAX_BUCKETS = 40,
};
// histogram of bucket lengths
LONG m_aBucketLenHistogram[MAX_BUCKETS];
CLKRHashTableStats()
: RecordCount(0),
TableSize(0),
DirectorySize(0),
LongestChain(0),
EmptySlots(0),
SplitFactor(0.0),
AvgSearchLength(0.0),
ExpSearchLength(0.0),
AvgUSearchLength(0.0),
ExpUSearchLength(0.0),
NodeClumpSize(1),
CBucketSize(0)
{
for (int i = MAX_BUCKETS; --i >= 0; )
m_aBucketLenHistogram[i] = 0;
}
static const LONG*
BucketSizes()
{
static const LONG s_aBucketSizes[MAX_BUCKETS] = {
1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 30, 40, 50, 60,
70, 80, 90, 100, 200, 500, 1000,10000, 100000, LONG_MAX,
};
return s_aBucketSizes;
}
static LONG
BucketSize(
LONG nBucketIndex)
{
IRTLASSERT(0 <= nBucketIndex && nBucketIndex < MAX_BUCKETS);
return BucketSizes()[nBucketIndex];
}
static LONG
BucketIndex(
LONG nBucketLength)
{
const LONG* palBucketSizes = BucketSizes();
LONG i = 0;
while (palBucketSizes[i] < nBucketLength)
++i;
if (i == MAX_BUCKETS || palBucketSizes[i] > nBucketLength)
--i;
IRTLASSERT(0 <= i && i < MAX_BUCKETS);
return i;
}
};
//--------------------------------------------------------------------
// CLKRLinearHashTable deals with void* records. These typedefs
// provide prototypes for functions that manipulate instances of
// those records. CTypedHashTable and CStringTestHashTable (below) show a
// way to encapsulate these in typesafe wrappers.
//--------------------------------------------------------------------
// Given a record, return its key. Assumes that the key is embedded in
// the record, or at least somehow derivable from the record. For
// completely unrelated keys & values, a wrapper class should use
// something like STL's pair<key,value> template to aggregate them
// into a record.
typedef const DWORD_PTR (WINAPI *PFnExtractKey) (const void* pvRecord);
// Given a key, return its hash signature. The hashing functions in
// hashfn.h (or something that builds upon them) are suggested.
typedef DWORD (WINAPI *PFnCalcKeyHash) (const DWORD_PTR pnKey);
// Compare two keys for equality; e.g., _stricmp, memcmp, operator==
typedef bool (WINAPI *PFnEqualKeys) (const DWORD_PTR pnKey1,
const DWORD_PTR pnKey2);
// Increment the reference count of a record before returning it from
// FindKey. It's necessary to do it in FindKey itself while the bucket
// is still locked, rather than one of the wrappers, to avoid race
// conditions. Similarly, the reference count is incremented in
// InsertRecord and decremented in DeleteKey. Finally, if an old record
// is overwritten in InsertRecord, its reference count is decremented.
//
// It's up to you to decrement the reference count when you're finished
// with it after retrieving it via FindKey and to determine the
// semantics of what this means. The hashtable itself has no notion of
// reference counts; this is merely to help with the lifetime management
// of the record objects.
typedef void (WINAPI *PFnAddRefRecord)(const void* pvRecord, int nIncr);
// ApplyIf() and DeleteIf(): Does the record match the predicate?
typedef LK_PREDICATE (WINAPI *PFnRecordPred) (const void* pvRecord,
void* pvState);
// Apply() et al: Perform action on record.
typedef LK_ACTION (WINAPI *PFnRecordAction)(const void* pvRecord,
void* pvState);
//--------------------------------------------------------------------
// Custom memory allocators
//--------------------------------------------------------------------
#define LKRHASH_ACACHE 1
// #define LKRHASH_MANODEL 1
// #define LKRHASH_MADEL 1
// #define LKRHASH_MEM_DEFAULT_ALIGN 32
#ifndef LKRHASH_MEM_DEFAULT_ALIGN
# define LKRHASH_MEM_DEFAULT_ALIGN 8
#endif
#if defined(LKRHASH_ACACHE)
# include <acache.hxx>
typedef ALLOC_CACHE_HANDLER CLKRhashAllocator;
# define LKRHASH_ALLOCATOR_NEW(C, N) \
const ALLOC_CACHE_CONFIGURATION acc = { 1, N, sizeof(C) }; \
C::sm_palloc = new ALLOC_CACHE_HANDLER("IISRTL:" #C, &acc);
#elif defined(LKRHASH_MANODEL)
# include <manodel.hxx>
typedef MEMORY_ALLOC_NO_DELETE CLKRhashAllocator;
# define LKRHASH_ALLOCATOR_NEW(C, N) \
C::sm_palloc = new MEMORY_ALLOC_NO_DELETE(sizeof(C), \
LKRHASH_MEM_DEFAULT_ALIGN);
#elif defined(LKRHASH_MADEL)
# include <madel.hxx>
typedef MEMORY_ALLOC_DELETE CLKRhashAllocator;
# define LKRHASH_ALLOCATOR_NEW(C, N) \
C::sm_palloc = new MEMORY_ALLOC_DELETE(sizeof(C), \
LKRHASH_MEM_DEFAULT_ALIGN, N);
#else // no custom allocator
# undef LKRHASH_ALLOCATOR_NEW
#endif // no custom allocator
// Used to initialize and destroy custom allocators
bool LKRHashTableInit();
void LKRHashTableUninit();
#ifdef LKRHASH_ALLOCATOR_NEW
// placed inline in the declaration of class C
# define LKRHASH_ALLOCATOR_DEFINITIONS(C) \
protected: \
static CLKRhashAllocator* sm_palloc; \
friend bool LKRHashTableInit(); \
friend void LKRHashTableUninit(); \
public: \
static void* operator new(size_t s) \
{ \
IRTLASSERT(s == sizeof(C)); \
IRTLASSERT(sm_palloc != NULL); \
return sm_palloc->Alloc(); \
} \
static void operator delete(void* pv) \
{ \
IRTLASSERT(pv != NULL); \
IRTLASSERT(sm_palloc != NULL); \
sm_palloc->Free(pv); \
}
// used in LKRHashTableInit()
# define LKRHASH_ALLOCATOR_INIT(C, N, f) \
{ \
if (f) \
{ \
IRTLASSERT(C::sm_palloc == NULL); \
LKRHASH_ALLOCATOR_NEW(C, N); \
f = (C::sm_palloc != NULL); \
} \
}
// used in LKRHashTableUninit()
# define LKRHASH_ALLOCATOR_UNINIT(C) \
{ \
if (C::sm_palloc != NULL) \
{ \
delete C::sm_palloc; \
C::sm_palloc = NULL; \
} \
}
#else // !LKRHASH_ALLOCATOR_NEW
# define LKRHASH_ALLOCATOR_DEFINITIONS(C)
# define LKRHASH_ALLOCATOR_INIT(C, N, f)
# define LKRHASH_ALLOCATOR_UNINIT(C)
#endif // !LKRHASH_ALLOCATOR_NEW
//--------------------------------------------------------------------
// CLKRLinearHashTable
//
// A thread-safe linear hash table.
//--------------------------------------------------------------------
class IRTL_DLLEXP CLKRLinearHashTable
{
public:
// typedef CSmallSpinLock TableLock;
// typedef CFakeLock TableLock;
// typedef CSpinLock TableLock;
// typedef CSpinLock2 TableLock;
// typedef CSpinLock3 TableLock;
// typedef CShareLock TableLock;
// typedef CReaderWriterLock TableLock;
// typedef CReaderWriterLock2 TableLock;
typedef CReaderWriterLock3 TableLock;
typedef CSmallSpinLock BucketLock;
// typedef CFakeLock BucketLock;
// typedef CSpinLock BucketLock;
// typedef CSpinLock2 BucketLock;
// typedef CSpinLock3 BucketLock;
// typedef CShareLock BucketLock;
// typedef CReaderWriterLock BucketLock;
// typedef CReaderWriterLock2 BucketLock;
// typedef CReaderWriterLock3 BucketLock;
class CIterator;
friend class CLKRLinearHashTable::CIterator;
private:
class CNodeClump;
friend class CLKRLinearHashTable::CNodeClump;
friend class CLKRHashTable;
#ifdef LKRHASH_ALLOCATOR_NEW
friend bool LKRHashTableInit();
friend void LKRHashTableUninit();
#endif // LKRHASH_ALLOCATOR_NEW
#ifdef LKRHASH_INSTRUMENTATION
// TODO
#endif // LKRHASH_INSTRUMENTATION
enum {
// Given M = A % B, A and B unsigned 32-bit integers greater than zero,
// there are no values of A or B which yield M = 2^32-1. Why? Because
// M must be less than B.
HASH_INVALID_SIGNATURE = ULONG_MAX,
};
// Class for nodes on a bucket chain. Instead of a node containing
// one (signature, record-pointer, next-tuple-pointer) tuple, it
// contains _N_ such tuples. (N-1 next-tuple-pointers are omitted.)
// This improves locality of reference greatly; i.e., it's L1
// cache-friendly. It also reduces memory fragmentation and memory
// allocator overhead. It does complicate the chain traversal code
// slightly, admittedly.
