windows-nt/Source/XPSP1/NT/base/ntos/rtl/ia64/fillmem.s
2020-09-26 16:20:57 +08:00

1208 lines
26 KiB
ArmAsm

//
// Module Name:
//
// fillmem.s
//
// Abstract:
//
// This module implements functions to move, zero, and fill blocks
// of memory. If the memory is aligned, then these functions are
// very efficient.
//
// Author:
//
//
// Environment:
//
// User or Kernel mode.
//
//--
#include "ksia64.h"
//++
//
// VOID
// RtlFillMemory (
// IN PVOID destination,
// IN SIZE_T length,
// IN UCHAR fill
// )
//
// Routine Description:
//
// This function fills memory by first aligning the destination address to
// a qword boundary, and then filling 4-byte blocks, followed by any
// remaining bytes.
//
// Arguments:
//
// destination (a0) - Supplies a pointer to the memory to fill.
//
// length (a1) - Supplies the length, in bytes, of the memory to be filled.
//
// fill (a2) - Supplies the fill byte.
//
// N.B. The alternate entry memset expects the length and fill arguments
// to be reversed. It also returns the Destination pointer
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(RtlFillMemory)
lfetch.excl [a0]
mov t0 = a0
add t4 = 64, a0
cmp.eq pt0 = zero, a1 // length == 0 ?
add t1 = -1, a0
zxt1 a2 = a2
cmp.ge pt1 = 7, a1
mov v0 = a0
(pt0) br.ret.spnt brp // return if length is zero
;;
//
// Align address on qword boundary by determining the number of bytes
// before the next qword boundary by performing an AND operation on
// the 2's complement of the address with a mask value of 0x7.
//
lfetch.excl [t4], 64
andcm t1 = 7, t1 // t1 = # bytes before dword boundary
(pt1) br.cond.spnt TailSet // 1 <= length <= 3, br to TailSet
;;
cmp.eq pt2 = zero, t1 // skip HeadSet if t1 is zero
mux1 t2 = a2, @brcst // t2 = all 8 bytes = [fill]
sub a1 = a1, t1 // a1 = adjusted length
;;
lfetch.excl [t4], 64
(pt2) br.cond.sptk SkipHeadSet
//
// Copy the leading bytes until t1 is equal to zero
//
HeadSet:
st1 [t0] = a2, 1
add t1 = -1, t1
;;
cmp.ne pt0 = zero, t1
(pt0) br.cond.sptk HeadSet
//
// now the address is qword aligned;
// fall into the QwordSet loop if remaining length is greater than 8;
// else skip the QwordSet loop
//
SkipHeadSet:
cmp.gt pt1 = 16, a1
add t4 = 64, t0
cmp.le pt2 = 8, a1
add t3 = 8, t0
cmp.gt pt3 = 64, a1
(pt1) br.cond.spnt SkipQwordSet
;;
lfetch.excl [t4], 64
(pt3) br.cond.spnt QwordSet
nop.m 0
nop.m 0
nop.i 0
UnrolledQwordSet:
st8 [t0] = t2, 16
st8 [t3] = t2, 16
add a1 = -64, a1
;;
st8 [t0] = t2, 16
st8 [t3] = t2, 16
cmp.le pt0 = 64, a1
;;
st8 [t0] = t2, 16
st8 [t3] = t2, 16
cmp.le pt2 = 8, a1
;;
st8 [t0] = t2, 16
nop.f 0
cmp.gt pt1 = 16, a1
st8 [t3] = t2, 16
(pt0) br.cond.sptk UnrolledQwordSet
(pt1) br.cond.spnt SkipQwordSet
;;
//
// fill 8 bytes at a time until the remaining length is less than 8
//
QwordSet:
st8 [t0] = t2, 16
st8 [t3] = t2, 16
add a1 = -16, a1
;;
cmp.le pt0 = 16, a1
cmp.le pt2 = 8, a1
(pt0) br.cond.sptk QwordSet
;;
SkipQwordSet:
(pt2) st8 [t0] = t2, 8
(pt2) add a1 = -8, a1
;;
cmp.eq pt3 = zero, a1 // return now if length equals 0
(pt3) br.ret.sptk brp
;;
//
// copy the remaining bytes one at a time
//
TailSet:
st1 [t0] = a2, 1
add a1 = -1, a1
nop.i 0
;;
cmp.ne pt0, pt3 = 0, a1
(pt0) br.cond.dptk TailSet
(pt3) br.ret.dpnt brp
;;
LEAF_EXIT(RtlFillMemory)
//++
//
// VOID
// RtlFillMemoryUlong (
// IN PVOID Destination,
// IN SIZE_T Length,
// IN ULONG Pattern
// )
//
// Routine Description:
//
// This function fills memory with the specified longowrd pattern
// 4 bytes at a time.
