windows-nt/Source/XPSP1/NT/base/ntos/ke/i386/trapc.c
2020-09-26 16:20:57 +08:00

622 lines
16 KiB
C

/*++
Copyright (c) 1989 Microsoft Corporation
Module Name:
trapc.c
Abstract:
This module contains some trap handling code written in C.
Only by the kernel.
Author:
Ken Reneris 6-9-93
Revision History:
--*/
#include "ki.h"
NTSTATUS
Ki386CheckDivideByZeroTrap (
IN PKTRAP_FRAME UserFrame
);
VOID
KipWorkAroundCompiler (
USHORT * StatusWord,
USHORT * ControlWord
);
#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGE, Ki386CheckDivideByZeroTrap)
#endif
#define REG(field) ((ULONG)(&((KTRAP_FRAME *)0)->field))
#define GETREG(frame,reg) ((PULONG) (((ULONG) frame)+reg))[0]
typedef struct {
UCHAR RmDisplaceOnly; // RM of displacment only, no base reg
UCHAR RmSib; // RM of SIB
UCHAR RmDisplace; // bit mask of RMs which have a displacement
UCHAR Disp; // sizeof displacement (in bytes)
} KMOD, *PKMOD;
static UCHAR RM32[] = {
/* 000 */ REG(Eax),
/* 001 */ REG(Ecx),
/* 010 */ REG(Edx),
/* 011 */ REG(Ebx),
/* 100 */ REG(HardwareEsp),
/* 101 */ REG(Ebp), // SIB
/* 110 */ REG(Esi),
/* 111 */ REG(Edi)
};
static UCHAR RM8[] = {
/* 000 */ REG(Eax), // al
/* 001 */ REG(Ecx), // cl
/* 010 */ REG(Edx), // dl
/* 011 */ REG(Ebx), // bl
/* 100 */ REG(Eax) + 1, // ah
/* 101 */ REG(Ecx) + 1, // ch
/* 110 */ REG(Edx) + 1, // dh
/* 111 */ REG(Ebx) + 1 // bh
};
static KMOD MOD32[] = {
/* 00 */ 5, 4, 0x20, 4,
/* 01 */ 0xff, 4, 0xff, 1,
/* 10 */ 0xff, 4, 0xff, 4,
/* 11 */ 0xff, 0xff, 0x00, 0
} ;
static struct {
UCHAR Opcode1, Opcode2; // instruction opcode
UCHAR ModRm, type; // if 2nd part of opcode is encoded in ModRm
} NoWaitNpxInstructions[] = {
/* FNINIT */ 0xDB, 0xE3, 0, 1,
/* FNCLEX */ 0xDB, 0xE2, 0, 1,
/* FNSTENV */ 0xD9, 0x06, 1, 1,
/* FNSAVE */ 0xDD, 0x06, 1, 1,
/* FNSTCW */ 0xD9, 0x07, 1, 2,
/* FNSTSW */ 0xDD, 0x07, 1, 3,
/* FNSTSW AX*/ 0xDF, 0xE0, 0, 4,
0x00, 0x00, 0, 1
};
NTSTATUS
Ki386CheckDivideByZeroTrap (
IN PKTRAP_FRAME UserFrame
)
/*++
Routine Description:
This function gains control when the x86 processor generates a
divide by zero trap. The x86 design generates such a trap on
divide by zero and on division overflows. In order to determine
which expection code to dispatch, the divisor of the "div" or "idiv"
instruction needs to be inspected.
Arguments:
UserFrame - Trap frame of the divide by zero trap
Return Value:
exception code dispatch
--*/
{
ULONG operandsize, operandmask, i, accum;
PUCHAR istream, pRM;
UCHAR ibyte, rm;
PKMOD Mod;
BOOLEAN fPrefix;
NTSTATUS status;
status = STATUS_INTEGER_DIVIDE_BY_ZERO;
if (UserFrame->SegCs == KGDT_R0_CODE) {
//
// Divide by zero exception from Kernel Mode?
// Likely bad hardware interrupt and the device or vector table is corrupt.
// Bugcheck NOW so we can figure out what went wrong. If we try and
// proceed, then we'll likely fault in reading the top of user space, and then
// double fault (page fault in the div zero handler.) -- This is a debugging
// consideration. You can't put breakpoints on the trap labels so this is hard to debug.