//
// This theory is beautiful. In practice, however, CNodeClumps
// are *not* perfectly aligned on 32-byte boundaries by the memory
// allocators. Experimental results indicate that we get a 2-3%
// speed improvement by using 32-byte-aligned blocks, but this must
// be considered against the average of 16 bytes wasted per block.
class CNodeClump
{
public:
// Record slots per chunk - set so a chunk matches (one or
// two) cache lines. 2 ==> 28 bytes, 6 ==> 60 bytes
// Note: the default max load factor is 4.0, which implies that
// there will seldom be more than one node clump in a chain.
enum {
BUCKET_BYTE_SIZE = 64,
BUCKET_OVERHEAD = sizeof(BucketLock) + sizeof(CNodeClump*),
NODE_SIZE = sizeof(const void*) + sizeof(DWORD),
NODES_PER_CLUMP = (BUCKET_BYTE_SIZE - BUCKET_OVERHEAD) / NODE_SIZE
};
DWORD m_dwKeySigs[NODES_PER_CLUMP]; // hash values computed from keys
CNodeClump* m_pncNext; // next node clump on the chain
const void* m_pvNode[NODES_PER_CLUMP];// pointers to records
CNodeClump()
{
Clear();
}
void
Clear()
{
m_pncNext = NULL; // no dangling pointers
for (DWORD i = 0; i < NODES_PER_CLUMP; ++i)
{
m_dwKeySigs[i] = HASH_INVALID_SIGNATURE;
m_pvNode[i] = NULL;
}
}
bool
InvalidSignature(
int i) const
{
IRTLASSERT(0 <= i && i < NODES_PER_CLUMP);
return (m_dwKeySigs[i] == HASH_INVALID_SIGNATURE);
}
bool
IsEmptyNode(
int i) const
{
IRTLASSERT(0 <= i && i < NODES_PER_CLUMP);
return (m_pvNode[i] == NULL);
}
bool
IsLastClump() const
{
return (m_pncNext == NULL);
}
#ifdef _DEBUG
// Don't want overhead of calls to dtor in retail build
~CNodeClump()
{
IRTLASSERT(IsLastClump()); // no dangling pointers
for (DWORD i = 0; i < NODES_PER_CLUMP; ++i)
IRTLASSERT(InvalidSignature(i) && IsEmptyNode(i));
}
#endif // _DEBUG
LKRHASH_ALLOCATOR_DEFINITIONS(CNodeClump);
};
// Class for bucket chains of the hash table. Note that the first
// nodeclump is actually included in the bucket and not dynamically
// allocated, which increases space requirements slightly but does
// improve performance.
class CBucket
{
private:
mutable BucketLock m_Lock; // lock protecting this bucket
#ifdef LOCK_INSTRUMENTATION
static LONG sm_cBuckets;
static const char*
_LockName()
{
LONG l = ++sm_cBuckets;
// possible race condition but we don't care, as this is never
// used in production code
static char s_szName[CLockStatistics::L_NAMELEN];
wsprintf(s_szName, "B%06x", 0xFFFFFF & l);
return s_szName;
}
#endif // LOCK_INSTRUMENTATION
public:
CNodeClump m_ncFirst; // first CNodeClump of this bucket
#if defined(LOCK_INSTRUMENTATION) || defined(_DEBUG)
CBucket()
#ifdef LOCK_INSTRUMENTATION
: m_Lock(_LockName())
#endif // LOCK_INSTRUMENTATION
{
#ifdef _DEBUG
LOCK_LOCKTYPE lt = BucketLock::LockType();
if (lt == LOCK_SPINLOCK || lt == LOCK_FAKELOCK)
IRTLASSERT(sizeof(*this) <= 64);
#endif _DEBUG
}
#endif // LOCK_INSTRUMENTATION || _DEBUG
void WriteLock() { m_Lock.WriteLock(); }
void ReadLock() const { m_Lock.ReadLock(); }
void WriteUnlock() const { m_Lock.WriteUnlock(); }
void ReadUnlock() const { m_Lock.ReadUnlock(); }
bool IsWriteLocked() const { return m_Lock.IsWriteLocked(); }
bool IsReadLocked() const { return m_Lock.IsReadLocked(); }
bool IsWriteUnlocked() const { return m_Lock.IsWriteUnlocked(); }
bool IsReadUnlocked() const { return m_Lock.IsReadUnlocked(); }
void SetSpinCount(WORD wSpins) { m_Lock.SetSpinCount(wSpins); }
WORD GetSpinCount() const { return m_Lock.GetSpinCount(); }
#ifdef LOCK_INSTRUMENTATION
CLockStatistics LockStats() const {return m_Lock.Statistics();}
#endif // LOCK_INSTRUMENTATION
};
// The hash table space is divided into fixed-size segments (arrays of
// CBuckets) and physically grows/shrinks one segment at a time.
// We provide small, medium, and large segments to better tune the
// overall memory requirements of the hash table according to the
// expected usage of an instance.
class CSegment
{
public:
virtual ~CSegment() {}; // link fails if this is pure virtual
virtual DWORD Bits() const = 0;
virtual DWORD Size() const = 0;
virtual DWORD Mask() const = 0;
virtual DWORD InitSize() const = 0;
virtual CBucket& Slot(DWORD i) = 0;
};
// Small-sized segments contain 2^3 = 8 buckets => ~0.5Kb
class CSmallSegment : public CSegment
{
public:
// Maximum table size equals MAX_DIRSIZE * SEGSIZE buckets.
enum {
SEGBITS = 3,// number of bits extracted from a hash
// address for offset within a segment
SEGSIZE = (1<<SEGBITS),// segment size
SEGMASK = (SEGSIZE-1), // mask used for extracting offset bit
INITSIZE = 1 * SEGSIZE, // #segments to allocate initially
};
private:
CBucket m_bktSlots[SEGSIZE];
public:
virtual ~CSmallSegment() {}
virtual DWORD Bits() const { return SEGBITS; }
virtual DWORD Size() const { return SEGSIZE; }
virtual DWORD Mask() const { return SEGMASK; }
virtual DWORD InitSize() const { return INITSIZE;}
virtual CBucket& Slot(DWORD i)
{ IRTLASSERT(i < SEGSIZE); return m_bktSlots[i]; }
#ifdef _DEBUG
CSmallSegment()
{
IRTLASSERT(((DWORD_PTR)this & (LKRHASH_MEM_DEFAULT_ALIGN-1)) == 0);
IRTLASSERT(sizeof(*this)
== SEGSIZE * sizeof(CBucket) + sizeof(void*));
}
#endif // _DEBUG
LKRHASH_ALLOCATOR_DEFINITIONS(CSmallSegment);
};
// Medium-sized segments contain 2^6 = 64 buckets => ~4Kb
class CMediumSegment : public CSegment
{
public:
enum {
SEGBITS = 6,
SEGSIZE = (1<<SEGBITS),
SEGMASK = (SEGSIZE-1),
INITSIZE = 2 * SEGSIZE,
};
private:
CBucket m_bktSlots[SEGSIZE];
public:
virtual ~CMediumSegment() {}
virtual DWORD Bits() const { return SEGBITS; }
virtual DWORD Size() const { return SEGSIZE; }
virtual DWORD Mask() const { return SEGMASK; }
virtual DWORD InitSize() const { return INITSIZE;}
virtual CBucket& Slot(DWORD i)
{ IRTLASSERT(i < SEGSIZE); return m_bktSlots[i]; }
#ifdef _DEBUG
CMediumSegment()
{
IRTLASSERT(((DWORD_PTR)this & (LKRHASH_MEM_DEFAULT_ALIGN-1)) == 0);
IRTLASSERT(sizeof(*this)
== SEGSIZE * sizeof(CBucket) + sizeof(void*));
}
#endif // _DEBUG
LKRHASH_ALLOCATOR_DEFINITIONS(CMediumSegment);
};
// Large-sized segments contain 2^9 = 512 buckets => ~32Kb
class CLargeSegment : public CSegment
{
public:
enum {
SEGBITS = 9,
SEGSIZE = (1<<SEGBITS),
SEGMASK = (SEGSIZE-1),
INITSIZE = 4 * SEGSIZE,
};
private:
CBucket m_bktSlots[SEGSIZE];
public:
virtual ~CLargeSegment() {}
virtual DWORD Bits() const { return SEGBITS; }
virtual DWORD Size() const { return SEGSIZE; }
virtual DWORD Mask() const { return SEGMASK; }
virtual DWORD InitSize() const { return INITSIZE;}
virtual CBucket& Slot(DWORD i)
{ IRTLASSERT(i < SEGSIZE); return m_bktSlots[i]; }
#ifdef _DEBUG
CLargeSegment()
{
IRTLASSERT(((DWORD_PTR)this & (LKRHASH_MEM_DEFAULT_ALIGN-1)) == 0);
IRTLASSERT(sizeof(*this)
== SEGSIZE * sizeof(CBucket) + sizeof(void*));
}
#endif // _DEBUG
LKRHASH_ALLOCATOR_DEFINITIONS(CLargeSegment);
};
// A directory keeps track of the segments comprising the hash table.
// The directory is just a variable-sized array of pointers to
// segments (CDirEntrys).
class CDirEntry
{
public:
// MIN_DIRSIZE and MAX_DIRSIZE can be changed independently
// of anything else. Should be powers of two.
enum {
MIN_DIRSIZE = (1<<3), // minimum directory size
MAX_DIRSIZE = (1<<20), // maximum directory size
};
CSegment* m_pseg;
CDirEntry()
: m_pseg(NULL)
{}
~CDirEntry()
{ delete m_pseg; }
};
public:
// aliases for convenience
enum {
NODES_PER_CLUMP = CNodeClump::NODES_PER_CLUMP,
MIN_DIRSIZE = CDirEntry::MIN_DIRSIZE,
MAX_DIRSIZE = CDirEntry::MAX_DIRSIZE,
NAME_SIZE = 16,
};
private:
// Miscellaneous helper functions
// Convert a hash signature to a bucket address
inline DWORD _BucketAddress(DWORD dwSignature) const
{
DWORD dwBktAddr = _H0(dwSignature);
// Has this bucket been split already?
if (dwBktAddr < m_iExpansionIdx)
dwBktAddr = _H1(dwSignature);
IRTLASSERT(dwBktAddr < m_cActiveBuckets);
IRTLASSERT(dwBktAddr < (m_cDirSegs << m_dwSegBits));
return dwBktAddr;
}
// See the Linear Hashing paper
static DWORD _H0(DWORD dwSignature, DWORD dwBktAddrMask)
{ return dwSignature & dwBktAddrMask; }
DWORD _H0(DWORD dwSignature) const
{ return _H0(dwSignature, m_dwBktAddrMask); }
// See the Linear Hashing paper. Preserves one bit more than _H0.
static DWORD _H1(DWORD dwSignature, DWORD dwBktAddrMask)
{ return dwSignature & ((dwBktAddrMask << 1) | 1); }
DWORD _H1(DWORD dwSignature) const
#ifdef LKR_MASK
{ return _H0(dwSignature, m_dwBktAddrMask1); }
#else // !LKR_MASK
{ return _H1(dwSignature, m_dwBktAddrMask); }
#endif // !LKR_MASK
// In which segment within the directory does the bucketaddress lie?
// (Return type must be lvalue so that it can be assigned to.)