//
// N.B. This routine assumes that the destination address is aligned
// on a longword boundary and that the length is an even multiple
// of longwords.
//
// Arguments:
//
// Destination (a0) - Supplies a pointer to the memory to fill.
//
// Length (a1) - Supplies the length, in bytes, of the memory to be filled.
//
// Pattern (a2) - Supplies the fill pattern.
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(RtlFillMemoryUlong)
.prologue
.save ar.lc, t22
mov t22 = ar.lc
extr.u a1 = a1, 2, 30
;;
PROLOGUE_END
cmp.eq pt0, pt1 = zero, a1
add a1 = -1, a1
;;
nop.m 0
(pt1) mov ar.lc = a1
(pt0) br.ret.spnt brp
;;
Rfmu10:
st4 [a0] = a2, 4
br.cloop.dptk.few Rfmu10
;;
nop.m 0
mov ar.lc = t22
br.ret.sptk brp
LEAF_EXIT(RtlFillMemoryUlong)
//++
//
// VOID
// RtlFillMemoryUlonglong (
// IN PVOID Destination,
// IN SIZE_T Length,
// IN ULONGLONG Pattern
// )
//
// Routine Description:
//
// This function fills memory with the specified pattern
// 8 bytes at a time.
//
// N.B. This routine assumes that the destination address is aligned
// on a longword boundary and that the length is an even multiple
// of longwords.
//
// Arguments:
//
// Destination (a0) - Supplies a pointer to the memory to fill.
//
// Length (a1) - Supplies the length, in bytes, of the memory to be filled.
//
// Pattern (a2,a3) - Supplies the fill pattern.
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(RtlFillMemoryUlonglong)
.prologue
.save ar.lc, t22
mov t22 = ar.lc
extr.u a1 = a1, 3, 29
;;
PROLOGUE_END
cmp.eq pt0, pt1 = zero, a1
add a1 = -1, a1
;;
nop.m 0
(pt1) mov ar.lc = a1
(pt0) br.ret.spnt brp
;;
Rfmul10:
st8 [a0] = a2, 8
br.cloop.dptk.few Rfmul10
;;
nop.m 0
mov ar.lc = t22
br.ret.sptk brp
;;
LEAF_EXIT(RtlFillMemoryUlonglong)
//++
//
// VOID
// RtlZeroMemory (
// IN PVOID Destination,
// IN SIZE_T Length
// )
//
// Routine Description:
//
// This function simply sets up the fill value (out2) and branches
// directly to RtlFillMemory
//
// Arguments:
//
// Destination (a0) - Supplies a pointer to the memory to zero.
//
// Length (a1) - Supplies the length, in bytes, of the memory to be zeroed.
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(RtlZeroMemory)
alloc t22 = ar.pfs, 0, 0, 3, 0
mov out2 = 0
br RtlFillMemory
LEAF_EXIT(RtlZeroMemory)
//++
//
// VOID
// RtlMoveMemory (
// IN PVOID Destination,
// IN PVOID Source,
// IN SIZE_T Length
// )
//
// Routine Description:
//
// This function moves memory either forward or backward, aligned or
// unaligned.
//
// Algorithm:
// 1) Length equals zero, return immediately
// 2) Source & Destination don't overlap, copy from low to high
// else copy from high to low address one byte at a time
// 3) if Source & Destination are both 8-byte aligned, copy 8 bytes
// at a time and the remaining bytes are copied one at a time.
// 4) if Source & Destination are both 4-byte aligned, copy 4 bytes
// at a time and the remaining bytes are copied one at a time.
// 5) else copy one byte at a time from low to high address.
//
// Arguments:
//
// Destination (a0) - Supplies a pointer to the destination address of
// the move operation.
