windows-nt/Source/XPSP1/NT/multimedia/media/drivers/synthlib/adlib.c
2020-09-26 16:20:57 +08:00

1558 lines
43 KiB
C
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 1992-1995 Microsoft Corporation
*/
/*
* definition of interface functions to the adlib midi device type.
*
* These functions are called from midi.c when the kernel driver
* has decreed that this is an adlib-compatible device.
*
* Geraint Davies, Dec 92
*/
#include <windows.h>
#include <mmsystem.h>
#include <mmddk.h>
#include "driver.h"
#include "adlib.h"
/*
* overview
*
* The FM synthesis chip consists of 18 operator cells or 'slots'. Each slot
* can produce a sine wave modified by a number of parameters such
* as frequency, output level and envelope shape (attack/decay/sustain
* release). Slots are arranged in pairs, with one slot modulating
* the sine wave of another to produce the harmonics desired for
* a given instrument sound. Thus one pair of slots is a 'voice' and can
* play one note at a time.
*
* In percussive mode (which we always use), there are 6 melodic voices
* available, and one voice for the base drum. The remaining four slots
* are used singly rather than in pairs to produce four further percussive
* voices. The 6 melodic voices will be changed to any given timbre
* as needed. The five percussive voices are fixed to particular instrument
* timbres: bass drum, snare, tom-tom, hi-hat and cymbal.
*
* To play a note, we first find a free voice of the appropriate type. If
* there are none free, we use the oldest busy one. We then set the
* parameters for both operator slots from the patch table - this table gives
* parameter settings for the different instrument timbres available.
* We adjust the output level and frequency depending on the
* note played and the velocity it was played with, and then switch on the
* note.
*/
/* --- typedefs ------------------------------------------------- */
#define NUMVOICES (11) // number of voices we have
#define NUMMELODIC (6) // number of melodic voices
#define NUMPERCUSSIVE (5) // number of percussive voices
#define MAXPATCH 180 // nr of patches (including drums)
#define MAXVOLUME 0x7f
#define NUMLOCPARAM 14 // number of loc params per slot
#define FIRSTDRUMNOTE 35
#define LASTDRUMNOTE 81
#define NUMDRUMNOTES (LASTDRUMNOTE - FIRSTDRUMNOTE + 1)
#define MAX_PITCH 0x3fff // maximum pitch bend value
#define MID_PITCH 0x2000 // mid pitch bend value (no shift)
#define PITCHRANGE 2 // total bend range +- 2 semitones
#define NR_STEP_PITCH 25 // steps per half-tone for pitch bend
#define MID_C 60 // MIDI standard mid C
#define CHIP_MID_C 48 // sound chip mid C
/*
* to write to the device, we write a SYNTH_DATA port,data pair
* to the kernel driver.
*/
#define SndOutput(p,d) MidiSendFM(p, d)
/****************************************************************************
*
* definitions of sound chip parameters
*/
// parameters of each voice
#define prmKsl 0 // key scale level (KSL) - level controller
#define prmMulti 1 // frequency multiplier (MULTI) - oscillator
#define prmFeedBack 2 // modulation feedback (FB) - oscillator
#define prmAttack 3 // attack rate (AR) - envelope generator
#define prmSustain 4 // sustain level (SL) - envelope generator
#define prmStaining 5 // sustaining sound (SS) - envelope generator
#define prmDecay 6 // decay rate (DR) - envelope generator
#define prmRelease 7 // release rate (RR) - envelope generator
#define prmLevel 8 // output level (OL) - level controller
#define prmAm 9 // amplitude vibrato (AM) - level controller
#define prmVib 10 // frequency vibrator (VIB) - oscillator
#define prmKsr 11 // envelope scaling (KSR) - envelope generator
#define prmFm 12 // fm=0, additive=1 (FM) (operator 0 only)
#define prmWaveSel 13 // wave select
// global parameters
#define prmAmDepth 14
#define prmVibDepth 15
#define prmNoteSel 16
#define prmPercussion 17
// percussive voice numbers (0-5 are melodic voices, 2 op):
#define BD 6 // bass drum (2 op)
#define SD 7 // snare drum (1 op)
#define TOM 8 // tom-tom (1 op)
#define CYMB 9 // cymbal (1 op)
#define HIHAT 10 // hi-hat (1 op)
// In percussive mode, the last 4 voices (SD TOM HH CYMB) are created
// using melodic voices 7 & 8. A noise generator uses channels 7 & 8
// frequency information for creating rhythm instruments. Best results
// are obtained by setting TOM two octaves below mid C and SD 7 half-tones
// above TOM. In this implementation, only the TOM pitch may vary, with the
// SD always set 7 half-tones above.
#define TOM_PITCH 24 // best frequency, in range of 0 to 95
#define TOM_TO_SD 7 // 7 half-tones between voice 7 & 8
#define SD_PITCH (TOM_PITCH + TOM_TO_SD)
/****************************************************************************
*
* bank file support
*
***************************************************************************/
#define BANK_SIG_LEN 6
#define BANK_FILLER_SIZE 8
typedef BYTE *HPBYTE;
typedef BYTE NEAR * NPBYTE;
typedef WORD NEAR * NPWORD;
// instrument bank file header
typedef struct {
char majorVersion;
char minorVersion;
char sig[BANK_SIG_LEN]; // signature: "ADLIB-"
WORD nrDefined; // number of list entries used
WORD nrEntry; // number of total entries in list
long offsetIndex; // offset of start of list of names
long offsetTimbre; // offset of start of data
char filler[BANK_FILLER_SIZE]; // must be zero
} BANKHDR, NEAR *NPBANKHDR, FAR *LPBANKHDR;
// all the parameters for one slot
typedef struct {
BYTE ksl; // KSL
BYTE freqMult; // MULTI
BYTE feedBack; // FB
BYTE attack; // AR
BYTE sustLevel; // SL
BYTE sustain; // SS
BYTE decay; // DR
BYTE release; // RR
BYTE output; // OL
BYTE am; // AM
BYTE vib; // VIB
BYTE ksr; // KSR
BYTE fm; // FM
} OPERATOR, NEAR *NPOPERATOR, FAR *LPOPERATOR;
// definition of a particular instrument sound or timbre -
// one of these per patch
typedef struct {
BYTE mode; // 0 = melodic, 1 = percussive
BYTE percVoice; // if mode == 1, voice number to be used
OPERATOR op0; // params for slot 0
OPERATOR op1; // params for slot 1
BYTE wave0; // waveform for operator 0
BYTE wave1; // waveform for operator 1
} TIMBRE, NEAR *NPTIMBRE, FAR *LPTIMBRE;
typedef struct drumpatch_tag {
BYTE patch; // the patch to use
BYTE note; // the note to play
} DRUMPATCH;
// format of drumkit.dat file
typedef struct drumfilepatch_tag {
BYTE key; // the key to map
BYTE patch; // the patch to use
BYTE note; // the note to play
} DRUMFILEPATCH, *PDRUMFILEPATCH;
typedef struct _VOICE {
BYTE alloc; // is voice allocated?
