windows-nt/Source/XPSP1/NT/shell/osshell/control/scrnsave/flyingobjects/mesh.cpp
2020-09-26 16:20:57 +08:00

303 lines
8.6 KiB
C++

/******************************Module*Header*******************************\
* Module Name: mesh.c
*
* Routines to create a mesh representation of a 3D object and to turn it
* into an OpenGL description.
*
* Copyright (c) 1994 Microsoft Corporation
*
\**************************************************************************/
#include <stdlib.h>
#include <windows.h>
#include <D3DX8.h>
#include <string.h>
#include <math.h>
#include <d3dx8.h>
#include "D3DSaver.h"
#include "FlyingObjects.h"
#include "mesh.h"
#define ZERO_EPS 0.00000001
/******************************Public*Routine******************************\
* newMesh
*
* Allocate memory for the mesh structure to accomodate the specified number
* of points and faces.
*
\**************************************************************************/
BOOL newMesh(MESH *mesh, int numFaces, int numPts)
{
mesh->numFaces = 0;
mesh->numPoints = 0;
if (numPts) {
mesh->pts = (POINT3D*)SaverAlloc((LONG)numPts * (LONG)sizeof(POINT3D));
if( mesh->pts == NULL )
return FALSE;
mesh->norms = (POINT3D*)SaverAlloc((LONG)numPts * (LONG)sizeof(POINT3D));
if( mesh->norms == NULL )
return FALSE;
}
mesh->faces = (MFACE*)SaverAlloc((LONG)numFaces * (LONG)sizeof(MFACE));
if (mesh->faces == NULL )
return FALSE;
return TRUE;
}
/******************************Public*Routine******************************\
* delMesh
*
* Delete the allocated portions of the MESH structure.
*
\**************************************************************************/
void delMesh(MESH *mesh)
{
SaverFree(mesh->pts);
SaverFree(mesh->norms);
SaverFree(mesh->faces);
}
/******************************Public*Routine******************************\
* iPtInList
*
* Add a vertex and its normal to the mesh. If the vertex already exists,
* add in the normal to the existing normal (we to accumulate the average
* normal at each vertex). Normalization of the normals is the
* responsibility of the caller.
*
\**************************************************************************/
static int iPtInList(MESH *mesh, POINT3D *p, POINT3D *norm, int start)
{
int i;
POINT3D *pts = mesh->pts + start;
for (i = start; i < mesh->numPoints; i++, pts++)
{
// If the vertices are within ZERO_EPS of each other, then its the same
// vertex.
if ( fabs(pts->x - p->x) < ZERO_EPS &&
fabs(pts->y - p->y) < ZERO_EPS &&
fabs(pts->z - p->z) < ZERO_EPS )
{
mesh->norms[i].x += norm->x;
mesh->norms[i].y += norm->y;
mesh->norms[i].z += norm->z;
return i;
}
}
mesh->pts[i] = *p;
mesh->norms[i] = *norm;
mesh->numPoints++;
return i;
}
/******************************Public*Routine******************************\
* revolveSurface
*
* Takes the set of points in curve and fills the mesh structure with a
* surface of revolution. The surface consists of quads made up of the
* points in curve rotated about the y-axis. The number of increments
* in the revolution is determined by the steps parameter.
*
\**************************************************************************/
#define MAXPREC 40
void revolveSurface(MESH *mesh, POINT3D *curve, int steps)
{
int i;
int j;
int facecount = 0;
double rotation = 0.0;
double rotInc;
double cosVal;
double sinVal;
int stepsSqr;
POINT3D norm;
POINT3D a[MAXPREC + 1];
POINT3D b[MAXPREC + 1];
if (steps > MAXPREC)
steps = MAXPREC;
rotInc = (2.0 * PI) / (double)(steps - 1);
stepsSqr = steps * steps;
newMesh(mesh, stepsSqr, 4 * stepsSqr);
for (j = 0; j < steps; j++, rotation += rotInc) {
cosVal = cos(rotation);
sinVal = sin(rotation);
for (i = 0; i < steps; i++) {
a[i].x = (float) (curve[i].x * cosVal + curve[i].z * sinVal);
a[i].y = (float) (curve[i].y);
a[i].z = (float) (curve[i].z * cosVal - curve[i].x * sinVal);
}
cosVal = cos(rotation + rotInc);