//
// Source (a1) - Supplies a pointer to the source address of the move
// operation.
//
// Length (a2) - Supplies the length, in bytes, of the memory to be moved.
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(memcpy)
ALTERNATE_ENTRY(memmove)
ALTERNATE_ENTRY(RtlMoveMemory)
ALTERNATE_ENTRY(RtlCopyMemory)
ALTERNATE_ENTRY(RtlCopyMemoryNonTemporal)
.prologue
.regstk 3,7,0,8
alloc t17 = ar.pfs,3,31,0,32
.save pr, r64
mov r64 = pr
and t3 = -32, a1
;;
lfetch [t3], 32 //0
.save ar.lc, r65
mov.i r65 = ar.lc
and t1 = 7, a1
;;
.body
lfetch [t3], 32 //32
mov v0 = a0
and t0 = 7, a0
;;
add t21 = a1, a2
cmp.gtu pt0 = a0, a1
or t2 = t0, t1
;;
(pt0) cmp.ltu.unc pt0 = a0, t21
cmp.eq pt1 = zero, a2
(pt1) br.ret.spnt brp
lfetch [t3], 32 //64
cmp.lt pt2 = 16, a2
(pt0) br.cond.spnt CopyDown
;;
lfetch [t3], 32 //96
cmp.lt pt6 = 127, a2
cmp.le pt4 = 8, a2
;;
(pt6) lfetch [t3], 32 //128
(pt4) cmp.eq.unc pt3 = 0, t2
(pt4) cmp.eq.unc pt5 = t0, t1
(pt3) br.cond.sptk QwordMoveUp
(pt5) br.cond.spnt AlignedMove
(pt2) br.cond.sptk UnalignedMove
ByteMoveUpLoop:
ld1 t10 = [a1], 1
nop.f 0
add a2 = -1, a2
;;
st1 [a0] = t10, 1
cmp.ne pt1 = zero, a2
(pt1) br.cond.sptk ByteMoveUpLoop
nop.m 0
nop.f 0
br.ret.sptk brp
UnalignedMove:
cmp.eq pt0 = 0, t1
sub t1 = 8, t1
(pt0) br.cond.spnt SkipUnalignedMoveByteLoop
;;
UnalignedMoveByteLoop:
ld1 t10 = [a1], 1
add t1 = -1, t1
add a2 = -1, a2
;;
st1 [a0] = t10, 1
cmp.eq p0, pt1 = zero, t1
(pt1) br.cond.sptk UnalignedMoveByteLoop
;;
SkipUnalignedMoveByteLoop:
and t0 = 7, a0
mov pr.rot = 3<<16
or t1 = a1, r0
;;
add t2 = a2, t0
mov.i ar.ec = 32
sub t21 = 8, t0
;;
sub t4 = a0, t0
shr t10 = t2, 3
shl t21 = t21, 3
;;
ld8 r33 = [t4], 0
add t10 = -1,t10
and t2 = 7, t2
;;
cmp.eq pt0 = 2, t0
cmp.eq pt3 = 4, t0
cmp.eq pt5 = 6, t0
;;
nop.m 0
shl r33 = r33,t21 // Prime r39
mov.i ar.lc = t10
(pt0) br.cond.spnt SpecialLoop2
(pt3) br.cond.spnt SpecialLoop4
(pt5) br.cond.spnt SpecialLoop6
cmp.eq pt1 = 3, t0
cmp.eq pt4 = 5, t0
cmp.eq pt6 = 7, t0
(pt1) br.cond.spnt SpecialLoop3
(pt4) br.cond.spnt SpecialLoop5
(pt6) br.cond.spnt SpecialLoop7
;;
SpecialLoop1:
(p16) ld8 r32 = [t1], 8
nop.f 0
brp.sptk.imp SpecialLoop1E, SpecialLoop1
SpecialLoop1E:
(p48) st8 [t4] = r10, 8
(p47) shrp r10 = r62,r63,56
br.ctop.sptk.many SpecialLoop1
br UnalignedByteDone
SpecialLoop2:
(p16) ld8 r32 = [t1], 8
nop.f 0
brp.sptk.imp SpecialLoop2E, SpecialLoop2
SpecialLoop2E:
(p48) st8 [t4] = r10, 8
(p47) shrp r10 = r62,r63,48
br.ctop.sptk.many SpecialLoop2
br UnalignedByteDone
SpecialLoop3:
(p16) ld8 r32 = [t1], 8