BYTE note; // note that is currently being played
BYTE channel; // channel that it is being played on
BYTE volume; // current volume setting of voice
DWORD dwTimeStamp; // time voice was allocated
} VOICE;
#define GetLocPrm(slot_num, prm) ((WORD)paramSlot[slot_num][prm])
/* --- module data ---------------------------------------------- */
// this table gives the offset of each slot within the chip.
BYTE offsetSlot[] = {
0, 1, 2, 3, 4, 5,
8, 9, 10, 11, 12, 13,
16, 17, 18, 19, 20, 21
};
static BYTE percMasks[] = {
0x10, 0x08, 0x04, 0x02, 0x01 };
// voice number associated with each slot (melodic mode only)
static BYTE voiceSlot[] = {
0, 1, 2,
0, 1, 2,
3, 4, 5,
3, 4, 5,
6, 7, 8,
6, 7, 8,
};
// slot numbers for percussive voices (0 indicates that there is only one slot)
static BYTE slotPerc[][2] = {
{12, 15}, // Bass Drum
{16, 0}, // SD
{14, 0}, // TOM
{17, 0}, // TOP-CYM
{13, 0} // HH
};
// slot numbers as a function of the voice and the operator (melodic only)
static BYTE slotVoice[][2] = {
{0, 3}, // voice 0
{1, 4}, // 1
{2, 5}, // 2
{6, 9}, // 3
{7, 10}, // 4
{8, 11}, // 5
{12, 15}, // 6
{13, 16}, // 7
{14, 17} // 8
};
// this table indicates if the slot is a modulator (0) or a carrier (1).
BYTE operSlot[] = {
0, 0, 0, // 1 2 3
1, 1, 1, // 4 5 6
0, 0, 0, // 7 8 9
1, 1, 1, // 10 11 12
0, 0, 0, // 13 14 15
1, 1, 1, // 16 17 18
};
// this array adjusts the octave of a note for certain patches.
static char patchKeyOffset[] = {
0, -12, 12, 0, 0, 12, -12, 0, 0, -24, // 0 - 9
0, 0, 0, 0, 0, 0, 0, 0, -12, 0, // 10 - 19
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20 - 29
0, 0, 12, 12, 12, 0, 0, 12, 12, 0, // 30 - 39
-12, -12, 0, 12, -12, -12, 0, 12, 0, 0, // 40 - 49
-12, 0, 0, 0, 12, 12, 0, 0, 12, 0, // 50 - 59
0, 0, 12, 0, 0, 0, 12, 12, 0, 12, // 60 - 69
0, 0, -12, 0, -12, -12, 0, 0, -12, -12, // 70 - 79
0, 0, 0, 0, 0, -12, -19, 0, 0, -12, // 80 - 89
0, 0, 0, 0, 0, 0, -31, -12, 0, 12, // 90 - 99
12, 12, 12, 0, 12, 0, 12, 0, 0, 0, // 100 - 109
0, 12, 0, 0, 0, 0, 12, 12, 12, 0, // 110 - 119
0, 0, 0, 0, -24, -36, 0, 0}; // 120 - 127
static BYTE loudervol[128] = {
0, 0, 65, 65, 66, 66, 67, 67, // 0 - 7
68, 68, 69, 69, 70, 70, 71, 71, // 8 - 15
72, 72, 73, 73, 74, 74, 75, 75, // 16 - 23
76, 76, 77, 77, 78, 78, 79, 79, // 24 - 31
80, 80, 81, 81, 82, 82, 83, 83, // 32 - 39
84, 84, 85, 85, 86, 86, 87, 87, // 40 - 47
88, 88, 89, 89, 90, 90, 91, 91, // 48 - 55
92, 92, 93, 93, 94, 94, 95, 95, // 56 - 63
96, 96, 97, 97, 98, 98, 99, 99, // 64 - 71
100, 100, 101, 101, 102, 102, 103, 103, // 72 - 79
104, 104, 105, 105, 106, 106, 107, 107, // 80 - 87
108, 108, 109, 109, 110, 110, 111, 111, // 88 - 95
112, 112, 113, 113, 114, 114, 115, 115, // 96 - 103
116, 116, 117, 117, 118, 118, 119, 119, // 104 - 111
120, 120, 121, 121, 122, 122, 123, 123, // 112 - 119
124, 124, 125, 125, 126, 126, 127, 127}; // 120 - 127
/*
* attenuation setting for each slot - combination
* of the channel attenuation for this channel, and the
* velocity (converted to attenuation). Combine with
* global attenuation and timbre output attenuation before
* writing to device.