CSegment*& _Segment(DWORD dwBucketAddr) const
{
const DWORD iSeg = dwBucketAddr >> m_dwSegBits;
IRTLASSERT(m_paDirSegs != NULL && iSeg < m_cDirSegs);
return m_paDirSegs[iSeg].m_pseg;
}
// Offset within the segment of the bucketaddress
DWORD _SegIndex(DWORD dwBucketAddr) const
{ return (dwBucketAddr & m_dwSegMask); }
// Convert a bucketaddress to a CBucket*
inline CBucket* _Bucket(DWORD dwBucketAddr) const
{
IRTLASSERT(dwBucketAddr < m_cActiveBuckets);
CSegment* const pseg = _Segment(dwBucketAddr);
IRTLASSERT(pseg != NULL);
return &(pseg->Slot(_SegIndex(dwBucketAddr)));
}
// Extract the key from a record
const DWORD_PTR _ExtractKey(const void* pvRecord) const
{
IRTLASSERT(pvRecord != NULL);
IRTLASSERT(m_pfnExtractKey != NULL);
#ifdef LKR_SUBTABLE
return (*m_pfnExtractKey)(pvRecord);
#else
return (pvRecord != NULL) ? (*m_pfnExtractKey)(pvRecord) : NULL;
#endif
}
// Hash a key
DWORD _CalcKeyHash(const DWORD_PTR pnKey) const
{
// Note pnKey==0 is acceptable, as the real key type could be an int
IRTLASSERT(m_pfnCalcKeyHash != NULL);
DWORD dwHash = (*m_pfnCalcKeyHash)(pnKey);
// We forcibly scramble the result to help ensure a better distribution
dwHash = HashScramble(dwHash);
IRTLASSERT(dwHash != HASH_INVALID_SIGNATURE);
return dwHash;
}
// Compare two keys for equality
bool _EqualKeys(const DWORD_PTR pnKey1, const DWORD_PTR pnKey2) const
{
IRTLASSERT(m_pfnEqualKeys != NULL);
return (*m_pfnEqualKeys)(pnKey1, pnKey2);
}
// AddRef or Release a record.
void _AddRefRecord(const void* pvRecord, int nIncr) const
{
IRTLASSERT(pvRecord != NULL && (nIncr == -1 || nIncr == +1));
(*m_pfnAddRefRecord)(pvRecord, nIncr);
}
// Find a bucket, given its signature. The bucket is locked before
// returning. Assumes table is already locked, to avoid race conditions.
CBucket* _FindBucket(DWORD dwSignature, bool fLockForWrite) const
{
IRTLASSERT(IsValid());
IRTLASSERT(m_dwBktAddrMask > 0);
IRTLASSERT((m_dwBktAddrMask & (m_dwBktAddrMask+1)) == 0); // 00011..111
IRTLASSERT(m_dwBktAddrMask == (1U << m_nLevel) - 1);
#ifdef LKR_MASK
IRTLASSERT(m_dwBktAddrMask1 == ((m_dwBktAddrMask << 1) | 1));
IRTLASSERT((m_dwBktAddrMask1 & (m_dwBktAddrMask1+1)) == 0);
#endif // LKR_MASK
IRTLASSERT(m_iExpansionIdx <= m_dwBktAddrMask);
IRTLASSERT(0 < m_dwSegBits && m_dwSegBits < 20
&& m_dwSegSize == (1U << m_dwSegBits)
&& m_dwSegMask == (m_dwSegSize - 1));
IRTLASSERT(IsReadLocked() || IsWriteLocked());
const DWORD dwBktAddr = _BucketAddress(dwSignature);
IRTLASSERT(dwBktAddr < m_cActiveBuckets);
CBucket* const pbkt = _Bucket(dwBktAddr);
IRTLASSERT(pbkt != NULL);
if (fLockForWrite)
pbkt->WriteLock();
else
pbkt->ReadLock();
return pbkt;
}
// Memory allocation wrappers to allow us to simulate allocation
// failures during testing
static CDirEntry* const
_AllocateSegmentDirectory(
size_t n);
static bool
_FreeSegmentDirectory(
CDirEntry* paDirSegs);
static CNodeClump* const
_AllocateNodeClump();
static bool
_FreeNodeClump(
CNodeClump* pnc);
CSegment* const
_AllocateSegment() const;
bool
_FreeSegment(
CSegment* pseg) const;
#ifdef LOCK_INSTRUMENTATION
static LONG sm_cTables;
static const char*
_LockName()
{
LONG l = ++sm_cTables;
// possible race condition but we don't care, as this is never
// used in production code
static char s_szName[CLockStatistics::L_NAMELEN];
wsprintf(s_szName, "LH%05x", 0xFFFFF & l);
return s_szName;
}
// Statistics for the table lock
CLockStatistics _LockStats() const
{ return m_Lock.Statistics(); }
#endif // LOCK_INSTRUMENTATION
private:
// Fields are ordered so as to minimize number of cache lines touched
DWORD m_dwSignature; // debugging: id & corruption check
CHAR m_szName[NAME_SIZE]; // an identifier for debugging
mutable LK_RETCODE m_lkrcState; // Internal state of table
mutable TableLock m_Lock; // Lock on entire linear hash table
// type-specific function pointers
PFnExtractKey m_pfnExtractKey; // Extract key from record
PFnCalcKeyHash m_pfnCalcKeyHash; // Calculate hash signature of key
PFnEqualKeys m_pfnEqualKeys; // Compare two keys
PFnAddRefRecord m_pfnAddRefRecord; // AddRef a record
LK_TABLESIZE m_lkts; // "size" of table: small, medium, or large
DWORD m_dwSegBits; // C{Small,Medium,Large}Segment::SEGBITS
DWORD m_dwSegSize; // C{Small,Medium,Large}Segment::SEGSIZE
DWORD m_dwSegMask; // C{Small,Medium,Large}Segment::SEGMASK
double m_MaxLoad; // max load factor (average chain length)
DWORD m_dwBktAddrMask; // mask used for address calculation
#ifdef LKR_MASK
DWORD m_dwBktAddrMask1; // used in _H1 calculation
#endif // LKR_MASK
DWORD m_iExpansionIdx; // address of next bucket to be expanded
CDirEntry* m_paDirSegs; // directory of table segments
DWORD m_nLevel; // number of table doublings performed
DWORD m_cDirSegs; // segment directory size: varies between
// MIN_DIRSIZE and MAX_DIRSIZE
DWORD m_cRecords; // number of records in the table
DWORD m_cActiveBuckets; // number of buckets in use (table size)
WORD m_wBucketLockSpins;// default spin count for bucket locks
#ifdef LKR_NEWCODE
const BYTE m_nTableLockType; // for debugging: LOCK_SPINLOCK, etc
const BYTE m_nBucketLockType;// for debugging: LOCK_SPINLOCK, etc
const CLKRHashTable* const m_phtParent;// Owning table. NULL => standalone
static CLockedDoubleList sm_llGlobalList;// All active CLKRLinearHashTables
CListEntry m_leGlobalList;
void _InsertThisIntoGlobalList()
{
// Only add standalone CLKRLinearHashTables to global list.
// CLKRHashTables have their own global list.
if (m_phtParent == NULL)
sm_llGlobalList.InsertHead(&m_leGlobalList);
}
void _RemoveThisFromGlobalList()
{
if (m_phtParent == NULL)
sm_llGlobalList.RemoveEntry(&m_leGlobalList);
}
#endif // LKR_NEWCODE
// Non-trivial implementation functions
LK_RETCODE _InsertRecord(const void* pvRecord, DWORD dwSignature,
bool fOverwrite);
LK_RETCODE _DeleteKey(const DWORD_PTR pnKey, DWORD dwSignature);
LK_RETCODE _DeleteRecord(const void* pvRecord, DWORD dwSignature);
bool _DeleteNode(CBucket* pbkt, CNodeClump*& rpnc,
CNodeClump*& rpncPrev, int& riNode);
LK_RETCODE _FindKey(const DWORD_PTR pnKey, DWORD dwSignature,
const void** ppvRecord) const;
LK_RETCODE _FindRecord(const void* pvRecord, DWORD dwSignature) const;
#ifdef LKR_COMPACT_DELETE
// returns count of errors in compacted state => 0 is good
int _IsNodeCompact(CBucket* const pbkt) const;
#endif // LKR_COMPACT_DELETE
// Predicate functions
static LK_PREDICATE _PredTrue(const void* /*pvRecord*/, void* /*pvState*/)
{ return LKP_PERFORM; }
DWORD _Apply(PFnRecordAction pfnAction, void* pvState,
LK_LOCKTYPE lkl, LK_PREDICATE& rlkp);
DWORD _ApplyIf(PFnRecordPred pfnPredicate,
PFnRecordAction pfnAction, void* pvState,
LK_LOCKTYPE lkl, LK_PREDICATE& rlkp);
DWORD _DeleteIf(PFnRecordPred pfnPredicate, void* pvState,
LK_PREDICATE& rlkp);
void _Clear(bool fShrinkDirectory);
void _SetSegVars(LK_TABLESIZE lkts);
LK_RETCODE _Expand();
LK_RETCODE _Contract();
LK_RETCODE _SplitRecordSet(CNodeClump* pncOldTarget,
CNodeClump* pncNewTarget,
DWORD iExpansionIdx,
DWORD dwBktAddrMask,
DWORD dwNewBkt,
CNodeClump* pncFreeList);
LK_RETCODE _MergeRecordSets(CBucket* pbktNewTarget,
CNodeClump* pncOldList,
CNodeClump* pncFreeList);
// Private copy ctor and op= to prevent compiler synthesizing them.
// Must provide a (bad) implementation because we export instantiations.
// TODO: implement these properly; they could be useful.
CLKRLinearHashTable(const CLKRLinearHashTable&)
: m_dwSignature(SIGNATURE_FREE)
#ifdef LOCK_INSTRUMENTATION
, m_Lock(NULL)
#endif // LOCK_INSTRUMENTATION
#ifdef LKR_NEWCODE
, m_nTableLockType(0),
m_nBucketLockType(0),
m_phtParent(NULL)
#endif // LKR_NEWCODE
{*(BYTE*)NULL;}
CLKRLinearHashTable& operator=(const CLKRLinearHashTable&)
{return *(CLKRLinearHashTable*)NULL;}
#ifdef LKR_NEWCODE
private:
// This ctor is used by CLKRHashTable
CLKRLinearHashTable(
LPCSTR pszName, // An identifier for debugging
PFnExtractKey pfnExtractKey, // Extract key from record
PFnCalcKeyHash pfnCalcKeyHash, // Calculate hash signature of key
PFnEqualKeys pfnEqualKeys, // Compare two keys
PFnAddRefRecord pfnAddRefRecord,// AddRef in FindKey, etc
double maxload, // Upperbound on average chain length
DWORD initsize, // Initial size of hash table.