nop.f 0
brp.sptk.imp SpecialLoop3E, SpecialLoop3
SpecialLoop3E:
(p48) st8 [t4] = r10, 8
(p47) shrp r10 = r62,r63,40
br.ctop.sptk.many SpecialLoop3
br UnalignedByteDone
SpecialLoop4:
(p16) ld8 r32 = [t1], 8
nop.f 0
brp.sptk.imp SpecialLoop4E, SpecialLoop4
SpecialLoop4E:
(p48) st8 [t4] = r10, 8
(p47) shrp r10 = r62,r63,32
br.ctop.sptk.many SpecialLoop4
br UnalignedByteDone
SpecialLoop5:
(p16) ld8 r32 = [t1], 8
nop.f 0
brp.sptk.imp SpecialLoop5E, SpecialLoop5
SpecialLoop5E:
(p48) st8 [t4] = r10, 8
(p47) shrp r10 = r62,r63,24
br.ctop.sptk.many SpecialLoop5
br UnalignedByteDone
SpecialLoop6:
(p16) ld8 r32 = [t1], 8
nop.f 0
brp.sptk.imp SpecialLoop6E, SpecialLoop6
SpecialLoop6E:
(p48) st8 [t4] = r10, 8
(p47) shrp r10 = r62,r63,16
br.ctop.sptk.many SpecialLoop6
br UnalignedByteDone
SpecialLoop7:
(p16) ld8 r32 = [t1], 8
nop.f 0
brp.sptk.imp SpecialLoop7E, SpecialLoop7
SpecialLoop7E:
(p48) st8 [t4] = r10, 8
(p47) shrp r10 = r62,r63,8
br.ctop.sptk.many SpecialLoop7;;
UnalignedByteDone:
sub t1 = t1, t0
mov pr = r64
mov.i ar.lc = r65
;;
cmp.eq pt0 = zero, t2
(pt0) br.ret.spnt brp
UnAlignedByteDoneLoop:
ld1 t10 = [t1], 1
add t2 = -1, t2
;;
cmp.ne pt1 = zero, t2
st1 [t4] = t10, 1
(pt1) br.cond.sptk UnAlignedByteDoneLoop
br.ret.spnt brp
AlignedMove:
add t4 = 64, t3
(pt6) lfetch [t3], 32 //160
sub t22 = 8, t0
;;
(pt6) lfetch [t3], 64 //192
(pt6) lfetch [t4], 96 //224
sub a2 = a2, t22
;;
AlignedMoveByteLoop:
ld1 t10 = [a1], 1
nop.f 0
add t22 = -1, t22
;;
st1 [a0] = t10, 1
cmp.ne pt1 = zero, t22
(pt1) br.cond.sptk AlignedMoveByteLoop
;;
(pt6) lfetch [t3], 32 //256
cmp.eq.unc pt0 = zero, a2
cmp.gt pt2 = 8, a2
(pt6) lfetch [t4], 128 //320
(pt0) br.ret.spnt brp
(pt2) br.cond.sptk ByteMoveUpLoop
;;
//
// both src & dest are now 8-byte aligned
//
QwordMoveUp:
add t3 = 128, a1
add t4 = 288, a1
add t7 = 8, a1
add t8 = 8, a0
cmp.gt pt3 = 64, a2
(pt3) br.cond.spnt QwordMoveUpLoop
;;
UnrolledQwordMoveUpLoop:
ld8 t10 = [a1], 16
ld8 t11 = [t7], 16
add a2 = -64, a2
;;
ld8 t12 = [a1], 16
ld8 t13 = [t7], 16
cmp.le pt3 = 128, a2
;;
ld8 t14 = [a1], 16
ld8 t15 = [t7], 16
cmp.gt pt2 = 8, a2
;;
ld8 t16 = [a1], 16
ld8 t17 = [t7], 16
;;
(pt3) lfetch [t3], 64
(pt3) lfetch [t4], 64
st8 [a0] = t10, 16
st8 [t8] = t11, 16
;;
st8 [a0] = t12, 16
st8 [t8] = t13, 16
;;
st8 [a0] = t14, 16
st8 [t8] = t15, 16
;;
st8 [a0] = t16, 16
st8 [t8] = t17, 16
(pt3) br.cond.dptk UnrolledQwordMoveUpLoop
(pt2) br.cond.spnt ByteMoveUp
;;
QwordMoveUpLoop:
ld8 t10 = [a1], 8
add a2 = -8, a2
;;
cmp.le pt1 = 8, a2
st8 [a0] = t10, 8
(pt1) br.cond.sptk QwordMoveUpLoop