*/
WORD slotAtten[18]; // vol-control attenuation of slots
WORD wSynthAtten; // overall volume setting
BYTE gbChanAtten[NUMCHANNELS]; // attenuation for each channel
VOICE voices[11]; // 9 voices if melodic mode or 11 if percussive
BYTE voiceKeyOn[11]; // keyOn bit for each voice (implicit 0 init)
BYTE paramSlot[18][NUMLOCPARAM]; // all the parameters of slots...
BYTE percBits; // control bits of percussive voices
WORD fNumNotes[NR_STEP_PITCH][12];
PWORD fNumFreqPtr[11]; // lines of fNumNotes table (one per voice)
int halfToneOffset[11]; // one per voice
BYTE notePitch[11]; // pitch value for each voice (implicit 0 init)
// patches - parameters for different instrument timbres
TIMBRE patches[MAXPATCH]; // patch data
DRUMPATCH drumpatch[NUMDRUMNOTES]; // drum kit data
DWORD dwAge = 0; // voice relative age
/* --- internal functions --------------------------------------- */
/* -- initialisation --- */
/****************************************************************************
* @doc INTERNAL
*
* @api int | LoadPatches | Reads the patch set from the BANK resource and
* builds the <p patches> array.
*
* @rdesc Returns the number of patches loaded, or 0 if an error occurs.
***************************************************************************/
static BYTE PatchRes[] = {
#include "adlib.dat"
};
int LoadPatches(void)
{
#ifdef WIN16
HANDLE hResInfo;
HANDLE hResData;
#endif
LPSTR lpRes;
int iPatches;
DWORD dwOffset;
DWORD dwResSize;
LPTIMBRE lpBankTimbre;
LPTIMBRE lpPatchTimbre;
LPBANKHDR lpBankHdr;
// find resource and get its size
#ifdef WIN16
hResInfo = FindResource(ghInstance, MAKEINTRESOURCE(DEFAULTBANK), MAKEINTRESOURCE(RT_BANK));
if (!hResInfo) {
D1(("Default bank resource not found"));
return 0;
}
dwResSize = (DWORD)SizeofResource(ghInstance, hResInfo);
// load and lock resource
hResData = LoadResource(ghInstance, hResInfo);
if (!hResData) {
D1(("Bank resource not loaded"));
return 0;
}
lpRes = LockResource(hResData);
if (!lpRes) {
D1(("Bank resource not locked"));
return 0;
}
#else
lpRes = PatchRes;
dwResSize = sizeof(PatchRes);
#endif
// read the bank resource, loading patches as we find them
D2(("loading patches"));
lpBankHdr = (LPBANKHDR)lpRes;
dwOffset = lpBankHdr->offsetTimbre; // point to first one
for (iPatches = 0; iPatches < MAXPATCH; iPatches++) {
lpBankTimbre = (LPTIMBRE)(lpRes + dwOffset);
lpPatchTimbre = &patches[iPatches];
*lpPatchTimbre = *lpBankTimbre;
dwOffset += sizeof(TIMBRE);
if (dwOffset + sizeof(TIMBRE) > dwResSize) {
D1(("Attempt to read past end of bank resource"));
break;
}
}
#ifdef WIN16
UnlockResource(hResData);
FreeResource(hResData);
#endif
return iPatches;
}
/****************************************************************************
* @doc INTERNAL
*
* @api int | LoadDrumPatches | Reads the drum kit patch set from the
* DRUMKIT resource and builds the <p drumpatch> array.
*
* @comm Each entry of the <t drumpatch> array (representing a key number
* from the "drum patch") consists of a patch number and note number
* from some other patch.
*
* @rdesc Returns the number of patches loaded, or 0 if an error occurs.
***************************************************************************/
static BYTE DrumRes[] = {
#include "drumkit.dat"
};
int LoadDrumPatches(void)
{
#ifdef WIN16
HANDLE hResInfo;
HANDLE hResData;
#endif
LPSTR lpRes;
int iPatches;
int key;
DWORD dwOffset;
DWORD dwResSize;
PDRUMFILEPATCH lpResPatch;
#ifdef WIN16
// find resource and get its size
hResInfo = FindResource(ghInstance, MAKEINTRESOURCE(DEFAULTDRUMKIT), MAKEINTRESOURCE(RT_DRUMKIT));
if (!hResInfo) {
D1(("Default drum resource not found"));
return 0;
}
dwResSize = (DWORD)SizeofResource(ghInstance, hResInfo);
// load and lock resource
hResData = LoadResource(ghInstance, hResInfo);
if (!hResData) {
D1(("Drum resource not loaded"));
return 0;
}
lpRes = LockResource(hResData);
if (!lpRes) {
D1(("Drum resource not locked"));
return 0;
}
#else
lpRes = DrumRes;
dwResSize = sizeof(DrumRes);
#endif
// read the drum resource, loading patches as we find them
D2(("reading drum data"));
dwOffset = 0;
for (iPatches = 0; iPatches < NUMDRUMNOTES; iPatches++) {
lpResPatch = (PDRUMFILEPATCH)(lpRes + dwOffset);
key = lpResPatch->key;
if ((key >= FIRSTDRUMNOTE) && (key <= LASTDRUMNOTE)) {
drumpatch[key - FIRSTDRUMNOTE].patch = lpResPatch->patch;
drumpatch[key - FIRSTDRUMNOTE].note = lpResPatch->note;
}
else {
D1(("Drum patch key out of range"));
}
dwOffset += sizeof(DRUMFILEPATCH);
if (dwOffset > dwResSize) {
D1(("Attempt to read past end of drum resource"));
break;
}
}
#ifdef WIN16
UnlockResource(hResData);
FreeResource(hResData);
#endif
return iPatches;
}
/****************************************************************************
* @doc INTERNAL
*
* @api long | CalcPremFNum | Calculates some magic number that is used in
* setting the values in the <p fNumNotes> table.
*
* @parm int | numDeltaDemiTon | Numerator (-100 to +100).
*
* @parm int | denDeltaDemiTon | Denominator (1 to 100).