// We cannot recover
//
//
KeBugCheck (UNEXPECTED_KERNEL_MODE_TRAP);
}
try {
//
// read instruction prefixes
//
fPrefix = TRUE;
pRM = RM32;
operandsize = 4;
operandmask = 0xffffffff;
istream = (PUCHAR) UserFrame->Eip;
while (fPrefix) {
ibyte = ProbeAndReadUchar(istream);
istream++;
switch (ibyte) {
case 0x2e: // cs override
case 0x36: // ss override
case 0x3e: // ds override
case 0x26: // es override
case 0x64: // fs override
case 0x65: // gs override
case 0xF3: // rep
case 0xF2: // rep
case 0xF0: // lock
break;
case 0x66:
// 16 bit operand override
operandsize = 2;
operandmask = 0xffff;
break;
case 0x67:
// 16 bit address size override
// this is some non-flat code
goto try_exit;
default:
fPrefix = FALSE;
break;
}
}
//
// Check instruction opcode
//
if (ibyte != 0xf7 && ibyte != 0xf6) {
// this is not a DIV or IDIV opcode
goto try_exit;
}
if (ibyte == 0xf6) {
// this is a byte div or idiv
operandsize = 1;
operandmask = 0xff;
}
//
// Get Mod R/M
//
ibyte = ProbeAndReadUchar (istream);
istream++;
Mod = MOD32 + (ibyte >> 6);
rm = ibyte & 7;
//
// put register values into accum
//
if (operandsize == 1 && (ibyte & 0xc0) == 0xc0) {
pRM = RM8;
}
accum = 0;
if (rm != Mod->RmDisplaceOnly) {
if (rm == Mod->RmSib) {
// get SIB
ibyte = ProbeAndReadUchar(istream);
istream++;
i = (ibyte >> 3) & 7;
if (i != 4) {
accum = GETREG(UserFrame, RM32[i]);
accum = accum << (ibyte >> 6); // apply scaler
}
i = ibyte & 7;
accum = accum + GETREG(UserFrame, RM32[i]);
} else {
// get register's value
accum = GETREG(UserFrame, pRM[rm]);
}
}
//
// apply displacement to accum
//
if (Mod->RmDisplace & (1 << rm)) {
if (Mod->Disp == 4) {
i = ProbeAndReadUlong ((PULONG) istream);
} else {
ibyte = ProbeAndReadChar (istream);
i = (signed long) ((signed char) ibyte); // sign extend
}
accum += i;
}
//
// if this is an effective address, go get the data value
//
if (Mod->Disp && accum) {
switch (operandsize) {
case 1: accum = ProbeAndReadUchar((PUCHAR) accum); break;
case 2: accum = ProbeAndReadUshort((PUSHORT) accum); break;
case 4: accum = ProbeAndReadUlong((PULONG) accum); break;
}
}
//
// accum now contains the instruction operand, see if the
// operand was really a zero
//
if (accum & operandmask) {
// operand was non-zero, must be an overflow
status = STATUS_INTEGER_OVERFLOW;
}
try_exit: ;
} except (EXCEPTION_EXECUTE_HANDLER) {
// do nothing...
}
return status;
}
UCHAR
KiNextIStreamByte (
IN PKTRAP_FRAME UserFrame,
IN PUCHAR *istream
)
/*++
Routine Description:
Reads the next byte from the istream pointed to by the UserFrame, and
advances the EIP.
Note: this function works for 32 bit code only
--*/
{
UCHAR ibyte;
if (UserFrame->SegCs == KGDT_R0_CODE) {
ibyte = **istream;
} else {
ibyte = ProbeAndReadUchar (*istream);
}
*istream += 1;
return ibyte;
}
BOOLEAN
Ki386CheckDelayedNpxTrap (
IN PKTRAP_FRAME UserFrame,
IN PFX_SAVE_AREA NpxFrame
)
/*++
Routine Description:
This function gains control from the Trap07 handler. It examines
the user mode instruction to see if it's a NoWait NPX instruction.
Such instructions do not generate floating point exceptions - this
check needs to be done due to the way 80386/80387 systems are
implemented. Such machines will generate a floating point exception
interrupt when the kernel performs an FRSTOR to reload the thread's
NPX context. If the thread's next instruction is a NoWait style
instruction, then we clear the exception or emulate the instruction.
AND... due to a different 80386/80387 "feature" the kernel needs
to use FWAIT at times which can causes 80487's to generate delayed
exceptions that can lead to the same problem described above.
Arguments:
UserFrame - Trap frame of the exception
NpxFrame - Thread's NpxFrame (WARNING: does not have NpxState)
Interrupts are disabled
Return Value:
FALSE - Dispatch NPX exception to user mode
TRUE - Exception handled, continue
--*/
{
EXCEPTION_RECORD ExceptionRecord;
UCHAR ibyte1, ibyte2, inmodrm, status;
USHORT StatusWord, ControlWord, UsersWord;
PUCHAR istream;
BOOLEAN fPrefix;
UCHAR rm;
PKMOD Mod;
ULONG accum, i;
status = 0;
//
// read instruction prefixes
//
fPrefix = TRUE;
istream = (PUCHAR) UserFrame->Eip;
try {
while (fPrefix) {
ibyte1 = KiNextIStreamByte (UserFrame, &istream);
switch (ibyte1) {
case 0x2e: // cs override
case 0x36: // ss override
case 0x3e: // ds override
case 0x26: // es override
case 0x64: // fs override
case 0x65: // gs override
break;
default:
fPrefix = FALSE;
break;
}
}
//
// Check for coprocessor NoWait NPX instruction
//
ibyte2 = KiNextIStreamByte (UserFrame, &istream);
inmodrm = (ibyte2 >> 3) & 0x7;
for (i=0; NoWaitNpxInstructions[i].Opcode1; i++) {
if (NoWaitNpxInstructions[i].Opcode1 == ibyte1) {
//
// first opcode byte matched - check second part of opcode
//
if (NoWaitNpxInstructions[i].ModRm) {
//
// modrm only applies for opcode in range 0-0xbf
//
if (((ibyte2 & 0xc0) != 0xc0) &&
(NoWaitNpxInstructions[i].Opcode2 == inmodrm)) {
//
// This is a no-wait NPX instruction
//
status = NoWaitNpxInstructions[i].type;
break;
}
} else {
if (NoWaitNpxInstructions[i].Opcode2 == ibyte2) {
//
// This is a no-wait NPX instruction
//
status = NoWaitNpxInstructions[i].type;
break;
}
}
}
}
} except (EXCEPTION_EXECUTE_HANDLER) {
// do nothing...