CLKRHashTable* phtParent // Owning table.
);
#endif // LKR_NEWCODE
LK_RETCODE
_Initialize(
PFnExtractKey pfnExtractKey,
PFnCalcKeyHash pfnCalcKeyHash,
PFnEqualKeys pfnEqualKeys,
PFnAddRefRecord pfnAddRefRecord,
LPCSTR pszName,
double maxload,
DWORD initsize);
public:
CLKRLinearHashTable(
LPCSTR pszName, // An identifier for debugging
PFnExtractKey pfnExtractKey, // Extract key from record
PFnCalcKeyHash pfnCalcKeyHash, // Calculate hash signature of key
PFnEqualKeys pfnEqualKeys, // Compare two keys
PFnAddRefRecord pfnAddRefRecord,// AddRef in FindKey, etc
double maxload=LK_DFLT_MAXLOAD,// Upperbound on average chain length
DWORD initsize=LK_DFLT_INITSIZE, // Initial size of hash table.
DWORD num_subtbls=LK_DFLT_NUM_SUBTBLS // for signature compatiblity
// with CLKRHashTable
);
~CLKRLinearHashTable();
static const char* ClassName() {return "CLKRLinearHashTable";}
int NumSubTables() const {return 1;}
static LK_TABLESIZE NumSubTables(DWORD& rinitsize, DWORD& rnum_subtbls);
// Insert a new record into hash table.
// Returns LK_SUCCESS if all OK, LK_KEY_EXISTS if same key already
// exists (unless fOverwrite), LK_ALLOC_FAIL if out of space,
// or LK_BAD_RECORD for a bad record.
LK_RETCODE InsertRecord(const void* pvRecord, bool fOverwrite=false)
{
#ifdef LKR_SUBTABLE
if (!IsUsable())
return m_lkrcState;
if (pvRecord == NULL)
return LK_BAD_RECORD;
#endif
return _InsertRecord(pvRecord, _CalcKeyHash(_ExtractKey(pvRecord)),
fOverwrite);
}
// Delete record with the given key.
// Returns LK_SUCCESS if all OK, or LK_NO_SUCH_KEY if not found
LK_RETCODE DeleteKey(const DWORD_PTR pnKey)
{
#ifdef LKR_SUBTABLE
if (!IsUsable())
return m_lkrcState;
#endif
return _DeleteKey(pnKey, _CalcKeyHash(pnKey));
}
// Delete a record from the table, if present.
// Returns LK_SUCCESS if all OK, or LK_NO_SUCH_KEY if not found
LK_RETCODE DeleteRecord(const void* pvRecord)
{
#ifdef LKR_SUBTABLE
if (!IsUsable())
return m_lkrcState;
if (pvRecord == NULL)
return LK_BAD_RECORD;
#endif
return _DeleteRecord(pvRecord, _CalcKeyHash(_ExtractKey(pvRecord)));
}
// Find record with given key.
// Returns: LK_SUCCESS, if record found (record is returned in *ppvRecord)
// LK_BAD_RECORD, if ppvRecord is invalid
// LK_NO_SUCH_KEY, if no record with given key value was found
// LK_UNUSABLE, if hash table not in usable state
// Note: the record is AddRef'd. You must decrement the reference
// count when you are finished with the record (if you're implementing
// refcounting semantics).
LK_RETCODE FindKey(const DWORD_PTR pnKey,
const void** ppvRecord) const
{
#ifdef LKR_SUBTABLE
if (!IsUsable())
return m_lkrcState;
if (ppvRecord == NULL)
return LK_BAD_RECORD;
#endif
return _FindKey(pnKey, _CalcKeyHash(pnKey), ppvRecord);
}
// Sees if the record is contained in the table
// Returns: LK_SUCCESS, if record found
// LK_BAD_RECORD, if pvRecord is invalid
// LK_NO_SUCH_KEY, if record is not in the table
// LK_UNUSABLE, if hash table not in usable state
// Note: the record is *not* AddRef'd.
LK_RETCODE FindRecord(const void* pvRecord) const
{
#ifdef LKR_SUBTABLE
if (!IsUsable())
return m_lkrcState;
if (pvRecord == NULL)
return LK_BAD_RECORD;
#endif
return _FindRecord(pvRecord, _CalcKeyHash(_ExtractKey(pvRecord)));
}
// Walk the hash table, applying pfnAction to all records.
// Locks the whole table for the duration with either a (possibly
// shared) readlock or a writelock, according to lkl.
// Loop is aborted if pfnAction returns LKA_ABORT.
// Returns the number of successful applications.
DWORD Apply(PFnRecordAction pfnAction,
void* pvState=NULL,
LK_LOCKTYPE lkl=LKL_READLOCK);
// Walk the hash table, applying pfnAction to any records that match
// pfnPredicate. Locks the whole table for the duration with either
// a (possibly shared) readlock or a writelock, according to lkl.
// Loop is aborted if pfnAction returns LKA_ABORT.
// Returns the number of successful applications.
DWORD ApplyIf(PFnRecordPred pfnPredicate,
PFnRecordAction pfnAction,
void* pvState=NULL,
LK_LOCKTYPE lkl=LKL_READLOCK);
// Delete any records that match pfnPredicate.
// Locks the table for the duration with a writelock.
// Returns the number of deletions.
//
// Do *not* walk the hash table by hand with an iterator and call
// DeleteKey. The iterator will end up pointing to garbage.
DWORD DeleteIf(PFnRecordPred pfnPredicate,
void* pvState=NULL);
// Check table for consistency. Returns 0 if okay, or the number of
// errors otherwise.
int CheckTable() const;
// Prints the table (to where??)
void Print() const;
// Remove all data from the table
void Clear()
{
WriteLock();
_Clear(true);
WriteUnlock();
}
// Number of elements in the table
DWORD Size() const
{ return m_cRecords; }
// Maximum possible number of elements in the table
DWORD MaxSize() const
{ return static_cast<DWORD>(m_MaxLoad * MAX_DIRSIZE * m_dwSegSize); }
// Get hash table statistics
CLKRHashTableStats GetStatistics() const;
// Is the hash table usable?
bool IsUsable() const
{ return (m_lkrcState == LK_SUCCESS); }
// Is the hash table consistent and correct?
bool IsValid() const
{
bool f = (m_lkrcState == LK_SUCCESS // serious internal failure?
&& m_paDirSegs != NULL
&& (MIN_DIRSIZE & (MIN_DIRSIZE-1)) == 0 // == (1 << N)
&& (MAX_DIRSIZE & (MAX_DIRSIZE-1)) == 0
&& MAX_DIRSIZE > MIN_DIRSIZE
&& MIN_DIRSIZE <= m_cDirSegs && m_cDirSegs <= MAX_DIRSIZE
&& (m_cDirSegs & (m_cDirSegs-1)) == 0
&& m_pfnExtractKey != NULL
&& m_pfnCalcKeyHash != NULL
&& m_pfnEqualKeys != NULL
&& m_cActiveBuckets > 0
&& ValidSignature()
);
if (!f)
m_lkrcState = LK_UNUSABLE;
return f;
}
// Set the spin count on the table lock
void SetTableLockSpinCount(WORD wSpins)
{ m_Lock.SetSpinCount(wSpins); }
// Get the spin count on the table lock
WORD GetTableLockSpinCount()
{ return m_Lock.GetSpinCount(); }
// Set/Get the spin count on the bucket locks
void SetBucketLockSpinCount(WORD wSpins);
WORD GetBucketLockSpinCount();
enum {
SIGNATURE = (('L') | ('K' << 8) | ('L' << 16) | ('H' << 24)),
SIGNATURE_FREE = (('L') | ('K' << 8) | ('L' << 16) | ('x' << 24)),
};
bool
ValidSignature() const
{ return m_dwSignature == SIGNATURE;}
// Lock manipulators
// Lock the table (exclusively) for writing
void WriteLock()
{ m_Lock.WriteLock(); }
// Lock the table (possibly shared) for reading
void ReadLock() const
{ m_Lock.ReadLock(); }
// Unlock the table for writing
void WriteUnlock() const
{ m_Lock.WriteUnlock(); }
// Unlock the table for reading
void ReadUnlock() const
{ m_Lock.ReadUnlock(); }
// Is the table already locked for writing?
bool IsWriteLocked() const
{ return m_Lock.IsWriteLocked(); }
// Is the table already locked for reading?
bool IsReadLocked() const
{ return m_Lock.IsReadLocked(); }
// Is the table unlocked for writing?
bool IsWriteUnlocked() const
{ return m_Lock.IsWriteUnlocked(); }
// Is the table unlocked for reading?
bool IsReadUnlocked() const
{ return m_Lock.IsReadUnlocked(); }
// LKRHASH_ALLOCATOR_DEFINITIONS(CLKRLinearHashTable);
public:
// Iterators can be used to walk the table. To ensure a consistent
// view of the data, the iterator locks the whole table. This can
// have a negative effect upon performance, because no other thread
// can do anything with the table. Use with care.
//
// You should not use an iterator to walk the table, calling DeleteKey,
// as the iterator will end up pointing to garbage.
//
// Use Apply, ApplyIf, or DeleteIf instead of iterators to safely
// walk the tree.
//
// Note that iterators acquire a reference to the record pointed to
// and release that reference as soon as the iterator is incremented.
// In other words, this code is safe:
// lkrc = ht.IncrementIterator(&iter);
// // assume lkrc == LK_SUCCESS for the sake of this example
// CMyHashTable::Record* pRec = iter.Record();
// Foo(pRec); // uses pRec but doesn't hang on to it
// lkrc = ht.IncrementIterator(&iter);
//
// But this code is not safe because pRec is used out of the scope of the
// iterator that provided it:
// lkrc = ht.IncrementIterator(&iter);
// CMyHashTable::Record* pRec = iter.Record();
// // Should call ht.AddRefRecord(pRec, +1) here
// lkrc = ht.IncrementIterator(&iter);
// Foo(pRec);
//
// If record has no reference-counting semantics, then you can ignore
// the above remarks about scope.
class CIterator
{
protected:
friend class CLKRLinearHashTable;
CLKRLinearHashTable* m_plht; // which linear hash table?