*
* @comm If the numerator (numDeltaDemiTon) is positive, the frequency is
* increased; if negative, it is decreased. The function calculates:
* f8 = Fb(1 + 0.06 num /den) (where Fb = 26044 * 2 / 25)
* fNum8 = f8 * 65536 * 72 / 3.58e6
*
* @rdesc Returns fNum8, which is the binary value of the frequency 260.44 (C)
* shifted by +/- <p numdeltaDemiTon> / <p denDeltaDemiTon> * 8.
***************************************************************************/
long NEAR CalcPremFNum(int numDeltaDemiTon, int denDeltaDemiTon)
{
long f8;
long fNum8;
long d100;
d100 = denDeltaDemiTon * 100;
f8 = (d100 + 6 * numDeltaDemiTon) * (26044L * 2L);
f8 /= d100 * 25;
fNum8 = f8 * 16384;
fNum8 *= 9L;
fNum8 /= 179L * 625L;
return fNum8;
}
/****************************************************************************
* @doc INTERNAL
*
* @api void | SetFNum | Initializes a line in the frequency table with
* shifted frequency values. The values are shifted a fraction (num/den)
* of a half-tone.
*
* @parm NPWORD | fNumVec | The line from the frequency table.
*
* @parm int | num | Numerator.
*
* @parm int | den | Denominator.
*
* @xref CalcPremFNum
*
* @rdesc There is no return value.
***************************************************************************/
void NEAR SetFNum(NPWORD fNumVec, int num, int den)
{
int i;
long val;
*fNumVec++ = (WORD)((4 + (val = CalcPremFNum(num, den))) >> 3);
for (i = 1; i < 12; i++) {
val *= 106;
*fNumVec++ = (WORD)((4 + (val /= 100)) >> 3);
}
}
/****************************************************************************
* @doc INTERNAL
*
* @api void | InitFNums | Initializes all lines of the frequency table
* (the <p fNumNotes> array). Each line represents 12 half-tones shifted
* by (n / NR_STEP_PITCH), where 'n' is the line number and ranges from
* 1 to NR_STEP_PITCH.
*
* @rdesc There is no return value.
***************************************************************************/
void NEAR InitFNums(void)
{
WORD i;
WORD num; // numerator
WORD numStep; // step value for numerator
WORD row; // row in the frequency table
// calculate each row in the fNumNotes table
numStep = 100 / NR_STEP_PITCH;
for (num = row = 0; row < NR_STEP_PITCH; row++, num += numStep)
SetFNum(fNumNotes[row], num, 100);
// fNumFreqPtr has an element for each voice, pointing to the
// appropriate row in the fNumNotes table. They're all initialized
// to the first row, which represents no pitch shift.
for (i = 0; i < 11; i++) {
fNumFreqPtr[i] = fNumNotes[0];
halfToneOffset[i] = 0;
}
}
/****************************************************************************
* @doc INTERNAL
*
* @api void | SoundChut | Sets the frequency of voice <p voice> to 0 Hz.
*
* @parm BYTE | voice | Specifies which voice to set.
*
* @rdesc There is no return value.
***************************************************************************/
void NEAR SoundChut(BYTE voice)
{
SndOutput((BYTE)(0xA0 | voice), 0);
SndOutput((BYTE)(0xB0 | voice), 0);
}
/* --- write parameters to chip ------------------------*/
/*
* switch chip to rhythm (percussive) mode, set the amplitude and
* vibrato depth and switch on any percussion voices that are on
*/
void SndSAmVibRhythm(void)
{
// we always set amdepth, vibdepth to 0 and perc mode on
// t1 = (BYTE)(amDepth ? 0x80 : 0);
// t1 |= vibDepth ? 0x40 : 0;
// t1 |= (percussionmode ? 0x20 : 0);
SndOutput((BYTE)0xBD, (BYTE)(0x20|percBits));
}
/****************************************************************************
* @doc INTERNAL
*
* @api void | SndSNoteSel | Sets the NoteSel value.
*
* @rdesc There is no return value.
***************************************************************************/
void SndSNoteSel(BOOL bNoteSel)
{
SndOutput(0x08, (BYTE)(bNoteSel ? 64 : 0));
}
/****************************************************************************
* @doc INTERNAL
*
* @api void | SndSKslLevel | Sets the KSL and LEVEL values.
*
* @parm BYTE | slot | Specifies which slot to set.
*
* @rdesc There is no return value.
***************************************************************************/
void SndSKslLevel(BYTE slot)
{
WORD t1;
t1 = GetLocPrm(slot, prmLevel) & 0x3f;
t1 += slotAtten[slot];
t1 = min (t1, 0x3f);
t1 |= GetLocPrm(slot, prmKsl) << 6;
SndOutput((BYTE)(0x40 | offsetSlot[slot]), (BYTE) t1);
}
/****************************************************************************
* @doc INTERNAL
*
* @api void | SndSAVEK | Sets the AM, VIB, EG-TYP (sustaining), KSR, and
* MULTI values.
*
* @parm BYTE | slot | Specifies which slot to set.
*
* @rdesc There is no return value.
***************************************************************************/
void SndSAVEK(BYTE slot)
{
BYTE t1;
t1 = (BYTE)(GetLocPrm(slot, prmAm) ? 0x80 : 0);
t1 += GetLocPrm(slot, prmVib) ? 0x40 : 0;
t1 += GetLocPrm(slot, prmStaining) ? 0x20 : 0;
t1 += GetLocPrm(slot, prmKsr) ? 0x10 : 0;
t1 += GetLocPrm(slot, prmMulti) & 0xf;
SndOutput((BYTE)(0x20 | offsetSlot[slot]), t1);
}
/****************************************************************************
* @doc INTERNAL
*
* @api void | SndSFeedFm | Sets the FEEDBACK and FM (connection) values.
* Applicable only to operator 0 for melodic voices.
*
* @parm BYTE | slot | Specifies which slot to set.
*
* @rdesc There is no return value.