;;
ByteMoveUp:
cmp.eq pt0 = zero, a2
(pt0) br.ret.spnt brp
;;
AlignedByteDoneLoop:
ld1 t10 = [a1], 1
add a2 = -1, a2
;;
cmp.ne pt1 = zero, a2
st1 [a0] = t10, 1
(pt1) br.cond.sptk AlignedByteDoneLoop
br.ret.spnt brp
;;
CopyDown:
cmp.eq pt0 = zero, a2
cmp.ne pt6 = t0, t1
(pt0) br.ret.spnt brp // return if length is zero
cmp.gt pt4 = 16, a2
add t20 = a2, a0
add t21 = a2, a1
nop.m 0
(pt4) br.cond.sptk ByteMoveDown // less than 16 bytes to copy
(pt6) br.cond.spnt UnalignedMoveDown // incompatible alignment
;;
nop.m 0
nop.m 0
and t22 = 0x7, t21
;;
add t20 = -1, t20
add t21 = -1, t21
sub a2 = a2, t22
;;
TailMove:
cmp.eq pt0, pt1 = zero, t22
;;
(pt1) ld1 t10 = [t21], -1
(pt1) add t22 = -1, t22
;;
(pt1) st1 [t20] = t10, -1
(pt1) br.cond.sptk TailMove
Block8Move:
nop.m 0
add t20 = -7, t20
add t21 = -7, t21
;;
Block8MoveLoop:
cmp.gt pt5, pt6 = 8, a2
;;
(pt6) ld8 t10 = [t21], -8
(pt6) add a2 = -8, a2
;;
(pt6) st8 [t20] = t10, -8
(pt6) br.cond.sptk Block8MoveLoop
add t20 = 8, t20 // adjust dest
add t21 = 8, t21 // adjust source
br.cond.sptk ByteMoveDown
;;
UnalignedMoveDown:
and t1 = 7, t21
;;
cmp.eq pt0 = 0, t1
(pt0) br.cond.spnt SkipUnalignedMoveDownByteLoop
;;
add t20 = -1, t20
add t21 = -1, t21
;;
UnalignedMoveDownByteLoop:
ld1 t10 = [t21], -1
add t1 = -1, t1
add a2 = -1, a2
;;
st1 [t20] = t10, -1
cmp.eq p0, pt1 = zero, t1
(pt1) br.cond.sptk UnalignedMoveDownByteLoop
;;
add t20 = 1, t20
add t21 = 1, t21
;;
SkipUnalignedMoveDownByteLoop:
add t21 = -8, t21
;;
and t0 = 7, t20
mov pr.rot = 3<<16
or t1 = t21, r0
;;
sub t7 = 8, t0
;;
add t2 = a2, t7
mov.i ar.ec = 32
;;
sub t4 = t20, t0
shr t10 = t2, 3
shl t6 = t0, 3
;;
ld8 r33 = [t4], 0
add t10 = -1,t10
and t2 = 7, t2
;;
cmp.eq pt0 = 2, t0
cmp.eq pt3 = 4, t0
cmp.eq pt5 = 6, t0
;;
shr r33 = r33,t6 // Prime r39
mov.i ar.lc = t10
(pt0) br.cond.spnt SpecialLoopDown2
(pt3) br.cond.spnt SpecialLoopDown4
(pt5) br.cond.spnt SpecialLoopDown6
cmp.eq pt1 = 3, t0
cmp.eq pt4 = 5, t0
cmp.eq pt6 = 7, t0
(pt1) br.cond.spnt SpecialLoopDown3
(pt4) br.cond.spnt SpecialLoopDown5
(pt6) br.cond.spnt SpecialLoopDown7
;;
SpecialLoopDown1:
(p16) ld8 r32 = [t1], -8
nop.f 0
brp.sptk.imp SpecialLoopDown1E, SpecialLoopDown1
SpecialLoopDown1E:
(p48) st8 [t4] = r10, -8
(p47) shrp r10 = r63,r62,56
br.ctop.sptk.many SpecialLoopDown1
br UnalignedByteDownDone
SpecialLoopDown2:
(p16) ld8 r32 = [t1], -8
nop.f 0
brp.sptk.imp SpecialLoopDown2E, SpecialLoopDown2
SpecialLoopDown2E:
(p48) st8 [t4] = r10, -8
(p47) shrp r10 = r63,r62,48
br.ctop.sptk.many SpecialLoopDown2