DWORD m_dwBucketAddr; // bucket index
CNodeClump* m_pnc; // a CNodeClump in bucket
int m_iNode; // offset within m_pnc
LK_LOCKTYPE m_lkl; // readlock or writelock?
private:
// Private copy ctor and op= to prevent compiler synthesizing them.
// Must provide (bad) implementation because we export instantiations.
CIterator(const CIterator&) {*(BYTE*)NULL;}
CIterator& operator=(const CIterator&) {return *(CIterator*)NULL;}
public:
CIterator(
LK_LOCKTYPE lkl=LKL_WRITELOCK)
: m_plht(NULL),
m_dwBucketAddr(0),
m_pnc(NULL),
m_iNode(-1),
m_lkl(lkl)
{}
// Return the record associated with this iterator
const void* Record() const
{
IRTLASSERT(IsValid());
return ((m_pnc != NULL
&& m_iNode >= 0
&& m_iNode < CLKRLinearHashTable::NODES_PER_CLUMP)
? m_pnc->m_pvNode[m_iNode]
: NULL);
}
// Return the key associated with this iterator
const DWORD_PTR Key() const
{
IRTLASSERT(m_plht != NULL);
const void* pRec = Record();
return ((pRec != NULL && m_plht != NULL)
? m_plht->_ExtractKey(pRec)
: NULL);
}
bool IsValid() const
{
return ((m_plht != NULL)
&& (m_pnc != NULL)
&& (0 <= m_iNode
&& m_iNode < CLKRLinearHashTable::NODES_PER_CLUMP)
&& (!m_pnc->IsEmptyNode(m_iNode)));
}
// Delete the record that the iterator points to. Does an implicit
// IncrementIterator after deletion.
LK_RETCODE DeleteRecord();
// Change the record that the iterator points to. The new record
// must have the same key as the old one.
LK_RETCODE ChangeRecord(const void* pNewRec);
};
// Const iterators for readonly access. You must use these with
// const CLKRLinearHashTables.
class CConstIterator : public CIterator
{
private:
// Private, unimplemented copy ctor and op= to prevent
// compiler synthesizing them.
CConstIterator(const CConstIterator&);
CConstIterator& operator=(const CConstIterator&);
public:
CConstIterator()
: CIterator(LKL_READLOCK)
{}
};
private:
// The public APIs lock the table. The private ones, which are used
// directly by CLKRHashTable, don't.
LK_RETCODE _InitializeIterator(CIterator* piter);
LK_RETCODE _CloseIterator(CIterator* piter);
public:
// Initialize the iterator to point to the first item in the hash table
// Returns LK_SUCCESS, LK_NO_MORE_ELEMENTS, or LK_BAD_ITERATOR.
LK_RETCODE InitializeIterator(CIterator* piter)
{
IRTLASSERT(piter != NULL && piter->m_plht == NULL);
if (piter == NULL || piter->m_plht != NULL)
return LK_BAD_ITERATOR;
if (piter->m_lkl == LKL_WRITELOCK)
WriteLock();
else
ReadLock();
return _InitializeIterator(piter);
}
// The const iterator version
LK_RETCODE InitializeIterator(CConstIterator* piter) const
{
IRTLASSERT(piter != NULL && piter->m_plht == NULL);
IRTLASSERT(piter->m_lkl != LKL_WRITELOCK);
if (piter == NULL || piter->m_plht != NULL
|| piter->m_lkl == LKL_WRITELOCK)
return LK_BAD_ITERATOR;
ReadLock();
return const_cast<CLKRLinearHashTable*>(this)
->_InitializeIterator(static_cast<CIterator*>(piter));
}
// Move the iterator on to the next item in the table.
// Returns LK_SUCCESS, LK_NO_MORE_ELEMENTS, or LK_BAD_ITERATOR.
LK_RETCODE IncrementIterator(CIterator* piter);
LK_RETCODE IncrementIterator(CConstIterator* piter) const
{
IRTLASSERT(piter != NULL && piter->m_plht == this);
IRTLASSERT(piter->m_lkl != LKL_WRITELOCK);
if (piter == NULL || piter->m_plht != this
|| piter->m_lkl == LKL_WRITELOCK)
return LK_BAD_ITERATOR;
return const_cast<CLKRLinearHashTable*>(this)
->IncrementIterator(static_cast<CIterator*>(piter));
}
// Close the iterator.
LK_RETCODE CloseIterator(CIterator* piter)
{
IRTLASSERT(piter != NULL && piter->m_plht == this);
if (piter == NULL || piter->m_plht != this)
return LK_BAD_ITERATOR;
_CloseIterator(piter);
if (piter->m_lkl == LKL_WRITELOCK)
WriteUnlock();
else
ReadUnlock();
return LK_SUCCESS;
};
// Close the CConstIterator
LK_RETCODE CloseIterator(CConstIterator* piter) const
{
IRTLASSERT(piter != NULL && piter->m_plht == this);
IRTLASSERT(piter->m_lkl != LKL_WRITELOCK);
if (piter == NULL || piter->m_plht != this
|| piter->m_lkl == LKL_WRITELOCK)
return LK_BAD_ITERATOR;
const_cast<CLKRLinearHashTable*>(this)
->_CloseIterator(static_cast<CIterator*>(piter));
ReadUnlock();
return LK_SUCCESS;
};
};
//--------------------------------------------------------------------
// CLKRHashTable
//
// To improve concurrency, a hash table is divided into a number of
// (independent) subtables. Each subtable is a linear hash table. The
// number of subtables is defined when the table is created and remains
// fixed thereafter. Records are assigned to subtables based on their
// hashed key.
//
// For small or low-contention hashtables, you can bypass this
// thin wrapper and use CLKRLinearHashTable directly. The methods are
// documented in the declarations for CLKRHashTable (above).
//--------------------------------------------------------------------
class IRTL_DLLEXP CLKRHashTable
{
private:
typedef CLKRLinearHashTable SubTable;
public:
typedef SubTable::TableLock TableLock;
typedef SubTable::BucketLock BucketLock;
class CIterator;
friend class CLKRHashTable::CIterator;
friend class CLKRLinearHashTable;
// aliases for convenience
enum {
NAME_SIZE = SubTable::NAME_SIZE,
HASH_INVALID_SIGNATURE = SubTable::HASH_INVALID_SIGNATURE,
NODES_PER_CLUMP = SubTable::NODES_PER_CLUMP,
};
private:
// Hash table parameters
DWORD m_dwSignature; // debugging: id & corruption check
CHAR m_szName[NAME_SIZE]; // an identifier for debugging
DWORD m_cSubTables; // number of subtables
SubTable** m_palhtDir; // array of subtables
// type-specific function pointers
PFnExtractKey m_pfnExtractKey;
PFnCalcKeyHash m_pfnCalcKeyHash;
mutable LK_RETCODE m_lkrcState; // Internal state of table
#ifdef LKR_NEWCODE
static CLockedDoubleList sm_llGlobalList; // All active CLKRHashTables
CListEntry m_leGlobalList;
void
_InsertThisIntoGlobalList()
{
sm_llGlobalList.InsertHead(&m_leGlobalList);
}
void
_RemoveThisFromGlobalList()
{
sm_llGlobalList.RemoveEntry(&m_leGlobalList);
}
#endif // LKR_NEWCODE
LKRHASH_GLOBAL_LOCK_DECLARATIONS();
// Private copy ctor and op= to prevent compiler synthesizing them.
// Must provide a (bad) implementation because we export instantiations.
// TODO: implement these properly; they could be useful.
CLKRHashTable(const CLKRHashTable&) {*(BYTE*)NULL;}
CLKRHashTable& operator=(const CLKRHashTable&) {return *(CLKRHashTable*)NULL;}
// Extract the key from the record
const DWORD_PTR _ExtractKey(const void* pvRecord) const
{
IRTLASSERT(pvRecord != NULL);
IRTLASSERT(m_pfnExtractKey != NULL);
#ifdef LKR_SUBTABLE
return (*m_pfnExtractKey)(pvRecord);
#else
return (pvRecord != NULL) ? (*m_pfnExtractKey)(pvRecord) : NULL;
#endif
}
// Hash the key
DWORD _CalcKeyHash(const DWORD_PTR pnKey) const
{
// Note pnKey==0 is acceptable, as the real key type could be an int
IRTLASSERT(m_pfnCalcKeyHash != NULL);
DWORD dwHash = (*m_pfnCalcKeyHash)(pnKey);
// We forcibly scramble the result to help ensure a better distribution
dwHash = HashScramble(dwHash);
IRTLASSERT(dwHash != HASH_INVALID_SIGNATURE);
return dwHash;
}
// Use the key's hash signature to multiplex into a subtable
SubTable* _SubTable(DWORD dwSignature) const
{
IRTLASSERT(m_lkrcState == LK_SUCCESS
&& m_palhtDir != NULL && m_cSubTables > 0);
#ifndef LKR_SUBTABLE
if (m_lkrcState == LK_SUCCESS)
{
#endif
const DWORD PRIME = 1048583UL; // used to scramble the hash sig
DWORD index = (dwSignature % PRIME) % m_cSubTables;
return m_palhtDir[index];
#ifndef LKR_SUBTABLE
}
else
return NULL;
#endif
}
// Memory allocation wrappers to allow us to simulate allocation
// failures during testing
static SubTable** const
_AllocateSubTableArray(
size_t n);
static bool
_FreeSubTableArray(
SubTable** palht);
static SubTable* const
_AllocateSubTable(
LPCSTR pszName, // An identifier for debugging
PFnExtractKey pfnExtractKey, // Extract key from record
PFnCalcKeyHash pfnCalcKeyHash, // Calculate hash signature of key
PFnEqualKeys pfnEqualKeys, // Compare two keys
PFnAddRefRecord pfnAddRefRecord,// AddRef in FindKey, etc
double maxload, // Upperbound on average chain length
DWORD initsize, // Initial size of hash table.
CLKRHashTable* phtParent // Owning table.