***************************************************************************/
void SndSFeedFm(BYTE slot)
{
BYTE t1;
if (operSlot[slot])
return;
t1 = (BYTE)(GetLocPrm(slot, prmFeedBack) << 1);
t1 |= GetLocPrm(slot, prmFm) ? 0 : 1;
SndOutput((BYTE)(0xC0 | voiceSlot[slot]), t1);
}
/****************************************************************************
* @doc INTERNAL
*
* @api void | SndSAttDecay | Sets the ATTACK and DECAY values.
*
* @parm BYTE | slot | Specifies which slot to set.
*
* @rdesc There is no return value.
***************************************************************************/
void SndSAttDecay(BYTE slot)
{
BYTE t1;
t1 = (BYTE)(GetLocPrm(slot, prmAttack) << 4);
t1 |= GetLocPrm(slot, prmDecay) & 0xf;
SndOutput((BYTE)(0x60 | offsetSlot[slot]), t1);
}
/****************************************************************************
* @doc INTERNAL
*
* @api void | SndSSusRelease | Sets the SUSTAIN and RELEASE values.
*
* @parm BYTE | slot | Specifies which slot to set.
*
* @rdesc There is no return value.
***************************************************************************/
void SndSSusRelease(BYTE slot)
{
BYTE t1;
t1 = (BYTE)(GetLocPrm(slot, prmSustain) << 4);
t1 |= GetLocPrm(slot, prmRelease) & 0xf;
SndOutput((BYTE)(0x80 | offsetSlot[slot]), t1);
}
/****************************************************************************
* @doc INTERNAL
*
* @api void | SndWaveSelect | Sets the wave-select parameter.
*
* @parm BYTE | slot | Specifies which slot to set.
*
* @rdesc There is no return value.
***************************************************************************/
void SndWaveSelect(BYTE slot)
{
BYTE wave;
wave = (BYTE)(GetLocPrm(slot, prmWaveSel) & 0x03);
SndOutput((BYTE)(0xE0 | offsetSlot[slot]), wave);
}
/****************************************************************************
* @doc INTERNAL
*
* @api void | SndSetAllPrm | Transfers all the parameters from slot <p slot>
* to the chip.
*
* @parm BYTE | slot | Specifies which slot to set.
*
* @rdesc There is no return value.
***************************************************************************/
void SndSetAllPrm(BYTE slot)
{
/* global am-depth and vib-depth settings */
SndSAmVibRhythm();
/* note sel is always false */
SndSNoteSel(FALSE);
/* slot-specific parameters */
/* initialise volume to minimum to avoid clicks if the note is
* off but still playing (during decay phase).
*
* only applies to carrier slots.
*/
if (operSlot[slot]) {
/* its a carrier slot */
slotAtten[slot] = 0x3f; // max attenuation
}
SndSKslLevel(slot);
SndSFeedFm(slot);
SndSAttDecay(slot);
SndSSusRelease(slot);
SndSAVEK(slot);
SndWaveSelect(slot);
}
/* --- setting slot parameters ------------------ */
/****************************************************************************
* @doc INTERNAL
*
* @api void | SetSlotParam | Sets the 14 parameters (13 in <p param>,
* 1 in <p waveSel>) of slot <p slot>. Updates both the parameter array
* and the chip.
*
* @parm BYTE | slot | Specifies which slot to set.
*
* @parm NPBYTE | param | Pointer to the new parameter array.
*
* @parm BYTE | waveSel | The new waveSel value.
*
* @rdesc There is no return value.
***************************************************************************/
void SetSlotParam(BYTE slot, NPOPERATOR pOper, BYTE waveSel)
{
LPBYTE ptr;
ptr = &paramSlot[slot][0];
*ptr++ = pOper->ksl;
*ptr++ = pOper->freqMult;
*ptr++ = pOper->feedBack;
*ptr++ = pOper->attack;
*ptr++ = pOper->sustLevel;
*ptr++ = pOper->sustain;
*ptr++ = pOper->decay;
*ptr++ = pOper->release;
*ptr++ = pOper->output;
*ptr++ = pOper->am;
*ptr++ = pOper->vib;
*ptr++ = pOper->ksr;
*ptr++ = pOper->fm;
*ptr = waveSel & 0x3;
// set default volume settings
slotAtten[slot] = 0;
SndSetAllPrm(slot);
}
/*
* set this voice up to the correct parameters for a timbre
* copy the parameters to the slot array and write them to the
* chip
*
*/
void SetVoiceTimbre(BYTE voice, NPTIMBRE pTimbre)
{
if (voice < BD) { // melodic only
SetSlotParam(slotVoice[voice][0], &pTimbre->op0, pTimbre->wave0);
SetSlotParam(slotVoice[voice][1], &pTimbre->op1, pTimbre->wave1);
}
else if (voice == BD) { // bass drum
SetSlotParam(slotPerc[0][0], &pTimbre->op0, pTimbre->wave0);
SetSlotParam(slotPerc[0][1], &pTimbre->op1, pTimbre->wave1);
} else { // percussion, 1 slot
SetSlotParam(slotPerc[voice - BD][0], &pTimbre->op0, pTimbre->wave0);
}
}
/* --- frequency calculation -------------------- */
/* convert the given pitch (0 .. 95) into a frequency
* and write to the chip.
*
* this will turn the note on if keyon is true.
*/
VOID SetFreq(BYTE voice, BYTE pitch, BYTE keyOn)
{
WORD FNum;
BYTE t1;
// remember the keyon and pitch of the voice
voiceKeyOn[voice] = keyOn;
notePitch[voice] = pitch;
pitch += (BYTE)halfToneOffset[voice];
if (pitch > 95)
pitch = 95;
// get the FNum for the voice
FNum = * (fNumFreqPtr[voice] + pitch % 12);
// output the FNum, KeyOn and Block values
SndOutput((BYTE)(0xA0 | voice), (BYTE)FNum); // FNum bits 0 - 7 (D0 - D7)
t1 = (BYTE)(keyOn ? 32 : 0); // Key On (D5)
t1 += (pitch / 12 << 2); // Block (D2 - D4)
t1 += (0x3 & (FNum >> 8)); // FNum bits 8 - 9 (D0 - D1)
SndOutput((BYTE)(0xB0 | voice), t1);
}
/****************************************************************************
* @doc INTERNAL
*
* @api void | ChangePitch | This routine sets the <t halfToneOffset[]> and
* <t fNumFreqPtr[]> arrays. These two global variables are used to
* determine the frequency variation to use when a note is played.
