windows-nt/Source/XPSP1/NT/shell/osshell/accesory/ratpak/rat.c
2020-09-26 16:20:57 +08:00

300 lines
6.8 KiB
C

//-----------------------------------------------------------------------------
// Package Title ratpak
// File rat.c
// Author Timothy David Corrie Jr. (timc@microsoft.com)
// Copyright (C) 1995-96 Microsoft
// Date 01-16-95
//
//
// Description
//
// Contains mul, div, add, and other support functions for rationals.
//
//
//
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <stdlib.h>
#if defined( DOS )
#include <dosstub.h>
#else
#include <windows.h>
#endif
#include <ratpak.h>
//-----------------------------------------------------------------------------
//
// FUNCTION: gcdrat
//
// ARGUMENTS: pointer to a rational.
//
//
// RETURN: None, changes first pointer.
//
// DESCRIPTION: Divides p and q in rational by the G.C.D.
// of both. It was hoped this would speed up some
// calculations, and until the above trimming was done it
// did, but after trimming gcdratting, only slows things
// down.
//
//-----------------------------------------------------------------------------
void gcdrat( PRAT *pa )
{
PNUMBER pgcd=NULL;
PRAT a=NULL;
a=*pa;
pgcd = gcd( a->pp, a->pq );
if ( !zernum( pgcd ) )
{
divnumx( &(a->pp), pgcd );
divnumx( &(a->pq), pgcd );
}
destroynum( pgcd );
*pa=a;
}
//-----------------------------------------------------------------------------
//
// FUNCTION: fracrat
//
// ARGUMENTS: pointer to a rational a second rational.
//
// RETURN: None, changes pointer.
//
// DESCRIPTION: Does the rational equivalent of frac(*pa);
//
//-----------------------------------------------------------------------------
void fracrat( PRAT *pa )
{
long trim;
remnum( &((*pa)->pp), (*pa)->pq, BASEX );
//Get *pa back in the integer over integer form.
RENORMALIZE(*pa);
}
//-----------------------------------------------------------------------------
//
// FUNCTION: mulrat
//
// ARGUMENTS: pointer to a rational a second rational.
//
// RETURN: None, changes first pointer.
//
// DESCRIPTION: Does the rational equivalent of *pa *= b.
// Assumes nRadix is the nRadix of both numbers.
//
//-----------------------------------------------------------------------------
void mulrat( PRAT *pa, PRAT b )
{
// Only do the multiply if it isn't zero.
if ( !zernum( (*pa)->pp ) )
{
mulnumx( &((*pa)->pp), b->pp );
mulnumx( &((*pa)->pq), b->pq );
trimit(pa);
}
else
{
// If it is zero, blast a one in the denominator.
DUPNUM( ((*pa)->pq), num_one );
}
#ifdef MULGCD
gcdrat( pa );
#endif
}
//-----------------------------------------------------------------------------
//
// FUNCTION: divrat
//
// ARGUMENTS: pointer to a rational a second rational.
//
// RETURN: None, changes first pointer.
//
// DESCRIPTION: Does the rational equivalent of *pa /= b.
// Assumes nRadix is the nRadix of both numbers.
//
//-----------------------------------------------------------------------------
void divrat( PRAT *pa, PRAT b )
{
if ( !zernum( (*pa)->pp ) )
{
// Only do the divide if the top isn't zero.
mulnumx( &((*pa)->pp), b->pq );
mulnumx( &((*pa)->pq), b->pp );
if ( zernum( (*pa)->pq ) )
{
// raise an exception if the bottom is 0.
throw( CALC_E_DIVIDEBYZERO );
}
trimit(pa);
}
else
{
// Top is zero.
if ( zerrat( b ) )
{
// If bottom is zero
// 0 / 0 is indefinite, raise an exception.
throw( CALC_E_INDEFINITE );
}
else
{
// 0/x make a unique 0.
DUPNUM( ((*pa)->pq), num_one );
}
}
#ifdef DIVGCD
gcdrat( pa );
#endif
}
//-----------------------------------------------------------------------------
//
// FUNCTION: subrat
//
// ARGUMENTS: pointer to a rational a second rational.
//
// RETURN: None, changes first pointer.
//
// DESCRIPTION: Does the rational equivalent of *pa += b.
// Assumes base is internal througought.
//
//-----------------------------------------------------------------------------
void subrat( PRAT *pa, PRAT b )
{
b->pp->sign *= -1;
addrat( pa, b );
b->pp->sign *= -1;
}
//-----------------------------------------------------------------------------
//
// FUNCTION: addrat
//
// ARGUMENTS: pointer to a rational a second rational.
//
// RETURN: None, changes first pointer.
//
// DESCRIPTION: Does the rational equivalent of *pa += b.
// Assumes base is internal througought.
//
//-----------------------------------------------------------------------------
void addrat( PRAT *pa, PRAT b )
{
PNUMBER bot=NULL;
if ( equnum( (*pa)->pq, b->pq ) )
{
// Very special case, q's match.,
// make sure signs are involved in the calculation
// we have to do this since the optimization here is only
// working with the top half of the rationals.
(*pa)->pp->sign *= (*pa)->pq->sign;
(*pa)->pq->sign = 1;
b->pp->sign *= b->pq->sign;
b->pq->sign = 1;
addnum( &((*pa)->pp), b->pp, BASEX );
}
else
{
// Usual case q's aren't the same.
DUPNUM( bot, (*pa)->pq );
mulnumx( &bot, b->pq );
mulnumx( &((*pa)->pp), b->pq );
mulnumx( &((*pa)->pq), b->pp );
addnum( &((*pa)->pp), (*pa)->pq, BASEX );
destroynum( (*pa)->pq );
(*pa)->pq = bot;
trimit(pa);
// Get rid of negative zeroes here.
(*pa)->pp->sign *= (*pa)->pq->sign;
(*pa)->pq->sign = 1;
}
#ifdef ADDGCD
gcdrat( pa );
#endif
}
//-----------------------------------------------------------------------------
//
// FUNCTION: rootrat
//
// PARAMETERS: y prat representation of number to take the root of
// n prat representation of the root to take.
//
// RETURN: bth root of a in rat form.
//
// EXPLANATION: This is now a stub function to powrat().
//
//-----------------------------------------------------------------------------
void rootrat( PRAT *py, PRAT n )
{
PRAT oneovern=NULL;
DUPRAT(oneovern,rat_one);
divrat(&oneovern,n);
powrat( py, oneovern );
destroyrat(oneovern);
}
//-----------------------------------------------------------------------------
//
// FUNCTION: zerrat
//
// ARGUMENTS: Rational number.
//
// RETURN: Boolean
//
// DESCRIPTION: Returns true if input is zero.
// False otherwise.
//
//-----------------------------------------------------------------------------
BOOL zerrat( PRAT a )
{
return( zernum(a->pp) );
}