);
static bool
_FreeSubTable(
SubTable* plht);
public:
CLKRHashTable(
LPCSTR pszName, // An identifier for debugging
PFnExtractKey pfnExtractKey, // Extract key from record
PFnCalcKeyHash pfnCalcKeyHash, // Calculate hash signature of key
PFnEqualKeys pfnEqualKeys, // Compare two keys
PFnAddRefRecord pfnAddRefRecord,// AddRef in FindKey, etc
double maxload=LK_DFLT_MAXLOAD, // bound on avg chain length
DWORD initsize=LK_DFLT_INITSIZE, // Initial size of hash table.
DWORD num_subtbls=LK_DFLT_NUM_SUBTBLS // #subordinate hash tables.
);
~CLKRHashTable();
static const char* ClassName() {return "CLKRHashTable";}
int NumSubTables() const {return m_cSubTables;}
static LK_TABLESIZE NumSubTables(DWORD& rinitsize, DWORD& rnum_subtbls);
// Thin wrappers for the corresponding methods in CLKRLinearHashTable
LK_RETCODE InsertRecord(const void* pvRecord, bool fOverwrite=false)
{
#ifdef LKR_SUBTABLE
if (!IsUsable())
return m_lkrcState;
if (pvRecord == NULL)
return LK_BAD_RECORD;
#endif
LKRHASH_GLOBAL_WRITE_LOCK(); // usu. no-op
DWORD hash_val = _CalcKeyHash(_ExtractKey(pvRecord));
SubTable* const pst = _SubTable(hash_val);
#ifdef LKR_SUBTABLE
LK_RETCODE lk = pst->_InsertRecord(pvRecord, hash_val, fOverwrite);
#else
LK_RETCODE lk = (pst != NULL
? pst->_InsertRecord(pvRecord, hash_val,
fOverwrite)
: LK_UNUSABLE);
#endif
LKRHASH_GLOBAL_WRITE_UNLOCK(); // usu. no-op
return lk;
}
LK_RETCODE DeleteKey(const DWORD_PTR pnKey)
{
#ifdef LKR_SUBTABLE
if (!IsUsable())
return m_lkrcState;
#endif
LKRHASH_GLOBAL_WRITE_LOCK(); // usu. no-op
DWORD hash_val = _CalcKeyHash(pnKey);
SubTable* const pst = _SubTable(hash_val);
#ifdef LKR_SUBTABLE
LK_RETCODE lk = pst->_DeleteKey(pnKey, hash_val);
#else
LK_RETCODE lk = (pst != NULL
? pst->_DeleteKey(pnKey, hash_val)
: LK_UNUSABLE);
#endif
LKRHASH_GLOBAL_WRITE_UNLOCK(); // usu. no-op
return lk;
}
LK_RETCODE DeleteRecord(const void* pvRecord)
{
#ifdef LKR_SUBTABLE
if (!IsUsable())
return m_lkrcState;
if (pvRecord == NULL)
return LK_BAD_RECORD;
#endif
LKRHASH_GLOBAL_WRITE_LOCK(); // usu. no-op
DWORD hash_val = _CalcKeyHash(_ExtractKey(pvRecord));
SubTable* const pst = _SubTable(hash_val);
#ifdef LKR_SUBTABLE
LK_RETCODE lk = pst->_DeleteRecord(pvRecord, hash_val);
#else
LK_RETCODE lk = (pst != NULL
? pst->_DeleteRecord(pvRecord, hash_val)
: LK_UNUSABLE);
#endif
LKRHASH_GLOBAL_WRITE_UNLOCK(); // usu. no-op
return lk;
}
LK_RETCODE FindKey(const DWORD_PTR pnKey,
const void** ppvRecord) const
{
#ifdef LKR_SUBTABLE
if (!IsUsable())
return m_lkrcState;
if (ppvRecord == NULL)
return LK_BAD_RECORD;
#endif
LKRHASH_GLOBAL_READ_LOCK(); // usu. no-op
DWORD hash_val = _CalcKeyHash(pnKey);
SubTable* const pst = _SubTable(hash_val);
#ifdef LKR_SUBTABLE
LK_RETCODE lkrc = pst->_FindKey(pnKey, hash_val, ppvRecord);
#else
LK_RETCODE lkrc = (pst != NULL
? pst->_FindKey(pnKey, hash_val, ppvRecord)
: LK_UNUSABLE);
#endif
LKRHASH_GLOBAL_READ_UNLOCK(); // usu. no-op
return lkrc;
}
LK_RETCODE FindRecord(const void* pvRecord) const
{
#ifdef LKR_SUBTABLE
if (!IsUsable())
return m_lkrcState;
if (pvRecord == NULL)
return LK_BAD_RECORD;
#endif
LKRHASH_GLOBAL_READ_LOCK(); // usu. no-op
DWORD hash_val = _CalcKeyHash(_ExtractKey(pvRecord));
SubTable* const pst = _SubTable(hash_val);
#ifdef LKR_SUBTABLE
LK_RETCODE lkrc = pst->_FindRecord(pvRecord, hash_val);
#else
LK_RETCODE lkrc = (pst != NULL
? pst->_FindRecord(pvRecord, hash_val)
: LK_UNUSABLE);
#endif
LKRHASH_GLOBAL_READ_UNLOCK(); // usu. no-op
return lkrc;
}
DWORD Apply(PFnRecordAction pfnAction,
void* pvState=NULL,
LK_LOCKTYPE lkl=LKL_READLOCK);
DWORD ApplyIf(PFnRecordPred pfnPredicate,
PFnRecordAction pfnAction,
void* pvState=NULL,
LK_LOCKTYPE lkl=LKL_READLOCK);
DWORD DeleteIf(PFnRecordPred pfnPredicate,
void* pvState=NULL);
void Clear();
int CheckTable() const;
void Print() const;
DWORD Size() const;
DWORD MaxSize() const;
CLKRHashTableStats GetStatistics() const;
bool IsValid() const;
void SetTableLockSpinCount(WORD wSpins);
WORD GetTableLockSpinCount();
void SetBucketLockSpinCount(WORD wSpins);
WORD GetBucketLockSpinCount();
enum {
SIGNATURE = (('L') | ('K' << 8) | ('H' << 16) | ('T' << 24)),
SIGNATURE_FREE = (('L') | ('K' << 8) | ('H' << 16) | ('x' << 24)),
};
bool
ValidSignature() const
{ return m_dwSignature == SIGNATURE;}
// Is the hash table usable?
bool IsUsable() const
{ return (m_lkrcState == LK_SUCCESS); }
void WriteLock();
void ReadLock() const;
void WriteUnlock() const;
void ReadUnlock() const;
bool IsWriteLocked() const;
bool IsReadLocked() const;
bool IsWriteUnlocked() const;
bool IsReadUnlocked() const;
// LKRHASH_ALLOCATOR_DEFINITIONS(CLKRHashTable);
public:
typedef SubTable::CIterator CLHTIterator;
class CIterator : public CLHTIterator
{
protected:
friend class CLKRHashTable;
CLKRHashTable* m_pht; // which hash table?
int m_ist; // which subtable
private:
// Private copy ctor and op= to prevent compiler synthesizing them.
// Must provide (bad) implementation because we export instantiations.
CIterator(const CIterator&) {*(BYTE*)NULL;}
CIterator& operator=(const CIterator&) {return *(CIterator*)NULL;}
public:
CIterator(
LK_LOCKTYPE lkl=LKL_WRITELOCK)
: CLHTIterator(lkl),
m_pht(NULL),
m_ist(-1)
{}
const void* Record() const
{
IRTLASSERT(IsValid());
// This is a hack to work around a compiler bug. Calling
// CLHTIterator::Record calls this function recursively until
// the stack overflows.
const CLHTIterator* pBase = static_cast<const CLHTIterator*>(this);
return pBase->Record();
}
const DWORD_PTR Key() const
{
IRTLASSERT(IsValid());
const CLHTIterator* pBase = static_cast<const CLHTIterator*>(this);
return pBase->Key();
}
bool IsValid() const
{
const CLHTIterator* pBase = static_cast<const CLHTIterator*>(this);
return (m_pht != NULL && m_ist >= 0 && pBase->IsValid());
}
};
// Const iterators for readonly access
class CConstIterator : public CIterator
{
private:
// Private, unimplemented copy ctor and op= to prevent
// compiler synthesizing them.
CConstIterator(const CConstIterator&);
CConstIterator& operator=(const CConstIterator&);
public:
CConstIterator()
: CIterator(LKL_READLOCK)
{}
};
public:
LK_RETCODE InitializeIterator(CIterator* piter);
LK_RETCODE IncrementIterator(CIterator* piter);
LK_RETCODE CloseIterator(CIterator* piter);
LK_RETCODE InitializeIterator(CConstIterator* piter) const
{
IRTLASSERT(piter != NULL && piter->m_pht == NULL);
IRTLASSERT(piter->m_lkl != LKL_WRITELOCK);
if (piter == NULL || piter->m_pht != NULL
|| piter->m_lkl == LKL_WRITELOCK)
return LK_BAD_ITERATOR;
return const_cast<CLKRHashTable*>(this)
->InitializeIterator(static_cast<CIterator*>(piter));
}
LK_RETCODE IncrementIterator(CConstIterator* piter) const
{
IRTLASSERT(piter != NULL && piter->m_pht == this);
IRTLASSERT(piter->m_lkl != LKL_WRITELOCK);
if (piter == NULL || piter->m_pht != this
|| piter->m_lkl == LKL_WRITELOCK)
return LK_BAD_ITERATOR;
return const_cast<CLKRHashTable*>(this)
->IncrementIterator(static_cast<CIterator*>(piter));
}
LK_RETCODE CloseIterator(CConstIterator* piter) const
{
IRTLASSERT(piter != NULL && piter->m_pht == this);
IRTLASSERT(piter->m_lkl != LKL_WRITELOCK);
if (piter == NULL || piter->m_pht != this
|| piter->m_lkl == LKL_WRITELOCK)
return LK_BAD_ITERATOR;
return const_cast<CLKRHashTable*>(this)
->CloseIterator(static_cast<CIterator*>(piter));
}
};
//--------------------------------------------------------------------
// A typesafe wrapper for CLKRHashTable (or CLKRLinearHashTable).
//
// * _Derived must derive from CTypedHashTable and provide certain member
// functions. It's needed for various downcasting operations. See
// CStringTestHashTable and CNumberTestHashTable below.
// * _Record is the type of the record. C{Linear}HashTable will store
// pointers to _Record.