*
* @parm BYTE | voice | Specifies which voice to use.
*
* @parm WORD | pitchBend | Specifies the pitch bend value (0 to 0x3fff,
* where 0x2000 is exact tuning).
*
* @rdesc There is no return value.
***************************************************************************/
void ChangePitch(BYTE voice, WORD pitchBend)
{
int t1;
int t2;
int delta;
int pitchrange;
/* pitch bend range 0-3fff is +-PITCHRANGE semitones. We move
* NR_STEP_PITCH steps per semitone.
* so the bend range is +- (PITCHRANGE * NR_STEP_PITCH) steps.
*/
pitchrange = PITCHRANGE * NR_STEP_PITCH;
t1 = (int)(((long)((int)pitchBend - MID_PITCH) * pitchrange) / MID_PITCH);
if (t1 < 0)
{
t2 = NR_STEP_PITCH - 1 - t1;
halfToneOffset[voice] = -(t2 / NR_STEP_PITCH);
delta = (t2 - NR_STEP_PITCH + 1) % NR_STEP_PITCH;
if (delta) {
delta = NR_STEP_PITCH - delta;
}
}
else
{
halfToneOffset[voice] = t1 / NR_STEP_PITCH;
delta = t1 % NR_STEP_PITCH;
}
fNumFreqPtr[voice] = fNumNotes[delta];
}
/****************************************************************************
* @doc INTERNAL
*
* @api void | SetVoicePitch | Changes the pitch value of a voice. Does
* not affect the percussive voices, except for the bass drum. The change
* takes place immediately.
*
* @parm BYTE | voice | Specifies which voice to set.
*
* @parm WORD | pitchBend | Specifies the new pitch bend value (0 to 0x3fff,
* where 0x2000 == exact tuning).
*
* @comm The variation in pitch is a function of the previous call to
* <f SetPitchRange> and the value of <p pitchBend>. A value of 0 means
* -half-tone * pitchRangeStep, 0x2000 means no variation (exact pitch) and
* 0x3fff means +half-tone * pitchRangeStep.
*
* @rdesc There is no return value.
***************************************************************************/
void SetVoicePitch(BYTE voice, WORD pitchBend)
{
if (voice <= BD) { // melodic and bass drum voices
if (pitchBend > MAX_PITCH) {
pitchBend = MAX_PITCH;
}
ChangePitch(voice, pitchBend);
SetFreq(voice, notePitch[voice], voiceKeyOn[voice]);
}
}
/* --- volume calculation ------------------------ */
/*
* set the attenuation for a slot (combine the channel attenuation
* setting with the key velocity).
*/
VOID SetVoiceAtten(BYTE voice, BYTE bChannel, BYTE bVelocity)
{
BYTE bAtten;
BYTE slot;
PBYTE slots;
// scale up the volume since the patch maps are too quiet
//bVelocity = loudervol[bVelocity];
/*
* set channel attenuation
*/
bAtten = gbVelocityAtten[bVelocity >> 2] + gbChanAtten[bChannel];
/*
* add on any global (volume-setting) attenuation
*/
bAtten += wSynthAtten;
/* save this for each non-modifier slot */
if (voice <= BD) { // melodic voice
slots = slotVoice[voice];
slotAtten[slots[1]] = bAtten;
SndSKslLevel(slots[1]);
if (!GetLocPrm(slots[0], prmFm)) {
// additive synthesis: set volume of first slot too
slotAtten[slots[0]] = bAtten;
SndSKslLevel(slots[0]);
}
}
else { // percussive voice
slot = slotPerc[voice - BD][0];
slotAtten[slot] = bAtten;
SndSKslLevel(slot);
}
}
/* adjust each slot attenuation to allow for a global volume
* change - note that we only need to change the
* carrier, not the modifier slots.
*
* change for channel bChannel, or all channels if bChannel is
* 0xff
*/
VOID ChangeAtten(BYTE bChannel, int iChangeAtten)
{
BYTE voice;
BYTE slot;
PBYTE slots;
/* find voices using this channel */
for (voice = 0; voice < NUMVOICES; voice++) {
if ((voices[voice].channel == bChannel) || (bChannel == 0xff)) {
if (voice <= BD) {
/* melodic voice */
slots = slotVoice[voice];
slotAtten[slots[1]] += (WORD)iChangeAtten;
SndSKslLevel(slots[1]);
if (!GetLocPrm(slots[0], prmFm)) {
// additive synthesis: set volume of first slot too
slotAtten[slots[0]] += (WORD)iChangeAtten;
SndSKslLevel(slots[0]);
}
} else {
slot = slotPerc[voice - BD][0];
slotAtten[slot] += (WORD)iChangeAtten;
SndSKslLevel(slot);
}
}
}
}
/* --- note on/off ------------------------------- */
/* switch off the note a given voice is playing */
void NoteOff(BYTE voice)
{
if (voice < BD) {
/* melodic voice */
SetFreq(voice, notePitch[voice], 0);
} else {
percBits &= ~percMasks[voice-BD];
SndSAmVibRhythm();
}
}
/* switch on a voice at a given note (0 - 127, where 60 is middle c) */
void NoteOn(BYTE voice, BYTE bNote)
{
BYTE bPitch;
/* convert note to chip pitch */
if (bNote < (MID_C - CHIP_MID_C)) {
bPitch = 0;
} else {
bPitch = bNote - (MID_C - CHIP_MID_C);
}
if (voice < BD) {
/* melodic voice */
/* set frequency and start note */
SetFreq(voice, bPitch, 1);
} else {
/*
* nb we don't change the pitch of some percussion instruments.