br UnalignedByteDownDone
SpecialLoopDown3:
(p16) ld8 r32 = [t1], -8
nop.f 0
brp.sptk.imp SpecialLoopDown3E, SpecialLoopDown3
SpecialLoopDown3E:
(p48) st8 [t4] = r10, -8
(p47) shrp r10 = r63,r62,40
br.ctop.sptk.many SpecialLoopDown3
br UnalignedByteDownDone
SpecialLoopDown4:
(p16) ld8 r32 = [t1], -8
nop.f 0
brp.sptk.imp SpecialLoopDown4E, SpecialLoopDown4
SpecialLoopDown4E:
(p48) st8 [t4] = r10, -8
(p47) shrp r10 = r63,r62,32
br.ctop.sptk.many SpecialLoopDown4
br UnalignedByteDownDone
SpecialLoopDown5:
(p16) ld8 r32 = [t1], -8
nop.f 0
brp.sptk.imp SpecialLoopDown5E, SpecialLoopDown5
SpecialLoopDown5E:
(p48) st8 [t4] = r10, -8
(p47) shrp r10 = r63,r62,24
br.ctop.sptk.many SpecialLoopDown5
br UnalignedByteDownDone
SpecialLoopDown6:
(p16) ld8 r32 = [t1], -8
nop.f 0
brp.sptk.imp SpecialLoopDown6E, SpecialLoopDown6
SpecialLoopDown6E:
(p48) st8 [t4] = r10, -8
(p47) shrp r10 = r63,r62,16
br.ctop.sptk.many SpecialLoopDown6
br UnalignedByteDownDone
SpecialLoopDown7:
(p16) ld8 r32 = [t1], -8
nop.f 0
brp.sptk.imp SpecialLoopDown7E, SpecialLoopDown7
SpecialLoopDown7E:
(p48) st8 [t4] = r10, -8
(p47) shrp r10 = r63,r62,8
br.ctop.sptk.many SpecialLoopDown7;;
UnalignedByteDownDone:
add t1 = 7, t1
add t4 = 7, t4
;;
add t1 = t1, t7
mov pr = r64
mov.i ar.lc = r65
;;
cmp.eq pt0 = zero, t2
(pt0) br.ret.spnt brp
;;
UnAlignedByteDoneDownLoop:
ld1 t10 = [t1], -1
add t2 = -1, t2
;;
cmp.ne pt1 = zero, t2
st1 [t4] = t10, -1
(pt1) br.cond.sptk UnAlignedByteDoneDownLoop
br.ret.spnt brp
ByteMoveDown:
nop.m 0
add t20 = -1, t20 // adjust source
add t21 = -1, t21 // adjust destination
;;
ByteMoveDownLoop:
cmp.ne pt1 = zero, a2
;;
(pt1) ld1 t10 = [t21], -1
(pt1) add a2 = -1, a2
;;
(pt1) st1 [t20] = t10, -1
(pt1) br.cond.sptk ByteMoveDownLoop
br.ret.spnt brp
;;
LEAF_EXIT(RtlMoveMemory)
LEAF_ENTRY(RtlCompareMemory)
cmp.eq pt0 = 0, a2
mov v0 = 0
(pt0) br.ret.spnt.many brp
;;
add t2 = -1, a2
Rcmp10:
ld1 t0 = [a0], 1
ld1 t1 = [a1], 1
;;
cmp4.eq pt2 = t0, t1
;;
(pt2) cmp.ne.unc pt1 = v0, t2
(pt2) add v0 = 1, v0
(pt1) br.cond.dptk.few Rcmp10
br.ret.sptk.many brp
LEAF_EXIT(RtlCompareMemory)
//++
//
// VOID
// RtlCopyIa64FloatRegisterContext (
// PFLOAT128 Destination,
// PFLOAT128 Source,
// ULONGLONG Length
// )
//
// Routine Description:
//
// This routine copies floating point context from one place to
// another. It assumes both the source and the destination are
// 16-byte aligned and the buffer contains only memory image of
// floating point registers. Note that Length must be greater
// than 0 and a multiple of 16.