// * _Key is the type of the key. _Key is used directly; i.e., it is
// not assumed to be a pointer type. C{Linear}HashTable assumes that
// the key is stored in the associated record. See the comments
// at the declaration of PFnExtractKey for more details.
//
// (optional parameters):
// * _BaseHashTable is the base hash table: CLKRHashTable or
/// CLKRLinearHashTable
// * _BaseIterator is the iterator type, _BaseHashTable::CIterator
//
// CTypedHashTable could derive directly from CLKRLinearHashTable, if you
// don't need the extra overhead of CLKRHashTable (which is quite low).
//
// You may need to add the following line to your code to disable
// warning messages about truncating extremly long identifiers.
// #pragma warning (disable : 4786)
//--------------------------------------------------------------------
#define LKRHASH_HACKY_CAST(T, pv) ((T) (UINT_PTR) (pv))
template < class _Derived, class _Record, class _Key,
class _BaseHashTable=CLKRHashTable,
class _BaseIterator=_BaseHashTable::CIterator
>
class CTypedHashTable : public _BaseHashTable
{
public:
// convenient aliases
typedef _Derived Derived;
typedef _Record Record;
typedef _Key Key;
typedef _BaseHashTable BaseHashTable;
typedef CTypedHashTable<_Derived, _Record, _Key,
_BaseHashTable, _BaseIterator>
HashTable;
typedef _BaseIterator BaseIterator;
// ApplyIf() and DeleteIf(): Does the record match the predicate?
// Note: takes a Record*, not a const Record*. You can modify the
// record in Pred() or Action(), if you like, but if you do, you
// should use LKL_WRITELOCK to lock the table.
typedef LK_PREDICATE (WINAPI *PFnRecordPred) (Record* pRec, void* pvState);
// Apply() et al: Perform action on record.
typedef LK_ACTION (WINAPI *PFnRecordAction)(Record* pRec, void* pvState);
private:
// Wrappers for the typesafe methods exposed by the derived class
static const DWORD_PTR
_ExtractKey(const void* pvRecord)
{
const _Record* pRec = static_cast<const _Record*>(pvRecord);
_Key key = static_cast<_Key>(_Derived::ExtractKey(pRec));
// I would prefer to use reinterpret_cast here, but the stupid
// Win64 compiler thinks it knows better than I do.
return (const DWORD_PTR) key;
}
static DWORD
_CalcKeyHash(const DWORD_PTR pnKey)
{
_Key key = LKRHASH_HACKY_CAST(_Key, pnKey);
return _Derived::CalcKeyHash(key);
}
static bool
_EqualKeys(const DWORD_PTR pnKey1, const DWORD_PTR pnKey2)
{
_Key key1 = LKRHASH_HACKY_CAST(_Key, pnKey1);
_Key key2 = LKRHASH_HACKY_CAST(_Key, pnKey2);
return _Derived::EqualKeys(key1, key2);
}
static void
_AddRefRecord(const void* pvRecord, int nIncr)
{
_Record* pRec = static_cast<_Record*>(const_cast<void*>(pvRecord));
_Derived::AddRefRecord(pRec, nIncr);
}
// Typesafe wrappers for Apply, ApplyIf, and DeleteIf.
class CState
{
public:
PFnRecordPred m_pfnPred;
PFnRecordAction m_pfnAction;
void* m_pvState;
CState(
PFnRecordPred pfnPred,
PFnRecordAction pfnAction,
void* pvState)
: m_pfnPred(pfnPred), m_pfnAction(pfnAction), m_pvState(pvState)
{}
};
static LK_PREDICATE
_Pred(const void* pvRecord, void* pvState)
{
_Record* pRec = static_cast<_Record*>(const_cast<void*>(pvRecord));
CState* pState = static_cast<CState*>(pvState);
return (*pState->m_pfnPred)(pRec, pState->m_pvState);
}
static LK_ACTION
_Action(const void* pvRecord, void* pvState)
{
_Record* pRec = static_cast<_Record*>(const_cast<void*>(pvRecord));
CState* pState = static_cast<CState*>(pvState);
return (*pState->m_pfnAction)(pRec, pState->m_pvState);
}
public:
CTypedHashTable(
LPCSTR pszName, // An identifier for debugging
double maxload=LK_DFLT_MAXLOAD, // Upperbound on avg chain length
DWORD initsize=LK_DFLT_INITSIZE, // Initial size of hash table.
DWORD num_subtbls=LK_DFLT_NUM_SUBTBLS// #subordinate hash tables.
)
: _BaseHashTable(pszName, _ExtractKey, _CalcKeyHash, _EqualKeys,
_AddRefRecord, maxload, initsize, num_subtbls)
{}
LK_RETCODE InsertRecord(const _Record* pRec, bool fOverwrite=false)
{ return _BaseHashTable::InsertRecord(pRec, fOverwrite); }
LK_RETCODE DeleteKey(const _Key key)
{ return _BaseHashTable::DeleteKey(reinterpret_cast<const DWORD_PTR>(key));}
LK_RETCODE DeleteRecord(const _Record* pRec)
{ return _BaseHashTable::DeleteRecord(pRec);}
// Note: returns a _Record**, not a const Record**. Note that you
// can use a const type for the template parameter to ensure constness.
LK_RETCODE FindKey(const _Key key, _Record** ppRec) const
{
if (ppRec == NULL)
return LK_BAD_RECORD;
*ppRec = NULL;
const void* pvRec = NULL;
const void* pvKey = reinterpret_cast<const void*>((DWORD_PTR)(key));
DWORD_PTR pnKey = reinterpret_cast<DWORD_PTR>(pvKey);
LK_RETCODE lkrc = _BaseHashTable::FindKey(pnKey, &pvRec);
*ppRec = static_cast<_Record*>(const_cast<void*>(pvRec));
return lkrc;
}
LK_RETCODE FindRecord(const _Record* pRec) const
{ return _BaseHashTable::FindRecord(pRec);}
// Other C{Linear}HashTable methods can be exposed without change
// TODO: Print?
// Typesafe wrappers for Apply et al
DWORD Apply(PFnRecordAction pfnAction,
void* pvState=NULL,
LK_LOCKTYPE lkl=LKL_READLOCK)
{
IRTLASSERT(pfnAction != NULL);
if (pfnAction == NULL)
return 0;
CState state(NULL, pfnAction, pvState);
return _BaseHashTable::Apply(_Action, &state, lkl);
}
DWORD ApplyIf(PFnRecordPred pfnPredicate,
PFnRecordAction pfnAction,
void* pvState=NULL,
LK_LOCKTYPE lkl=LKL_READLOCK)
{
IRTLASSERT(pfnPredicate != NULL && pfnAction != NULL);
if (pfnPredicate == NULL || pfnAction == NULL)
return 0;
CState state(pfnPredicate, pfnAction, pvState);
return _BaseHashTable::ApplyIf(_Pred, _Action, &state, lkl);
}
DWORD DeleteIf(PFnRecordPred pfnPredicate, void* pvState=NULL)
{
IRTLASSERT(pfnPredicate != NULL);
if (pfnPredicate == NULL)
return 0;
CState state(pfnPredicate, NULL, pvState);
return _BaseHashTable::DeleteIf(_Pred, &state);
}
// Typesafe wrappers for iterators
class CIterator : public _BaseIterator
{
private:
// Private, unimplemented copy ctor and op= to prevent
// compiler synthesizing them.
CIterator(const CIterator&);
CIterator& operator=(const CIterator&);
public:
CIterator(
LK_LOCKTYPE lkl=LKL_WRITELOCK)
: _BaseIterator(lkl)
{}
_Record* Record() const
{
const _BaseIterator* pBase = static_cast<const _BaseIterator*>(this);
return reinterpret_cast<_Record*>(const_cast<void*>(
pBase->Record()));
}
_Key Key() const
{
const _BaseIterator* pBase = static_cast<const _BaseIterator*>(this);
return reinterpret_cast<_Key>(reinterpret_cast<void*>(pBase->Key()));
}
};
// readonly iterator
class CConstIterator : public CIterator
{
private:
// Private, unimplemented copy ctor and op= to prevent
// compiler synthesizing them.
CConstIterator(const CConstIterator&);
CConstIterator& operator=(const CConstIterator&);
public:
CConstIterator()
: CIterator(LKL_READLOCK)
{}
const _Record* Record() const
{
return CIterator::Record();
}
const _Key Key() const
{
return CIterator::Key();
}
};
public:
LK_RETCODE InitializeIterator(CIterator* piter)
{
return _BaseHashTable::InitializeIterator(piter);
}
LK_RETCODE IncrementIterator(CIterator* piter)
{
return _BaseHashTable::IncrementIterator(piter);
}
LK_RETCODE CloseIterator(CIterator* piter)
{
return _BaseHashTable::CloseIterator(piter);
}
LK_RETCODE InitializeIterator(CConstIterator* piter) const
{
return const_cast<HashTable*>(this)
->InitializeIterator(static_cast<CIterator*>(piter));
}
LK_RETCODE IncrementIterator(CConstIterator* piter) const
{
return const_cast<HashTable*>(this)
->IncrementIterator(static_cast<CIterator*>(piter));
}
LK_RETCODE CloseIterator(CConstIterator* piter) const
{
return const_cast<HashTable*>(this)
->CloseIterator(static_cast<CIterator*>(piter));
}
};
#ifdef __LKRHASH_NAMESPACE__
}
#endif // __LKRHASH_NAMESPACE__
#endif // __LKRHASH_H__
#ifdef SAMPLE_LKRHASH_TESTCLASS
//--------------------------------------------------------------------
// An example of how to create a wrapper for CLKRHashTable
//--------------------------------------------------------------------
// some random class
class CTest
{
public:
enum {BUFFSIZE=20};
int m_n; // This will also be a key
char m_sz[BUFFSIZE]; // This will be the primary key
bool m_fWhatever;
mutable LONG m_cRefs; // Reference count for lifetime management.