*
* also note that for percussive instruments (including BD),
* the note-on setting should always be 0. You switch the percussion
* on by writing to the AmVibRhythm register.
*/
if (voice == BD) {
SetFreq(voice, bPitch, 0);
} else if (voice == TOM) {
/*
* for best sounds, we do change the TOM freq, but we always keep
* the SD 7 semi-tones above TOM.
*/
SetFreq(TOM, bPitch, 0);
SetFreq(SD, (BYTE)(bPitch + TOM_TO_SD), 0);
}
/* other instruments never change */
percBits |= percMasks[voice - BD];
SndSAmVibRhythm();
}
}
/* -- voice allocation -------- */
/*
* find the voice that is currently playing a given channel/note pair
* (if any)
*/
BYTE
FindVoice(BYTE bNote, BYTE bChannel)
{
BYTE i;
for (i = 0; i < (BYTE)NUMVOICES; i++) {
if ((voices[i].alloc) && (voices[i].note == bNote)
&& (voices[i].channel == bChannel)) {
voices[i].dwTimeStamp = dwAge++;
return(i);
}
}
/* no voice is playing this */
return(0xff);
}
/*
* mark a voice as unused
*/
VOID FreeVoice(voice)
{
voices[voice].alloc = 0;
}
/*
* GetNewVoice - allocate a voice to play this note. if no voices are
* free, re-use the note with the oldest timestamp.
*/
BYTE GetNewVoice(BYTE patch, BYTE note, BYTE channel)
{
BYTE i;
BYTE voice;
BYTE bVoiceToUse, bVoiceSame, bVoiceOldest;
DWORD dwOldestTime = dwAge + 1; // init to past current "time"
DWORD dwOldestSame = dwAge + 1;
DWORD dwOldestOff = dwAge + 1;
if (patches[patch].mode) { // it's a percussive patch
voice = patches[patch].percVoice; // use fixed percussion voice
voices[voice].alloc = TRUE;
voices[voice].note = note;
voices[voice].channel = channel;
voices[voice].dwTimeStamp = MAKELONG(patch, 0);
SetVoiceTimbre(voice, &patches[patch]);
return voice;
}
bVoiceToUse = bVoiceSame = bVoiceOldest = 0xff;
// find a free melodic voice to use
for (i = 0; i < (BYTE)NUMMELODIC; i++) { // it's a melodic patch
if (!voices[i].alloc) {
if (voices[i].dwTimeStamp < dwOldestOff) {
bVoiceToUse = i;
dwOldestOff = voices[i].dwTimeStamp;
}
} else if (voices[i].channel == channel) {
if (voices[i].dwTimeStamp < dwOldestSame) {
dwOldestSame = voices[i].dwTimeStamp;
bVoiceSame = i;
}
} else if (voices[i].dwTimeStamp < dwOldestTime) {
dwOldestTime = voices[i].dwTimeStamp;
bVoiceOldest = i; // remember oldest one to steal
}
}
// choose a free voice if we have found one. If not, choose the
// oldest voice of the same channel. if none, choose the oldest voice.
if (bVoiceToUse == 0xff) {
if (bVoiceSame != 0xff) {
bVoiceToUse = bVoiceSame;
} else {
bVoiceToUse = bVoiceOldest;
}
}
if (voices[bVoiceToUse].alloc) { // if we stole it, turn it off
NoteOff(bVoiceToUse);
}
voices[bVoiceToUse].alloc = 1;
voices[bVoiceToUse].note = note;
voices[bVoiceToUse].channel = channel;
voices[bVoiceToUse].dwTimeStamp = dwAge++;
SetVoiceTimbre(bVoiceToUse, &patches[patch]);
return bVoiceToUse;
}
/* --- externally-called functions ------------------------------ */
/*
* Adlib_NoteOn - This turns a note on. (Including drums, with
* a patch # of the drum Note + 128)
*
* inputs
* BYTE bPatch - MIDI patch number
* BYTE bNote - MIDI note number
* BYTE bChannel - MIDI channel #
* BYTE bVelocity - Velocity #
* short iBend - current pitch bend from -32768, to 32767
* returns
* none
*/
VOID NEAR PASCAL Adlib_NoteOn (BYTE bPatch,
BYTE bNote, BYTE bChannel, BYTE bVelocity,
short iBend)
{
BYTE voice;
WORD wBend;
if (bVelocity == 0) { // 0 velocity means note off
Adlib_NoteOff(bPatch, bNote, bChannel);
return;
}
// octave registration for melodic patches
if (bPatch < 128) {
bNote += patchKeyOffset[bPatch];
if ((bNote < 0) || (bNote > 127)) {
bNote -= patchKeyOffset[bPatch];
}
}
if (bPatch >= 128) {
/*
* it's a percussion note
*/
bNote = bPatch - 128;
if ((bNote < FIRSTDRUMNOTE) || (bNote > LASTDRUMNOTE)) {
return;
}
/* use the drum patch table to map the note to a given
* TIMBRE/note pair
*/
bPatch = drumpatch[bNote - FIRSTDRUMNOTE].patch;
bNote = drumpatch[bNote - FIRSTDRUMNOTE].note;
/* each drum patch plays on one specific voice.
* find that voice
*/
voice = patches[bPatch].percVoice;
/* switch note off if playing */
if (voices[voice].alloc) {
NoteOff(voice);
}
/* call GetNewVoice to set the voice params and timestamp
* even if we found it.
*/
voice = GetNewVoice(bPatch, bNote, bChannel);
} else {
/* switch note off if it's playing */
if ( (voice = FindVoice(bNote, bChannel)) != 0xFF ) {
NoteOff(voice);
} else {
voice = GetNewVoice(bPatch, bNote, bChannel);
}
}
/* convert the velocity to an attenuation setting, and
* write that to the device
*/
SetVoiceAtten(voice, bChannel, bVelocity);
/*
* apply pitch bend. note that we are passed a pitch bend in the
* range 8000-7fff, but our code assumes 0-3fff, so we convert here.