//
// Arguments:
//
// a0 - Destination
// a1 - Source
// a2 - Length
//
// Return Value:
//
// None.
//
//--
NESTED_ENTRY(RtlCopyIa64FloatRegisterContext)
.prologue
.save ar.lc, t22
mov t22 = ar.lc
shr t0 = a2, 4
;;
cmp.gtu pt0, pt1 = 16, a2
add t0 = -1, t0
;;
PROLOGUE_END
(pt1) mov ar.lc = t0
(pt0) br.ret.spnt brp
Rcf10:
ldf.fill ft0 = [a1], 16
nop.m 0
nop.i 0
;;
stf.spill [a0] = ft0, 16
nop.i 0
br.cloop.dptk Rcf10
;;
nop.m 0
mov ar.lc = t22
br.ret.sptk brp
;;
NESTED_EXIT(RtlCopyIa64FloatRegisterContext)
NESTED_ENTRY(RtlpCopyContextSubSet)
.prologue
.save ar.lc, t22
mov t22 = ar.lc
mov t0 = a0
mov t1 = a1
;;
PROLOGUE_END
ld8 t3 = [t1], CxFltS0
;;
st8 [t0] = t3, CxFltS0
mov t2 = 3
add t10 = CxFltS4, a0
add t11 = CxFltS4, a1
;;
mov ar.lc = t2
Rcc10:
ldf.fill ft0 = [t1], 16
;;
stf.spill [t0] = ft0, 16
mov t2 = 15
br.cloop.dptk.few Rcc10
;;
mov t0 = CxStIFS
mov t1 = CxStFPSR
mov ar.lc = t2
Rcc20:
ldf.fill ft0 = [t11], 16
;;
stf.spill [t10] = ft0, 16
sub t2 = t0, t1
br.cloop.dptk.few Rcc20
;;
add t11 = CxStFPSR, a1
add t10 = CxStFPSR, a0
shr t2 = t2, 3
;;
mov ar.lc = t2
;;
Rcc30:
ld8 t0 = [t11], 8
;;
st8 [t10] = t0, 8
nop.i 0
br.cloop.dptk.few Rcc30
;;
nop.m 0
mov ar.lc = t22
br.ret.sptk brp
NESTED_EXIT(RtlpCopyContextSubSet)
//++
//
// VOID
// RtlPrefetchMemoryNonTemporal (
// IN PVOID Source,
// IN SIZE_T Length
// )
//
// Routine Description:
//
// This routine prefetches memory at Source, for Length bytes into
// the closest cache to the processor.
//
// N.B. Currently this code assumes a line size of 32 bytes. At
// some stage it should be altered to determine and use the processor's
// actual line size.
//
// Arguments:
//
// a0 - Source
// a1 - Length
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(RtlPrefetchMemoryNonTemporal)
.prologue
lfetch.nta [a0], 32 // get first line coming
.save ar.lc, t0
mov.i t0 = ar.lc // save loop counter
shr a1 = a1, 5 // determine loop count
;;
.body
add t2 = -1, a1 // subtract out already fetched line
cmp.lt pt0, pt1 = 2, a1 // check if less than one line to fetch
;;
(pt0) mov ar.lc = t2 // set loop count
(pt1) br.ret.spnt.few brp // return if no more lines to fetch
;;
Rpmnt10:
lfetch.nta [a0], 32 // fetch next line
br.cloop.dptk.many Rpmnt10 // loop while more lines to fetch
;;
mov ar.lc = t0 // restore loop counter
br.ret.sptk.many brp // return
LEAF_EXIT(RtlPrefetchMemoryNonTemporal)