// Must be mutable to use 'const CTest*' in
// hashtables
CTest(int n, const char* psz, bool f)
: m_n(n), m_fWhatever(f), m_cRefs(0)
{
strncpy(m_sz, psz, BUFFSIZE-1);
m_sz[BUFFSIZE-1] = '\0';
}
~CTest()
{
IRTLASSERT(m_cRefs == 0);
}
};
// A typed hash table of CTests, keyed on the string field. Case-insensitive.
class CStringTestHashTable
: public CTypedHashTable<CStringTestHashTable, const CTest, const char*>
{
public:
CStringTestHashTable()
: CTypedHashTable<CStringTestHashTable, const CTest,
const char*>("string", LK_DFLT_MAXLOAD,
LK_SMALL_TABLESIZE)
{}
static const char*
ExtractKey(const CTest* pTest)
{
return pTest->m_sz;
}
static DWORD
CalcKeyHash(const char* pszKey)
{
return HashStringNoCase(pszKey);
}
static bool
EqualKeys(const char* pszKey1, const char* pszKey2)
{
return _stricmp(pszKey1, pszKey2) == 0;
}
static void
AddRefRecord(const CTest* pTest, int nIncr)
{
if (nIncr == +1)
{
// or, perhaps, pIFoo->AddRef() (watch out for marshalling)
// or ++pTest->m_cRefs (single-threaded only)
InterlockedIncrement(&pTest->m_cRefs);
}
else if (nIncr == -1)
{
// or, perhaps, pIFoo->Release() or --pTest->m_cRefs;
LONG l = InterlockedDecrement(&pTest->m_cRefs);
// For some hashtables, it may also make sense to add the following
// if (l == 0) delete pTest;
// but that would typically only apply when InsertRecord was
// used thus
// lkrc = ht.InsertRecord(new CTest(foo, bar));
}
else
IRTLASSERT(0);
TRACE("AddRef(%p, %s) %d, cRefs == %d\n",
pTest, pTest->m_sz, nIncr, pTest->m_cRefs);
}
};
// Another typed hash table of CTests. This one is keyed on the numeric field.
class CNumberTestHashTable
: public CTypedHashTable<CNumberTestHashTable, const CTest, int>
{
public:
CNumberTestHashTable()
: CTypedHashTable<CNumberTestHashTable, const CTest, int>("number") {}
static int ExtractKey(const CTest* pTest) {return pTest->m_n;}
static DWORD CalcKeyHash(int nKey) {return Hash(nKey);}
static bool EqualKeys(int nKey1, int nKey2) {return nKey1 == nKey2;}
static void AddRefRecord(const CTest* pTest, int nIncr) {/* do nothing*/}
};
// A class to exercise ApplyIf()
class CApplyIfTest
{
public:
static LK_PREDICATE
Predicate(const CTest* pTest, void* pvState)
{
CApplyIfTest* pThis = static_cast<CApplyIfTest*>(pvState);
++pThis->m_cPreds;
TRACE("CApplyIfTest::Predicate(%p (%s, %d), %p)\n",
pTest, pTest->m_sz, pTest->m_n, pThis);
return (pTest->m_n % 10 == 7) ? LKP_PERFORM : LKP_NO_ACTION;
}
static LK_ACTION
Action(const CTest* pTest, void* pvState)
{
CApplyIfTest* pThis = static_cast<CApplyIfTest*>(pvState);
++pThis->m_cActions;
LK_ACTION lka = (pTest->m_n > 30) ? LKA_SUCCEEDED : LKA_FAILED;
TRACE("CApplyIfTest::Action(%p (%s, %d), %p) %s\n",
pTest, pTest->m_sz, pTest->m_n, pThis,
lka == LKA_SUCCEEDED ? "succeeded" : "failed");
if (lka == LKA_SUCCEEDED)
++pThis->m_cSuccesses;
else if (lka == LKA_FAILED)
++pThis->m_cFailures;
return lka;
}
int m_cPreds;
int m_cActions;
int m_cSuccesses;
int m_cFailures;
CApplyIfTest()
: m_cPreds(0), m_cActions(0), m_cSuccesses(0), m_cFailures(0)
{}
};
// The Predicate and Action functions can be static member functions,
// but don't have to be
LK_PREDICATE
DeleteIfGt10(
const CTest* pTest,
void* pvState)
{
TRACE("DeleteIfGt10(%p, %s, %p) = %d\n",
pTest, pTest->m_sz, pvState, pTest->m_n);
return (pTest->m_n > 10) ? LKP_PERFORM : LKP_NO_ACTION;
}
#include <stdio.h>
#include <string.h>
void Test(
bool fVerbose)
{
// Some objects for the hash tables
CTest tl(5, "Larson", true);
CTest tk(17, "Krishnan", false);
CTest tr(37, "Reilly", true);
// A string-keyed hash table
CStringTestHashTable stht;
IRTLVERIFY(LK_SUCCESS == stht.InsertRecord(&tl));
IRTLVERIFY(LK_SUCCESS == stht.InsertRecord(&tk));
IRTLVERIFY(LK_SUCCESS == stht.InsertRecord(&tr));
TRACE("Check the overwrite feature of InsertRecord\n");
IRTLVERIFY(LK_KEY_EXISTS == stht.InsertRecord(&tr, false));
IRTLASSERT(tr.m_cRefs == 1);
IRTLVERIFY(LK_SUCCESS == stht.InsertRecord(&tr, true));
IRTLASSERT(tr.m_cRefs == 1); // 1+1-1 == 1
TRACE("Check that the keys are really present in the table and that "
"the refcounting works\n");
const CTest* pTest = NULL;
IRTLVERIFY(LK_SUCCESS == stht.FindKey(tl.m_sz, &pTest) && pTest == &tl);
IRTLASSERT(tl.m_cRefs == 2);
IRTLVERIFY(LK_SUCCESS == stht.FindKey(tk.m_sz, &pTest) && pTest == &tk);
IRTLASSERT(tk.m_cRefs == 2);
IRTLVERIFY(LK_SUCCESS == stht.FindKey(tr.m_sz, &pTest) && pTest == &tr);
IRTLASSERT(tr.m_cRefs == 2);
IRTLVERIFY(LK_SUCCESS == stht.FindRecord(&tr));
IRTLASSERT(tr.m_cRefs == 2); // FindRecord does not addref
TRACE("Look for a key under an alternate spelling (case-insensitive)\n");
IRTLVERIFY(LK_SUCCESS == stht.FindKey("rEiLlY", &pTest) && pTest == &tr);
IRTLASSERT(tr.m_cRefs == 3);
TRACE("Release the references added by FindKey\n");
stht.AddRefRecord(&tl, -1);
tk.m_cRefs--;
tr.m_cRefs = 1;
TRACE("Now build the numeric hash table\n");
CNumberTestHashTable ntht;
IRTLVERIFY(LK_SUCCESS == ntht.InsertRecord(&tl));
IRTLVERIFY(LK_SUCCESS == ntht.InsertRecord(&tk));
IRTLVERIFY(LK_SUCCESS == ntht.InsertRecord(&tr));
TRACE("Test ApplyIf()\n");
CApplyIfTest ait;
IRTLVERIFY(1 == ntht.ApplyIf(ait.Predicate, ait.Action, &ait));
IRTLASSERT(3 == ait.m_cPreds && 2 == ait.m_cActions
&& 1 == ait.m_cSuccesses && 1 == ait.m_cFailures);
TRACE("Test DeleteIf()\n");
IRTLASSERT(3 == ntht.Size());
ntht.DeleteIf(DeleteIfGt10, NULL);
IRTLASSERT(1 == ntht.Size());
TRACE("Check that the keys that were supposed to be deleted "
"really are gone\n");
IRTLASSERT(tl.m_n <= 10);
IRTLVERIFY(LK_SUCCESS == ntht.FindKey(tl.m_n, &pTest) && pTest == &tl);
IRTLASSERT(tk.m_n > 10);
IRTLVERIFY(LK_NO_SUCH_KEY == ntht.FindKey(tk.m_n, &pTest)
&& pTest == NULL);
IRTLASSERT(tr.m_n > 10);
IRTLVERIFY(LK_NO_SUCH_KEY == ntht.FindKey(tr.m_n, &pTest)
&& pTest == NULL);
IRTLVERIFY(LK_SUCCESS == ntht.DeleteRecord(&tl));
IRTLASSERT(0 == ntht.Size());
TRACE("Check Iterators\n");
DWORD cRec = 0;
CStringTestHashTable::CIterator iter;
LK_RETCODE lkrc = stht.InitializeIterator(&iter);
while (lkrc == LK_SUCCESS)
{
++cRec;
CStringTestHashTable::Key pszKey = iter.Key();
CStringTestHashTable::Record* pRec = iter.Record();
IRTLASSERT(pRec == &tl || pRec == &tk || pRec == &tr);
if (fVerbose)
printf("Record(%p) contains \"%s\"\n", pRec, pszKey);
lkrc = stht.IncrementIterator(&iter);
}
IRTLASSERT(lkrc == LK_NO_MORE_ELEMENTS);
lkrc = stht.CloseIterator(&iter);
IRTLASSERT(lkrc == LK_SUCCESS);
IRTLASSERT(cRec == stht.Size());
TRACE("Check const iterators\n");
const CStringTestHashTable& sthtConst = stht;
CStringTestHashTable::CConstIterator iterConst;
cRec = 0;
lkrc = sthtConst.InitializeIterator(&iterConst);
while (lkrc == LK_SUCCESS)
{
++cRec;
const CStringTestHashTable::Key pszKey = iterConst.Key();
const CStringTestHashTable::Record* pRec = iterConst.Record();
IRTLASSERT(pRec == &tl || pRec == &tk || pRec == &tr);
if (fVerbose)
printf("Const Record(%p) contains \"%s\"\n", pRec, pszKey);
lkrc = sthtConst.IncrementIterator(&iterConst);
}
IRTLASSERT(lkrc == LK_NO_MORE_ELEMENTS);
lkrc = sthtConst.CloseIterator(&iterConst);
IRTLASSERT(lkrc == LK_SUCCESS);
IRTLASSERT(cRec == sthtConst.Size());
#if 1
TRACE("Check Clear\n");
stht.Clear();
IRTLASSERT(0 == stht.Size());
#else
TRACE("Check DeleteKey\n");
IRTLVERIFY(LK_SUCCESS == stht.DeleteKey(tl.m_sz));
IRTLVERIFY(LK_SUCCESS == stht.DeleteKey(tk.m_sz));
IRTLVERIFY(LK_SUCCESS == stht.DeleteKey(tr.m_sz));
#endif
TRACE("Test done\n");
// ~CTest will check for m_cRefs==0
}
#endif // SAMPLE_LKRHASH_TESTCLASS