}
if (status == 0) {
//
// Dispatch coprocessor exception to user mode
//
return FALSE;
}
if (status == 1) {
//
// Ignore pending exception, user mode instruction does not trap
// on pending execptions and it will clear/mask the pending exceptions
//
_asm {
mov eax, cr0
and eax, NOT (CR0_MP+CR0_EM+CR0_TS)
mov cr0, eax
}
NpxFrame->Cr0NpxState &= ~CR0_TS;
return TRUE;
}
//
// This is either FNSTSW or FNSTCW. Both of these instructions get
// a value from the coprocessor without effecting the pending exception
// state. To do this we emulate the instructions.
//
//
// Read the coprocessors Status & Control word state, then re-enable
// interrupts. (it's safe to context switch after that point)
//
//
// NOTE: The new compiler is generating a FWAIT at the
// entry to the try/except block if it sees inline
// fp instructions, even if they are only control word accesses.
// put this stuff in another function to fool it.
//
KipWorkAroundCompiler (&StatusWord, &ControlWord);
if (status == 4) {
//
// Emulate FNSTSW AX
//
UserFrame->Eip = (ULONG)istream;
UserFrame->Eax = (UserFrame->Eax & 0xFFFF0000) | StatusWord;
return TRUE;
}
if (status == 2) {
UsersWord = ControlWord;
} else {
UsersWord = StatusWord;
}
try {
//
// (PERFNOTE: the operand decode code should really share code with
// KiCheckDivideByZeroTrap, but this is a late change therefore the
// code was copied to keep the impact of the change localized)
//
//
// decode Mod/RM byte
//
Mod = MOD32 + (ibyte2 >> 6);
rm = ibyte2 & 7;
//
// Decode the instruction's word pointer into accum
//
accum = 0;
if (rm != Mod->RmDisplaceOnly) {
if (rm == Mod->RmSib) {
// get SIB
ibyte1 = KiNextIStreamByte (UserFrame, &istream);
i = (ibyte1 >> 3) & 7;
if (i != 4) {
accum = GETREG(UserFrame, RM32[i]);
accum = accum << (ibyte1 >> 6); // apply scaler
}
i = ibyte1 & 7;
accum = accum + GETREG(UserFrame, RM32[i]);
} else {
// get register's value
accum = GETREG(UserFrame, RM32[rm]);
}
}
//
// apply displacement to accum
//
if (Mod->RmDisplace & (1 << rm)) {
if (Mod->Disp == 4) {
i = (KiNextIStreamByte (UserFrame, &istream) << 0) |
(KiNextIStreamByte (UserFrame, &istream) << 8) |
(KiNextIStreamByte (UserFrame, &istream) << 16) |
(KiNextIStreamByte (UserFrame, &istream) << 24);
} else {
ibyte1 = KiNextIStreamByte (UserFrame, &istream);
i = (signed long) ((signed char) ibyte1); // sign extend
}
accum += i;
}
//
// Set the word pointer
//
if (UserFrame->SegCs == KGDT_R0_CODE) {
*((PUSHORT) accum) = UsersWord;
} else {
ProbeAndWriteUshort ((PUSHORT) accum, UsersWord);
}
UserFrame->Eip = (ULONG)istream;
} except (KiCopyInformation(&ExceptionRecord,
(GetExceptionInformation())->ExceptionRecord)) {
//
// Faulted addressing user's memory.
// Set the address of the exception to the current program address
// and raise the exception by calling the exception dispatcher.
//
ExceptionRecord.ExceptionAddress = (PVOID)(UserFrame->Eip);
KiDispatchException(
&ExceptionRecord,
NULL, // ExceptionFrame
UserFrame,
UserMode,
TRUE
);
}
return TRUE;
}
//
// Code description is above. We do this here to stop the compiler
// from putting fwait in the try/except block
//
// Read the coprocessor's Status & Control word state, then re-enable
// interrupts. (it's safe to context switch after that point)
//
//
VOID
KipWorkAroundCompiler (
IN PUSHORT StatusWord,
IN PUSHORT ControlWord
)
{
USHORT sw;
USHORT cw;
sw = *StatusWord;
cw = *ControlWord;
_asm {
mov eax, cr0
mov ecx, eax
and eax, NOT (CR0_MP+CR0_EM+CR0_TS)
mov cr0, eax
fnstsw sw
fnstcw cw
mov cr0, ecx
sti
}
*StatusWord = sw;
*ControlWord = cw;
}