sinVal = sin(rotation + rotInc);
for (i = 0; i < steps; i++) {
b[i].x = (float) (curve[i].x * cosVal + curve[i].z * sinVal);
b[i].y = (float) (curve[i].y);
b[i].z = (float) (curve[i].z * cosVal - curve[i].x * sinVal);
}
for (i = 0; i < (steps - 1); i++) {
ss_calcNorm(&norm, &b[i + 1], &b[i], &a[i]);
if ((norm.x * norm.x) + (norm.y * norm.y) + (norm.z * norm.z) < 0.9)
ss_calcNorm(&norm, &a[i], &a[i+1], &b[i + 1]);
mesh->faces[facecount].material = j & 7;
mesh->faces[facecount].norm = norm;
mesh->faces[facecount].p[0] = iPtInList(mesh, &b[i], &norm, 0);
mesh->faces[facecount].p[1] = iPtInList(mesh, &a[i], &norm, 0);
mesh->faces[facecount].p[2] = iPtInList(mesh, &b[i + 1], &norm, 0);
mesh->faces[facecount].p[3] = iPtInList(mesh, &a[i + 1], &norm, 0);
mesh->numFaces++;
facecount++;
}
}
ss_normalizeNorms(mesh->norms, mesh->numPoints);
}
HRESULT RenderMesh3( MESH* pMesh, BOOL bSmooth )
{
HRESULT hr;
INT numPrims = 0;
INT numIndices = 0;
INT numVertices = 0;
WORD iVertexA, iVertexB, iVertexC, iVertexD;
INT a,b,c,d;
MFACE *faces;
m_pd3dDevice->SetVertexShader( D3DFVF_MYVERTEX );
WORD* i;
MYVERTEX* v;
hr = m_pVB->Lock( 0, 0, (BYTE**)&v, 0 );
hr = m_pIB->Lock( 0, MAX_INDICES, (BYTE**)&i, 0 );
faces = pMesh->faces;
for( int iFace = 0; iFace < pMesh->numFaces; iFace++ )
{
a = faces[iFace].p[0];
b = faces[iFace].p[1];
c = faces[iFace].p[2];
d = faces[iFace].p[3];
v[numVertices].p = pMesh->pts[a];
v[numVertices].n = bSmooth ? pMesh->norms[a] : faces[iFace].norm;
iVertexA = numVertices++;
v[numVertices].p = pMesh->pts[b];
v[numVertices].n = bSmooth ? pMesh->norms[b] : faces[iFace].norm;
iVertexB = numVertices++;
v[numVertices].p = pMesh->pts[c];
v[numVertices].n = bSmooth ? pMesh->norms[c] : faces[iFace].norm;
iVertexC = numVertices++;
v[numVertices].p = pMesh->pts[d];
v[numVertices].n = bSmooth ? pMesh->norms[d] : faces[iFace].norm;
iVertexD = numVertices++;
i[numIndices++] = iVertexA;
i[numIndices++] = iVertexB;
i[numIndices++] = iVertexC;
numPrims++;
i[numIndices++] = iVertexC;
i[numIndices++] = iVertexB;
i[numIndices++] = iVertexD;
numPrims++;
}
hr = m_pVB->Unlock();
hr = m_pIB->Unlock();
hr = m_pd3dDevice->SetStreamSource( 0, m_pVB, sizeof(MYVERTEX) );
hr = m_pd3dDevice->SetIndices( m_pIB, 0 );
hr = m_pd3dDevice->DrawIndexedPrimitive( D3DPT_TRIANGLELIST, 0, numVertices,
0, numPrims );
return hr;
}
HRESULT RenderMesh3Backsides( MESH* pMesh, BOOL bSmooth )
{
HRESULT hr;
INT numPrims = 0;
INT numIndices = 0;
INT numVertices = 0;
WORD iVertexA, iVertexB, iVertexC, iVertexD;
INT a,b,c,d;
MFACE *faces;
m_pd3dDevice->SetVertexShader( D3DFVF_MYVERTEX );
WORD* i;
MYVERTEX* v;
hr = m_pVB->Lock( 0, 0, (BYTE**)&v, 0 );
hr = m_pIB->Lock( 0, MAX_INDICES, (BYTE**)&i, 0 );
faces = pMesh->faces;
for( int iFace = 0; iFace < pMesh->numFaces; iFace++ )
{
a = faces[iFace].p[0];
b = faces[iFace].p[1];
c = faces[iFace].p[2];
d = faces[iFace].p[3];
v[numVertices].p = pMesh->pts[a];
v[numVertices].n = bSmooth ? -pMesh->norms[a] : -faces[iFace].norm;
iVertexA = numVertices++;
v[numVertices].p = pMesh->pts[b];
v[numVertices].n = bSmooth ? -pMesh->norms[b] : -faces[iFace].norm;
iVertexB = numVertices++;
v[numVertices].p = pMesh->pts[c];
v[numVertices].n = bSmooth ? -pMesh->norms[c] : -faces[iFace].norm;
iVertexC = numVertices++;
v[numVertices].p = pMesh->pts[d];
v[numVertices].n = bSmooth ? -pMesh->norms[d] : -faces[iFace].norm;
iVertexD = numVertices++;
i[numIndices++] = iVertexB;
i[numIndices++] = iVertexA;
i[numIndices++] = iVertexC;
numPrims++;
i[numIndices++] = iVertexB;
i[numIndices++] = iVertexC;
i[numIndices++] = iVertexD;
numPrims++;
}
hr = m_pVB->Unlock();
hr = m_pIB->Unlock();
hr = m_pd3dDevice->SetStreamSource( 0, m_pVB, sizeof(MYVERTEX) );
hr = m_pd3dDevice->SetIndices( m_pIB, 0 );
hr = m_pd3dDevice->DrawIndexedPrimitive( D3DPT_TRIANGLELIST, 0, numVertices,
0, numPrims );
return hr;
}