*/
wBend = (((WORD)iBend + 0x8000) >> 2) & 0x3fff;
SetVoicePitch(voice, wBend);
// play the note
NoteOn(voice, bNote);
}
/* Adlib_NoteOff - This turns a note off. (Including drums,
* with a patch # of the drum note + 128)
*
* inputs
* BYTE bPatch - MIDI patch #
* BYTE bNote - MIDI note number
* BYTE bChannel - MIDI channel #
* returns
* none
*/
VOID FAR PASCAL Adlib_NoteOff (BYTE bPatch,
BYTE bNote, BYTE bChannel)
{
BYTE bVoice;
if (bPatch > 127) {
/* drum note. These all use a fixed voice */
if ((bNote < FIRSTDRUMNOTE) || (bNote > LASTDRUMNOTE)) {
return;
}
/* use the drum patch table to map the note to a given
* TIMBRE/note pair
*/
bPatch = drumpatch[bNote - FIRSTDRUMNOTE].patch;
bNote = drumpatch[bNote - FIRSTDRUMNOTE].note;
bVoice = patches[bPatch].percVoice;
/* switch note off if playing our patch */
if (LOWORD(voices[bVoice].dwTimeStamp) == bPatch) {
NoteOff(bVoice);
}
} else {
bVoice = FindVoice(bNote, bChannel);
if (bVoice != 0xff) {
if (voices[bVoice].note) {
NoteOff(bVoice);
FreeVoice(bVoice);
}
}
}
}
/* Adlib_AllNotesOff - turn off all notes
*
* inputs - none
* returns - none
*/
VOID Adlib_AllNotesOff(void)
{
BYTE i;
for (i = 0; i < NUMVOICES; i++) {
NoteOff(i);
}
}
/* Adlib_NewVolume - This should be called if a volume level
* has changed. This will adjust the levels of all the playing
* voices.
*
* inputs
* WORD wLeft - left attenuation (1.5 db units)
* WORD wRight - right attenuation (ignore if mono)
* returns
* none
*/
VOID FAR PASCAL Adlib_NewVolume (WORD wLeft, WORD wRight)
{
/* ignore the right attenuation since this is a mono device */
int iChange;
wLeft = min(wLeft, wRight) << 1;
iChange = wLeft - wSynthAtten;
wSynthAtten = wLeft;
/* change attenuation for all channels */
ChangeAtten(0xff, iChange);
}
/* Adlib_ChannelVolume - set the volume level for an individual channel.
*
* inputs
* BYTE bChannel - channel number to change
* WORD wAtten - attenuation in 1.5 db units
*
* returns
* none
*/
VOID FAR PASCAL Adlib_ChannelVolume(BYTE bChannel, WORD wAtten)
{
int iChange;
iChange = wAtten - gbChanAtten[bChannel];
gbChanAtten[bChannel] = (BYTE)wAtten;
/* change attenuation for this channel */
ChangeAtten(bChannel, iChange);
}
/* Adlib_SetPan - set the left-right pan position.
*
* inputs
* BYTE bChannel - channel number to alter
* BYTE bPan - 0 for left, 127 for right or somewhere in the middle.
*
* returns - none
*
* does nothing - this is a mono device
*/
VOID FAR PASCAL Adlib_SetPan(BYTE bChannel, BYTE bPan)
{
/* do nothing */
}
/* Adlib_PitchBend - This pitch bends a channel.
*
* inputs
* BYTE bChannel - channel
* short iBend - Values from -32768 to 32767, being
* -2 to +2 half steps
* returns
* none
*/
VOID NEAR PASCAL Adlib_PitchBend (BYTE bChannel, short iBend)
{
BYTE i;
WORD w;
/* note that our code expects 0 - 0x3fff not 0x8000 - 0x7fff */
w = (((WORD) iBend + 0x8000) >> 2) & 0x3fff;
for (i = 0; i < NUMVOICES; i++) {
if ((voices[i].alloc) && (voices[i].channel == bChannel)) {
SetVoicePitch(i, w);
}
}
}
/* Adlib_BoardInit - initialise board and load patches as necessary.
*
* inputs - none
* returns - 0 for success or the error code
*/
WORD Adlib_BoardInit(void)
{
BYTE i;
wSynthAtten = 0;
/* build the freq table */
InitFNums();
/* silence and free all voices */
for (i = 0; i <= 8; i++) {
SoundChut(i);
FreeVoice(i);
}
/* switch to percussive mode and set fixed frequencies */
SetFreq(TOM, TOM_PITCH, 0);
SetFreq(SD, SD_PITCH, 0);
percBits = 0;
SndSAmVibRhythm();
/* init all slots to sine-wave */
for (i= 0; i < 18; i++) {
SndOutput((BYTE)(0xE0 | offsetSlot[i]), 0);
}
/* enable wave-form selection */
SndOutput(1, 0x20);
LoadPatches();
LoadDrumPatches();
// don't initialise - the data is static and will thus
// be initialised to 0 at load time. no other change should be made
// since the mci sequencer will not re-send channel volume change
// messages.
//
// /* init all channels to loudest */
// for (i = 0; i < NUMCHANNELS; i++) {
// gbChanAtten[i] = 4;
// }
return(0);
}
/*
* Adlib_BoardReset - silence the board and set all voices off.
*/
VOID Adlib_BoardReset(void)
{
BYTE i;
/* silence and free all voices */
for (i = 0; i <= 8; i++) {
SoundChut(i);
FreeVoice(i);
}
/* switch to percussive mode and set fixed frequencies */
SetFreq(TOM, TOM_PITCH, 0);
SetFreq(SD, SD_PITCH, 0);
percBits = 0;
SndSAmVibRhythm();
}